Sample records for quadratic programming model

  1. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  2. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  4. A class of stochastic optimization problems with one quadratic & several linear objective functions and extended portfolio selection model

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Li, Jun

    2002-09-01

    In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.

  5. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  6. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  7. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  8. Minitrack tracking function description, volume 2

    NASA Technical Reports Server (NTRS)

    Englar, T. S.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.

    1973-01-01

    The minitrack tracking function is described and specific operations are identified. The subjects discussed are: (1) preprocessor listing, (2) minitrack hardware, (3) system calibration, (4) quadratic listing, and (5) quadratic flow diagram. Detailed information is provided on the construction of the tracking system and its operation. The calibration procedures are supported by mathematical models to show the application of the computer programs.

  9. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  10. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  11. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Three-dimensional modeling of flexible pavements : executive summary, August 2001.

    DOT National Transportation Integrated Search

    2001-08-01

    A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...

  13. Three dimensional modeling of flexible pavements : final report, March 2002.

    DOT National Transportation Integrated Search

    2001-08-01

    A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...

  14. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  15. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  16. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  17. Automation of reverse engineering process in aircraft modeling and related optimization problems

    NASA Technical Reports Server (NTRS)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems.

  18. Experimental evaluation of model predictive control and inverse dynamics control for spacecraft proximity and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello

    2018-03-01

    An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.

  19. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  20. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  1. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    PubMed

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  2. Development of C++ Application Program for Solving Quadratic Equation in Elementary School in Nigeria

    ERIC Educational Resources Information Center

    Bandele, Samuel Oye; Adekunle, Adeyemi Suraju

    2015-01-01

    The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…

  3. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    PubMed

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example for an extreme concave case. Quadratic programming is an alternative approach for inverse planning which generates clinically satisfying plans in comparison to the clinical system and constitutes an efficient optimization process characterized by uniqueness and reproducibility of the solution.

  4. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  5. Manpower Targets and Educational Investments

    ERIC Educational Resources Information Center

    Ritzen, Jo M.

    1976-01-01

    Discusses the use of quadratic programming to calculate the optimal distribution of educational investments required to closely approach manpower targets when financial resources are insufficient to meet manpower targets completely. Demonstrates use of the quadratic programming approach by applying it to the training of supervisory technicians in…

  6. Evaluating the effects of real power losses in optimal power flow based storage integration

    DOE PAGES

    Castillo, Anya; Gayme, Dennice

    2017-03-27

    This study proposes a DC optimal power flow (DCOPF) with losses formulation (the `-DCOPF+S problem) and uses it to investigate the role of real power losses in OPF based grid-scale storage integration. We derive the `- DCOPF+S problem by augmenting a standard DCOPF with storage (DCOPF+S) problem to include quadratic real power loss approximations. This procedure leads to a multi-period nonconvex quadratically constrained quadratic program, which we prove can be solved to optimality using either a semidefinite or second order cone relaxation. Our approach has some important benefits over existing models. It is more computationally tractable than ACOPF with storagemore » (ACOPF+S) formulations and the provably exact convex relaxations guarantee that an optimal solution can be attained for a feasible problem. Adding loss approximations to a DCOPF+S model leads to a more accurate representation of locational marginal prices, which have been shown to be critical to determining optimal storage dispatch and siting in prior ACOPF+S based studies. Case studies demonstrate the improved accuracy of the `-DCOPF+S model over a DCOPF+S model and the computational advantages over an ACOPF+S formulation.« less

  7. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  8. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  9. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  10. Implications of a quadratic stream definition in radiative transfer theory.

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1972-01-01

    An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.

  11. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  12. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  13. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  14. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less

  16. Nonlinear Curve-Fitting Program

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Badavi, Forooz F.

    1989-01-01

    Nonlinear optimization algorithm helps in finding best-fit curve. Nonlinear Curve Fitting Program, NLINEAR, interactive curve-fitting routine based on description of quadratic expansion of X(sup 2) statistic. Utilizes nonlinear optimization algorithm calculating best statistically weighted values of parameters of fitting function and X(sup 2) minimized. Provides user with such statistical information as goodness of fit and estimated values of parameters producing highest degree of correlation between experimental data and mathematical model. Written in FORTRAN 77.

  17. Estimation of positive semidefinite correlation matrices by using convex quadratic semidefinite programming.

    PubMed

    Fushiki, Tadayoshi

    2009-07-01

    The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.

  18. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  19. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost

  20. Cheetah: Starspot modeling code

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam

    2014-12-01

    Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

  1. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    PubMed

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  3. User's guide for the northern hardwood stand models: SIMSAP and SIMTIM

    Treesearch

    Dale S. Solomon; Richard A. Hosmer; Richard A. Hosmer

    1987-01-01

    SIMSAP and SlMTlM are computer programs that have been developed to simulate the stand growth and development of natural and treated evenaged northern hardwood stands. SIMSAP begins with species distributions by quality classes in sapling stands after regeneration. SIMTIM, the poletimber-sawtimber-harvest phase, uses stocking guides based on quadratic mean stand...

