Sample records for quadratic performance criterion

  1. Development of failure criterion for Kevlar-epoxy fabric laminates

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1984-01-01

    The development of the tensor polynomial failure criterion for composite laminate analysis is discussed. In particular, emphasis is given to the fabrication and testing of Kevlar-49 fabric (Style 285)/Narmco 5208 Epoxy. The quadratic-failure criterion with F(12)=0 provides accurate estimates of failure stresses for the Kevlar/Epoxy investigated. The cubic failure criterion was re-cast into an operationally easier form, providing the engineer with design curves that can be applied to laminates fabricated from unidirectional prepregs. In the form presented no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exists at present to generalize this approach for all undirectional prepregs and its use must be restricted to the generic materials investigated to-date.

  2. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  3. Evaluation of failure criterion for graphite/epoxy fabric laminates

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Wharram, G. E.

    1985-01-01

    The development and application of the tensor polynomial failure criterion for composite laminate analysis is described. Emphasis is given to the fabrication and testing of Narmco Rigidite 5208-WT300, a plain weave fabric of Thornel 300 Graphite fibers impregnated with Narmco 5208 Resin. The quadratic-failure criterion with F sub 12=0 provides accurate estimates of failure stresses for the graphite/epoxy investigated. The cubic failure criterion was recast into an operationally easier form, providing design curves that can be applied to laminates fabricated from orthotropic woven fabric prepregs. In the form presented, no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exist at present to generalize this approach for all prepreg constructions, and its use must be restricted to the generic materials and configurations investigated to date.

  4. The Concept of Performance Levels in Criterion-Referenced Assessment.

    ERIC Educational Resources Information Center

    Hewitson, Mal

    The concept of performance levels in criterion-referenced assessment is explored by applying the idea to different types of tests commonly used in schools, mastery tests (including diagnostic tests) and achievement tests. In mastery tests, a threshold performance standard must be established for each criterion. Attainment of this threshold…

  5. Criterion for estimation of stress-deformed state of SD-materials

    NASA Astrophysics Data System (ADS)

    Orekhov, Andrey V.

    2018-05-01

    A criterion is proposed that determines the moment when the growth pattern of the monotonic numerical sequence varies from the linear to the parabolic one. The criterion is based on the comparison of squares of errors for the linear and the incomplete quadratic approximation. The approximating functions are constructed locally, only at those points that are located near a possible change in nature of the increase in the sequence.

  6. Conservative Allowables Determined by a Tsai-Hill Equivalent Criterion for Design of Satellite Composite Parts

    NASA Astrophysics Data System (ADS)

    Pommatau, Gilles

    2014-06-01

    The present paper deals with the industrial application, via a software developed by Thales Alenia Space, of a new failure criterion named "Tsai-Hill equivalent criterion" for composite structural parts of satellites. The first part of the paper briefly describes the main hypothesis and the possibilities in terms of failure analysis of the software. The second parts reminds the quadratic and conservative nature of the new failure criterion, already presented in ESA conference in a previous paper. The third part presents the statistical calculation possibilities of the software, and the associated sensitivity analysis, via results obtained on different composites. Then a methodology, proposed to customers and agencies, is presented with its limitations and advantages. It is then conclude that this methodology is an efficient industrial way to perform mechanical analysis on quasi-isotropic composite parts.

  7. General Criterion for Harmonicity

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  8. An Improved Correction for Range Restricted Correlations Under Extreme, Monotonic Quadratic Nonlinearity and Heteroscedasticity.

    PubMed

    Culpepper, Steven Andrew

    2016-06-01

    Standardized tests are frequently used for selection decisions, and the validation of test scores remains an important area of research. This paper builds upon prior literature about the effect of nonlinearity and heteroscedasticity on the accuracy of standard formulas for correcting correlations in restricted samples. Existing formulas for direct range restriction require three assumptions: (1) the criterion variable is missing at random; (2) a linear relationship between independent and dependent variables; and (3) constant error variance or homoscedasticity. The results in this paper demonstrate that the standard approach for correcting restricted correlations is severely biased in cases of extreme monotone quadratic nonlinearity and heteroscedasticity. This paper offers at least three significant contributions to the existing literature. First, a method from the econometrics literature is adapted to provide more accurate estimates of unrestricted correlations. Second, derivations establish bounds on the degree of bias attributed to quadratic functions under the assumption of a monotonic relationship between test scores and criterion measurements. New results are presented on the bias associated with using the standard range restriction correction formula, and the results show that the standard correction formula yields estimates of unrestricted correlations that deviate by as much as 0.2 for high to moderate selectivity. Third, Monte Carlo simulation results demonstrate that the new procedure for correcting restricted correlations provides more accurate estimates in the presence of quadratic and heteroscedastic test score and criterion relationships.

  9. Graphical Description of Johnson-Neyman Outcomes for Linear and Quadratic Regression Surfaces.

    ERIC Educational Resources Information Center

    Schafer, William D.; Wang, Yuh-Yin

    A modification of the usual graphical representation of heterogeneous regressions is described that can aid in interpreting significant regions for linear or quadratic surfaces. The standard Johnson-Neyman graph is a bivariate plot with the criterion variable on the ordinate and the predictor variable on the abscissa. Regression surfaces are drawn…

  10. Cold formability prediction by the modified maximum force criterion with a non-associated Hill48 model accounting for anisotropic hardening

    NASA Astrophysics Data System (ADS)

    Lian, J.; Ahn, D. C.; Chae, D. C.; Münstermann, S.; Bleck, W.

    2016-08-01

    Experimental and numerical investigations on the characterisation and prediction of cold formability of a ferritic steel sheet are performed in this study. Tensile tests and Nakajima tests were performed for the plasticity characterisation and the forming limit diagram determination. In the numerical prediction, the modified maximum force criterion is selected as the localisation criterion. For the plasticity model, a non-associated formulation of the Hill48 model is employed. With the non-associated flow rule, the model can result in a similar predictive capability of stress and r-value directionality to the advanced non-quadratic associated models. To accurately characterise the anisotropy evolution during hardening, the anisotropic hardening is also calibrated and implemented into the model for the prediction of the formability.

  11. Procedures for Constructing and Using Criterion-Referenced Performance Tests.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.; Allender, Bill R.

    1988-01-01

    Criterion-referenced performance tests (CRPT) provide a realistic method for objectively measuring task proficiency against predetermined attainment standards. This article explains the procedures of constructing, validating, and scoring CRPTs and includes a checklist for a welding test. (JOW)

  12. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  13. Measures and Interpretations of Vigilance Performance: Evidence Against the Detection Criterion

    NASA Technical Reports Server (NTRS)

    Balakrishnan, J. D.

    1998-01-01

    Operators' performance in a vigilance task is often assumed to depend on their choice of a detection criterion. When the signal rate is low this criterion is set high, causing the hit and false alarm rates to be low. With increasing time on task the criterion presumably tends to increase even further, thereby further decreasing the hit and false alarm rates. Virtually all of the empirical evidence for this simple interpretation is based on estimates of the bias measure Beta from signal detection theory. In this article, I describe a new approach to studying decision making that does not require the technical assumptions of signal detection theory. The results of this new analysis suggest that the detection criterion is never biased toward either response, even when the signal rate is low and the time on task is long. Two modifications of the signal detection theory framework are considered to account for this seemingly paradoxical result. The first assumes that the signal rate affects the relative sizes of the variances of the information distributions; the second assumes that the signal rate affects the logic of the operator's stopping rule. Actual or potential applications of this research include the improved training and performance assessment of operators in areas such as product quality control, air traffic control, and medical and clinical diagnosis.

  14. Personal Career Orientation. Performance Objectives. Criterion Measures. Home Economics.

    ERIC Educational Resources Information Center

    Allen, Alveta; And Others

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for a personal career orientation course for seventh grade students. This 6- to 9-week course is designed to acquaint the student with personal qualities and characteristics necessary for success in the world of work.…

  15. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  16. Effects of specified performance criterion and performance feedback on staff behavior: a component analysis.

    PubMed

    Hardesty, Samantha L; Hagopian, Louis P; McIvor, Melissa M; Wagner, Leaora L; Sigurdsson, Sigurdur O; Bowman, Lynn G

    2014-09-01

    The present study isolated the effects of frequently used staff training intervention components to increase communication between direct care staff and clinicians working on an inpatient behavioral unit. Written "protocol review" quizzes developed by clinicians were designed to assess knowledge about a patient's behavioral protocols. Direct care staff completed these at the beginning of each day and evening shift. Clinicians were required to score and discuss these protocol reviews with direct care staff for at least 75% of shifts over a 2-week period. During baseline, only 21% of clinicians met this requirement. Completing and scoring of protocol reviews did not improve following additional in-service training (M = 15%) or following an intervention aimed at decreasing response effort combined with prompting (M = 28%). After implementing an intervention involving specified performance criterion and performance feedback, 86% of clinicians reached the established goal. Results of a component analysis suggested that the presentation of both the specified performance criterion and supporting contingencies was necessary to maintain acceptable levels of performance. © The Author(s) 2014.

  17. Parametric optimal control of uncertain systems under an optimistic value criterion

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhu, Yuanguo

    2018-01-01

    It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.

  18. Evaluating Maintenance Performance: The Development of Graphic Symbolic Substitutes for Criterion Referenced Job Task Performance Tests for Electronic Maintenance. Final Report.

    ERIC Educational Resources Information Center

    Shriver, Edgar L.; Foley, John P., Jr.

    A battery of criterion referenced Job Task Performance Tests (JTPT) was developed because paper and pencil tests of job knowledge and electronic theory had very poor criterion-related or empirical validity with respect to the ability of electronic maintenance men to perform their job. Although the original JTPT required the use of actual…

  19. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    ERIC Educational Resources Information Center

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  20. Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharov, G.S., E-mail: german.sharov@mail.ru

    Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r {sub s} ( z {sub d} ). Among the considered models the best value of χ{sup 2} is achieved formore » the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.« less

  1. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  2. Consumer Education--Home Economics. Performance Objectives. Criterion Measures. Home Economics.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL.

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an 18-week consumer education-home economics course for 10th, 11th, and 12th grade students. Purposes listed for the course are to develop an understanding of the American market system, and how the individual affects…

  3. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  4. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  5. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  6. Quadratic soliton self-reflection at a quadratically nonlinear interface

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  7. Decision Criterion Dynamics in Animals Performing an Auditory Detection Task

    PubMed Central

    Mill, Robert W.; Alves-Pinto, Ana; Sumner, Christian J.

    2014-01-01

    Classical signal detection theory attributes bias in perceptual decisions to a threshold criterion, against which sensory excitation is compared. The optimal criterion setting depends on the signal level, which may vary over time, and about which the subject is naïve. Consequently, the subject must optimise its threshold by responding appropriately to feedback. Here a series of experiments was conducted, and a computational model applied, to determine how the decision bias of the ferret in an auditory signal detection task tracks changes in the stimulus level. The time scales of criterion dynamics were investigated by means of a yes-no signal-in-noise detection task, in which trials were grouped into blocks that alternately contained easy- and hard-to-detect signals. The responses of the ferrets implied both long- and short-term criterion dynamics. The animals exhibited a bias in favour of responding “yes” during blocks of harder trials, and vice versa. Moreover, the outcome of each single trial had a strong influence on the decision at the next trial. We demonstrate that the single-trial and block-level changes in bias are a manifestation of the same criterion update policy by fitting a model, in which the criterion is shifted by fixed amounts according to the outcome of the previous trial and decays strongly towards a resting value. The apparent block-level stabilisation of bias arises as the probabilities of outcomes and shifts on single trials mutually interact to establish equilibrium. To gain an intuition into how stable criterion distributions arise from specific parameter sets we develop a Markov model which accounts for the dynamic effects of criterion shifts. Our approach provides a framework for investigating the dynamics of decisions at different timescales in other species (e.g., humans) and in other psychological domains (e.g., vision, memory). PMID:25485733

  8. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  9. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  10. Security analysis of quadratic phase based cryptography

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Healy, John J.; Sheridan, John T.

    2016-09-01

    The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.

  11. Quadrat Data for Fermilab Prairie Plant Survey

    Science.gov Websites

    Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems

  12. Does Performance on the Standard Antisaccade Task Meet the Co-Familiality Criterion for an Endophenotype?

    ERIC Educational Resources Information Center

    Levy, Deborah L.; Bowman, Elizabeth A.; Abel, Larry; Krastoshevsky, Olga; Krause, Verena; Mendell, Nancy R.

    2008-01-01

    The "co-familiality" criterion for an endophenotype has two requirements: (1) clinically unaffected relatives as a group should show both a shift in mean performance and an increase in variance compared with controls; (2) performance scores should be heritable. Performance on the antisaccade task is one of several candidate endophenotypes for…

  13. Quadratic spline subroutine package

    USGS Publications Warehouse

    Rasmussen, Lowell A.

    1982-01-01

    A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)

  14. Home Economics. Exploration of Clothing Management, Production and Service Occupations. Performance Objectives. Criterion Measures.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL.

    Several intermediate performance objectives and corresponding criterion measures are presented for each of five terminal objectives for a 12- to 18-week course designed to provide students in grades 8 or 9 with opportunities to explore a broad range of clothing management, production, and service occupations. The course was designed to provide…

  15. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  16. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  17. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  18. Antenna Linear-Quadratic-Gaussian (LQG) Controllers: Properties, Limits of Performance, and Tuning Procedure

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    2004-01-01

    Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.

  19. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  20. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  1. Failure Study of Composite Materials by the Yeh-Stratton Criterion

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1997-01-01

    The newly developed Yeh-Stratton (Y-S) Strength Criterion was used to study the failure of composite materials with central holes and normal cracks. To evaluate the interaction parameters for the Y-S failure theory, it is necessary to perform several biaxial loading tests. However, it is indisputable that the inhomogeneous and anisotropic nature of composite materials have made their own contribution to the complication of the biaxial testing problem. To avoid the difficulties of performing many biaxial tests and still consider the effects of the interaction term in the Y-S Criterion, a simple modification of the Y-S Criterion was developed. The preliminary predictions by the modified Y-S Criterion were relatively conservative compared to the testing data. Thus, the modified Y-S Criterion could be used as a design tool. To further understand the composite failure problem, an investigation of the damage zone in front of the crack tip coupled with the Y-S Criterion is imperative.

  2. Creation of a criterion-referenced Military Optimal Performance Challenge.

    PubMed

    Crowder, Todd A; Ferrara, Andrew L; Levinbook, Max D

    2013-10-01

    To compare an empirical, Army doctrine-based (endurance, strength, mobility, military relevant tasks), criterion-referenced, body mass (BM) unbiased Military Optimal Performance Challenge (MOPC) to the Army's Physical Fitness Test (APFT) and thus assisting commanders to determine military readiness. Militarily-relevant physical assessments were combined to create a composite MOPC score. The MOPC and APFT were administered to 20 male, military subjects during a 2-week period. Data collection included 3-Mile Run, Mobility Test, Upper/Lower Body Strength/Endurance, Simulated Casualty Evacuation Test. The APFT was administered through Army guidelines before MOPC data collection. The APFT was influenced by BM, lean body mass (LBM) (r = -0.44; r(2) = 0.20; p = 0.04), whereas MOPC was less impacted (r = 0.21; r(2) = 0.04; p = 0.32). Eight subjects, as viewed by %APFT, are "fit for duty" (80.6%); however, all eight subjects' mean score as %MOPC was <50%. The MOPC offers a robust approach to military readiness and is free of the confounding influence of BM. The MOPC is a unique assessment requiring a multitude of abilities to garner success and may assist in training for functional combat performance skills demanding high work capacities. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  3. Development of a Criterion-Referenced, Performance-Based Assessment of Reading Comprehension in a Whole Literacy Program.

    ERIC Educational Resources Information Center

    Tibbetts, Katherine A.; And Others

    This paper describes the development of a criterion-referenced, performance-based measure of third grade reading comprehension. The primary purpose of the assessment is to contribute unique and valid information for use in the formative evaluation of a whole literacy program. A secondary purpose is to supplement other program efforts to…

  4. Emotion suppression moderates the quadratic association between RSA and executive function.

    PubMed

    Spangler, Derek P; Bell, Martha Ann; Deater-Deckard, Kirby

    2015-09-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated (a) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (b) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a 2-min resting period during which electrocardiogram (ECG) was continually assessed. In the next phase, the women completed an array of executive function and nonexecutive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. © 2015 Society for Psychophysiological Research.

  5. Emotion suppression moderates the quadratic association between RSA and executive function

    PubMed Central

    Spangler, Derek P.; Bell, Martha Ann; Deater-Deckard, Kirby

    2016-01-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated: (1) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (2) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a two-minute resting period during which ECG was continually assessed. In the next phase, the women completed an array of executive function and non-executive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. PMID:26018941

  6. A Joint Optimization Criterion for Blind DS-CDMA Detection

    NASA Astrophysics Data System (ADS)

    Durán-Díaz, Iván; Cruces-Alvarez, Sergio A.

    2006-12-01

    This paper addresses the problem of the blind detection of a desired user in an asynchronous DS-CDMA communications system with multipath propagation channels. Starting from the inverse filter criterion introduced by Tugnait and Li in 2001, we propose to tackle the problem in the context of the blind signal extraction methods for ICA. In order to improve the performance of the detector, we present a criterion based on the joint optimization of several higher-order statistics of the outputs. An algorithm that optimizes the proposed criterion is described, and its improved performance and robustness with respect to the near-far problem are corroborated through simulations. Additionally, a simulation using measurements on a real software-radio platform at 5 GHz has also been performed.

  7. An Unexpected Influence on a Quadratic

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  8. The Distributed Criterion Design

    ERIC Educational Resources Information Center

    McDougall, Dennis

    2006-01-01

    This article describes and illustrates a novel form of the changing criterion design called the distributed criterion design, which represents perhaps the first advance in the changing criterion design in four decades. The distributed criterion design incorporates elements of the multiple baseline and A-B-A-B designs and is well suited to applied…

  9. Evaluating Maintenance Performance: Test Administrator's Manual and Test Subject's Instructions for Criterion Referenced Job Task Performance Tests for Electronic Maintenance. Final Report.

    ERIC Educational Resources Information Center

    Shriver, Edgar L.; And Others

    This document furnishes a complete copy of the Test Subject's Instructions and the Test Administrator's Handbook for a battery of criterion referenced Job Task Performance Tests (JTPT) for electronic maintenance. General information is provided on soldering, Radar Set AN/APN-147(v), Radar Set Special Equipment, Radar Set Bench Test Set-Up, and…

  10. A Simple Criterion to Estimate Performance of Pulse Jet Mixed Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, Leonard F.; Bamberger, Judith A.; Mahoney, Lenna A.

    Pulse jet mixed process vessels comprise a key element of the U.S. Department of Energy’s strategy to process millions of gallons of legacy nuclear waste slurries. Slurry suctioned into a pulse jet mixer (PJM) tube at the end of one pulse is pneumatically driven from the PJM toward the bottom of the vessel at the beginning of the next pulse, forming a jet. The jet front traverses the distance from nozzle outlet to the bottom of the vessel and spreads out radially. Varying numbers of PJMs are typically arranged in a ring configuration within the vessel at a selected radiusmore » and operated concurrently. Centrally directed radial flows from neighboring jets collide to create a central upwell that elevates the solids in the center of the vessel when the PJM tubes expel their contents. An essential goal of PJM operation is to elevate solids to the liquid surface to minimize stratification. Solids stratification may adversely affect throughput of the waste processing plant. Unacceptably high slurry densities at the base of the vessel may plug the pipeline through which the slurry exits the vessel. Additionally, chemical reactions required for processing may not achieve complete conversion. To avoid these conditions, a means of predicting the elevation to which the solids rise in the central upwell that can be used during vessel design remains essential. In this paper we present a simple criterion to evaluate the extent of solids elevation achieved by a turbulent upwell jet. The criterion asserts that at any location in the central upwell the local velocity must be in excess of a cutoff velocity to remain turbulent. We find that local velocities in excess of 0.6 m/s are necessary for turbulent jet flow through both Newtonian and yield stress slurries. By coupling this criterion with the free jet velocity equation relating the local velocity to elevation in the central upwell, we estimate the elevation at which turbulence fails, and consequently the elevation at

  11. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  12. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  13. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  14. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  15. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  16. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  17. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  18. Social influences on adaptive criterion learning.

    PubMed

    Cassidy, Brittany S; Dubé, Chad; Gutchess, Angela H

    2015-07-01

    People adaptively shift decision criteria when given biased feedback encouraging specific types of errors. Given that work on this topic has been conducted in nonsocial contexts, we extended the literature by examining adaptive criterion learning in both social and nonsocial contexts. Specifically, we compared potential differences in criterion shifting given performance feedback from social sources varying in reliability and from a nonsocial source. Participants became lax when given false positive feedback for false alarms, and became conservative when given false positive feedback for misses, replicating prior work. In terms of a social influence on adaptive criterion learning, people became more lax in response style over time if feedback was provided by a nonsocial source or by a social source meant to be perceived as unreliable and low-achieving. In contrast, people adopted a more conservative response style over time if performance feedback came from a high-achieving and reliable source. Awareness that a reliable and high-achieving person had not provided their feedback reduced the tendency to become more conservative, relative to those unaware of the source manipulation. Because teaching and learning often occur in a social context, these findings may have important implications for many scenarios in which people fine-tune their behaviors, given cues from others.

  19. Criterion vs. Norm-referenced Testing.

    ERIC Educational Resources Information Center

    Pimsleur, Paul

    1975-01-01

    A norm-referenced evaluation system, which evaluates the student in comparison to his peers, is rejected in favor of a criterion-referenced system. The latter, which rates the performance of a student on an absolute standard, makes for an individualized approach. Two kinds of tests are distinguished, the formative, administered during the course…

  20. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  1. Design of linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.

    1990-01-01

    Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.

  2. Symmetry-breaking instability of quadratic soliton bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delque, Michaeel; Departement d'Optique P.M. Duffieux, Institut FEMTO-ST, Universite de Franche-Comte, CNRS UMR 6174, F-25030 Besancon; Fanjoux, Gil

    We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.

  3. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    PubMed

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  4. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

    NASA Astrophysics Data System (ADS)

    Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo

    2018-05-01

    The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

  5. Evaluating Maintenance Performance: The Development and Tryout of Criterion Referenced Job Task Performance Tests for Electronic Maintenance. Final Report for Period January 1969-May 1974.

    ERIC Educational Resources Information Center

    Shriver, Edgar L.; Foley, John P., Jr.

    A battery of criterion referenced job task performance tests (JIPT) for typical electronic maintenance activities were developed. The construction of a battery of such tests together with an appropriate scoring for reporting the results is detailed. The development of a Test Administrators Handbook also is described. This battery is considered to…

  6. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  7. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  8. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  9. Criterion-based laparoscopic training reduces total training time.

    PubMed

    Brinkman, Willem M; Buzink, Sonja N; Alevizos, Leonidas; de Hingh, Ignace H J T; Jakimowicz, Jack J

    2012-04-01

    The benefits of criterion-based laparoscopic training over time-oriented training are unclear. The purpose of this study is to compare these types of training based on training outcome and time efficiency. During four training sessions within 1 week (one session per day) 34 medical interns (no laparoscopic experience) practiced on two basic tasks on the Simbionix LAP Mentor virtual-reality (VR) simulator: 'clipping and grasping' and 'cutting'. Group C (criterion-based) (N = 17) trained to reach predefined criteria and stopped training in each session when these criteria were met, with a maximum training time of 1 h. Group T (time-based) (N = 17) trained for a fixed time of 1 h each session. Retention of skills was assessed 1 week after training. In addition, transferability of skills was established using the Haptica ProMIS augmented-reality simulator. Both groups improved their performance significantly over the course of the training sessions (Wilcoxon signed ranks, P < 0.05). Both groups showed skill transferability and skill retention. When comparing the performance parameters of group C and group T, their performances in the first, the last and the retention training sessions did not differ significantly (Mann-Whitney U test, P > 0.05). The average number of repetitions needed to meet the criteria also did not differ between the groups. Overall, group C spent less time training on the simulator than did group T (74:48 and 120:10 min, respectively; P < 0.001). Group C performed significantly fewer repetitions of each task, overall and in session 2, 3 and 4. Criterion-based training of basic laparoscopic skills can reduce the overall training time with no impact on training outcome, transferability or retention of skills. Criterion-based should be the training of choice in laparoscopic skills curricula.