  4. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    PubMed

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  5. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  6. Expected value based fuzzy programming approach to solve integrated supplier selection and inventory control problem with fuzzy demand

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Sunarsih; Kartono

    2018-01-01

    In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.

  7. Optimization by nonhierarchical asynchronous decomposition

    NASA Technical Reports Server (NTRS)

    Shankar, Jayashree; Ribbens, Calvin J.; Haftka, Raphael T.; Watson, Layne T.

    1992-01-01

    Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness.

  8. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models.

    PubMed

    Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela

    2016-01-01

    In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.

  9. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-10-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  10. Users manual for flight control design programs

    NASA Technical Reports Server (NTRS)

    Nalbandian, J. Y.

    1975-01-01

    Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.

  11. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids.

    PubMed

    Liu, X T; Ma, W F; Zeng, X F; Xie, C Y; Thacker, P A; Htoo, J K; Qiao, S Y

    2015-10-01

    Four 28-d experiments were conducted to determine the standardized ileal digestible (SID) valine (Val) to lysine (Lys) ratio required for 26- to 46- (Exp. 1), 49- to 70- (Exp. 2), 71- to 92- (Exp. 3), and 94- to 119-kg (Exp. 4) pigs fed low CP diets supplemented with crystalline AA. The first 3 experiments utilized 150 pigs (Duroc × Landrace × Large White), while Exp. 4 utilized 90 finishing pigs. Pigs in all 4 experiments were randomly allocated to 1 of 5 diets with 6 pens per treatment (3 pens of barrows and 3 pens of gilts) and 5 pigs per pen for the first 3 experiments and 3 pigs per pen for Exp. 4. Diets for all experiments were formulated to contain SID Val to Lys ratios of 0.55, 0.60, 0.65, 0.70, or 0.75. In Exp. 1 (26 to 46 kg), ADG increased (linear, = 0.039; quadratic, = 0.042) with an increasing dietary Val:Lys ratio. The SID Val:Lys ratio to maximize ADG was 0.62 using a linear broken-line model and 0.71 using a quadratic model. In Exp. 2 (49 to 70 kg), ADG increased (linear, = 0.021; quadratic, = 0.042) as the SID Val:Lys ratio increased. G:F improved (linear, = 0.039) and serum urea nitrogen (SUN) decreased (linear, = 0.021; quadratic, = 0.024) with an increased SID Val:Lys ratio. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.65, respectively, using a linear broken-line model and 0.72 and 0.71, respectively, using a quadratic model. In Exp. 3 (71 to 92 kg), ADG increased (linear, = 0.007; quadratic, = 0.022) and SUN decreased (linear, = 0.011; quadratic, = 0.034) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.67, respectively, using a linear broken-line model and 0.72 and 0.74, respectively, using a quadratic model. In Exp. 4 (94 to 119 kg), ADG increased (linear, = 0.041) and G:F was improved (linear, = 0.004; quadratic, = 0.005) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratio to maximize G:F was 0.68 using a linear broken-line model and 0.72 using a quadratic model. Carcass traits and muscle quality were not influenced by SID Val:Lys ratio. In conclusion, the dietary SID Val:Lys ratios required for 26- to 46-, 49- to 70-, 71- to 92-, and 94- to 119-kg pigs were estimated to be 0.62, 0.66, 0.67, and 0.68, respectively, using a linear broken-line model and 0.71, 0.72, 0.73, and 0.72, respectively, using a quadratic model.

  12. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    PubMed

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  14. Advanced Energy Storage Management in Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) andmore » control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.« less

  15. Analysis of explicit model predictive control for path-following control

    PubMed Central

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  16. Analysis of explicit model predictive control for path-following control.

    PubMed

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  17. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  18. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    PubMed

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  19. Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials

    NASA Astrophysics Data System (ADS)

    Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture

    2017-10-01

    Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.

  20. DEM interpolation weight calculation modulus based on maximum entropy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-wei; Yang, Xia

    2015-12-01

    There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.

  1. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  2. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  3. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  4. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  5. On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product

    ERIC Educational Resources Information Center

    Valahas, Theodoros; Boukas, Andreas

    2011-01-01

    In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…

  6. Sequential Quadratic Programming Algorithms for Optimization

    DTIC Science & Technology

    1989-08-01

    quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

  7. Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharov, G.S., E-mail: german.sharov@mail.ru

    Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r {sub s} ( z {sub d} ). Among the considered models the best value of χ{sup 2} is achieved formore » the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.« less

  8. An approach of traffic signal control based on NLRSQP algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  9. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers

    NASA Astrophysics Data System (ADS)

    Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.

    1992-01-01

    Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.

  11. The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds

    NASA Astrophysics Data System (ADS)

    Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.

    2012-06-01

    The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.