  10. The stability of quadratic-reciprocal functional equation

    NASA Astrophysics Data System (ADS)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  11. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  12. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  13. Food and Nutrition (Intermediate). Performance Objectives and Criterion-Referenced Test Items.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This document contains competencies and criterion-referenced test items for the Intermediate Food and Nutrition semester course in Missouri that were derived from the duties and tasks of the Missouri homemaker and identified and validated by home economics teachers and subject matter specialists. The guide is designed to assist home economics…

  14. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  15. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  16. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  17. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion

    NASA Astrophysics Data System (ADS)

    Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.

    2017-09-01

    Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.

  18. Time to Criterion: An Experimental Study.

    ERIC Educational Resources Information Center

    Anderson, Lorin W.

    The purpose of the study was to investigate the magnitude of individual differences in time-to-criterion and the stability of these differences. Time-to-criterion was defined in two ways: the amount of elapsed time required to attain the criterion level and the amount of on-task time required to attain the criterion level. Ninety students were…

  19. On orthogonality preserving quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  20. The Mystical "Quadratic Formula."

    ERIC Educational Resources Information Center

    March, Robert H.

    1993-01-01

    Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)

  1. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  2. Some insights on hard quadratic assignment problem instances

    NASA Astrophysics Data System (ADS)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  3. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  4. Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Volden, Thomas R.

    2012-01-01

    An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.

  5. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  6. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  7. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  8. Is the Federal Government Jumping on the Criterion-Referenced Testing Bandwagon?

    ERIC Educational Resources Information Center

    Buck, Lawrence S.

    The increasing use of criterion referenced testing (CRT) among the various branches of the federal government is described. The requirements of the merit system have tended to promote the use of norm referenced tests except for uses such as pass/fail performance tests. The two areas in which criterion-referenced tests have been most useful are…

  9. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  10. Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion

    PubMed Central

    Larose, Chantal; Harel, Ofer; Kordas, Katarzyna; Dey, Dipak K.

    2016-01-01

    Latent class analysis is used to group categorical data into classes via a probability model. Model selection criteria then judge how well the model fits the data. When addressing incomplete data, the current methodology restricts the imputation to a single, pre-specified number of classes. We seek to develop an entropy-based model selection criterion that does not restrict the imputation to one number of clusters. Simulations show the new criterion performing well against the current standards of AIC and BIC, while a family studies application demonstrates how the criterion provides more detailed and useful results than AIC and BIC. PMID:27695391

  11. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  12. Analysis of Students' Error in Learning of Quadratic Equations

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  13. Self-accelerating parabolic beams in quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Dolev, Ido; Libster, Ana; Arie, Ady

    2012-09-01

    We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.

  14. Quadratic integrand double-hybrid made spin-component-scaled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.

    2016-03-28

    We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

  15. Binary Inspiral in Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2015-01-01

    Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.

  16. The Reliability of Criterion-Referenced Measures.

    ERIC Educational Resources Information Center

    Livingston, Samuel A.

    The assumptions of the classical test-theory model are used to develop a theory of reliability for criterion-referenced measures which parallels that for norm-referenced measures. It is shown that the Spearman-Brown formula holds for criterion-referenced measures and that the criterion-referenced reliability coefficient can be used to correct…

  17. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  18. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  19. Strength-based criterion shifts in recognition memory.

    PubMed

    Singer, Murray

    2009-10-01

    In manipulations of stimulus strength between lists, a more lenient signal detection criterion is more frequently applied to a weak than to a strong stimulus class. However, with randomly intermixed weak and strong test probes, such a criterion shift often does not result. A procedure that has yielded delay-based within-list criterion shifts was applied to strength manipulations in recognition memory for categorized word lists. When participants made semantic ratings about each stimulus word, strength-based criterion shifts emerged regardless of whether words from pairs of categories were studied in separate blocks (Experiment 1) or in intermixed blocks (Experiment 2). In Experiment 3, the criterion shift persisted under the semantic-rating study task, but not under rote memorization. These findings suggest that continually adjusting the recognition decision criterion is cognitively feasible. They provide a technique for manipulating the criterion shift, and they identify competing theoretical accounts of these effects.

  20. Optimization of Multi-Fidelity Computer Experiments via the EQIE Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xu; Tuo, Rui; Jeff Wu, C. F.

    Computer experiments based on mathematical models are powerful tools for understanding physical processes. This article addresses the problem of kriging-based optimization for deterministic computer experiments with tunable accuracy. Our approach is to use multi- delity computer experiments with increasing accuracy levels and a nonstationary Gaussian process model. We propose an optimization scheme that sequentially adds new computer runs by following two criteria. The first criterion, called EQI, scores candidate inputs with given level of accuracy, and the second criterion, called EQIE, scores candidate combinations of inputs and accuracy. Here, from simulation results and a real example using finite element analysis,more » our method out-performs the expected improvement (EI) criterion which works for single-accuracy experiments.« less

  1. Optimization of Multi-Fidelity Computer Experiments via the EQIE Criterion

    DOE PAGES

    He, Xu; Tuo, Rui; Jeff Wu, C. F.

    2017-01-31

    Computer experiments based on mathematical models are powerful tools for understanding physical processes. This article addresses the problem of kriging-based optimization for deterministic computer experiments with tunable accuracy. Our approach is to use multi- delity computer experiments with increasing accuracy levels and a nonstationary Gaussian process model. We propose an optimization scheme that sequentially adds new computer runs by following two criteria. The first criterion, called EQI, scores candidate inputs with given level of accuracy, and the second criterion, called EQIE, scores candidate combinations of inputs and accuracy. Here, from simulation results and a real example using finite element analysis,more » our method out-performs the expected improvement (EI) criterion which works for single-accuracy experiments.« less

  2. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  3. Entropic criterion for model selection

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan

    2006-10-01

    Model or variable selection is usually achieved through ranking models according to the increasing order of preference. One of methods is applying Kullback-Leibler distance or relative entropy as a selection criterion. Yet that will raise two questions, why use this criterion and are there any other criteria. Besides, conventional approaches require a reference prior, which is usually difficult to get. Following the logic of inductive inference proposed by Caticha [Relative entropy and inductive inference, in: G. Erickson, Y. Zhai (Eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, vol. 707, 2004 (available from arXiv.org/abs/physics/0311093)], we show relative entropy to be a unique criterion, which requires no prior information and can be applied to different fields. We examine this criterion by considering a physical problem, simple fluids, and results are promising.

  4. A multiple maximum scatter difference discriminant criterion for facial feature extraction.

    PubMed

    Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei

    2007-12-01

    Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.

  5. Forming limit prediction by an evolving non-quadratic yield criterion considering the anisotropic hardening and r-value evolution

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian

    2018-05-01

    The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.

  6. Generalized Majority Logic Criterion to Analyze the Statistical Strength of S-Boxes

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan

    2012-05-01

    The majority logic criterion is applicable in the evaluation process of substitution boxes used in the advanced encryption standard (AES). The performance of modified or advanced substitution boxes is predicted by processing the results of statistical analysis by the majority logic criteria. In this paper, we use the majority logic criteria to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, the majority logic criterion is applied to AES, affine power affine (APA), Gray, Lui J, residue prime, S8 AES, Skipjack, and Xyi substitution boxes. The majority logic criterion is further extended into a generalized majority logic criterion which has a broader spectrum of analyzing the effectiveness of substitution boxes in image encryption applications. The integral components of the statistical analyses used for the generalized majority logic criterion are derived from results of entropy analysis, contrast analysis, correlation analysis, homogeneity analysis, energy analysis, and mean of absolute deviation (MAD) analysis.

  7. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  8. Online Quadrat Study - Site Index

    Science.gov Websites

    Study Project - Prairie Advocates Project ) Background Information - Data Collection and Entry - Data Data Entry Data Summaries and Graphs Quadrat Study Poster for your classroom. Directions for Looking at by Prairie Study Prairie Experts For Non-Fermilab Prairie researchers: Complete step-by-step

  9. Criterion- Referenced Measurement; A Bibliography.

    ERIC Educational Resources Information Center

    Keller, Claudia Merkel

    This bibliography lists selected articles, research reports, monographs, books, and reference works related to criterion-referenced measurement. It is limited primarily to material which deals directly with criterion-referenced tests and testing procedures, and includes reports on computer-assisted test construction and the adaptation of…

  10. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Examining recognition criterion rigidity during testing using a biased feedback technique: Evidence for adaptive criterion learning

    PubMed Central

    Han, Sanghoon; Dobbins, Ian G.

    2009-01-01

    Recognition models often assume that subjects use specific evidence values (decision criteria) to adaptively parse continuous memory evidence into response categories (e.g., “old” or “new”). Although explicit pre-test instructions influence criterion placement, these criteria appear extremely resistant to change once testing begins. We tested criterion sensitivity to local feedback using a novel, biased feedback technique designed to tacitly encourage certain errors by indicating they were correct choices. Experiment 1 demonstrated that fully correct feedback had little effect on criterion placement, whereas biased feedback during Experiments 2 and 3 yielded prominent, durable, and adaptive criterion shifts, with observers reporting they were unaware of the manipulation in Experiment 3. These data suggest recognition criteria can be easily modified during testing through a form of feedback learning that operates independent of stimulus characteristics and observer awareness of the nature of the manipulation. This mechanism may be fundamentally different than criterion shifts following explicit instructions and warnings, or shifts linked to manipulations of stimulus characteristics combined with feedback highlighting those manipulations. PMID:18604954

  12. PTSD and Sexual Orientation: An Examination of Criterion A1 and Non-Criterion A1 Events

    PubMed Central

    Alessi, Edward J.; Meyer, Ilan H.; Martin, James I.

    2015-01-01

    This large-scale cross-sectional study compared posttraumatic stress disorder (PTSD) prevalence among White, Black, and Latino lesbian, gay and bisexual individuals (LGBs; n = 382) and compared them with heterosexual individuals (n = 126). Building on previous research, we relaxed the criteria of the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM–IV; American Psychiatric Association, 1994), allowing non-Criterion A1 events such as ending a relationship, unemployment, homelessness, and separation from parents to qualify, and we assessed differences in PTSD prevalence between standard DSM–IV criteria and the relaxed criteria. Findings revealed that participants reporting a non-Criterion A1 event were more likely than those reporting a Criterion A1 event to have symptoms diagnosable as PTSD. There was no significant difference in either DSM–IV or relaxed Criterion A1 PTSD prevalence between lesbian and gay, and heterosexual individuals or between bisexual and heterosexual individuals. Compared with White LGBs, Black and Latino LGBs had higher prevalence of PTSD with the relaxed Criterion A1 definition, but this was statistically significant only for Latinos. PMID:26113955

  13. Quadratic Polynomial Regression using Serial Observation Processing:Implementation within DART

    NASA Astrophysics Data System (ADS)

    Hodyss, D.; Anderson, J. L.; Collins, N.; Campbell, W. F.; Reinecke, P. A.

    2017-12-01

    Many Ensemble-Based Kalman ltering (EBKF) algorithms process the observations serially. Serial observation processing views the data assimilation process as an iterative sequence of scalar update equations. What is useful about this data assimilation algorithm is that it has very low memory requirements and does not need complex methods to perform the typical high-dimensional inverse calculation of many other algorithms. Recently, the push has been towards the prediction, and therefore the assimilation of observations, for regions and phenomena for which high-resolution is required and/or highly nonlinear physical processes are operating. For these situations, a basic hypothesis is that the use of the EBKF is sub-optimal and performance gains could be achieved by accounting for aspects of the non-Gaussianty. To this end, we develop here a new component of the Data Assimilation Research Testbed [DART] to allow for a wide-variety of users to test this hypothesis. This new version of DART allows one to run several variants of the EBKF as well as several variants of the quadratic polynomial lter using the same forecast model and observations. Dierences between the results of the two systems will then highlight the degree of non-Gaussianity in the system being examined. We will illustrate in this work the differences between the performance of linear versus quadratic polynomial regression in a hierarchy of models from Lorenz-63 to a simple general circulation model.

  14. The Development of a Criterion Instrument for Counselor Selection.

    ERIC Educational Resources Information Center

    Remer, Rory; Sease, William

    A measure of potential performance as a counselor is needed as an adjunct to the information presently employed in selection decisions. This article deals with one possible method of development of such a potential performance criterion and the steps taken, to date, in the attempt to validate it. It includes: the overall effectiveness of the…

  15. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  16. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  17. Functional Quality Criterion of Rock Handling Mechanization at Open-pit Mines

    NASA Astrophysics Data System (ADS)

    Voronov, Yuri; Voronov, Artyoni

    2017-11-01

    Overburden and mining operations at open-pit mines are performed mainly by powerful shovel-truck systems (STSs). One of the main problems of the STSs is a rather low level of their operating quality, mainly due to unjustified over-trucking. In this article, a functional criterion for assessing the qualify of the STS operation at open-pit mines is formulated, derived and analyzed. We introduce the rationale and general principles for the functional criterion formation, its general form, as well as variations for various STS structures: a mixed truck fleet and a homogeneous shovel fleet, a mixed shove! fleet and a homogeneous truck fleet, mixed truck and shovel fleets. The possibility of assessing the quality of the STS operation is of great importance for identifying the main directions for improving their operational performance and operating quality, optimizing the main performance indicators by the qualify criterion, and. as a result, for possible saving of material and technical resources for open-pit mining. Improvement of the quality of the STS operation also allows increasing the mining safety and decreasing the atmosphere pollution - by means of possible reducing of the number of the operating trucks.

  18. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  19. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  20. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  1. Machine Shop. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This drafting criterion-referenced test item bank is keyed to the machine shop competency profile developed by industry and education professionals in Missouri. The 16 references used for drafting the test items are listed. Test items are arranged under these categories: orientation to machine shop; performing mathematical calculations; performing…

  2. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0quadratic error potentials of subquadratic growth (PQSQ potentials). We develop a new and universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guaranteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on the notion of the cone of minorant functions, and represents a natural approximation formalism based on the application of min-plus algebra. The approach can be applied in most of existing machine learning methods, including methods of data approximation and regularized and sparse regression, leading to the improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational performance than the corresponding state-of-the-art methods, having similar or better approximation accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  4. Exploring Quadratic Functions with Logger "Pro"

    ERIC Educational Resources Information Center

    Pope, Derek

    2018-01-01

    The author shares the lesson that he used to introduce the quadratic unit to students in an extended second-year algebra class, demonstrate why it was appropriate for his struggling learners, and discuss possible future modifications to this lesson.

  5. Criterion-Referenced Testing in Foreign Language Teaching.

    ERIC Educational Resources Information Center

    Takala, Sauli

    A review of literature serves as the basis for a discussion of various aspects of criterion-referenced tests. The aspects discussed are: teaching and evaluation objectives, criterion- and norm-referenced measurement, stages in construction of criterion-referenced tests, construction and selection of items, test validity, and test reliability.…

  6. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    ERIC Educational Resources Information Center

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  7. Geometrical and Graphical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  8. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  9. The construct and criterion validity of the multi-source feedback process to assess physician performance: a meta-analysis

    PubMed Central

    Al Ansari, Ahmed; Donnon, Tyrone; Al Khalifa, Khalid; Darwish, Abdulla; Violato, Claudio

    2014-01-01

    Background The purpose of this study was to conduct a meta-analysis on the construct and criterion validity of multi-source feedback (MSF) to assess physicians and surgeons in practice. Methods In this study, we followed the guidelines for the reporting of observational studies included in a meta-analysis. In addition to PubMed and MEDLINE databases, the CINAHL, EMBASE, and PsycINFO databases were searched from January 1975 to November 2012. All articles listed in the references of the MSF studies were reviewed to ensure that all relevant publications were identified. All 35 articles were independently coded by two authors (AA, TD), and any discrepancies (eg, effect size calculations) were reviewed by the other authors (KA, AD, CV). Results Physician/surgeon performance measures from 35 studies were identified. A random-effects model of weighted mean effect size differences (d) resulted in: construct validity coefficients for the MSF system on physician/surgeon performance across different levels in practice ranged from d=0.14 (95% confidence interval [CI] 0.40–0.69) to d=1.78 (95% CI 1.20–2.30); construct validity coefficients for the MSF on physician/surgeon performance on two different occasions ranged from d=0.23 (95% CI 0.13–0.33) to d=0.90 (95% CI 0.74–1.10); concurrent validity coefficients for the MSF based on differences in assessor group ratings ranged from d=0.50 (95% CI 0.47–0.52) to d=0.57 (95% CI 0.55–0.60); and predictive validity coefficients for the MSF on physician/surgeon performance across different standardized measures ranged from d=1.28 (95% CI 1.16–1.41) to d=1.43 (95% CI 0.87–2.00). Conclusion The construct and criterion validity of the MSF system is supported by small to large effect size differences based on the MSF process and physician/surgeon performance across different clinical and nonclinical domain measures. PMID:24600300

  10. A new performance index for the repetitive motion of mobile manipulators.

    PubMed

    Xiao, Lin; Zhang, Yunong

    2014-02-01

    A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.

  11. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  12. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  14. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  15. On Volterra quadratic stochastic operators with continual state space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on themore » segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.« less

  16. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  17. Verbalizing facial memory: criterion effects in verbal overshadowing.

    PubMed

    Clare, Joseph; Lewandowsky, Stephan

    2004-07-01

    This article investigated the role of the recognition criterion in the verbal overshadowing effect (VOE). In 3 experiments, people witnessed an event, verbally described a perpetrator, and then attempted identification. The authors found in Experiment 1, which included a "not present" response option and both perpetrator-present (PP) and perpetrator-absent (PA) lineups, an increased reluctance to identify a person from both lineup types after verbalization. Experiment 2 incorporated a forced-choice procedure, and the authors found no effect of verbalization on identification performance. Experiment 3 replicated the essential aspects of these results. Consequently, the VOE may reflect a change in recognition criterion rather than a changed processing style or alteration of the underlying memory trace. This conclusion was confirmed by computational modeling of the data. Copyright 2004 APA, all rights reserved

  18. Ethical leadership: meta-analytic evidence of criterion-related and incremental validity.

    PubMed

    Ng, Thomas W H; Feldman, Daniel C

    2015-05-01

    This study examines the criterion-related and incremental validity of ethical leadership (EL) with meta-analytic data. Across 101 samples published over the last 15 years (N = 29,620), we observed that EL demonstrated acceptable criterion-related validity with variables that tap followers' job attitudes, job performance, and evaluations of their leaders. Further, followers' trust in the leader mediated the relationships of EL with job attitudes and performance. In terms of incremental validity, we found that EL significantly, albeit weakly in some cases, predicted task performance, citizenship behavior, and counterproductive work behavior-even after controlling for the effects of such variables as transformational leadership, use of contingent rewards, management by exception, interactional fairness, and destructive leadership. The article concludes with a discussion of ways to strengthen the incremental validity of EL. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  20. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption.

    PubMed

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  1. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 21345. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  2. Geometrical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Grewal, A. S.; Godloza, L.

    1999-01-01

    Demonstrates that the equation of a circle (x-h)2 + (y-k)2 = r2 with center (h; k) and radius r reduces to a quadratic equation x2-2xh + (h2 + k2 -r2) = O at the intersection with the x-axis. Illustrates how to determine the center of a circle as well as a point on a circle. (Author/ASK)

  3. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

    PubMed Central

    Araújo, Ricardo; Mateus, Octávio

    2015-01-01

    The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455

  4. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  5. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    NASA Astrophysics Data System (ADS)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  6. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    PubMed

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example

  7. Criterion-Referenced Values of Grip Strength and Usual Gait Speed Using Instrumental Activities of Daily Living Disability as the Criterion.

    PubMed

    Lee, Meng-Chih; Hsu, Chih-Cheng; Tsai, Yi-Fen; Chen, Ching-Yu; Lin, Cheng-Chieh; Wang, Ching-Yi

    Current evidence suggests that grip strength and usual gait speed (UGS) are important predictors of instrumental activities of daily living (IADL) disability. Knowing the optimum cut points of these tests for discriminating people with and without IADL disability could help clinicians or researchers to better interpret the test results and make medical decisions. The purpose of this study was to determine the cutoff values of grip strength and UGS for best discriminating community-dwelling older adults with and without IADL disability, separately for men and women, and to investigate their association with IADL disability. We conducted secondary data analysis on a national dataset collected in the Sarcopenia and Translational Aging Research in Taiwan (START). The data used in this study consisted of health data of 2420 community-dwelling older adults 65 years and older with no history of stroke and with complete data. IADL disability was defined as at least 1 IADL item scored as "need help" or "unable to perform." Receiver operating characteristics analysis was used to estimate the optimum grip strength and UGS cut points for best discriminating older adults with/without IADL disability. The association between each physical performance (grip strength and UGS) and IADL disability was assessed with odds ratios (ORs). With IADL disability as the criterion, the optimal cutoff values of grip strength were 28.7 kg for men and 16.0 kg for women, and those for UGS were 0.76 m/s for men and 0.66 m/s for women. The grip strength test showed satisfactory discriminant validity (area under the curve > 0.7) in men and a strong association with IADL disability (OR > 4). Our cut points using IADL disability as the criterion were close to those indicating frailty or sarcopenia. Our reported cutoffs can serve as criterion-referenced values, along with those previously determined using different indicators, and provide important landmarks on the performance continua of older adults

  8. Relationships between Classroom Schedule Types and Performance on the Algebra I Criterion-Referenced Test

    ERIC Educational Resources Information Center

    Murray, Gregory V.; Moyer-Packenham, Patricia S.

    2014-01-01

    One option for length of individual mathematics class periods is the schedule type selected for Algebra I classes. This study examined the relationship between student achievement, as indicated by Algebra I Criterion-Referenced Test scores, and the schedule type for Algebra I classes. Data obtained from the Utah State Office of Education included…

  9. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  10. Corner-point criterion for assessing nonlinear image processing imagers

    NASA Astrophysics Data System (ADS)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  11. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  12. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  13. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  14. Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad

    2017-12-01

    A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

  15. Application of quadratic optimization to supersonic inlet control

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.

    1971-01-01

    The application of linear stochastic optimal control theory to the design of the control system for the air intake (inlet) of a supersonic air-breathing propulsion system is discussed. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant control systems are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain the best linear controller that minimizes the nonquadratic performance index. The two systems are compared on the basis of unstart prevention, control effort requirements, and sensitivity to parameter variations.

  16. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  17. Backloading in the sequential lineup prevents within-lineup criterion shifts that undermine eyewitness identification performance.

    PubMed

    Horry, Ruth; Palmer, Matthew A; Brewer, Neil

    2012-12-01

    Although the sequential lineup has been proposed as a means of protecting innocent suspects from mistaken identification, little is known about the importance of various aspects of the procedure. One potentially important detail is that witnesses should not know how many people are in the lineup. This is sometimes achieved by backloading the lineup so that witnesses believe that the lineup includes more photographs than it actually does. This study aimed to investigate the effect of backloading on witness decision making. A large sample (N = 833) of community-dwelling adults viewed a live "culprit" and then saw a target-present or target-absent sequential lineup. All lineups included 6 individuals, but the participants were told that the lineup included 6 photographs (nonbackloaded condition) or that the lineup included 12 or 30 photographs (backloaded conditions). The suspect either appeared early (Position 2) or late (Position 6) in the lineup. Innocent suspects placed in Position 6 were chosen more frequently by participants in the nonbackloaded condition than in either backloaded condition. Additionally, when the lineup was not backloaded, foil identification rates increased from Positions 3 to 5, suggesting a gradually shifting response criterion. The results suggest that backloading encourages participants to adopt a more conservative response criterion, and it reduces or eliminates the tendency for the criterion to become more lenient over the course of the lineup. The results underscore the absolute importance of ensuring that witnesses who view sequential lineups are unaware of the number of individuals to be seen.

  18. The effect of suspended particles on Jean's criterion for gravitational instability

    NASA Technical Reports Server (NTRS)

    Wollkind, David J.; Yates, Kemble R.

    1990-01-01

    The effect that the proper inclusion of suspended particles has on Jeans' criterion for the self-gravitational instability of an unbounded nonrotating adiabatic gas cloud is examined by formulating the appropriate model system, introducing particular physically plausible equations of state and constitutive relations, performing a linear stability analysis of a uniformly expanding exact solution to these governing equations, and exploiting the fact that there exists a natural small material parameter for this problem given by N sub 1/n sub 1, the ratio of the initial number density for the particles to that for the gas. The main result of this investigation is the derivation of an altered criterion which can substantially reduce Jeans' original critical wavelength for instability. It is then shown that the existing discrepancy between Jeans' theoretical prediction using and actual observational data relevant to the Andromeda nebula M31 can be accounted for by this new criterion of assuming suspended particles of a reasonable grain size and distribution to be present.

  19. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  20. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  1. Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School

    ERIC Educational Resources Information Center

    Kenan, Kok Xiao-Feng

    2017-01-01

    This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…

  2. Criterion-Referenced Job Proficiency Testing: A Large Scale Application. Research Report 1193.

    ERIC Educational Resources Information Center

    Maier, Milton H.; Hirshfeld, Stephen F.

    The Army Skill Qualification Tests (SQT's) were designed to determine levels of competence in performance of the tasks crucial to an enlisted soldier's occupational specialty. SQT's are performance-based, criterion-referenced measures which offer two advantages over traditional proficiency and achievement testing programs: test content can be made…

  3. Development of an updated tensile neck injury criterion.

    PubMed

    Parr, Jeffrey C; Miller, Michael E; Schubert Kabban, Christine M; Pellettiere, Joseph A; Perry, Chris E

    2014-10-01

    Ejection neck safety remains a concern in military aviation with the growing use of helmet mounted displays (HMDs) worn for entire mission durations. The original USAF tensile neck injury criterion proposed by Carter et al. (4) is updated and an injury protection limit for tensile loading is presented to evaluate escape system and HMD safety. An existent tensile neck injury criterion was updated through the addition of newer post mortem human subject (PMHS) tensile loading and injury data and the application of Survival Analysis to account for censoring in this data. The updated risk function was constructed with a combined human subject (N = 208) and PMHS (N = 22) data set. An updated AIS 3+ tensile neck injury criterion is proposed based upon human and PMHS data. This limit is significantly more conservative than the criterion proposed by Carter in 2000, yielding a 5% risk of AIS 3+ injury at a force of 1136 N as compared to a corresponding force of 1559 N. The inclusion of recent PMHS data into the original tensile neck injury criterion results in an injury protection limit that is significantly more conservative, as recent PMHS data is substantially less censored than the PMHS data included in the earlier criterion. The updated tensile risk function developed in this work is consistent with the tensile risk function published by the Federal Aviation Administration used as the basis for their neck injury criterion for side facing aircraft seats.

  4. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  5. Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD)

    NASA Astrophysics Data System (ADS)

    Carbone, E. A. D.; Palomares, J. M.; Hübner, S.; Iordanova, E.; van der Mullen, J. J. A. M.

    2012-01-01

    A criterion is given for the laser fluency (in J/m2) such that, when satisfied, disturbance of the plasma by the laser is avoided. This criterion accounts for laser heating of the electron gas intermediated by electron-ion (ei) and electron-atom (ea) interactions. The first heating mechanism is well known and was extensively dealt with in the past. The second is often overlooked but of importance for plasmas of low degree of ionization. It is especially important for cold atmospheric plasmas, plasmas that nowadays stand in the focus of attention. The new criterion, based on the concerted action of both ei and ea interactions is validated by Thomson scattering experiments performed on four different plasmas.

  6. An Independent and Coordinated Criterion for Kinematic Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Hagen, George

    2014-01-01

    This paper proposes a mathematical definition of an aircraft-separation criterion for kinematic-based horizontal maneuvers. It has been formally proved that kinematic maneu- vers that satisfy the new criterion are independent and coordinated for repulsiveness, i.e., the distance at closest point of approach increases whether one or both aircraft maneuver according to the criterion. The proposed criterion is currently used in NASA's Airborne Coordinated Resolution and Detection (ACCoRD) set of tools for the design and analysis of separation assurance systems.

  7. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  8. Inviscid criterion for decomposing scales

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxiao; Aluie, Hussein

    2018-05-01

    The proper scale decomposition in flows with significant density variations is not as straightforward as in incompressible flows, with many possible ways to define a "length scale." A choice can be made according to the so-called inviscid criterion [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009]. It is a kinematic requirement that a scale decomposition yield negligible viscous effects at large enough length scales. It has been proved [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009] recently that a Favre decomposition satisfies the inviscid criterion, which is necessary to unravel inertial-range dynamics and the cascade. Here we present numerical demonstrations of those results. We also show that two other commonly used decompositions can violate the inviscid criterion and, therefore, are not suitable to study inertial-range dynamics in variable-density and compressible turbulence. Our results have practical modeling implication in showing that viscous terms in Large Eddy Simulations do not need to be modeled and can be neglected.

  9. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Conflict and Criterion Setting in Recognition Memory

    ERIC Educational Resources Information Center

    Curran, Tim; DeBuse, Casey; Leynes, P. Andrew

    2007-01-01

    Recognition memory requires both retrieval processes and control processes such as criterion setting. Decision criteria were manipulated by offering different payoffs for correct "old" versus "new" responses. Criterion setting influenced the following late-occurring (1,000+ ms), conflict-sensitive event-related brain potential (ERP) components:…

  11. An Operational Definition of the Emergence Criterion

    ERIC Educational Resources Information Center

    Pallotti, Gabriele

    2007-01-01

    Although acquisition criteria are a fundamental issue for SLA research, they have not always been adequately defined or elaborated in the literature. This article critically scrutinizes one such criterion, the emergence criterion, proposing an explicit, operational definition. After discussing emergence as a theoretical construct, the article…

  12. Quadratic RK shooting solution for a environmental parameter prediction boundary value problem

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis Th.; Tsitouras, Ch.

    2014-10-01

    Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve, where the probability distribution functions in the case of our meteorological data are two parameter Weibull distributions, satisfies a 2nd order Boundary Value (BV) system. We study the numerical treatment of the resulting special quadratic form system using Shooting method. We compare the solutions of the problem when we employ a classical Singly Diagonally Implicit Runge Kutta (SDIRK) 4(3) pair of methods and a quadratic SDIRK 5(3) pair . Both pairs have the same computational costs whereas the second one attains higher order as it is specially constructed for quadratic problems.

  13. Evaluation of Criterion Validity for Scales with Congeneric Measures

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2007-01-01

    A method for estimating criterion validity of scales with homogeneous components is outlined. It accomplishes point and interval estimation of interrelationship indices between composite scores and criterion variables and is useful for testing hypotheses about criterion validity of measurement instruments. The method can also be used with missing…

  14. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  15. Gain scheduled linear quadratic control for quadcopter

    NASA Astrophysics Data System (ADS)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  16. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  17. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  18. Investigating Students' Mathematical Difficulties with Quadratic Equations

    ERIC Educational Resources Information Center

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  19. Soft Clustering Criterion Functions for Partitional Document Clustering

    DTIC Science & Technology

    2004-05-26

    in the clus- ter that it already belongs to. The refinement phase ends, as soon as we perform an iteration in which no documents moved between...for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 26 MAY 2004 2... it with the one obtained by the hard criterion functions. We present a comprehensive experimental evaluation involving twelve differ- ent datasets

  20. Diagnosing criterion-level effects on memory: what aspects of memory are enhanced by repeated retrieval?

    PubMed

    Vaughn, Kalif E; Rawson, Katherine A

    2011-09-01

    Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.

  1. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  2. A Rationale for Criterion-Referenced Proficiency Testing

    ERIC Educational Resources Information Center

    Clifford, Ray

    2016-01-01

    This article summarizes some of the technical issues that add to the complexity of language testing. It focuses in particular on the criterion-referenced nature of the ACTFL Proficiency Guidelines-Speaking; and it proposes a criterion-referenced interpretation of the ACTFL guidelines for reading and listening. It then demonstrates how using…

  3. Criterion-Referenced Measurement: Half a Century Wasted?

    ERIC Educational Resources Information Center

    Popham, W. James

    2014-01-01

    Fifty years ago, Robert Glaser introduced the concept of criterion-referenced measurement in an article in American Psychologist. Its early proponents predicted that this measurement strategy would revolutionize education. But has it lived up to its promise? W. James Popham explores this question by looking at the history of criterion-referenced…

  4. Development of a Work Sample Criterion for General Vehicle Mechanic.

    ERIC Educational Resources Information Center

    Engel, John D.

    A work sample criterion test was developed for General Vehicle Repairman, MOS 63C30 and 63C40. Test items covered three task categories: troubleshooting, corrective action, and preventive maintenance. Thirty-eight organizational mechanics were tested at Fort Knox, Kentucky. Data were also collected on the quality of performance, for example, use…

  5. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  6. Factorization method of quadratic template

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  7. Quadratic forms involving Green's and Robin functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinin, Vladimir N

    2009-10-31

    General inequalities for quadratic forms with coefficients depending on the values of Green's and Robin functions are obtained. These inequalities cover also the reduced moduli of strips and half-strips. Some applications of the results obtained to extremal partitioning problems and related questions of geometric function theory are discussed. Bibliography: 29 titles.

  8. da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills.

    PubMed

    Brinkman, Willem M; Luursema, Jan-Maarten; Kengen, Bas; Schout, Barbara M A; Witjes, J Alfred; Bekkers, Ruud L

    2013-03-01

    To answer 2 research questions: what are the learning curve patterns of novices on the da Vinci skills simulator parameters and what parameters are appropriate for criterion-based robotic training. A total of 17 novices completed 2 simulator sessions within 3 days. Each training session consisted of a warming-up exercise, followed by 5 repetitions of the "ring and rail II" task. Expert participants (n = 3) performed a warming-up exercise and 3 repetitions of the "ring and rail II" task on 1 day. We analyzed all 9 parameters of the simulator. Significant learning occurred on 5 parameters: overall score, time to complete, instrument collision, instruments out of view, and critical errors within 1-10 repetitions (P <.05). Economy of motion and excessive instrument force only showed improvement within the first 5 repetitions. No significant learning on the parameter drops and master workspace range was found. Using the expert overall performance score (n = 3) as a criterion (overall score 90%), 9 of 17 novice participants met the criterion within 10 repetitions. Most parameters showed that basic robotic skills are learned relatively quickly using the da Vinci skills simulator, but that 10 repetitions were not sufficient for most novices to reach an expert level. Some parameters seemed inappropriate for expert-based criterion training because either no learning occurred or the novice performance was equal to expert performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Quadratic Blind Linear Unmixing: A Graphical User Interface for Tissue Characterization

    PubMed Central

    Gutierrez-Navarro, O.; Campos-Delgado, D.U.; Arce-Santana, E. R.; Jo, Javier A.

    2016-01-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. PMID:26589467

  10. Rational Approximations with Hankel-Norm Criterion

    DTIC Science & Technology

    1980-01-01

    REPORT TYPE ANDu DATES COVERED It) L. TITLE AND SLWUIlL Fi901 ia FUNDING NUMOIRS, RATIONAL APPROXIMATIONS WITH HANKEL-NORM CRITERION PE61102F i...problem is proved to be reducible to obtain a two-variable all- pass ration 1 function, interpolating a set of parametric values at specified points inside...PAGES WHICH DO NOT REPRODUCE LEGIBLY. V" C - w RATIONAL APPROXIMATIONS WITH HANKEL-NORM CRITERION* Y. Genin* Philips Research Lab. 2, avenue van

  11. On the measurement of criterion noise in signal detection theory: the case of recognition memory.

    PubMed

    Kellen, David; Klauer, Karl Christoph; Singmann, Henrik

    2012-07-01

    Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966), especially in the field of recognition memory, assume that the positioning of response criteria is not a noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has challenged this assumption, arguing not only for the existence of criterion noise but also for its large magnitude and substantive contribution to individuals' performance. A review of these recent approaches for the measurement of criterion noise in SDT identifies several shortcomings and confoundings. A reanalysis of Benjamin et al.'s (2009) data sets as well as the results from a new experimental method indicate that the different forms of criterion noise proposed in the recognition memory literature are of very low magnitudes, and they do not provide a significant improvement over the account already given by traditional SDT without criterion noise. Copyright 2012 APA, all rights reserved.

  12. Setting Meaningful Criterion-Reference Cut Scores as an Effective Professional Development

    ERIC Educational Resources Information Center

    Munyofu, Paul

    2010-01-01

    The state of Pennsylvania, like many organizations interested in performance improvement, routinely engages in professional development activities. Educators in this hands-on activity engaged in setting meaningful criterion-referenced cut scores for career and technical education assessments using two methods. The main purposes of this study were…

  13. Criterions for condensation-free flow in supersonic tunnels

    NASA Technical Reports Server (NTRS)

    Burgess, Warren C; Seashore, Ferris L

    1949-01-01

    The results of an investigation of water-vapor condensation shocks in the air passing through supersonic tunnels are presented. Criterions for condensation-free flow are established by correlating experimental observations with the Volmer theory of nuclei formation. Experimental observations were made at Mach numbers up to 2.01. The criterions are presented in a form independent of tunnel-inlet stagnation pressure and are extended theoretically to a Mach number of 4.00. Preliminary evidence of the effect of tunnel size on the criterion is presented.

  14. A mathematical programming method for formulating a fuzzy regression model based on distance criterion.

    PubMed

    Chen, Liang-Hsuan; Hsueh, Chan-Ching

    2007-06-01

    Fuzzy regression models are useful to investigate the relationship between explanatory and response variables with fuzzy observations. Different from previous studies, this correspondence proposes a mathematical programming method to construct a fuzzy regression model based on a distance criterion. The objective of the mathematical programming is to minimize the sum of distances between the estimated and observed responses on the X axis, such that the fuzzy regression model constructed has the minimal total estimation error in distance. Only several alpha-cuts of fuzzy observations are needed as inputs to the mathematical programming model; therefore, the applications are not restricted to triangular fuzzy numbers. Three examples, adopted in the previous studies, and a larger example, modified from the crisp case, are used to illustrate the performance of the proposed approach. The results indicate that the proposed model has better performance than those in the previous studies based on either distance criterion or Kim and Bishu's criterion. In addition, the efficiency and effectiveness for solving the larger example by the proposed model are also satisfactory.

  15. Robust linear quadratic designs with respect to parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1992-01-01

    The authors derive a linear quadratic regulator (LQR) which is robust to parametric uncertainty by using the overbounding method of I. R. Petersen and C. V. Hollot (1986). The resulting controller is determined from the solution of a single modified Riccati equation. It is shown that, when applied to a structural system, the controller gains add robustness by minimizing the potential energy of uncertain stiffness elements, and minimizing the rate of dissipation of energy through uncertain damping elements. A worst-case disturbance in the direction of the uncertainty is also considered. It is proved that performance robustness has been increased with the robust LQR when compared to a mismatched LQR design where the controller is designed on the nominal system, but applied to the actual uncertain system.

  16. Quadratic electroabsorption studies of molecular motion in dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Kuzyk, Mark G.; Dirk, Carl W.

    1993-02-01

    This paper reports on quadratic electroabsorption studies of thin-film solid solutions of squarylium dye molecules in poly(methylmethacrylate) polymer with the aim of understanding the role of electronic and reorientational mechanisms in the third-order nonlinear-optical susceptibility. We present a generalized theory of the quadratic electrooptic response that includes both electronic mechanisms and molecular reorientation and show that the ratio of two independent third-order susceptibility tensor components, namely (chi) (3)3333/(chi) (3)1133, determines the relative contribution of each mechanism. Based on these theoretical results, we have designed and built an experiment that determines this ratio as a function of temperature and wavelength. Results show that at room temperature and near the first electronic transition wavelength, the response is dominated by the electronic mechanism, and that the reorientational contribution dominates when the sample is heated above its glass transition temperature. Furthermore, results show that, off-resonance, the sign of the imaginary part of the third-order susceptibility is positive. Quadratic electroabsorption is thus shown to be a versatile tool for measuring the imaginary part of the third-order nonlinear-optical susceptibility which yields information about the interaction of polymer and dopant molecule.

  17. Integration of the Quadratic Function and Generalization

    ERIC Educational Resources Information Center

    Mitsuma, Kunio

    2011-01-01

    We will first recall useful formulas in integration that simplify the calculation of certain definite integrals with the quadratic function. A main formula relies only on the coefficients of the function. We will then explore a geometric proof of one of these formulas. Finally, we will extend the formulas to more general cases. (Contains 3…

  18. Estimation of stature from sternum - Exploring the quadratic models.

    PubMed

    Saraf, Ashish; Kanchan, Tanuj; Krishan, Kewal; Ateriya, Navneet; Setia, Puneet

    2018-04-14

    Identification of the dead is significant in examination of unknown, decomposed and mutilated human remains. Establishing the biological profile is the central issue in such a scenario, and stature estimation remains one of the important criteria in this regard. The present study was undertaken to estimate stature from different parts of the sternum. A sample of 100 sterna was obtained from individuals during the medicolegal autopsies. Length of the deceased and various measurements of the sternum were measured. Student's t-test was performed to find the sex differences in stature and sternal measurements included in the study. Correlation between stature and sternal measurements were analysed using Karl Pearson's correlation, and linear and quadratic regression models were derived. All the measurements were found to be significantly larger in males than females. Stature correlated best with the combined length of sternum, among males (R = 0.894), females (R = 0.859), and for the total sample (R = 0.891). The study showed that the models derived for stature estimation from combined length of sternum are likely to give the most accurate estimates of stature in forensic case work when compared to manubrium and mesosternum. Accuracy of stature estimation further increased with quadratic models derived for the mesosternum among males and combined length of sternum among males and females when compared to linear regression models. Future studies in different geographical locations and a larger sample size are proposed to confirm the study observations. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  20. Quantum superintegrable system with a novel chain structure of quadratic algebras

    NASA Astrophysics Data System (ADS)

    Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong

    2018-06-01

    We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.

  1. Duration ratio discrimination in pigeons: a criterion-setting analysis.

    PubMed

    Fetterman, J Gregor

    2006-02-28

    Pigeons received trials beginning with a sequence of two colors (blue-->yellow) on the center key of a three-key array. The colors lasted different lengths of time. At the end of the sequence pigeons chose between two keys based on a criterial ratio of the temporal sequence. One choice was reinforced if the time ratio was less than the criterion and the alternate choice was reinforced if the time ratio was greater than the criterion. The criterial ratios (first to second duration) were 1:1, 1.5:1, and 3:1. The same set of intervals was used for the different criterion ratios, producing a balanced distribution of time ratios for the 1.5:1 condition, and unbalanced distributions for the 1:1 and 3:1 conditions. That is, for the 1.5:1 condition half of the duration pairs were less than the criterion and half were greater. However, for the 1:1 and 3:1 conditions, more duration pairs were less than (3:1) or greater than (1:1) the criterion. Accuracy was similar across criterion ratios, but response bias was influenced by the asymmetries of time ratios in the 1:1 and 3:1 conditions. When these asymmetries were controlled, the response biases were reduced or eliminated. These results indicate that pigeons are flexible in establishing a criterion for discriminating duration ratios, unlike humans, who are less flexible and are bound to categorical distinctions in the discrimination of duration ratios.

  2. On thermonuclear ignition criterion at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirementsmore » of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.« less

  3. Unified Bohm criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2015-09-15

    Recent decades have seen research into the conditions necessary for the formation of the monotonic potential shape in the sheath, appearing at the plasma boundaries like walls, in fluid, and kinetic approximations separately. Although either of these approaches yields a formulation commonly known as the much-acclaimed Bohm criterion (BC), the respective results involve essentially different physical quantities that describe the ion gas behavior. In the fluid approach, such a quantity is clearly identified as the ion directional velocity. In the kinetic approach, the ion behavior is formulated via a quantity (the squared inverse velocity averaged by the ion distribution function)more » without any clear physical significance, which is, moreover, impractical. In the present paper, we try to explain this difference by deriving a condition called here the Unified Bohm Criterion, which combines an advanced fluid model with an upgraded explicit kinetic formula in a new form of the BC. By introducing a generalized polytropic coefficient function, the unified BC can be interpreted in a form that holds, irrespective of whether the ions are described kinetically or in the fluid approximation.« less

  4. Evaluation of Self-Perceptions of Creativity: Is It a Useful Criterion?

    ERIC Educational Resources Information Center

    Reiter-Palmon, Roni; Robinson-Morral, Erika J.; Kaufman, James C.; Santo, Jonathan B.

    2012-01-01

    Self-evaluations or self-perceptions of creativity have been used in the past both as predictors of creative performance and as criteria. Four measures utilizing self-perceptions of creativity were assessed for their usefulness as criterion measures of creativity. Analyses provided evidence of domain specificity of self-perceptions. The scales…

  5. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  6. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  7. Characterization of a Quadratic Function in Rn

    ERIC Educational Resources Information Center

    Xu, Conway

    2010-01-01

    It is proved that a scalar-valued function "f"(x) defined in "n"-dimensional space must be quadratic, if the intersection of tangent planes at x[subscript 1] and x[subscript 2] always contains the midpoint of the line joining x[subscript 1] and x[subscript 2]. This is the converse of a result of Stenlund proved in this JOURNAL in 2001.

  8. In the linear quadratic model, the Poisson approximation and the Zaider-Minerbo formula agree on the ranking of tumor control probabilities, up to a critical cell birth rate.

    PubMed

    Ballhausen, Hendrik; Belka, Claus

    2017-03-01

    To provide a rule for the agreement or disagreement of the Poisson approximation (PA) and the Zaider-Minerbo formula (ZM) on the ranking of treatment alternatives in terms of tumor control probability (TCP) in the linear quadratic model. A general criterion involving a critical cell birth rate was formally derived. For demonstration, the criterion was applied to a distinct radiobiological model of fast growing head and neck tumors and a respective range of 22 conventional and nonconventional head and neck schedules. There is a critical cell birth rate b crit below which PA and ZM agree on which one out of two alternative treatment schemes with single-cell survival curves S'(t) and S''(t) offers better TCP: [Formula: see text] For cell birth rates b above this critical cell birth rate, PA and ZM disagree if and only if b >b crit > 0. In case of the exemplary head and neck schedules, out of 231 possible combinations, only 16 or 7% were found where PA and ZM disagreed. In all 231 cases the prediction of the criterion was numerically confirmed, and cell birth rates at crossovers between schedules matched the calculated critical cell birth rates. TCP estimated by PA and ZM almost never numerically coincide. Still, in many cases both formulas at least agree about which one out of two alternative fractionation schemes offers better TCP. In case of fast growing tumors featuring a high cell birth rate, however, ZM may suggest a re-evaluation of treatment options.

  9. Filamentary and hierarchical pictures - Kinetic energy criterion

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly A.; Melott, Adrian L.

    1992-01-01

    We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.

  10. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  11. Quadratic blind linear unmixing: A graphical user interface for tissue characterization.

    PubMed

    Gutierrez-Navarro, O; Campos-Delgado, D U; Arce-Santana, E R; Jo, Javier A

    2016-02-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  13. Do candidate reactions relate to job performance or affect criterion-related validity? A multistudy investigation of relations among reactions, selection test scores, and job performance.

    PubMed

    McCarthy, Julie M; Van Iddekinge, Chad H; Lievens, Filip; Kung, Mei-Chuan; Sinar, Evan F; Campion, Michael A

    2013-09-01

    Considerable evidence suggests that how candidates react to selection procedures can affect their test performance and their attitudes toward the hiring organization (e.g., recommending the firm to others). However, very few studies of candidate reactions have examined one of the outcomes organizations care most about: job performance. We attempt to address this gap by developing and testing a conceptual framework that delineates whether and how candidate reactions might influence job performance. We accomplish this objective using data from 4 studies (total N = 6,480), 6 selection procedures (personality tests, job knowledge tests, cognitive ability tests, work samples, situational judgment tests, and a selection inventory), 5 key candidate reactions (anxiety, motivation, belief in tests, self-efficacy, and procedural justice), 2 contexts (industry and education), 3 continents (North America, South America, and Europe), 2 study designs (predictive and concurrent), and 4 occupational areas (medical, sales, customer service, and technological). Consistent with previous research, candidate reactions were related to test scores, and test scores were related to job performance. Further, there was some evidence that reactions affected performance indirectly through their influence on test scores. Finally, in no cases did candidate reactions affect the prediction of job performance by increasing or decreasing the criterion-related validity of test scores. Implications of these findings and avenues for future research are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  14. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  15. Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion

    NASA Astrophysics Data System (ADS)

    Zou, Cuiming; Kou, Kit Ian

    2018-05-01

    Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.

  16. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  17. Unravelling Student Challenges with Quadratics: A Cognitive Approach

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna

    2007-01-01

    The author's secondary school mathematics students have often reported to her that quadratic relations are one of the most conceptually challenging aspects of the high school curriculum. From her own classroom experiences there seemed to be several aspects to the students' challenges. Many students, even in their early secondary education, have…

  18. An optimal consumption and investment problem with quadratic utility and negative wealth constraints.

    PubMed

    Roh, Kum-Hwan; Kim, Ji Yeoun; Shin, Yong Hyun

    2017-01-01

    In this paper, we investigate the optimal consumption and portfolio selection problem with negative wealth constraints for an economic agent who has a quadratic utility function of consumption and receives a constant labor income. Due to the property of the quadratic utility function, we separate our problem into two cases and derive the closed-form solutions for each case. We also illustrate some numerical implications of the optimal consumption and portfolio.

  19. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  20. A determinant-based criterion for working correlation structure selection in generalized estimating equations.

    PubMed

    Jaman, Ajmery; Latif, Mahbub A H M; Bari, Wasimul; Wahed, Abdus S

    2016-05-20

    In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Communications circuit including a linear quadratic estimator

    DOEpatents

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  2. Criterion-Related Validity: Assessing the Value of Subscores

    ERIC Educational Resources Information Center

    Davison, Mark L.; Davenport, Ernest C., Jr.; Chang, Yu-Feng; Vue, Kory; Su, Shiyang

    2015-01-01

    Criterion-related profile analysis (CPA) can be used to assess whether subscores of a test or test battery account for more criterion variance than does a single total score. Application of CPA to subscore evaluation is described, compared to alternative procedures, and illustrated using SAT data. Considerations other than validity and reliability…

  3. Criterion-Referenced Measurement: Redirections.

    ERIC Educational Resources Information Center

    Ellett, Frederick S., Jr.

    Basic issues in criterion-referenced measurement are addressed. In section II, issues involved in determining what a person does and can do are considered. A preliminary analysis of "can" is given which shows that there are several important senses of "can". In section III, results of an analysis of "ability" are…

  4. Chirped self-similar waves for quadratic-cubic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2017-12-01

    We have constructed analytical self-similar wave solutions for quadratic-cubic Nonlinear Schrödinger equation (QC-NLSE) by means of similarity transformation method. Then, we have investigated the role of chirping on these self-similar waves as they propagate through the tapered graded index waveguide. We have revealed that the chirping leads to interesting features and allows us to control the propagation of self-similar waves. This has been demonstrated for two cases (i) periodically distributed system and (ii) constant choice of system parameters. We expect our results to be useful in designing high performance optical devices.

  5. A Unified Approach to Teaching Quadratic and Cubic Equations.

    ERIC Educational Resources Information Center

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  6. Finding the Best Quadratic Approximation of a Function

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2011-01-01

    This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…

  7. A criterion for maximum resin flow in composite materials curing process

    NASA Astrophysics Data System (ADS)

    Lee, Woo I.; Um, Moon-Kwang

    1993-06-01

    On the basis of Springer's resin flow model, a criterion for maximum resin flow in autoclave curing is proposed. Validity of the criterion was proved for two resin systems (Fiberite 976 and Hercules 3501-6 epoxy resin). The parameter required for the criterion can be easily estimated from the measured resin viscosity data. The proposed criterion can be used in establishing the proper cure cycle to ensure maximum resin flow and, thus, the maximum compaction.

  8. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  9. Directional passability and quadratic steering logic for pyramid-type single gimbal control moment gyros

    NASA Astrophysics Data System (ADS)

    Yamada, Katsuhiko; Jikuya, Ichiro

    2014-09-01

    Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.

  10. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  11. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  12. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.

  13. Linear quadratic stochastic control of atomic hydrogen masers.

    PubMed

    Koppang, P; Leland, R

    1999-01-01

    Data are given showing the results of using the linear quadratic Gaussian (LQG) technique to steer remote hydrogen masers to Coordinated Universal Time (UTC) as given by the United States Naval Observatory (USNO) via two-way satellite time transfer and the Global Positioning System (GPS). Data also are shown from the results of steering a hydrogen maser to the real-time USNO mean. A general overview of the theory behind the LQG technique also is given. The LQG control is a technique that uses Kalman filtering to estimate time and frequency errors used as input into a control calculation. A discrete frequency steer is calculated by minimizing a quadratic cost function that is dependent on both the time and frequency errors and the control effort. Different penalties, chosen by the designer, are assessed by the controller as the time and frequency errors and control effort vary from zero. With this feature, controllers can be designed to force the time and frequency differences between two standards to zero, either more or less aggressively depending on the application.

  14. Energy Criterion for the Spectral Stability of Discrete Breathers.

    PubMed

    Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E

    2016-08-26

    Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

  15. Industry Software Trustworthiness Criterion Research Based on Business Trustworthiness

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Liu, Jun-fei; Jiao, Hai-xing; Shen, Yi; Liu, Shu-yuan

    To industry software Trustworthiness problem, an idea aiming to business to construct industry software trustworthiness criterion is proposed. Based on the triangle model of "trustworthy grade definition-trustworthy evidence model-trustworthy evaluating", the idea of business trustworthiness is incarnated from different aspects of trustworthy triangle model for special industry software, power producing management system (PPMS). Business trustworthiness is the center in the constructed industry trustworthy software criterion. Fusing the international standard and industry rules, the constructed trustworthy criterion strengthens the maneuverability and reliability. Quantitive evaluating method makes the evaluating results be intuitionistic and comparable.

  16. Lawson criterion in cyclotron heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demutskii, V.P.; Polovin, R.V.

    1975-07-01

    Stochastic heating of plasma particles is of great interest for controlled thermonuclear reactions. The ion velocity distribution function is described for the case of cyclotron heating. The Lawson criterion applied to this distribution is described. (MOW)

  17. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  18. Model Selection and Psychological Theory: A Discussion of the Differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

    ERIC Educational Resources Information Center

    Vrieze, Scott I.

    2012-01-01

    This article reviews the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in model selection and the appraisal of psychological theory. The focus is on latent variable models, given their growing use in theory testing and construction. Theoretical statistical results in regression are discussed, and more important…

  19. On the dynamic nature of response criterion in recognition memory: effects of base rate, awareness, and feedback.

    PubMed

    Rhodes, Matthew G; Jacoby, Larry L

    2007-03-01

    The authors examined whether participants can shift their criterion for recognition decisions in response to the probability that an item was previously studied. Participants in 3 experiments were given recognition tests in which the probability that an item was studied was correlated with its location during the test. Results from all 3 experiments indicated that participants' response criteria were sensitive to the probability that an item was previously studied and that shifts in criterion were robust. In addition, awareness of the bases for criterion shifts and feedback on performance were key factors contributing to the observed shifts in decision criteria. These data suggest that decision processes can operate in a dynamic fashion, shifting from item to item.

  20. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  1. Blind equalization with criterion with memory nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Yuanjie; Nikias, Chrysostomos L.; Proakis, John G.

    1992-06-01

    Blind equalization methods usually combat the linear distortion caused by a nonideal channel via a transversal filter, without resorting to the a priori known training sequences. We introduce a new criterion with memory nonlinearity (CRIMNO) for the blind equalization problem. The basic idea of this criterion is to augment the Godard [or constant modulus algorithm (CMA)] cost function with additional terms that penalize the autocorrelations of the equalizer outputs. Several variations of the CRIMNO algorithms are derived, with the variations dependent on (1) whether the empirical averages or the single point estimates are used to approximate the expectations, (2) whether the recent or the delayed equalizer coefficients are used, and (3) whether the weights applied to the autocorrelation terms are fixed or are allowed to adapt. Simulation experiments show that the CRIMNO algorithm, and especially its adaptive weight version, exhibits faster convergence speed than the Godard (or CMA) algorithm. Extensions of the CRIMNO criterion to accommodate the case of correlated inputs to the channel are also presented.

  2. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model

    NASA Technical Reports Server (NTRS)

    Younis, Bassam A.; Gatski, Thomas B.; Speziale, Charles G.

    1994-01-01

    Data from free turbulent jets both with and without swirl are used to assess the performance of the pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses. Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi model which are linear in the same terms. All models are used as part of a complete second-order closure based on the solution of differential transport equations for each non-zero component of the Reynolds stress tensor together with an equation for the scalar energy dissipation rate. For non-swirling jets, the quadratic model underestimates the measured spreading rate of the plane jet but yields a better prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the mean flow and the turbulence structure in sharp contrast with the linear models which yield results that are in serious error. The reasons for these differences are discussed.

  3. Solving the Integral of Quadratic Forms of Covariance Matrices for Applications in Polarimetric Radar Imagery

    NASA Astrophysics Data System (ADS)

    Marino, Armando; Hajnsek, Irena

    2015-04-01

    In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.

  4. A new tracer‐density criterion for heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Illangasekare, Tissa H.; Hill, Mary C.; Rajaram, Harihar

    2001-01-01

    Tracer experiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density‐induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic‐gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density‐induced instabilities in homogeneous media. The modified criterion was tested using a series of two‐dimensional heterogeneous intermediate‐scale tracer experiments and data from several detailed field tracer tests. The intermediate‐scale experimental facility (10.0×1.2×0.06 m) included both homogeneous and heterogeneous (σln k2 = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < σln k2 < 0.37), but measurements were sufficient to detect density‐induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density‐induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density‐induced sinking and differences in the onset of density‐induced sinking in two‐ and three‐dimensional systems.

  5. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.

    PubMed

    Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning

    2018-07-01

    This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Analysis of augmented aircraft flying qualities through application of the Neal-Smith criterion

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Smith, R. E.

    1981-01-01

    The Neal-Smith criterion is examined for possible applications in the evaluation of augmented fighter aircraft flying qualities. Longitudinal and lateral flying qualities are addressed. Based on the application of several longitudinal flying qualities data bases, revisions are proposed to the original criterion. Examples are given which show the revised criterion to be a good discriminator of pitch flying qualities. Initial results of lateral flying qualities evaluation through application of the Neal-Smith criterion are poor. Lateral aircraft configurations whose flying qualities are degraded by roll ratcheting effects map into the Level 1 region of the criterion. A third dimension of the criterion for flying qualities specification is evident. Additional criteria are proposed to incorporate this dimension into the criterion structure for flying qualities analysis.

  7. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    ERIC Educational Resources Information Center

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  8. Criterion-Referenced and Norm-Referenced Assessments: Compatibility and Complementarity

    ERIC Educational Resources Information Center

    Lok, Beatrice; McNaught, Carmel; Young, Kenneth

    2016-01-01

    The tension between criterion-referenced and norm-referenced assessment is examined in the context of curriculum planning and assessment in outcomes-based approaches to higher education. This paper argues the importance of a criterion-referenced assessment approach once an outcomes-based approach has been adopted. It further discusses the…

  9. Criterion for faithful teleportation with an arbitrary multiparticle channel

    NASA Astrophysics Data System (ADS)

    Cheung, Chi-Yee; Zhang, Zhan-Jun

    2009-08-01

    We present a general criterion which allows one to judge if an arbitrary multiparticle entanglement channel can be used to teleport faithfully an unknown quantum state of a given dimension. We also present a general multiparticle teleportation protocol which is applicable for all channel states satisfying this criterion.

  10. On the asymptotic optimality and improved strategies of SPTB heuristic for open-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai

    2014-08-01

    This article investigates the open-shop scheduling problem with the optimal criterion of minimising the sum of quadratic completion times. For this NP-hard problem, the asymptotic optimality of the shortest processing time block (SPTB) heuristic is proven in the sense of limit. Moreover, three different improvements, namely, the job-insert scheme, tabu search and genetic algorithm, are introduced to enhance the quality of the original solution generated by the SPTB heuristic. At the end of the article, a series of numerical experiments demonstrate the convergence of the heuristic, the performance of the improvements and the effectiveness of the quadratic objective.

  11. Hyers-Ulam stability of a generalized Apollonius type quadratic mapping

    NASA Astrophysics Data System (ADS)

    Park, Chun-Gil; Rassias, Themistocles M.

    2006-10-01

    Let X,Y be linear spaces. It is shown that if a mapping satisfies the following functional equation: then the mapping is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.

  12. Quadratic Expressions by Means of "Summing All the Matchsticks"

    ERIC Educational Resources Information Center

    Gierdien, M. Faaiz

    2012-01-01

    This note presents demonstrations of quadratic expressions that come about when particular problems are posed with respect to matchsticks that form regular triangles, squares, pentagons and so on. Usually when such "matchstick" problems are used as ways to foster algebraic thinking, the expressions for the number of matchstick quantities are…

  13. Numerical and Experimental Validation of a New Damage Initiation Criterion

    NASA Astrophysics Data System (ADS)

    Sadhinoch, M.; Atzema, E. H.; Perdahcioglu, E. S.; van den Boogaard, A. H.

    2017-09-01

    Most commercial finite element software packages, like Abaqus, have a built-in coupled damage model where a damage evolution needs to be defined in terms of a single fracture energy value for all stress states. The Johnson-Cook criterion has been modified to be Lode parameter dependent and this Modified Johnson-Cook (MJC) criterion is used as a Damage Initiation Surface (DIS) in combination with the built-in Abaqus ductile damage model. An exponential damage evolution law has been used with a single fracture energy value. Ultimately, the simulated force-displacement curves are compared with experiments to validate the MJC criterion. 7 out of 9 fracture experiments were predicted accurately. The limitations and accuracy of the failure predictions of the newly developed damage initiation criterion will be discussed shortly.

  14. Reliability and criterion-related validity of a new repeated agility test

    PubMed Central

    Makni, E; Jemni, M; Elloumi, M; Chamari, K; Nabli, MA; Padulo, J; Moalla, W

    2016-01-01

    The study aimed to assess the reliability and the criterion-related validity of a new repeated sprint T-test (RSTT) that includes intense multidirectional intermittent efforts. The RSTT consisted of 7 maximal repeated executions of the agility T-test with 25 s of passive recovery rest in between. Forty-five team sports players performed two RSTTs separated by 3 days to assess the reliability of best time (BT) and total time (TT) of the RSTT. The intra-class correlation coefficient analysis revealed a high relative reliability between test and retest for BT and TT (>0.90). The standard error of measurement (<0.50) showed that the RSTT has a good absolute reliability. The minimal detectable change values for BT and TT related to the RSTT were 0.09 s and 0.58 s, respectively. To check the criterion-related validity of the RSTT, players performed a repeated linear sprint (RLS) and a repeated sprint with changes of direction (RSCD). Significant correlations between the BT and TT of the RLS, RSCD and RSTT were observed (p<0.001). The RSTT is, therefore, a reliable and valid measure of the intermittent repeated sprint agility performance. As this ability is required in all team sports, it is suggested that team sports coaches, fitness coaches and sports scientists consider this test in their training follow-up. PMID:27274109

  15. Prediction of Hot Tearing Using a Dimensionless Niyama Criterion

    NASA Astrophysics Data System (ADS)

    Monroe, Charles; Beckermann, Christoph

    2014-08-01

    The dimensionless form of the well-known Niyama criterion is extended to include the effect of applied strain. Under applied tensile strain, the pressure drop in the mushy zone is enhanced and pores grow beyond typical shrinkage porosity without deformation. This porosity growth can be expected to align perpendicular to the applied strain and to contribute to hot tearing. A model to capture this coupled effect of solidification shrinkage and applied strain on the mushy zone is derived. The dimensionless Niyama criterion can be used to determine the critical liquid fraction value below which porosity forms. This critical value is a function of alloy properties, solidification conditions, and strain rate. Once a dimensionless Niyama criterion value is obtained from thermal and mechanical simulation results, the corresponding shrinkage and deformation pore volume fractions can be calculated. The novelty of the proposed method lies in using the critical liquid fraction at the critical pressure drop within the mushy zone to determine the onset of hot tearing. The magnitude of pore growth due to shrinkage and deformation is plotted as a function of the dimensionless Niyama criterion for an Al-Cu alloy as an example. Furthermore, a typical hot tear "lambda"-shaped curve showing deformation pore volume as a function of alloy content is produced for two Niyama criterion values.

  16. Sequential Quadratic Programming Algorithms for Optimization

    DTIC Science & Technology

    1989-08-01

    quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

  17. 43 CFR 2440.2 - General criterion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SEGREGATION BY CLASSIFICATION Criteria for Segregation § 2440.2 General criterion. The public lands classified or proposed to be classified under the...

  18. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  19. The algebraic decoding of the (41, 21, 9) quadratic residue code

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei

    1992-01-01

    A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.

  20. Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Si, Liu-Gang; Xiong, Hao; Zubairy, M. Suhail; Wu, Ying

    2017-03-01

    We analyze theoretically the features of the output field of a quadratically coupled optomechanical system, which is driven by a strong coupling field and a weak signal field, and in which the membrane (treated as a mechanical resonator) is excited by a weak coherent driving field with two-phonon resonance. We show that the system exhibits complex quantum coherent and interference effects resulting in transmission of the signal field from opacity to remarkable amplification. We also find that the total phase of the applied fields can significantly adjust the signal field's transmission spectrum. The study of the propagation of the signal field in such a quadratically coupled optomechanical system proves that the proposed device can operate as an optical transistor.

  1. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  2. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  3. When to Teach for Belief: A Tempered Defense of the Epistemic Criterion

    ERIC Educational Resources Information Center

    Tillson, John

    2017-01-01

    Michael Hand has defended the "epistemic criterion" for "directive and nondirective teaching" in his 2008 "Educational Theory" article, "What Should We Teach as Controversial? A Defense of the Epistemic Criterion," as well as subsequent pieces. Here, John Tillson defends use of the epistemic criterion in the…

  4. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  5. Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yunbin, E-mail: zhaoyy@maths.bham.ac.u

    2010-12-15

    While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called 'scaled matrices' associated with quadratic forms involved. The main result claims that if the conditionmore » number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer's fixed point of a mapping) with a special structure. Thus, a broader question than the open 'Question 11' in Hiriart-Urruty (SIAM Rev. 49, 225-273, 2007) is addressed in this paper.« less

  6. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  7. 'Sportmotorische Bestandesaufnahme': criterion- vs. norm-based reference values of fitness tests for Swiss first grade children.

    PubMed

    Tomatis, Laura; Krebs, Andreas; Siegenthaler, Jessica; Murer, Kurt; de Bruin, Eling D

    2015-01-01

    Health is closely linked to physical activity and fitness. It is therefore important to monitor fitness in children. Although many reports on physical tests have been published, data comparison between studies is an issue. This study reports Swiss first grade norm values of fitness tests and compares these with criterion reference data. A total of 10,565 boys (7.18 ± 0.42 years) and 10,204 girls (7.14 ± 0.41 years) were tested for standing long jump, plate tapping, 20-m shuttle run, lateral jump and 20-m sprint. Average values for six-, seven- and eight-year-olds were analysed and reference curves for age were constructed. Z-values were generated for comparisons with criterion references reported in the literature. Results were better for all disciplines in seven-year-old first grade children compared to six-year-old children (p < 0.01). Eight-year-old children did not perform better compared to seven-year-old children in the sprint run (p = 0.11), standing long jump (p > 0.99) and shuttle run (p = 0.43), whereas they were better in all other disciplines compared to their younger peers. The average performance of boys was better than girls except for tapping at the age of 8 (p = 0.06). Differences in performance due to testing protocol and setting must be considered when test values from a first grade setting are compared to criterion-based benchmarks. In a classroom setting, younger children tended to have better results and older children tended to have worse outcomes when compared to their age group criterion reference values. Norm reference data are valid allowing comparison with other data generated by similar test protocols applied in a classroom setting.

  8. Assessing Stress-Related Treatment Needs among Girls at Risk for Poor Functional Outcomes: The Impact of Cumulative Adversity, Criterion Traumas, and Non-Criterion Events

    PubMed Central

    Lansing, Amy E.; Plante, Wendy Y.; Beck, Audrey N.

    2016-01-01

    Despite growing recognition that cumulative adversity (total stressor exposure), including complex trauma, increases the risk for psychopathology and impacts development, assessment strategies lag behind: Trauma-related mental health needs (symptoms, functional impairment, maladaptive coping) are typically assessed in response to only one qualifying Criterion-A event. This is especially problematic for youth at-risk for health and academic disparities who experience cumulative adversity, including non-qualifying events (parental separations) which may produce more impairing symptomatology. Data from 118 delinquent girls demonstrate: 1) an average of 14 adverse Criterion-A and non-Criterion event exposures; 2) serious maladaptive coping strategies (self-injury) directly in response to cumulative adversity; 3) more cumulative adversity-related than worst-event related symptomatology and functional impairment; and 4) comparable symptomatology, but greater functional impairment, in response to non-Criterion events. These data support the evaluation of mental health needs in response to cumulative adversity for optimal identification and tailoring of services in high-risk populations to reduce disparities. PMID:27745922

  9. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  10. A Reconsideration of the Extension Strain Criterion for Fracture and Failure of Rock

    NASA Astrophysics Data System (ADS)

    Wesseloo, J.; Stacey, T. R.

    2016-12-01

    The complex behaviours of rocks and rock masses have presented paradoxes to the rock engineer, including the fracturing of seemingly strong rock under low stress conditions, which often occurs near excavation boundaries. The extension strain criterion was presented as a fracture initiation criterion under these conditions (Stacey in Int J Rock Mech Min Sci 18:469-474, 1981). This criterion has been used successfully by some and criticised by others. In this paper, we review the literature on the extension strain criterion and present a case for the correct interpretation of the criterion and the conditions suitable for its use. We argue that the extension strain criterion can also be used to provide an indication of damage level under conditions of relatively low confining stress. We also present an augmentation of the criterion, the ultimate extension strain, which is applicable under extensional loading conditions when σ 2 is similar in magnitude to σ 1.

  11. Variations in Criterion A and PTSD Rates in a Community Sample of Women

    PubMed Central

    Anders, Samantha; Frazier, Patricia; Frankfurt, Sheila

    2010-01-01

    We assessed PTSD prevalence and symptoms as a function of whether participants’ worst lifetime event met Criterion A1 for PTSD (DSM-IV-TR; APA, 2000) and whether the event was directly or indirectly experienced in a community sample of adult women (N = 884). Exposure to both non-Criterion A1 and Criterion A1 events was systematically assessed. PTSD was assessed with regard to participants’ self-nominated worst event using the PTSD module of the SCID-I/NP (First, Spitzer, Gibbon, & Williams, 1997). There were no differences in PTSD prevalence rates between Criterion A1 and non-A1 events; however, directly-experienced worst events were significantly more likely to meet PTSD criteria than were indirectly-experienced worst events. Non-Criterion A1 and directly-experienced worst events were associated with significantly more PTSD symptoms than were Criterion A1 or indirectly-experienced events, respectively. Criterion A2 (experiencing fear, helplessness, or horror) had little effect on PTSD rates. PMID:20888184

  12. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  13. Revealing Ozgur's Thoughts of a Quadratic Function with a Clinical Interview: Concepts and Their Underlying Reasons

    ERIC Educational Resources Information Center

    Ozaltun Celik, Aytug; Bukova Guzel, Esra

    2017-01-01

    The quadratic function is an important concept for calculus but the students at high school have many difficulties related to this concept. It is important that the teaching of the quadratic function is realized considering the students' thinking. In this context, the aim of this study conducted through a qualitative case study is to reveal the…

  14. Sequential lineups: shift in criterion or decision strategy?

    PubMed

    Gronlund, Scott D

    2004-04-01

    R. C. L. Lindsay and G. L. Wells (1985) argued that a sequential lineup enhanced discriminability because it elicited use of an absolute decision strategy. E. B. Ebbesen and H. D. Flowe (2002) argued that a sequential lineup led witnesses to adopt a more conservative response criterion, thereby affecting bias, not discriminability. Height was encoded as absolute (e.g., 6 ft [1.83 m] tall) or relative (e.g., taller than). If a sequential lineup elicited an absolute decision strategy, the principle of transfer-appropriate processing predicted that performance should be best when height was encoded absolutely. Conversely, if a simultaneous lineup elicited a relative decision strategy, performance should be best when height was encoded relatively. The predicted interaction was observed, providing direct evidence for the decision strategies explanation of what happens when witnesses view a sequential lineup.

  15. Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise

    NASA Astrophysics Data System (ADS)

    Ren, Ruibin; Luo, Maokang; Deng, Ke

    2017-02-01

    Stochastic resonance of a fractional oscillator subject to an external periodic field as well as to multiplicative and additive noise is investigated. The fluctuations of the eigenfrequency are modeled as the quadratic function of the trichotomous noise. Applying the moment equation method and Shapiro-Loginov formula, we obtain the exact expression of the complex susceptibility and related stability criteria. Theoretical analysis and numerical simulations indicate that the spectral amplification (SPA) depends non-monotonicly both on the external driving frequency and the parameters of the quadratic noise. In addition, the investigations into fractional stochastic systems have suggested that both the noise parameters and the memory effect can induce the phenomenon of stochastic multi-resonance (SMR), which is previously reported and believed to be absent in the case of the multiplicative noise with only a linear term.

  16. Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures

    NASA Astrophysics Data System (ADS)

    Bochi, Jairo; Bonatti, Christian; Díaz, Lorenzo J.

    2016-06-01

    We give explicit C 1-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly. The conditions of the criterion are met on a C 1-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a C 1-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy. The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.

  17. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the

  18. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.

    PubMed

    Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S

    2015-08-07

    Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real

  19. A Controlled Evaluation of the Distress Criterion for Binge Eating Disorder

    PubMed Central

    Grilo, Carlos M.; White, Marney A.

    2012-01-01

    Objective Research has examined various aspects of the validity of the research criteria for binge eating disorder (BED) but has yet to evaluate the utility of criterion C “marked distress about binge eating.” This study examined the significance of the marked distress criterion for BED using two complementary comparisons groups. Method A total of 1075 community volunteers completed a battery of self-report instruments as part of an internet study. Analyses compared body mass index (BMI), eating-disorder psychopathology, and depressive levels in four groups: 97 participants with BED except for the distress criterion (BED-ND), 221 participants with BED including the distress criterion (BED), 79 participants with bulimia nervosa (BN), and 489 obese participants without binge-eating or purging (NBPO). Parallel analyses compared these study groups using the broadened frequency criterion (i.e., once-weekly for binge/purge behaviors) proposed for DSM-5 and the DSM-IV twice-weekly frequency criterion. Results The BED group had significantly greater eating-disorder psychopathology and depressive levels than the BED-ND group. The BED group, but not the BED-ND group, had significantly greater eating-disorder psychopathology than the NBPO comparison group. The BN group had significantly greater eating-disorder psychopathology and depressive levels than all three other groups. The group differences existed even after controlling for depression levels, BMI, and demographic variables, although some differences between the BN and BED groups were attenuated when controlling for depression levels. Conclusions These findings provide support for the validity of the “marked distress” criterion for the diagnosis of BED. PMID:21707133

  20. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    PubMed

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  1. Self-repeating properties of four-petal Gaussian vortex beams in quadratic index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Chai, Tong; Zheng, Hairong

    2018-05-01

    In this paper, we investigate the propagation properties of four-petal Gaussian vortex (FPGV) beams propagating through the quadratic index medium, obtaining the analytical expression of FPGV beams. The effects of beam order n, topological charge m and beam waist ω0 are investigated. Results show that quadratic index medium support periodic distributions of FPGV beams. A hollow optical wall or an optical central principal maximum surrounded by symmetrical sidelobes will occur at the center of a period. At length, they will evolve into four petals structure, exactly same as the intensity distributions at source plane.

  2. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user

  3. Bibliography on Criterion Referenced Measurement.

    ERIC Educational Resources Information Center

    Ellsworth, Randolph A.; Franz, Carleen

    This bibliography contains 262 references on Criterion Referenced Measurement (CRM) that were obtained from the following sources: (1) the author's personal files; (2) a bibliography compiled by Hsu and Boston (ERIC Document #ED 068 531) containing 52 references; (3) a bibliography compiled by Keller (ERIC Document #ED 060 041) containing 116…

  4. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    ERIC Educational Resources Information Center

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  5. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  6. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  7. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  8. Quadratic semiparametric Von Mises calculus

    PubMed Central

    Robins, James; Li, Lingling; Tchetgen, Eric

    2009-01-01

    We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than n–1/2-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at n–1/2-rate. PMID:23087487

  9. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    NASA Astrophysics Data System (ADS)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  10. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  11. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  12. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  13. Learning quadratic receptive fields from neural responses to natural stimuli.

    PubMed

    Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

    2013-07-01

    Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

  14. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES

    PubMed Central

    RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT

    2013-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  15. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  16. Quadratic response functions in the relativistic four-component Kohn-Sham approximation

    NASA Astrophysics Data System (ADS)

    Henriksson, Johan; Saue, Trond; Norman, Patrick

    2008-01-01

    A formulation and implementation of the quadratic response function in the adiabatic four-component Kohn-Sham approximation is presented. The noninteracting reference state is time-reversal symmetric and formed from Kramers pair spinors, and the energy density is gradient corrected. Example calculations are presented for the optical properties of disubstituted halobenzenes in their meta and ortho conformations. It is demonstrated that correlation and relativistic effects are not additive, and it is shown that relativity alone reduces the μβ¯-response signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same response by 17% and 21% for meta- and ortho-iodobenzene, respectively. Of the employed functionals, CAM-B3LYP shows the best performance and gives hyperpolarizabilities β distinctly different from B3LYP.

  17. Assessing stress-related treatment needs among girls at risk for poor functional outcomes: The impact of cumulative adversity, criterion traumas, and non-criterion events.

    PubMed

    Lansing, Amy E; Plante, Wendy Y; Beck, Audrey N

    2017-05-01

    Despite growing recognition that cumulative adversity (total stressor exposure, including complex trauma), increases the risk for psychopathology and impacts development, assessment strategies lag behind: Adversity-related mental health needs (symptoms, functional impairment, maladaptive coping) are typically assessed in response to only one qualifying Criterion-A traumatic event. This is especially problematic for youth at-risk for health and academic disparities who experience cumulative adversity, including non-qualifying events (separation from caregivers) which may produce more impairing symptomatology. Data from 118 delinquent girls demonstrate: (1) an average of 14 adverse Criterion-A and non-Criterion event exposures; (2) serious maladaptive coping strategies (self-injury) directly in response to cumulative adversity; (3) more cumulative adversity-related than worst-event related symptomatology and functional impairment; and (4) comparable symptomatology, but greater functional impairment, in response to non-Criterion events. These data support the evaluation of mental health needs in response to cumulative adversity for optimal identification and tailoring of services in high-risk populations to reduce disparities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  19. Entanglement criterion for tripartite systems based on local sum uncertainty relations

    NASA Astrophysics Data System (ADS)

    Akbari-Kourbolagh, Y.; Azhdargalam, M.

    2018-04-01

    We propose a sufficient criterion for the entanglement of tripartite systems based on local sum uncertainty relations for arbitrarily chosen observables of subsystems. This criterion generalizes the tighter criterion for bipartite systems introduced by Zhang et al. [C.-J. Zhang, H. Nha, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 81, 012324 (2010), 10.1103/PhysRevA.81.012324] and can be used for both discrete- and continuous-variable systems. It enables us to detect the entanglement of quantum states without having a complete knowledge of them. Its utility is illustrated by some examples of three-qubit, qutrit-qutrit-qubit, and three-mode Gaussian states. It is found that, in comparison with other criteria, this criterion is able to detect some three-qubit bound entangled states more efficiently.

  20. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  1. Qualitative analysis of certain generalized classes of quadratic oscillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Bijan, E-mail: bbagchi123@gmail.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Pal, Barnali, E-mail: barrna.roo@gmail.com

    2016-02-15

    We carry out a systematic qualitative analysis of the two quadratic schemes of generalized oscillators recently proposed by Quesne [J. Math. Phys. 56, 012903 (2015)]. By performing a local analysis of the governing potentials, we demonstrate that while the first potential admits a pair of equilibrium points one of which is typically a center for both signs of the coupling strength λ, the other points to a centre for λ < 0 but a saddle λ > 0. On the other hand, the second potential reveals only a center for both the signs of λ from a linear stability analysis.more » We carry out our study by extending Quesne’s scheme to include the effects of a linear dissipative term. An important outcome is that we run into a remarkable transition to chaos in the presence of a periodic force term fcosωt.« less

  2. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  3. Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering

    DTIC Science & Technology

    2011-12-01

    LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Jamie P...A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Presented to the Faculty Department of Electrical Engineering Graduate School of...actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and

  4. Synchronization in oscillator networks with delayed coupling: a stability criterion.

    PubMed

    Earl, Matthew G; Strogatz, Steven H

    2003-03-01

    We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.

  5. Criterion I: Soil and water conservation on rangelands [Chapter 2

    Treesearch

    Michael G. (Sherm) Karl; Paul T. Tueller; Gerald E. Schuman; Mark R. Vinson; James L. Fogg; Ronald W. Shafer; David A. Pyke; D. Terrance Booth; Steven J. Borchard; William G. Ypsilantis; Richard H. Barrett

    2010-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion of rangeland sustainability. Within the soil/water criterion, 10 indicators ­ five soil-based and five water-based - were developed through the expert opinions of rangeland scientists, rangeland management agency personnel, non-...

  6. Statistical Validation of Surrogate Endpoints: Another Look at the Prentice Criterion and Other Criteria.

    PubMed

    Saraf, Sanatan; Mathew, Thomas; Roy, Anindya

    2015-01-01

    For the statistical validation of surrogate endpoints, an alternative formulation is proposed for testing Prentice's fourth criterion, under a bivariate normal model. In such a setup, the criterion involves inference concerning an appropriate regression parameter, and the criterion holds if the regression parameter is zero. Testing such a null hypothesis has been criticized in the literature since it can only be used to reject a poor surrogate, and not to validate a good surrogate. In order to circumvent this, an equivalence hypothesis is formulated for the regression parameter, namely the hypothesis that the parameter is equivalent to zero. Such an equivalence hypothesis is formulated as an alternative hypothesis, so that the surrogate endpoint is statistically validated when the null hypothesis is rejected. Confidence intervals for the regression parameter and tests for the equivalence hypothesis are proposed using bootstrap methods and small sample asymptotics, and their performances are numerically evaluated and recommendations are made. The choice of the equivalence margin is a regulatory issue that needs to be addressed. The proposed equivalence testing formulation is also adopted for other parameters that have been proposed in the literature on surrogate endpoint validation, namely, the relative effect and proportion explained.

  7. Evaluation of entropy and JM-distance criterions as features selection methods using spectral and spatial features derived from LANDSAT images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dutra, L. V.; Mascarenhas, N. D. A.; Mitsuo, Fernando Augusta, II

    1984-01-01

    A study area near Ribeirao Preto in Sao Paulo state was selected, with predominance in sugar cane. Eight features were extracted from the 4 original bands of LANDSAT image, using low-pass and high-pass filtering to obtain spatial features. There were 5 training sites in order to acquire the necessary parameters. Two groups of four channels were selected from 12 channels using JM-distance and entropy criterions. The number of selected channels was defined by physical restrictions of the image analyzer and computacional costs. The evaluation was performed by extracting the confusion matrix for training and tests areas, with a maximum likelihood classifier, and by defining performance indexes based on those matrixes for each group of channels. Results show that in spatial features and supervised classification, the entropy criterion is better in the sense that allows a more accurate and generalized definition of class signature. On the other hand, JM-distance criterion strongly reduces the misclassification within training areas.

  8. A Review of the CTOA/CTOD Fracture Criterion: Why it Works

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; James, M. A.

    2001-01-01

    The CTOA/CTOD fracture criterion is one of the oldest fracture criteria applied to fracture of metallic materials with cracks. During the past two decades, the use of elastic-plastic finite-element analyses to simulate fracture of laboratory specimens and structural components using the CTOA criterion has expanded rapidly. But the early applications were restricted to two-dimensional analyses, assuming either plane-stress or plane-strain behavior, which lead to generally non-constant values of CTOA, especially in the early stages crack extension. Later, the non-constant CTOA values were traced to inappropriate state-of-stress (or constraint) assumptions in the crack-front region and severe crack tunneling in thin-sheet materials. More recently, the CTOA fracture criterion has been used with three-dimensional analyses to study constraint effects, crack tunneling, and the fracture process. The constant CTOA criterion (from crack initiation to failure) has been successfully applied to numerous structural applications, such as aircraft fuselages and pipelines. But why does the "constant CTOA" fracture criterion work so well? This paper reviews the results from several studies, discusses the issues of why CTOA works, and discusses its limitations.

  9. Elegant Ince-Gaussian beams in a quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2011-09-01

    Elegant Ince—Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince—Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince—Gaussian beams are discussed.

  10. A Factorization Approach to the Linear Regulator Quadratic Cost Problem

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.

  11. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  12. A Criterion-Referenced Viewpoint on Standards/Cutscores in Language Testing.

    ERIC Educational Resources Information Center

    Davidson, Fred; Lynch, Brian K.

    "Standard" is distinguished from "criterion" as it is used in criterion-referenced testing. The former is argued to refer to the real-world cutpoint at which a decision is made based on a test's result (e.g., exemption from a special training program). The latter is a skill or set of skills to which a test is referenced.…

  13. Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies

    NASA Astrophysics Data System (ADS)

    Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie

    2018-05-01

    In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .

  14. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score.

    PubMed

    Zhang, Zhongheng; Ji, Xuqing

    2016-10-13

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO 2 ) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO 2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO 2 and its interaction with other covariates were explored. A total of 199,125 PaO 2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO 2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO 2 on mortality risk was in quadratic form. There was significant interaction between PaO 2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO 2 on SOFA score was nonlinear. The study shows that the effect of PaO 2 on mortality risk is in quadratic function form, and there is significant interaction between PaO 2 and severity of illness.

  15. Assessment of performance validity in the Stroop Color and Word Test in mild traumatic brain injury patients: a criterion-groups validation design.

    PubMed

    Guise, Brian J; Thompson, Matthew D; Greve, Kevin W; Bianchini, Kevin J; West, Laura

    2014-03-01

    The current study assessed performance validity on the Stroop Color and Word Test (Stroop) in mild traumatic brain injury (TBI) using criterion-groups validation. The sample consisted of 77 patients with a reported history of mild TBI. Data from 42 moderate-severe TBI and 75 non-head-injured patients with other clinical diagnoses were also examined. TBI patients were categorized on the basis of Slick, Sherman, and Iverson (1999) criteria for malingered neurocognitive dysfunction (MND). Classification accuracy is reported for three indicators (Word, Color, and Color-Word residual raw scores) from the Stroop across a range of injury severities. With false-positive rates set at approximately 5%, sensitivity was as high as 29%. The clinical implications of these findings are discussed. © 2012 The British Psychological Society.

  16. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    PubMed

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  17. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  18. Field-antifield and BFV formalisms for quadratic systems with open gauge algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirov, K.S.; Razumov, A.V.

    1992-09-20

    In this paper the Lagrangian field-antifield (BV) and Hamiltonian (BFV) BRST formalisms for the general quadratic systems with open gauge algebra are considered. The equivalence between the Lagrangian and Hamiltonian formalisms is proven.

  19. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  20. Updating the Trainability Tests Literature on Black-White Subgroup Differences and Reconsidering Criterion-Related Validity

    ERIC Educational Resources Information Center

    Roth, Philip L.; Buster, Maury A.; Bobko, Philip

    2011-01-01

    A number of applied psychologists have suggested that trainability test Black-White ethnic group differences are low or relatively low (e.g., Siegel & Bergman, 1975), though data are scarce. Likewise, there are relatively few estimates of criterion-related validity for trainability tests predicting job performance (cf. Robertson & Downs,…

  1. First report of soybean pest, Euschistus quadrator (Hempitera: pentatomidae) in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Here we report on the first state and county record of Euschistus quadrator Ralston (Hemiptera: Pentatomidae) in Washington County, Mississippi. The species has been documented from Honduras to Virginia primarily on soybeans, cotton, various row crops, fruit, and non-crop hosts. The local impact...

  2. Standards for Evaluating Criterion-Referenced Tests.

    ERIC Educational Resources Information Center

    Walker, Clinton B.

    Standards for evaluating criterion-referenced tests are presented. Twenty-one standards, grouped in three categories, are discussed. Category one is defined as measurement properties and is comprised of conceptual validity, including description of the domain, test item agreement with objectives, and item representativeness of the objectives; and…

  3. Linear versus quadratic portfolio optimization model with transaction cost

    NASA Astrophysics Data System (ADS)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  4. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  6. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team

    In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.

  7. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [applied to STOL autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    In connection with difficulties concerning an accurate mathematical representation of a linear quadratic state feedback (LQSF) system, it is often necessary to investigate the robustness (stability) of an LQSF design in the presence of system uncertainty and obtain some quantitative measure of the perturbations which such a design can tolerate. A study is conducted concerning the problem of expressing the robustness property of an LQSF design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices. Bounds are obtained for the general case of nonlinear, time-varying perturbations. It is pointed out that most of the presented results are readily applicable to practical situations for which a designer has estimates of the bounds on the system parameter perturbations. Relations are provided which help the designer to select appropriate weighting matrices in the quadratic performance index to attain a robust design. The developed results are employed in the design of an autopilot logic for the flare maneuver of the Augmentor Wing Jet STOL Research Aircraft.

  8. Confidence set interference with a prior quadratic bound. [in geophysics

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.

  9. A New Criterion for Prediction of Hot Tearing Susceptibility of Cast Alloys

    NASA Astrophysics Data System (ADS)

    Nasresfahani, Mohamad Reza; Niroumand, Behzad

    2014-08-01

    A new criterion for prediction of hot tearing susceptibility of cast alloys is suggested which takes into account the effects of both important mechanical and metallurgical factors and is believed to be less sensitive to the presence of volume defects such as bifilms and inclusions. The criterion was validated by studying the hot tearing tendency of Al-Cu alloy. In conformity with the experimental results, the new criterion predicted reduction of hot tearing tendency with increasing the copper content.

  10. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost

  11. Criterion-Referenced Test Items for Welding.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This test item bank on welding contains test questions based upon competencies found in the Missouri Welding Competency Profile. Some test items are keyed for multiple competencies. These criterion-referenced test items are designed to work with the Vocational Instructional Management System. Questions have been statistically sampled and validated…

  12. Criterion Related Validity of Karate Specific Aerobic Test (KSAT).

    PubMed

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-09-01

    Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE'KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT's TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT's TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE's KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE's KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT requires further investigation.

  13. Comparing hierarchical models via the marginalized deviance information criterion.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Criterion for correct recalls in associative-memory neural networks

    NASA Astrophysics Data System (ADS)

    Ji, Han-Bing

    1992-12-01

    A novel weighted outer-product learning (WOPL) scheme for associative memory neural networks (AMNNs) is presented. In the scheme, each fundamental memory is allocated a learning weight to direct its correct recall. Both the Hopfield and multiple training models are instances of the WOPL model with certain sets of learning weights. A necessary condition of choosing learning weights for the convergence property of the WOPL model is obtained through neural dynamics. A criterion for choosing learning weights for correct associative recalls of the fundamental memories is proposed. In this paper, an important parameter called signal to noise ratio gain (SNRG) is devised, and it is found out empirically that SNRGs have their own threshold values which means that any fundamental memory can be correctly recalled when its corresponding SNRG is greater than or equal to its threshold value. Furthermore, a theorem is given and some theoretical results on the conditions of SNRGs and learning weights for good associative recall performance of the WOPL model are accordingly obtained. In principle, when all SNRGs or learning weights chosen satisfy the theoretically obtained conditions, the asymptotic storage capacity of the WOPL model will grow at the greatest rate under certain known stochastic meaning for AMNNs, and thus the WOPL model can achieve correct recalls for all fundamental memories. The representative computer simulations confirm the criterion and theoretical analysis.

  15. Analysis of Maneuvering Targets with Complex Motions by Two-Dimensional Product Modified Lv's Distribution for Quadratic Frequency Modulation Signals.

    PubMed

    Jing, Fulong; Jiao, Shuhong; Hou, Changbo; Si, Weijian; Wang, Yu

    2017-06-21

    For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM) signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF) and modified scaled Fourier transform (mSFT), an effective parameter estimation algorithm is proposed-referred to as the Two-Dimensional product modified Lv's distribution (2D-PMLVD)-for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT) and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.

  16. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  17. Selecting Items for Criterion-Referenced Tests.

    ERIC Educational Resources Information Center

    Mellenbergh, Gideon J.; van der Linden, Wim J.

    1982-01-01

    Three item selection methods for criterion-referenced tests are examined: the classical theory of item difficulty and item-test correlation; the latent trait theory of item characteristic curves; and a decision-theoretic approach for optimal item selection. Item contribution to the standardized expected utility of mastery testing is discussed. (CM)

  18. The role of word choice and criterion on intentional memory.

    PubMed

    Toyota, Hiroshi

    2015-02-01

    The relationship between the criterion for choosing and the self-choice effects (greater recall in a self-choice compared to a forced-choice condition) on intentional memory was examined. Thirty-three female nursing school volunteers were administered 24 word pairs in a 2 × 2 design to assess the influence of motivation upon free recall. When word pairs were presented to participants, they were asked to choose a word to-be-remembered, either in a self-choice condition or a forced-choice condition. Words chosen by the participants were recalled more often than those chosen by the experimenter (forced choice). Thus, the self-choice effect was greater for words chosen with a self-reference criterion compared to a metamemory criterion, supporting the integration hypothesis as the origin of the self-choice effect.

  19. Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation with No Radial Axis Inputs

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame ' propulsion system simplifications and weight reduction may be accomplished. Several linear-quadratic regulators (LQR) are explored and compared based on performance measures likely to be important to many missions, but not directly optimized in the LQR designs. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. This work focusses on formations in which the controlled satellite has a relative trajectory which projects onto the local horizon of the uncontrolled satellite as a circle. This formation has potential uses for distributed remote sensing systems.

  20. Linear quadratic Gaussian and feedforward controllers for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Racho, C. S.; Mellstrom, J. A.

    1994-01-01

    The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.

  1. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  2. Design of Linear-Quadratic-Regulator for a CSTR process

    NASA Astrophysics Data System (ADS)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  3. Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory

    NASA Technical Reports Server (NTRS)

    Koppang, Paul; Leland, Robert

    1996-01-01

    Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.

  4. Problems in Criterion-Referenced Measurement. CSE Monograph Series in Evaluation, 3.

    ERIC Educational Resources Information Center

    Harris, Chester W., Ed.; And Others

    Six essays on technical measurement problems in criterion referenced tests and four essays by psychometricians proposing solutions are presented: (1) "Criterion-Referenced Measurement" and Other Such Terms, by Marvin C. Alkin which is an overview of the first six papers; (2) Selecting Objectives and Generating Test Items for Objectives-Based…

  5. A Comparative Analysis of DBSCAN, K-Means, and Quadratic Variation Algorithms for Automatic Identification of Swallows from Swallowing Accelerometry Signals

    PubMed Central

    Dudik, Joshua M.; Kurosu, Atsuko; Coyle, James L

    2015-01-01

    Background Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. Methods In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Results Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differen-tiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. Conclusions In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. PMID:25658505

  6. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  7. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    PubMed

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  8. An approximate spin design criterion for monoplanes, 1 May 1939

    NASA Technical Reports Server (NTRS)

    Seidman, O.; Donlan, C. J.

    1976-01-01

    An approximate empirical criterion, based on the projected side area and the mass distribution of the airplane, was formulated. The British results were analyzed and applied to American designs. A simpler design criterion, based solely on the type and the dimensions of the tail, was developed; it is useful in a rapid estimation of whether a new design is likely to comply with the minimum requirements for safety in spinning.

  9. Effects of Mastery Criterion on the Emergence of Derived Equivalence Relations

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Brodsky, Julia

    2017-01-01

    In this study, we manipulated mastery criterion form (rolling or block) and stringency (across 6 or 12 trials) and measured the emergence of derived relations. College students learned neuroanatomy equivalence classes and experienced one of two rolling mastery criteria (6 or 12 consecutive correct responses) or a block mastery criterion (12 trials…

  10. A Controlled Evaluation of the Distress Criterion for Binge Eating Disorder

    ERIC Educational Resources Information Center

    Grilo, Carlos M.; White, Marney A.

    2011-01-01

    Objective: Research has examined various aspects of the validity of the research criteria for binge eating disorder (BED) but has yet to evaluate the utility of Criterion C, "marked distress about binge eating." This study examined the significance of the marked distress criterion for BED using 2 complementary comparison groups. Method:…

  11. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.

    PubMed

    Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip

    2005-06-01

    A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.

  12. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  13. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  14. Brittle failure of rock: A review and general linear criterion

    NASA Astrophysics Data System (ADS)

    Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan

    2018-07-01

    A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.

  15. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    PubMed

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  16. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    PubMed Central

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838

  17. Commande optimale minimisant la consommation d'energie d'un drone utilise comme relai de communication

    NASA Astrophysics Data System (ADS)

    Mechirgui, Monia

    The purpose of this project is to implement an optimal control regulator, particularly the linear quadratic regulator in order to control the position of an unmanned aerial vehicle known as a quadrotor. This type of UAV has a symmetrical and simple structure. Thus, its control is relatively easy compared to conventional helicopters. Optimal control can be proven to be an ideal controller to reconcile between the tracking performance and energy consumption. In practice, the linearity requirements are not met, but some elaborations of the linear quadratic regulator have been used in many nonlinear applications with good results. The linear quadratic controller used in this thesis is presented in two forms: simple and adapted to the state of charge of the battery. Based on the traditional structure of the linear quadratic regulator, we introduced a new criterion which relies on the state of charge of the battery, in order to optimize energy consumption. This command is intended to be used to monitor and maintain the desired trajectory during several maneuvers while minimizing energy consumption. Both simple and adapted, linear quadratic controller are implemented in Simulink in discrete time. The model simulates the dynamics and control of a quadrotor. Performance and stability of the system are analyzed with several tests, from the simply hover to the complex trajectories in closed loop.

  18. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  19. Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Martin, Corless

    2004-01-01

    We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.

  20. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  1. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  2. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  3. Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    1999-01-01

    A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.

  4. Empathy and the application of the 'unbearable suffering' criterion in Dutch euthanasia practice.

    PubMed

    van Tol, Donald G; Rietjens, Judith A C; van der Heide, Agnes

    2012-05-01

    A pivotal due care criterion for lawful euthanasia in the Netherlands is that doctors must be convinced that a patient requesting for euthanasia, suffers unbearably. Our study aims to find out how doctors judge if a patient suffers unbearably. How do doctors bridge the gap from 3rd person assessment to 1st person experience? We performed a qualitative interview study among 15 physicians, mainly general practitioners, who participated earlier in a related quantitative survey on the way doctors apply the suffering criterion. Results show that doctors follow different 'cognitive routes' when assessing a patients suffering in the context of a euthanasia request. Sometimes doctors do this imagining how she herself would experience the situation of the patient ('imagine self'). Doctors may also try to adopt the perspective of the patient and imagine what the situation is like for this particular patient ('imagine other'). Besides this we found that the (outcome of the) assessment is influenced by a doctor's private norms, values and emotions considering (the performance of) euthanasia. We conclude by arguing why doctors should be aware of both the 'cognitive route' followed as well as the influence of their own personal norms on the assessment of suffering in the context of euthanasia requests. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. The Effectiveness of Circular Equating as a Criterion for Evaluating Equating.

    ERIC Educational Resources Information Center

    Wang, Tianyou; Hanson, Bradley A.; Harris, Deborah J.

    Equating a test form to itself through a chain of equatings, commonly referred to as circular equating, has been widely used as a criterion to evaluate the adequacy of equating. This paper uses both analytical methods and simulation methods to show that this criterion is in general invalid in serving this purpose. For the random groups design done…

  6. The dynamic model of enterprise revenue management

    NASA Astrophysics Data System (ADS)

    Mitsel, A. A.; Kataev, M. Yu; Kozlov, S. V.; Korepanov, K. V.

    2017-01-01

    The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired.

  7. On the upper bound in the Bohm sheath criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ionmore » source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.« less

  8. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  9. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  11. On the classification of elliptic foliations induced by real quadratic fields with center

    NASA Astrophysics Data System (ADS)

    Puchuri, Liliana; Bueno, Orestes

    2016-12-01

    Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.

  12. Robustness in linear quadratic feedback design with application to an aircraft control problem

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Sridhar, B.; Toda, M.

    1977-01-01

    Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.

  13. Calculus students' understanding of the vertex of the quadratic function in relation to the concept of derivative

    NASA Astrophysics Data System (ADS)

    Burns-Childers, Annie; Vidakovic, Draga

    2018-07-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.

  14. The stressor criterion for posttraumatic stress disorder: Does it matter?

    PubMed Central

    Roberts, Andrea L.; Dohrenwend, Bruce P.; Aiello, Allison; Wright, Rosalind J.; Maercker, Andreas; Galea, Sandro; Koenen, Karestan C.

    2013-01-01

    Objective The definition of the stressor criterion for posttraumatic stress disorder (“Criterion A1”) is hotly debated with major revisions being considered for DSM-V. We examine whether symptoms, course, and consequences of PTSD vary predictably with the type of stressful event that precipitates symptoms. Method We used data from the 2009 PTSD diagnostic subsample (N=3,013) of the Nurses Health Study II. We asked respondents about exposure to stressful events qualifying under 1) DSM-III, 2) DSM-IV, or 3) not qualifying under DSM Criterion A1. Respondents selected the event they considered worst and reported subsequent PTSD symptoms. Among participants who met all other DSM-IV PTSD criteria, we compared distress, symptom severity, duration, impairment, receipt of professional help, and nine physical, behavioral, and psychiatric sequelae (e.g. physical functioning, unemployment, depression) by precipitating event group. Various assessment tools were used to determine fulfillment of PTSD Criteria B through F and to assess these 14 outcomes. Results Participants with PTSD from DSM-III events reported on average 1 more symptom (DSM-III mean=11.8 symptoms, DSM-IV=10.7, non-DSM=10.9) and more often reported symptoms lasted one year or longer compared to participants with PTSD from other groups. However, sequelae of PTSD did not vary systematically with precipitating event type. Conclusions Results indicate the stressor criterion as defined by the DSM may not be informative in characterizing PTSD symptoms and sequelae. In the context of ongoing DSM-V revision, these results suggest that Criterion A1 could be expanded in DSM-V without much consequence for our understanding of PTSD phenomenology. Events not considered qualifying stressors under the DSM produced PTSD as consequential as PTSD following DSM-III events, suggesting PTSD may be an aberrantly severe but nonspecific stress response syndrome. PMID:22401487

  15. Working Memory in Children with Learning Disabilities: Rethinking the Criterion of Discrepancy

    ERIC Educational Resources Information Center

    Maehler, Claudia; Schuchardt, Kirsten

    2011-01-01

    The criterion of discrepancy is used to distinguish children with learning disorders from children with intellectual disabilities. The justification of the criterion of discrepancy for the diagnosis of learning disorders relies on the conviction of fundamental differences between children with learning difficulties with versus without discrepancy…

  16. 46 CFR 170.173 - Criterion for vessels of unusual proportion and form.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Criterion for vessels of unusual proportion and form. 170.173 Section 170.173 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Weather Criteria § 170.173 Criterion...

  17. Rigorous Numerical Study of Low-Period Windows for the Quadratic Map

    NASA Astrophysics Data System (ADS)

    Galias, Zbigniew

    An efficient method to find all low-period windows for the quadratic map is proposed. The method is used to obtain very accurate rigorous bounds of positions of all periodic windows with periods p ≤ 32. The contribution of period-doubling windows on the total width of periodic windows is discussed. Properties of periodic windows are studied numerically.

  18. Differentiated Learning Environment--A Classroom for Quadratic Equation, Function and Graphs

    ERIC Educational Resources Information Center

    Dinç, Emre

    2017-01-01

    This paper will cover the design of a learning environment as a classroom regarding the Quadratic Equations, Functions and Graphs. The goal of the learning environment offered in the paper is to design a classroom where students will enjoy the process, use their skills they already have during the learning process, control and plan their learning…

  19. Differentiation of Students' Reasoning on Linear and Quadratic Geometric Number Patterns

    ERIC Educational Resources Information Center

    Lin, Fou-Lai; Yang, Kai-Lin

    2004-01-01

    There are two purposes in this study. One is to compare how 7th and 8th graders reason on linear and quadratic geometric number patterns when they have not learned this kind of tasks in school. The other is to explore the hierarchical relations among the four components of reasoning on geometric number patterns: understanding, generalizing,…

  20. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals.

    PubMed

    Dudik, Joshua M; Kurosu, Atsuko; Coyle, James L; Sejdić, Ervin

    2015-04-01

    Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differentiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Model for Estimating the Reliability and Validity of Criterion-Referenced Measures.

    ERIC Educational Resources Information Center

    Edmonston, Leon P.; Randall, Robert S.

    A decision model designed to determine the reliability and validity of criterion referenced measures (CRMs) is presented. General procedures which pertain to the model are discussed as to: Measures of relationship, Reliability, Validity (content, criterion-oriented, and construct validation), and Item Analysis. The decision model is presented in…

  2. Criterion Related Validity of Karate Specific Aerobic Test (KSAT)

    PubMed Central

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-01-01

    Background: Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. Objectives: The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Patients and Methods: Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE’KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Results: Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT’s TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT’s TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE’s KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. Conclusions: The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE’s KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT

  3. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.

    PubMed

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin; Bache, Morten

    2012-11-19

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency. Numerical results show that compressed pulses with less than three-cycle duration can be achieved even when the compression factor is very large, and in contrast to standard soliton compression, these compressed pulses have minimal pedestal and high quality factor.

  4. Validation of the peak bilirubin criterion for outcome after partial hepatectomy.

    PubMed

    van Mierlo, Kim M C; Lodewick, Toine M; Dhar, Dipok K; van Woerden, Victor; Kurstjens, Ralph; Schaap, Frank G; van Dam, Ronald M; Vyas, Soumil; Malagó, Massimo; Dejong, Cornelis H C; Olde Damink, Steven W M

    2016-10-01

    Postoperative liver failure (PLF) is a dreaded complication after partial hepatectomy. The peak bilirubin criterion (>7.0 mg/dL or ≥120 μmol/L) is used to define PLF. This study aimed to validate the peak bilirubin criterion as postoperative risk indicator for 90-day liver-related mortality. Characteristics of 956 consecutive patients who underwent partial hepatectomy at the Maastricht University Medical Centre or Royal Free London between 2005 and 2012 were analyzed by uni- and multivariable analyses with odds ratios (OR) and 95% confidence intervals (95%CI). Thirty-five patients (3.7%) met the postoperative peak bilirubin criterion at median day 19 with a median bilirubin level of 183 [121-588] μmol/L. Sensitivity and specificity for liver-related mortality after major hepatectomy were 41.2% and 94.6%, respectively. The positive predictive value was 22.6%. Predictors of liver-related mortality were the peak bilirubin criterion (p < 0.001, OR = 15.9 [95%CI 5.2-48.7]), moderate-severe steatosis and fibrosis (p = 0.013, OR = 8.5 [95%CI 1.6-46.6]), ASA 3-4 (p = 0.047, OR = 3.0 [95%CI 1.0-8.8]) and age (p = 0.044, OR = 1.1 [95%CI 1.0-1.1]). The peak bilirubin criterion has a low sensitivity and positive predictive value for 90-day liver-related mortality after major hepatectomy. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  5. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    NASA Astrophysics Data System (ADS)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  6. The role of decision criterion in the Deese-Roediger-McDermott (DRM) false recognition memory: False memory falls and rises as a function of restriction on criterion setting.

    PubMed

    Jou, Jerwen; Escamilla, Eric E; Arredondo, Mario L; Pena, Liann; Zuniga, Richard; Perez, Martin; Garcia, Clarissa

    2018-02-01

    How much of the Deese-Roediger-McDermott (DRM) false memory is attributable to decision criterion is so far a controversial issue. Previous studies typically used explicit warnings against accepting the critical lure to investigate this issue. The assumption is that if the false memory results from using a liberally biased criterion, it should be greatly reduced or eliminated by an explicit warning against accepting the critical lure. Results showed that warning was generally ineffective. We asked the question of whether subjects can substantially reduce false recognition without being warned when the test forces them to make a distinction between true and false memories. Using a two-alternative forced choice in which criterion plays a relatively smaller role, we showed that subjects could indeed greatly reduce the rate of false recognition. However, when the forced-choice restriction was removed from the two-item choice test, the rate of false recognition rebounded to that of the hit for studied list words, indicating the role of criterion in false recognition.

  7. Convergent, discriminant, and criterion validity of DSM-5 traits.

    PubMed

    Yalch, Matthew M; Hopwood, Christopher J

    2016-10-01

    Section III of the Diagnostic and Statistical Manual of Mental Disorders (5th edi.; DSM-5; American Psychiatric Association, 2013) contains a system for diagnosing personality disorder based in part on assessing 25 maladaptive traits. Initial research suggests that this aspect of the system improves the validity and clinical utility of the Section II Model. The Computer Adaptive Test of Personality Disorder (CAT-PD; Simms et al., 2011) contains many similar traits as the DSM-5, as well as several additional traits seemingly not covered in the DSM-5. In this study we evaluate the convergent and discriminant validity between the DSM-5 traits, as assessed by the Personality Inventory for DSM-5 (PID-5; Krueger et al., 2012), and CAT-PD in an undergraduate sample, and test whether traits included in the CAT-PD but not the DSM-5 provide incremental validity in association with clinically relevant criterion variables. Results supported the convergent and discriminant validity of the PID-5 and CAT-PD scales in their assessment of 23 out of 25 DSM-5 traits. DSM-5 traits were consistently associated with 11 criterion variables, despite our having intentionally selected clinically relevant criterion constructs not directly assessed by DSM-5 traits. However, the additional CAT-PD traits provided incremental information above and beyond the DSM-5 traits for all criterion variables examined. These findings support the validity of pathological trait models in general and the DSM-5 and CAT-PD models in particular, while also suggesting that the CAT-PD may include additional traits for consideration in future iterations of the DSM-5 system. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1986-01-01

    In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.

  9. Estimation of regions of attraction and ultimate boundedness for multiloop LQ regulators. [Linear Quadratic

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.

  10. Criterion-Referenced Testing and Measurement: A Review of Technical Issues and Developments.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    The success of objectives-based programs depends to a considerable extent on how effectively students and teachers assess mastery of objectives and make decisions for future instruction. While educators disagree on the usefulness of criterion-referenced tests the position taken in this monograph is that criterion-referenced tests are useful, and…

  11. A bivariate rational interpolation with a bi-quadratic denominator

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Zhang, Huanling; Liu, Aikui; Li, Huaigu

    2006-10-01

    In this paper a new rational interpolation with a bi-quadratic denominator is developed to create a space surface using only values of the function being interpolated. The interpolation function has a simple and explicit rational mathematical representation. When the knots are equally spaced, the interpolating function can be expressed in matrix form, and this form has a symmetric property. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points in the local interpolating region.

  12. Automatic control systems satisfying certain general criterions on transient behavior

    NASA Technical Reports Server (NTRS)

    Boksenbom, Aaron S; Hood, Richard

    1952-01-01

    An analytic method for the design of automatic controls is developed that starts from certain arbitrary criterions on the behavior of the controlled system and gives those physically realizable equations that the control system can follow in order to realize this behavior. The criterions used are developed in the form of certain time integrals. General results are shown for systems of second order and of any number of degrees of freedom. Detailed examples for several cases in the control of a turbojet engine are presented.

  13. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Wiersma, R

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it

  14. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C. D.; Betti, R.; Departments of Mechanical Engineering and Physics and Astronomy, University of Rochester, Rochester, New York 14623

    2008-10-15

    It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T{sub i}{sup h}) and the total areal density ({rho}R{sub tot}), which includes the cold shell contribution. A marginal ignition curve is derived in the {rho}R{sub tot}, T{sub i}{sup h} plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to themore » ignition condition when scaled up in the laser-driver energy. For 3<{sub n}<6 keV, an approximate form of the ignition condition (typical of laser-driven ICF) is {sub n}{sup 2.6}{center_dot}<{rho}R{sub tot}>{sub n}>50 keV{sup 2.6}{center_dot} g/cm{sup 2}, where <{rho}R{sub tot}>{sub n} and {sub n} are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D{sub 2} and subignited DT target implosions perform with respect to the one-dimensional ignition threshold.« less

  15. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  16. Finite-dimensional linear approximations of solutions to general irregular nonlinear operator equations and equations with quadratic operators

    NASA Astrophysics Data System (ADS)

    Kokurin, M. Yu.

    2010-11-01

    A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.

  17. Recent Innovations in the Changing Criterion Design: Implications for Research and Practice in Special Education

    ERIC Educational Resources Information Center

    McDougall, Dennis; Hawkins, Jacqueline; Brady, Michael; Jenkins, Amelia

    2006-01-01

    This article illustrates (a) 2 recent innovations in the changing criterion research design, (b) how these innovations apply to research and practice in special education, and (c) how clinical needs influence design features of the changing criterion design. The first innovation, the range-bound changing criterion, is a very simple variation of…

  18. Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities.

  19. Swedish PE Teachers Struggle with Assessment in a Criterion-Referenced Grading System

    ERIC Educational Resources Information Center

    Svennberg, Lena; Meckbach, Jane; Redelius, Karin

    2018-01-01

    In the field of education, the international trend is to turn to criterion-referenced grading in the hope of achieving accountable and consistent grades. Despite a national criterion-referenced grading system emphasising knowledge as the only base for grading, Swedish physical education (PE) grades have been shown to value non-knowledge factors,…

  20. Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yu Mao, E-mail: yumaowu@fudan.edu.cn; Teng, Si Jia, E-mail: sjteng12@fudan.edu.cn

    In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this workmore » makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.« less

  1. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  2. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  3. Criterion-Referenced Test Items for Small Engines.

    ERIC Educational Resources Information Center

    Herd, Amon

    This notebook contains criterion-referenced test items for testing students' knowledge of small engines. The test items are based upon competencies found in the Missouri Small Engine Competency Profile. The test item bank is organized in 18 sections that cover the following duties: shop procedures; tools and equipment; fasteners; servicing fuel…

  4. Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao's quadratic index.

    PubMed

    Ricotta, Carlo; Szeidl, Laszlo

    2006-11-01

    The diversity of a species assemblage has been studied extensively for many decades in relation to its possible connection with ecosystem functioning and organization. In this view most diversity measures, such as Shannon's entropy, rely upon information theory as a basis for the quantification of diversity. Also, traditional diversity measures are computed using species relative abundances and cannot account for the ecological differences between species. Rao first proposed a diversity index, termed quadratic diversity (Q) that incorporates both species relative abundances and pairwise distances between species. Quadratic diversity is traditionally defined as the expected distance between two randomly selected individuals. In this paper, we show that quadratic diversity can be interpreted as the expected conflict among the species of a given assemblage. From this unusual interpretation, it naturally follows that Rao's Q can be related to the Shannon entropy through a generalized version of the Tsallis parametric entropy.

  5. Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.

    NASA Astrophysics Data System (ADS)

    Velichkin, Vladimir A.; Zavyalov, Vladimir A.

    2018-03-01

    This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.

  6. Frontogenesis driven by horizontally quadratic distributions of density

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1991-01-01

    Attention is given to the quadratic density distribution in a channel, which has been established by Simpson and Linden to be the simplest case of the horizontally nonlinear distribution of fluid density required for the production of frontogenesis. The porous-media and Boussinesq flow models are examined, and their evolution equations are reduced to one-dimensional systems. While both the porous-media and the inviscid/nondiffusive Boussinesq systems exhibit classic frontogenesis behavior, the viscous Boussinesq system exhibits a more complex behavior: boundary-layer effects force frontogenesis away from the lower boundary, and at late times the steepest density gradients are close to mid-channel.

  7. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

    NASA Astrophysics Data System (ADS)

    Kesler, Robert; Arias, Darío Mena

    2017-09-01

    For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form < H^{α } f , g > for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

  8. Role of optimization criterion in static asymmetric analysis of lumbar spine load.

    PubMed

    Daniel, Matej

    2011-10-01

    A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.

  9. Contrasting Norm Referenced and Criterion Referenced Measures.

    ERIC Educational Resources Information Center

    Randall, Robert S.

    Differences in design between norm referenced measures (NRM) and criterion referenced measures (CRM) are reviewed, and some of the procedures proposed on designing and evaluating CRM are examined. Differences in design of NRM and CRM are said to arise from the different purposes that underlie each measure. In addition, there are differences among…

  10. Criterion-Referenced Test Items for Auto Body.

    ERIC Educational Resources Information Center

    Tannehill, Dana, Ed.

    This test item bank on auto body repair contains criterion-referenced test questions based upon competencies found in the Missouri Auto Body Competency Profile. Some test items are keyed for multiple competencies. The tests cover the following 26 competency areas in the auto body curriculum: auto body careers; measuring and mixing; tools and…

  11. Electronics. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This document contains 519 criterion-referenced multiple choice and true or false test items for a course in electronics. The test item bank is designed to work with both the Vocational Instructional Management System (VIMS) and the Vocational Administrative Management System (VAMS) in Missouri. The items are grouped into 15 units covering the…

  12. Aging: Sensitivity versus Criterion in Taste Perception.

    ERIC Educational Resources Information Center

    Kushnir, T.; Shapira, N.

    1983-01-01

    Employed the signal-detection paradigm as a model for investigating age-related biological versus cognitive effects on perceptual behavior. Old and young subjects reported the presence or absence of sugar in threshold level solutions and tap water. Older subjects displayed a higher detection threshold and obtained a stricter criterion of decision.…

  13. A Criterion-Referenced Examination of Physician Competence.

    ERIC Educational Resources Information Center

    Norcini, John J.; And Others

    1988-01-01

    A test of skill in reading electrocardiographs (ECGs) was developed as a physician competence (PC) test. The criterion-referenced test ranked 1,825 persons taking the 1983 Certifying Examination in Cardiovascular Diseases (CECD) as expected on the basis of prior education and examination scores on the CECD. The ECG test modestly correlated with…

  14. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    NASA Astrophysics Data System (ADS)

    Peise, J.; Kruse, I.; Lange, K.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Hammerer, K.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-03-01

    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, as shown successfully with light fields. Here, we report on the production of massive particles which meet the EPR criterion for continuous phase/amplitude variables. The created quantum state of ultracold atoms shows an EPR parameter of 0.18(3), which is 2.4 standard deviations below the threshold of 1/4. Our state presents a resource for tests of quantum nonlocality with massive particles and a wide variety of applications in the field of continuous-variable quantum information and metrology.

  15. Critical role of electron heat flux on Bohm criterion

    DOE PAGES

    Tang, Xianzhu; Guo, Zehua

    2016-12-05

    Bohm criterion, originally derived for an isothermal-electron and cold-ion plasma, is often used as a rule of thumb for more general plasmas. Here, we establish a more precise determination of the Bohm criterion that are quantitatively useful for understanding and modeling collisional plasmas that still have collisional mean-free-path much greater than plasma Debye length. Specifically, it is shown that electron heat flux, rather than the isothermal electron assumption, is what sets the Bohm speed to bemore » $$\\sqrt{k_B(T_e||+3T_i||)/m_i}$$ with T e,i∥ the electron and ion parallel temperature at the sheath entrance and m i the ion mass.« less

  16. Critical role of electron heat flux on Bohm criterion

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; Guo, Zehua

    2016-12-01

    Bohm criterion, originally derived for an isothermal-electron and cold-ion plasma, is often used as a rule of thumb for more general plasmas. Here, we establish a more precise determination of the Bohm criterion that are quantitatively useful for understanding and modeling collisional plasmas that still have collisional mean-free-path much greater than plasma Debye length. Specifically, it is shown that electron heat flux, rather than the isothermal electron assumption, is what sets the Bohm speed to be √{ k B ( T e ∥ + 3 T i ∥ ) / m i } with T e , i ∥ the electron and ion parallel temperature at the sheath entrance and mi the ion mass.

  17. A passivity criterion for sampled-data bilateral teleoperation systems.

    PubMed

    Jazayeri, Ali; Tavakoli, Mahdi

    2013-01-01

    A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.

  18. s-Ordered Exponential of Quadratic Forms Gained via IWSOP Technique

    NASA Astrophysics Data System (ADS)

    Bazrafkan, M. R.; Shähandeh, F.; Nahvifard, E.

    2012-11-01

    Using the generalized bar{s}-ordered Wigner operator, in which bar{s} is a vector over the field of complex numbers, the technique of integration within an s-ordered product of operators (IWSOP) has been extended to multimode case. We derive the bar{s}-ordered form of the widely applicable multimode exponential of quadratic form exp\\{sum_{i,j = 1}n ai^{dag}\\varLambda_{ij}{aj}\\} , each mode being in some particular order s i , applying this method.

  19. Human striatal activation during adjustment of the response criterion in visual word recognition.

    PubMed

    Kuchinke, Lars; Hofmann, Markus J; Jacobs, Arthur M; Frühholz, Sascha; Tamm, Sascha; Herrmann, Manfred

    2011-02-01

    Results of recent computational modelling studies suggest that a general function of the striatum in human cognition is related to shifting decision criteria in selection processes. We used functional magnetic resonance imaging (fMRI) in 21 healthy subjects to examine the hemodynamic responses when subjects shift their response criterion on a trial-by-trial basis in the lexical decision paradigm. Trial-by-trial criterion setting is obtained when subjects respond faster in trials following a word trial than in trials following nonword trials - irrespective of the lexicality of the current trial. Since selection demands are equally high in the current trials, we expected to observe neural activations that are related to response criterion shifting. The behavioural data show sequential effects with faster responses in trials following word trials compared to trials following nonword trials, suggesting that subjects shifted their response criterion on a trial-by-trial basis. The neural responses revealed a signal increase in the striatum only in trials following word trials. This striatal activation is therefore likely to be related to response criterion setting. It demonstrates a role of the striatum in shifting decision criteria in visual word recognition, which cannot be attributed to pure error-related processing or the selection of a preferred response. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    NASA Astrophysics Data System (ADS)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  1. Signal detection with criterion noise: applications to recognition memory.

    PubMed

    Benjamin, Aaron S; Diaz, Michael; Wee, Serena

    2009-01-01

    A tacit but fundamental assumption of the theory of signal detection is that criterion placement is a noise-free process. This article challenges that assumption on theoretical and empirical grounds and presents the noisy decision theory of signal detection (ND-TSD). Generalized equations for the isosensitivity function and for measures of discrimination incorporating criterion variability are derived, and the model's relationship with extant models of decision making in discrimination tasks is examined. An experiment evaluating recognition memory for ensembles of word stimuli revealed that criterion noise is not trivial in magnitude and contributes substantially to variance in the slope of the isosensitivity function. The authors discuss how ND-TSD can help explain a number of current and historical puzzles in recognition memory, including the inconsistent relationship between manipulations of learning and the isosensitivity function's slope, the lack of invariance of the slope with manipulations of bias or payoffs, the effects of aging on the decision-making process in recognition, and the nature of responding in remember-know decision tasks. ND-TSD poses novel, theoretically meaningful constraints on theories of recognition and decision making more generally, and provides a mechanism for rapprochement between theories of decision making that employ deterministic response rules and those that postulate probabilistic response rules.

  2. Failures and Inabilities of High School Students about Quadratic Equations and Functions

    ERIC Educational Resources Information Center

    Memnun, Dilek Sezgin; Aydin, Bünyamin; Dinç, Emre; Çoban, Merve; Sevindik, Fatma

    2015-01-01

    In this research study, it was aimed to examine failures and inabilities of eleventh grade students about quadratic equations and functions. For this purpose, these students were asked ten open-ended questions. The analysis of the answers given by the students to these questions indicated that a significant part of these students had failures and…

  3. Accuracy of quadrat sampling in studying forest reproduction on cut-over areas

    Treesearch

    I. T. Haig

    1929-01-01

    The quadrat method, first introduced into ecological studies by Pound and Clements in i898, has been adopted by both foresters and ecologists as one of the most accurate means of studying the occurrence, distribution, and development of vegetation (Clements, '05; Weaver, '18). This method is unquestionably more precise than the descriptive method which it...

  4. Brief note on Ashtekar-Magnon-Das conserved quantities in quadratic curvature theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang Yi

    2011-04-15

    In this note, we correct a mistake in the mass formula in [N. Okuyama and J. i. Koga, Phys. Rev. D 71, 084009 (2005).] which generalizes the Ashtekar-Magnon-Das method to incorporate extended gravities with quadratic curvature terms. The corrected mass formula confirms that the black hole masses for recently discovered critical gravities vanish.

  5. Responder Status Criterion for Stepped Care Trauma-Focused Cognitive Behavioral Therapy for Young Children

    PubMed Central

    Salloum, Alison; Scheeringa, Michael S.; Cohen, Judith A.; Storch, Eric A.

    2014-01-01

    Background In order to develop Stepped Care Trauma-Focused Cognitive Behavioral Therapy (TF-CBT), a definition of early response/non-response is needed to guide decisions about the need for subsequent treatment. Objective The purpose of this article is to (1) establish criterion for defining an early indicator of response/nonresponse to the first step within Stepped Care TF-CBT, and (2) to explore the preliminary clinical utility of the early response/non-response criterion. Method Data from two studies were used: (1) treatment outcome data from a clinical trial in which 17 young children (ages 3 to 6 years) received therapist-directed CBT for children with PTSS were examined to empirically establish the number of posttraumatic stress symptoms to define early treatment response/non-response; and (2) three case examples with young children in Stepped Care TF-CBT were used to explore the utility of the treatment response criterion. Results For defining the responder status criterion, an algorithm of either 3 or fewer PTSS on a clinician-rated measure or being below the clinical cutoff score on a parent-rated measure of childhood PTSS, and being rated as improved, much improved or free of symptoms functioned well for determining whether or not to step up to more intensive treatment. Case examples demonstrated how the criterion were used to guide subsequent treatment, and that responder status criterion after Step One may or may not be aligned with parent preference. Conclusion Although further investigation is needed, the responder status criterion for young children used after Step One of Stepped Care TF-CBT appears promising. PMID:25663796

  6. Evidence for the Criterion Validity and Clinical Utility of the Pathological Narcissism Inventory

    ERIC Educational Resources Information Center

    Thomas, Katherine M.; Wright, Aidan G. C.; Lukowitsky, Mark R.; Donnellan, M. Brent; Hopwood, Christopher J.

    2012-01-01

    In this study, the authors evaluated aspects of criterion validity and clinical utility of the grandiosity and vulnerability components of the Pathological Narcissism Inventory (PNI) using two undergraduate samples (N = 299 and 500). Criterion validity was assessed by evaluating the correlations of narcissistic grandiosity and narcissistic…

  7. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  8. The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

    PubMed Central

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980

  9. A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li

    2017-01-01

    Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.

  10. A note on the relationship between the quadratic mean stand diameter and harmonic mean basal area under size-biased distribution theory

    Treesearch

    Jeffrey H. Gove

    2003-01-01

    This note seeks to extend the utility of size-biased distribution theory as applied to forestry through two relationships regarding the quadratic mean stand diameter. First, the quadratic mean stand diameter's relationship to the harmonic mean basal area for horizontal point sampling, which has been known algebraically from early on, is proved under size-biased...

  11. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.

    PubMed

    Cvitaš, Marko T

    2018-03-13

    The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.

  12. Changing the criterion for memory conformity in free recall and recognition.

    PubMed

    Wright, Daniel B; Gabbert, Fiona; Memon, Amina; London, Kamala

    2008-02-01

    People's responses during memory studies are affected by what other people say. This memory conformity effect has been shown in both free recall and recognition. Here we examine whether accurate, inaccurate, and suggested answers are affected similarly when the response criterion is varied. In the first study, participants saw four pictures of detailed scenes and then discussed the content of these scenes with another participant who saw the same scenes, but with a couple of details changed. Participants were either told to recall everything they could and not to worry about making mistakes (lenient), or only to recall items if they were sure that they were accurate (strict). The strict instructions reduced the amount of inaccurate information reported that the other person suggested, but also reduced the number of accurate details recalled. In the second study, participants were shown a large set of faces and then their memory recognition was tested with a confederate on these and fillers. Here also, the criterion manipulation shifted both accurate and inaccurate responses, and those suggested by the confederate. The results are largely consistent with a shift in response criterion affecting accurate, inaccurate, and suggested information. In addition we varied the level of secrecy in the participants' responses. The effects of secrecy were complex and depended on the level of response criterion. Implications for interviewing eyewitnesses and line-ups are discussed.

  13. Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)

    NASA Astrophysics Data System (ADS)

    Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal

    2004-03-01

    In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.

  14. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    ERIC Educational Resources Information Center

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  15. The Cognitive Abilities Scale--Second Edition Preschool Form: Studies of Concurrent Criterion-Related, Construct, and Predictive Criterion-Related Validity

    ERIC Educational Resources Information Center

    Swanson, Jennifer R.; Bradley-Johnson, Sharon; Johnson, C. Merle; O'Dell, Anna Rubenaker

    2009-01-01

    Three studies examine the validity of the Preschool Form of the Cognitive Abilities Scale--Second Edition (CAS-2). Significant high concurrent criterion-related validity correlations, corrected for restricted range, are found between the CAS-2 and the Detroit Test of Learning Ability--Primary: Third Edition for 26 three-year-olds (r[subscript c] =…

  16. Distractor Plausibility and Criterion Placement in Recognition

    ERIC Educational Resources Information Center

    Benjamin, Aaron S.; Bawa, Sameer

    2004-01-01

    To set an optimal decision criterion on a test of recognition, a subject must estimate the degree to which they can discriminate previously studied from unstudied stimuli. To do so accurately, the subject must assess not only their mastery of the material but also the extent to which the distractors yield mnemonic evidence that makes them…

  17. A Humanistic Approach to Criterion Referenced Testing.

    ERIC Educational Resources Information Center

    Wilson, H. A.

    Test construction is not the strictly logical process that we might wish it to be. This is particularly true in a large on-going project such as the National Assessment of Educational Progress (NAEP). Most of the really deep questions can only be answered by the exercise of well-informed human judgment. Criterion-referenced testing is still a term…

  18. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z = (z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y(0)=(y sub 1(0),...,y sub D(0)) knowledge of the statistical distribution of the random errors in y(0). The data space Y containing y(0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x (e.g., energy or dissipation rate), Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. CSI is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface. Neither the heat flow nor the energy bound is strong enough to permit estimation of B(r) at single points on the CMB, but the heat flow bound permits estimation of uniform averages of B(r) over discs on the CMB, and both bounds permit weighted disc-averages with continous weighting kernels. Both bounds also permit estimation of low-degree Gauss coefficients at the CMB. The heat flow bound resolves them up to degree 8 if the crustal field at satellite altitudes must be treated as a systematic error, but can resolve to degree 11 under the most favorable statistical treatment of the crust. These two limits produce circles of confusion on the CMB with diameters of 25 deg and 19 deg respectively.

  19. The test-retest reliability and criterion validity of a high-intensity, netball-specific circuit test: The Net-Test.

    PubMed

    Mungovan, Sean F; Peralta, Paula J; Gass, Gregory C; Scanlan, Aaron T

    2018-04-12

    To examine the test-retest reliability and criterion validity of a high-intensity, netball-specific fitness test. Repeated measures, within-subject design. Eighteen female netball players competing in an international competition completed a trial of the Net-Test, which consists of 14 timed netball-specific movements. Players also completed a series of netball-relevant criterion fitness tests. Ten players completed an additional Net-Test trial one week later to assess test-retest reliability using intraclass correlation coefficient (ICC), typical error of measurement (TEM), and coefficient of variation (CV). The typical error of estimate expressed as CV and Pearson correlations were calculated between each criterion test and Net-Test performance to assess criterion validity. Five movements during the Net-Test displayed moderate ICC (0.84-0.90) and two movements displayed high ICC (0.91-0.93). Seven movements and heart rate taken during the Net-Test held low CV (<5%) with values ranging from 1.7 to 9.5% across measures. Total time (41.63±2.05s) during the Net-Test possessed low CV and significant (p<0.05) correlations with 10m sprint time (1.98±0.12s; CV=4.4%, r=0.72), 20m sprint time (3.38±0.19s; CV=3.9%, r=0.79), 505 Change-of-Direction time (2.47±0.08s; CV=2.0%, r=0.80); and maximum oxygen uptake (46.59±2.58 mLkg -1 min -1 ; CV=4.5%, r=-0.66). The Net-Test possesses acceptable reliability for the assessment of netball fitness. Further, the high criterion validity for the Net-Test suggests a range of important netball-specific fitness elements are assessed in combination. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Constrained multiple indicator kriging using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Erhan Tercan, A.

    2012-11-01

    Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.

  1. Testing the criterion for correct convergence in the complex Langevin method

    NASA Astrophysics Data System (ADS)

    Nagata, Keitaro; Nishimura, Jun; Shimasaki, Shinji

    2018-05-01

    Recently the complex Langevin method (CLM) has been attracting attention as a solution to the sign problem, which occurs in Monte Carlo calculations when the effective Boltzmann weight is not real positive. An undesirable feature of the method, however, was that it can happen in some parameter regions that the method yields wrong results even if the Langevin process reaches equilibrium without any problem. In our previous work, we proposed a practical criterion for correct convergence based on the probability distribution of the drift term that appears in the complex Langevin equation. Here we demonstrate the usefulness of this criterion in two solvable theories with many dynamical degrees of freedom, i.e., two-dimensional Yang-Mills theory with a complex coupling constant and the chiral Random Matrix Theory for finite density QCD, which were studied by the CLM before. Our criterion can indeed tell the parameter regions in which the CLM gives correct results.

  2. PTSD's risky behavior criterion: Relation with DSM-5 PTSD symptom clusters and psychopathology.

    PubMed

    Contractor, Ateka A; Weiss, Nicole H; Dranger, Paula; Ruggero, Camilo; Armour, Cherie

    2017-06-01

    A new symptom criterion of reckless and self-destructive behaviors (E2) was recently added to posttraumatic stress disorder's (PTSD) diagnostic criteria in DSM-5, which is unsurprising given the well-established relation between PTSD and risky behaviors. Researchers have questioned the significance and incremental validity of this symptom criterion within PTSD's symptomatology. Unprecedented to our knowledge, we aim to compare trauma-exposed groups differing on their endorsement status of the risky behavior symptom on several psychopathology constructs (PTSD, depression, distress tolerance, rumination, anger). The sample included 123 trauma-exposed participants seeking mental health treatment (M age=35.70; 68.30% female) who completed self-report questionnaires assessing PTSD symptoms, depression, rumination, distress tolerance, and anger. Results of independent samples t-tests indicated that participants who endorsed the E2 criterion at a clinically significant level reported significantly greater PTSD subscale severity; depression severity; rumination facets of repetitive thoughts, counterfactual thinking, and problem-focused thinking; and anger reactions; and significantly less absorption and regulation (distress tolerance facets) compared to participants who did not endorse the E2 criterion at a clinically significant level. Results indicate the utility of the E2 criterion in identifying trauma-exposed individual with greater posttraumatic distress, and emphasize the importance of targeting such behaviors in treatment. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    NASA Astrophysics Data System (ADS)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  4. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  5. Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Everhart, Joel L.

    1987-01-01

    This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.

  6. A second perspective on the Amann-Schmiedl-Seifert criterion for non-equilibrium in a three-state system

    NASA Astrophysics Data System (ADS)

    Jia, Chen; Chen, Yong

    2015-05-01

    In the work of Amann, Schmiedl and Seifert (2010 J. Chem. Phys. 132 041102), the authors derived a sufficient criterion to identify a non-equilibrium steady state (NESS) in a three-state Markov system based on the coarse-grained information of two-state trajectories. In this paper, we present a mathematical derivation and provide a probabilistic interpretation of the Amann-Schmiedl-Seifert (ASS) criterion. Moreover, the ASS criterion is compared with some other criterions for a NESS.

  7. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires.

    PubMed

    Helmerhorst, Hendrik J F; Brage, Søren; Warren, Janet; Besson, Herve; Ekelund, Ulf

    2012-08-31

    Physical inactivity is one of the four leading risk factors for global mortality. Accurate measurement of physical activity (PA) and in particular by physical activity questionnaires (PAQs) remains a challenge. The aim of this paper is to provide an updated systematic review of the reliability and validity characteristics of existing and more recently developed PAQs and to quantitatively compare the performance between existing and newly developed PAQs.A literature search of electronic databases was performed for studies assessing reliability and validity data of PAQs using an objective criterion measurement of PA between January 1997 and December 2011. Articles meeting the inclusion criteria were screened and data were extracted to provide a systematic overview of measurement properties. Due to differences in reported outcomes and criterion methods a quantitative meta-analysis was not possible.In total, 31 studies testing 34 newly developed PAQs, and 65 studies examining 96 existing PAQs were included. Very few PAQs showed good results on both reliability and validity. Median reliability correlation coefficients were 0.62-0.71 for existing, and 0.74-0.76 for new PAQs. Median validity coefficients ranged from 0.30-0.39 for existing, and from 0.25-0.41 for new PAQs.Although the majority of PAQs appear to have acceptable reliability, the validity is moderate at best. Newly developed PAQs do not appear to perform substantially better than existing PAQs in terms of reliability and validity. Future PAQ studies should include measures of absolute validity and the error structure of the instrument.

  8. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires

    PubMed Central

    2012-01-01

    Physical inactivity is one of the four leading risk factors for global mortality. Accurate measurement of physical activity (PA) and in particular by physical activity questionnaires (PAQs) remains a challenge. The aim of this paper is to provide an updated systematic review of the reliability and validity characteristics of existing and more recently developed PAQs and to quantitatively compare the performance between existing and newly developed PAQs. A literature search of electronic databases was performed for studies assessing reliability and validity data of PAQs using an objective criterion measurement of PA between January 1997 and December 2011. Articles meeting the inclusion criteria were screened and data were extracted to provide a systematic overview of measurement properties. Due to differences in reported outcomes and criterion methods a quantitative meta-analysis was not possible. In total, 31 studies testing 34 newly developed PAQs, and 65 studies examining 96 existing PAQs were included. Very few PAQs showed good results on both reliability and validity. Median reliability correlation coefficients were 0.62–0.71 for existing, and 0.74–0.76 for new PAQs. Median validity coefficients ranged from 0.30–0.39 for existing, and from 0.25–0.41 for new PAQs. Although the majority of PAQs appear to have acceptable reliability, the validity is moderate at best. Newly developed PAQs do not appear to perform substantially better than existing PAQs in terms of reliability and validity. Future PAQ studies should include measures of absolute validity and the error structure of the instrument. PMID:22938557

  9. A Generalized Evolution Criterion in Nonequilibrium Convective Systems

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masakazu; Nisizima, Kunisuke

    1989-04-01

    A general evolution criterion, applicable to transport processes such as the conduction of heat and mass diffusion, is obtained as a direct version of the Le Chatelier-Braun principle for stationary states. The present theory is not based on any radical departure from the conventional one. The generalized theory is made determinate by proposing the balance equations for extensive thermodynamic variables which will reflect the character of convective systems under the assumption of local equilibrium. As a consequence of the introduction of source terms in the balance equations, there appear additional terms in the expression of the local entropy production, which are bilinear in terms of the intensive variables and the sources. In the present paper, we show that we can construct a dissipation function for such general cases, in which the premises of the Glansdorff-Prigogine theory are accumulated. The new dissipation function permits us to formulate a generalized evolution criterion for convective systems.

  10. Application’s Method of Quadratic Programming for Optimization of Portfolio Selection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro

    Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.

  11. Classification of constraints and degrees of freedom for quadratic discrete actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, Philipp A., E-mail: phoehn@perimeterinstitute.ca

    2014-11-15

    We provide a comprehensive classification of constraints and degrees of freedom for variational discrete systems governed by quadratic actions. This classification is based on the different types of null vectors of the Lagrangian two-form and employs the canonical formalism developed in Dittrich and Höhn [“Constraint analysis for variational discrete systems,” J. Math. Phys. 54, 093505 (2013); e-print http://arxiv.org/abs/arXiv:1303.4294 [math-ph

  12. Criterion 7: Legal, institutional, and economic framework for forest conservation and sustainable management

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    This criterion focuses on the social context of forests—the laws, policies, administrative rules, and social and economic institutions—that governs forest resource management and use. What society permits or restricts, encourages or discourages all influence the sustainability of forest resources. Criterion 7 captures this by turning attention to all the different...

  13. 46 CFR 167.01-8 - Inspection of school ships using gross tonnage criterion.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of school ships using gross tonnage criterion. 167.01-8 Section 167.01-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-8 Inspection of school ships using gross tonnage criterion. (a) One of the...

  14. Design of linear quadratic regulator (LQR) control system for flight stability of LSU-05

    NASA Astrophysics Data System (ADS)

    Purnawan, Heri; Mardlijah; Budi Purwanto, Eko

    2017-09-01

    Lapan Surveillance UAV-05 (LSU-05) is an unmanned aerial vehicle designed to cruise time in 6 hours and cruise velocity about 30 m/s. Mission of LSU-05 is surveillance for researchs and observations such as traffics and disaster investigations. This paper aims to design a control system on the LSU-05 to fly steadily. The methods used to stabilize LSU-05 is Linear Quadratic Regulator (LQR). Based on LQR controller, there is obtained transient response for longitudinal motion, td = 0.221s, tr = 0.419s, ts = 0.719s, tp = 1.359s, and Mp = 0%. In other hand, transient response for lateral-directional motion showed that td = 0.186s, tr = 0.515s, ts = 0.87s, tp = 2.02s, and Mp = 0%. The result of simulation showed a good performance for this method.

  15. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    ERIC Educational Resources Information Center

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  16. Verbalizing Facial Memory: Criterion Effects in Verbal Overshadowing

    ERIC Educational Resources Information Center

    Clare, Joseph; Lewandowsky, Stephan

    2004-01-01

    This article investigated the role of the recognition criterion in the verbal overshadowing effect (VOE). In 3 experiments, people witnessed an event, verbally described a perpetrator, and then attempted identification. The authors found in Experiment 1, which included a "not present" response option and both perpetrator-present (PP) and…

  17. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  18. Contribution of criterion A2 to PTSD screening in the presence of traumatic events.

    PubMed

    Pereda, Noemí; Forero, Carlos G

    2012-10-01

    Criterion A2 according to the Diagnostic and Statistical Manual of Mental Disorders (4(th) ed.; DSM-IV; American Psychiatric Association [APA], 1994) for posttraumatic stress disorder (PTSD) aims to assess the individual's subjective appraisal of an event, but it has been claimed that it might not be sufficiently specific for diagnostic purposes. We analyse the contribution of Criterion A2 and DSM-IV criteria to detect PTSD for the most distressing life events experienced by our subjects. Young adults (N = 1,033) reported their most distressing life events, together with PTSD criteria (Criteria A2, B, C, D, E, and F). PTSD prevalence and criterion specificity and agreement with probable diagnoses were estimated. Our results indicate 80.30% of the individuals experienced traumatic events and met one or more PTSD criteria; 13.22% cases received a positive diagnosis of PTSD. Criterion A2 showed poor agreement with the final probable PTSD diagnosis (correlation with PTSD .13, specificity = .10); excluding it from PTSD diagnosis did not the change the estimated disorder prevalence significantly. Based on these findings it appears that Criterion A2 is scarcely specific and provides little information to confirm a probable PTSD case. Copyright © 2012 International Society for Traumatic Stress Studies.

  19. PTSD’s risky behavior criterion: Relation with DSM-5 PTSD symptom clusters and psychopathology

    PubMed Central

    Contractor, Ateka A.; Weiss, Nicole H.; Dranger, Paula; Ruggero, Camilo; Armour, Cherie

    2017-01-01

    A new symptom criterion of reckless and self-destructive behaviors (E2) was recently added to posttraumatic stress disorder’s (PTSD) diagnostic criteria in DSM-5, which is unsurprising given the well-established relation between PTSD and risky behaviors. Researchers have questioned the significance and incremental validity of this symptom criterion within PTSD’s symptomatology. Unprecedented to our knowledge, we aim to compare trauma-exposed groups differing on their endorsement status of the risky behavior symptom on several psychopathology constructs (PTSD, depression, distress tolerance, rumination, anger). The sample included 123 trauma-exposed participants seeking mental health treatment (M age=35.70; 68.30% female) who completed self-report questionnaires assessing PTSD symptoms, depression, rumination, distress tolerance, and anger. Results of independent samples t-tests indicated that participants who endorsed the E2 criterion at a clinically significant level reported significantly greater PTSD subscale severity; depression severity; rumination facets of repetitive thoughts, counterfactual thinking, and problem-focused thinking; and anger reactions; and significantly less absorption and regulation (distress tolerance facets) compared to participants who did not endorse the E2 criterion at a clinically significant level. Results indicate the utility of the E2 criterion in identifying trauma-exposed individual with greater posttraumatic distress, and emphasize the importance of targeting such behaviors in treatment. PMID:28285248

  20. Quantitative comparison of the absorption spectra of the gas mixtures in analogy to the criterion of Pearson

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Kuzmin, D. A.; Sandykova, E. A.; Shapovalov, A. V.

    2015-11-01

    An approach to the reduction of the space of the absorption spectra, based on the original criterion for profile analysis of the spectra, was proposed. This criterion dates back to the known statistics chi-square test of Pearson. Introduced criterion allows to quantify the differences of spectral curves.

  1. Two-photon Anderson localization in a disordered quadratic waveguide array

    NASA Astrophysics Data System (ADS)

    Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.

    2016-05-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.

  2. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    ERIC Educational Resources Information Center

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  3. Criterion distances and environmental correlates of active commuting to school in children

    PubMed Central

    2011-01-01

    Background Active commuting to school can contribute to daily physical activity levels in children. Insight into the determinants of active commuting is needed, to promote such behavior in children living within a feasible commuting distance from school. This study determined feasible distances for walking and cycling to school (criterion distances) in 11- to 12-year-old Belgian children. For children living within these criterion distances from school, the correlation between parental perceptions of the environment, the number of motorized vehicles per family and the commuting mode (active/passive) to school was investigated. Methods Parents (n = 696) were contacted through 44 randomly selected classes of the final year (sixth grade) in elementary schools in East- and West-Flanders. Parental environmental perceptions were obtained using the parent version of Neighborhood Environment Walkability Scale for Youth (NEWS-Y). Information about active commuting to school was obtained using a self-reported questionnaire for parents. Distances from the children's home to school were objectively measured with Routenet online route planner. Criterion distances were set at the distance in which at least 85% of the active commuters lived. After the determination of these criterion distances, multilevel analyses were conducted to determine correlates of active commuting to school within these distances. Results Almost sixty percent (59.3%) of the total sample commuted actively to school. Criterion distances were set at 1.5 kilometers for walking and 3.0 kilometers for cycling. In the range of 2.01 - 2.50 kilometers household distance from school, the number of passive commuters exceeded the number of active commuters. For children who were living less than 3.0 kilometers away from school, only perceived accessibility by the parents was positively associated with active commuting to school. Within the group of active commuters, a longer distance to school was associated with

  4. Establishment of an equivalence acceptance criterion for accelerated stability studies.

    PubMed

    Burdick, Richard K; Sidor, Leslie

    2013-01-01

    In this article, the use of statistical equivalence testing for providing evidence of process comparability in an accelerated stability study is advocated over the use of a test of differences. The objective of such a study is to demonstrate comparability by showing that the stability profiles under nonrecommended storage conditions of two processes are equivalent. Because it is difficult at accelerated conditions to find a direct link to product specifications, and hence product safety and efficacy, an equivalence acceptance criterion is proposed that is based on the statistical concept of effect size. As with all statistical tests of equivalence, it is important to collect input from appropriate subject-matter experts when defining the acceptance criterion.

  5. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  6. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch.

    PubMed

    Bache, Morten; Nielsen, Hanne; Laegsgaard, Jesper; Bang, Ole

    2006-06-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180%W(-1)cm(-2) relative efficiencies were found.

  7. Criterion-Related Validity of Two Curriculum-Based Measures of Mathematical Skill in Relation to Reading Comprehension in Secondary Students

    ERIC Educational Resources Information Center

    Anselmo, Giancarlo A.; Yarbrough, Jamie L.; Kovaleski, Joseph F.; Tran, Vi N.

    2017-01-01

    This study analyzed the relationship between benchmark scores from two curriculum-based measurement probes in mathematics (M-CBM) and student performance on a state-mandated high-stakes test. Participants were 298 students enrolled in grades 7 and 8 in a rural southeastern school. Specifically, we calculated the criterion-related and predictive…

  8. A selection criterion for patterns in reaction–diffusion systems

    PubMed Central

    2014-01-01

    Background Alan Turing’s work in Morphogenesis has received wide attention during the past 60 years. The central idea behind his theory is that two chemically interacting diffusible substances are able to generate stable spatial patterns, provided certain conditions are met. Ever since, extensive work on several kinds of pattern-generating reaction diffusion systems has been done. Nevertheless, prediction of specific patterns is far from being straightforward, and a great deal of interest in deciphering how to generate specific patterns under controlled conditions prevails. Results Techniques allowing one to predict what kind of spatial structure will emerge from reaction–diffusion systems remain unknown. In response to this need, we consider a generalized reaction diffusion system on a planar domain and provide an analytic criterion to determine whether spots or stripes will be formed. Our criterion is motivated by the existence of an associated energy function that allows bringing in the intuition provided by phase transitions phenomena. Conclusions Our criterion is proved rigorously in some situations, generalizing well-known results for the scalar equation where the pattern selection process can be understood in terms of a potential. In more complex settings it is investigated numerically. Our work constitutes a first step towards rigorous pattern prediction in arbitrary geometries/conditions. Advances in this direction are highly applicable to the efficient design of Biotechnology and Developmental Biology experiments, as well as in simplifying the analysis of morphogenetic models. PMID:24476200

  9. The Testing of English as a Second/Foreign Language in the Criterion-Referenced Era.

    ERIC Educational Resources Information Center

    Davidson, Fred

    In the assessment of second/foreign language proficiency, we are entering the era of criterion-referenced assessment as language learning is being recognized as an integrative, multifaceted construct. Norm-referenced measurement (NRM) is compared with criterion-referenced measurement (CRM). CRM is characterized by attention to skill, whereas NRM…

  10. Assessing Fit and Dimensionality in Least Squares Metric Multidimensional Scaling Using Akaike's Information Criterion

    ERIC Educational Resources Information Center

    Ding, Cody S.; Davison, Mark L.

    2010-01-01

    Akaike's information criterion is suggested as a tool for evaluating fit and dimensionality in metric multidimensional scaling that uses least squares methods of estimation. This criterion combines the least squares loss function with the number of estimated parameters. Numerical examples are presented. The results from analyses of both simulation…

  11. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases.

    PubMed

    D'Amico, María Belén; Calandrini, Guillermo L

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  12. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases

    NASA Astrophysics Data System (ADS)

    D'Amico, María Belén; Calandrini, Guillermo L.

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  13. Concurrent criterion validity of the safe driving behavior measure: a predictor of on-road driving outcomes.

    PubMed

    Classen, Sherrilene; Wang, Yanning; Winter, Sandra M; Velozo, Craig A; Lanford, Desiree N; Bédard, Michel

    2013-01-01

    We determined the concurrent criterion validity of the Safe Driving Behavior Measure (SDBM) for on-road outcomes (passing or failing the on-road test as determined by a certified driving rehabilitation specialist) among older drivers and their family members-caregivers. On the basis of ratings from 168 older drivers and 168 family members-caregivers, we calculated receiver operating characteristic curves. The drivers' area under the curve (AUC) was .620 (95% confidence interval [CI] = .514-.725, p = .043). The family members-caregivers' AUC was .726 (95% CI = .622-.829, p ≤ .01). Older drivers' ratings showed statistically significant yet poor concurrent criterion validity, but family members-caregivers' ratings showed good concurrent criterion validity for the criterion on-road driving test. Continuing research with a more representative sample is being pursued to confirm the SDBM's concurrent criterion validity. This screening tool may be useful for generalist practitioners to use in making decisions regarding driving. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  14. Concurrent Criterion Validity of the Safe Driving Behavior Measure: A Predictor of On-Road Driving Outcomes

    PubMed Central

    Wang, Yanning; Winter, Sandra M.; Velozo, Craig A.; Lanford, Desiree N.; Bédard, Michel

    2013-01-01

    We determined the concurrent criterion validity of the Safe Driving Behavior Measure (SDBM) for on-road outcomes (passing or failing the on-road test as determined by a certified driving rehabilitation specialist) among older drivers and their family members–caregivers. On the basis of ratings from 168 older drivers and 168 family members–caregivers, we calculated receiver operating characteristic curves. The drivers’ area under the curve (AUC) was .620 (95% confidence interval [CI] = .514–.725, p = .043). The family members–caregivers’ AUC was .726 (95% CI = .622–.829, p ≤ .01). Older drivers’ ratings showed statistically significant yet poor concurrent criterion validity, but family members–caregivers’ ratings showed good concurrent criterion validity for the criterion on-road driving test. Continuing research with a more representative sample is being pursued to confirm the SDBM’s concurrent criterion validity. This screening tool may be useful for generalist practitioners to use in making decisions regarding driving. PMID:23245789

  15. Bi-quadratic interlayer exchange coupling in Co{sub 2}MnSi/Ag/Co{sub 2}MnSi pseudo spin-valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goripati, Hari S.; Hono, K.; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047

    2011-12-15

    Bi-quadratic interlayer exchange coupling is found below 100 K in a Co{sub 2}MnSi/Ag/Co{sub 2}MnSi current-perpendicular-to-plane pseudo spin valves. The bi-quadratic coupling constant J{sub 2} was estimated to be {approx}-0.30 erg/cm{sup 2} at 5 K and the strong temperature dependence of the coupling strength points its likely origin to the ''loose spin'' model. Application of current of {approx}2 x 10{sup 7} A/cm{sup 2} below 100 K leads to an increase in the magnetoresistance (MR), indicating current induced antiparallel alignment of the two magnetic layers. These results strongly suggest that the presence of the bi-quadratic interlayer exchange coupling causes the reduction ofmore » the magnetoresistance at low temperature and illustrates the importance of understanding the influence of interlayer exchange coupling on magnetization configuration in magnetic nanostructures.« less

  16. An empirical analysis of the quantitative effect of data when fitting quadratic and cubic polynomials

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1974-01-01

    A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.

  17. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  18. Earing Prediction in Cup Drawing using the BBC2008 Yield Criterion

    NASA Astrophysics Data System (ADS)

    Vrh, Marko; Halilovič, Miroslav; Starman, Bojan; Štok, Boris; Comsa, Dan-Sorin; Banabic, Dorel

    2011-08-01

    The paper deals with constitutive modelling of highly anisotropic sheet metals. It presents FEM based earing predictions in cup drawing simulation of highly anisotropic aluminium alloys where more than four ears occur. For that purpose the BBC2008 yield criterion, which is a plane-stress yield criterion formulated in the form of a finite series, is used. Thus defined criterion can be expanded to retain more or less terms, depending on the amount of given experimental data. In order to use the model in sheet metal forming simulations we have implemented it in a general purpose finite element code ABAQUS/Explicit via VUMAT subroutine, considering alternatively eight or sixteen parameters (8p and 16p version). For the integration of the constitutive model the explicit NICE (Next Increment Corrects Error) integration scheme has been used. Due to the scheme effectiveness the CPU time consumption for a simulation is comparable to the time consumption of built-in constitutive models. Two aluminium alloys, namely AA5042-H2 and AA2090-T3, have been used for a validation of the model. For both alloys the parameters of the BBC2008 model have been identified with a developed numerical procedure, based on a minimization of the developed cost function. For both materials, the predictions of the BBC2008 model prove to be in very good agreement with the experimental results. The flexibility and the accuracy of the model together with the identification and integration procedure guarantee the applicability of the BBC2008 yield criterion in industrial applications.

  19. A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data

    PubMed Central

    Zhu, Yun; Fan, Ruzong; Xiong, Momiao

    2017-01-01

    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274

  20. Some Reliability Problems in a Criterion-Referenced Test.

    ERIC Educational Resources Information Center

    Roudabush, Glenn E.; Green, Donald Ross

    This paper describes the development of a criterion-referenced test. The Prescriptive Mathematics Inventory (PMI) was developed to measure 400 stated behavioral objectives. The test consists of three overlapping levels with the objectives chosen to cover 90 to 95 per cent of the mathematics curriculum nominally taught in grades 4 through 8. Each…

  1. Establishing a Spinal Injury Criterion for Military Seats

    DTIC Science & Technology

    1997-01-01

    Table represents 54 Trials (18 [phase I] + 36 [phase II]); "Combined Effects" of Delta V, Gpk & ATD Size illM-l A General Linear Model (GLM) analysis...5thpercentilemale AID would not have compliedwith the tolerance criterion under the higher impulse severity levels (i.e., 20 and 30 Gpk ). Similarly, the

  2. Auto Mechanics. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Tannehill, Dana, Ed.

    This document contains 546 criterion-referenced multiple choice and true or false test items for a course in auto mechanics. The test item bank is designed to work with both the Vocational Instructional Management System (VIMS) and Vocational Administrative Management System (VAMS) in Missouri. The items are grouped into 35 units covering the…

  3. Criterion-Referenced Test (CRT) Items for Building Trades.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This test item bank is intended to help instructors construct criterion-referenced tests for secondary-level courses in building trades. The bank is keyed to the Missouri Building Trades Competency Profile, which was developed by industry and education professionals in Missouri, and is designed to be used in conjunction with the Vocational…

  4. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Paschall, Randall N.; Anderson, David J.

    1993-11-01

    A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.

  5. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  6. Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation With No Radial Axis Inputs

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.

  7. Pigment dispersion and Artisan phakic intraocular lenses: crystalline lens rise as a safety criterion.

    PubMed

    Baïkoff, Georges; Bourgeon, Grégoire; Jodai, Horacio Jitsuo; Fontaine, Aline; Lellis, Fernando Viera; Trinquet, Laure

    2005-04-01

    To validate the theory that crystalline lens rise can be used as a safety criterion to prevent pigment dispersion in eyes with an Artisan phakic intraocular lens (IOL) (Ophtec BV). Monticelli Clinic, Marseilles, France. A comparative analysis of crystalline lens rise in 9 eyes with pigment dispersion and 78 eyes without dispersion was performed. All eyes had previous implantation of an Artisan IOL. Anterior segment imaging was done using an anterior chamber optical coherence tomography (AC OCT) prototype. Crystalline lens rise was defined by the distance between the anterior pole of the crystalline lens and the horizontal plane joining the opposite iridocorneal recesses. The study confirmed that crystalline lens rise can be considered a safety criterion for implantation of Artisan-type phakic IOLs. The higher the crystalline lens rise, the greater the risk for developing pigment dispersion in the area of the pupil. This complication occurred more frequently in hyperopic eyes than in myopic eyes. Results indicate there is little or no risk for pigment dispersion if the rise is less than 600 microm; 67% of eyes with a rise of 600 microm or more developed pupillary pigment dispersion. In some cases in which the IOL was loosely fixated, there was no traction on the iris root and dispersion was prevented or delayed. Crystalline lens rise should be considered a new safety criterion for Artisan phakic IOL implantation and should also be applied to other types of phakic IOLs. The distance remaining between the crystalline lens rise and a 600 microm theoretical safety level allows one to calculate how long the IOL can safely remain in the eye.

  8. Formalism for the solution of quadratic Hamiltonians with large cosine terms

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Levin, Michael

    2016-02-01

    We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.

  9. Criterion validity study of the cervical range of motion (CROM) device for rotational range of motion on healthy adults.

    PubMed

    Tousignant, Michel; Smeesters, Cécil; Breton, Anne-Marie; Breton, Emilie; Corriveau, Hélène

    2006-04-01

    This study compared range of motion (ROM) measurements using a cervical range of motion device (CROM) and an optoelectronic system (OPTOTRAK). To examine the criterion validity of the CROM for the measurement of cervical ROM on healthy adults. Whereas measurements of cervical ROM are recognized as part of the assessment of patients with neck pain, few devices are available in clinical settings. Two papers published previously showed excellent criterion validity for measurements of cervical flexion/extension and lateral flexion using the CROM. Subjects performed neck rotation, flexion/extension, and lateral flexion while sitting on a wooden chair. The ROM values were measured by the CROM as well as the OPTOTRAK. The cervical rotational ROM values using the CROM demonstrated a good to excellent linear relationship with those using the OPTOTRAK: right rotation, r = 0.89 (95% confidence interval, 0.81-0.94), and left rotation, r = 0.94 (95% confidence interval, 0.90-0.97). Similar results were also obtained for flexion/extension and lateral flexion ROM values. The CROM showed excellent criterion validity for measurements of cervical rotation. We propose using ROM values measured by the CROM as outcome measures for patients with neck pain.

  10. Phase transitions in the quadratic contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-06-01

    The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (10) at rate 1. In the QCP, a combination of two 1's is required to effect a 01 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered (VQCP) and edge-centered (EQCP) with birth events 1-0-11-1-1 and 1-1-01-1-1, respectively, where “-” represents an edge. We investigate the effects of network topology by considering the QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  11. Determine the optimal carrier selection for a logistics network based on multi-commodity reliability criterion

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-05-01

    From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.

  12. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    NASA Astrophysics Data System (ADS)

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  13. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  14. Failure Criterion For Isotropic Time Dependent Materials Which Accounts for Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Richardson, D. E.; Anderson, G. L.; Macon, D. J.

    2003-01-01

    The Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program has recently conducted testing to characterize the effects of multi-axial loading, temperature and time on the failure characteristics of TIGA321, EA913NA, EA946 (three filled epoxy adhesives). From the test data a "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. It is shown that this criterion simplifies, for constant load and constant load rate conditions, into a form that can be easily used for stress analysis. Failure for TIGA321 and EA913NA are characterized below their glass transition temperature. Failure for EA946 is characterized for conditions that pass through its glass transition. The MATT failure criterion is shown to be accurate for a wide range of conditions for these adhesives.

  15. An Investigation Into the Use of Criterion-Referenced Measurement in Vocational and Technical Training.

    ERIC Educational Resources Information Center

    Day, Gerald F.

    The paper investigates and analyses the current state of the art of criterion-referenced measurement (CRM), with a view to determining its use in training and instructional programs. It presents a reveiw of the literature pertaining to the following aspects: a brief history of CRM; a definition and comparison of criterion-referenced and…

  16. Civic Engagement, Graduate Education, and the Broader Impacts Criterion of the National Science Foundation

    ERIC Educational Resources Information Center

    Lima, Marybeth

    2017-01-01

    The National Science Foundation (NSF) funds research proposals on the basis of two review criteria: intellectual merit (IM) and broader impacts (BI). The intellectual merit criterion is well-established and understood, but the broader impacts criterion, which is focused on the ways in which research can benefit society and/or meet NSF-identified…

  17. A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion

    NASA Astrophysics Data System (ADS)

    Kou, Jiaqing; Le Clainche, Soledad; Zhang, Weiwei

    2018-01-01

    This study proposes an improvement in the performance of reduced-order models (ROMs) based on dynamic mode decomposition to model the flow dynamics of the attractor from a transient solution. By combining higher order dynamic mode decomposition (HODMD) with an efficient mode selection criterion, the HODMD with criterion (HODMDc) ROM is able to identify dominant flow patterns with high accuracy. This helps us to develop a more parsimonious ROM structure, allowing better predictions of the attractor dynamics. The method is tested in the solution of a NACA0012 airfoil buffeting in a transonic flow, and its good performance in both the reconstruction of the original solution and the prediction of the permanent dynamics is shown. In addition, the robustness of the method has been successfully tested using different types of parameters, indicating that the proposed ROM approach is a tool promising for using in both numerical simulations and experimental data.

  18. Model selection criterion in survival analysis

    NASA Astrophysics Data System (ADS)

    Karabey, Uǧur; Tutkun, Nihal Ata

    2017-07-01

    Survival analysis deals with time until occurrence of an event of interest such as death, recurrence of an illness, the failure of an equipment or divorce. There are various survival models with semi-parametric or parametric approaches used in medical, natural or social sciences. The decision on the most appropriate model for the data is an important point of the analysis. In literature Akaike information criteria or Bayesian information criteria are used to select among nested models. In this study,the behavior of these information criterion is discussed for a real data set.

  19. A garden of orchids: a generalized Harper equation at quadratic irrational frequencies

    NASA Astrophysics Data System (ADS)

    Mestel, B. D.; Osbaldestin, A. H.

    2004-10-01

    We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.

  20. Environmental equity as a criterion for water management

    NASA Astrophysics Data System (ADS)

    Grande, M.; Galvão, C.; Miranda, L.; Rufino, I.

    2014-09-01

    Environmental equity is a concept derived from the (un)equal exposure to environmental degradation by different social groups, usually minorities and low-income people exposed to major environmental risks, also known as environmental justice. It is assumed that no group of people, independent of race, ethnicity or socio-economic class, should support, either in concentrated or unevenly distributed form, the negative environmental impacts resulting from industrial, agricultural, commercial and infrastructure activities or government programs and policies. In this paper the concept of environmental equity is explored as a criterion for water management through the analysis of a typical coupled human-natural system: the Epitácio Pessoa Reservoir, located in the semi-arid region of Brazil. Inefficient water resource management has caused unequal access to water by the population, particularly during drought periods. However, census data indicate that population have practically the same access to water, which actually is not able to reflect the actual picture. This study argues that environmental equity can be an additional criterion to improve water management.