  12. Model test on the relationship feed energy and protein ratio to the production and quality of milk protein

    NASA Astrophysics Data System (ADS)

    Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.

    2018-01-01

    The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.

  13. Numerical optimization techniques for bound circulation distribution for minimum induced drag of Nonplanar wings: Computer program documentation

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Ku, T. J.

    1981-01-01

    A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes.

  14. Developing an Understanding of Quadratics through the Use of Concrete Manipulatives: A Case Study Analysis of the Metacognitive Development of a High School Student with Learning Disabilities

    ERIC Educational Resources Information Center

    Strickland, Tricia K.

    2014-01-01

    This case study analyzed the impact of a concrete manipulative program on the understanding of quadratic expressions for a high school student with a learning disability. The manipulatives were utilized as part of the Concrete-Representational-Abstract Integration (CRA-I) intervention in which participants engaged in tasks requiring them to…

  15. High-order Newton-penalty algorithms

    NASA Astrophysics Data System (ADS)

    Dussault, Jean-Pierre

    2005-10-01

    Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.

  16. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  17. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  18. Sparse Recovery via Differential Inclusions

    DTIC Science & Technology

    2014-07-01

    2242. [Wai09] Martin J. Wainwright, Sharp thresholds for high-dimensional and noisy spar- sity recovery using l1 -constrained quadratic programming...solution, (1.11) βt = { 0, if t < 1/y; y(1− e−κ(t−1/y)), otherwise, which converges to the unbiased Bregman ISS estimator exponentially fast. Let us ...are not given the support set S, so the following two prop- erties are used to evaluate the performance of an estimator β̂. 1. Model selection

  19. Ghost-free, finite, fourth-order D = 3 gravity.

    PubMed

    Deser, S

    2009-09-04

    Canonical analysis of a recently proposed linear + quadratic curvature gravity model in D = 3 establishes its pure, irreducibly fourth derivative, quadratic curvature limit as both ghost-free and power-counting UV finite, thereby maximally violating standard folklore. This limit is representative of a generic class whose kinetic terms are conformally invariant in any dimension, but it is unique in simultaneously avoiding the transverse-traceless graviton ghosts plaguing D > 3 quadratic actions as well as double pole propagators in its other variables. While the two-term model is also unitary, its additional mode's second-derivative nature forfeits finiteness.

  20. Path Following in the Exact Penalty Method of Convex Programming.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  1. Path Following in the Exact Penalty Method of Convex Programming

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2015-01-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044

  2. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  3. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  4. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  5. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geostatistics.

    PubMed

    Farias, Paulo R S; Barbosa, José C; Busoli, Antonio C; Overal, William L; Miranda, Vicente S; Ribeiro, Susane M

    2008-01-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In São Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.

  6. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    PubMed

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.

  7. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  8. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  9. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  10. L2CXCV: A Fortran 77 package for least squares convex/concave data smoothing

    NASA Astrophysics Data System (ADS)

    Demetriou, I. C.

    2006-04-01

    Fortran 77 software is given for least squares smoothing to data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is also unknown of the optimization problem. A highly useful description of the constraints is that they follow from the assumption of initially increasing and subsequently decreasing rates of change, or vice versa, of the process considered. The underlying algorithm partitions the data into two disjoint sets of adjacent data and calculates the required fit by solving a strictly convex quadratic programming problem for each set. The piecewise linear interpolant to the fit is convex on the first set and concave on the other one. The partition into suitable sets is achieved by a finite iterative algorithm, which is made quite efficient because of the interactions of the quadratic programming problems on consecutive data. The algorithm obtains the solution by employing no more quadratic programming calculations over subranges of data than twice the number of the divided differences constraints. The quadratic programming technique makes use of active sets and takes advantage of a B-spline representation of the smoothed values that allows some efficient updating procedures. The entire code required to implement the method is 2920 Fortran lines. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes over subranges of data that is only proportional to the number of data. The results suggest that the package can be used for very large numbers of data values. Some examples with output are provided to help new users and exhibit certain features of the software. Important applications of the smoothing technique may be found in calculating a sigmoid approximation, which is a common topic in various contexts in applications in disciplines like physics, economics, biology and engineering. Distribution material that includes single and double precision versions of the code, driver programs, technical details of the implementation of the software package and test examples that demonstrate the use of the software is available in an accompanying ASCII file. Program summaryTitle of program:L2CXCV Catalogue identifier:ADXM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXM_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC Intel Pentium, Sun Sparc Ultra 5, Hewlett-Packard HP UX 11.0 Operating system:WINDOWS 98, 2000, Unix/Solaris 7, Unix/HP UX 11.0 Programming language used:FORTRAN 77 Memory required to execute with typical data:O(n), where n is the number of data No. of bits in a byte:8 No. of lines in distributed program, including test data, etc.:29 349 No. of bytes in distributed program, including test data, etc.:1 276 663 No. of processors used:1 Has the code been vectorized or parallelized?:no Distribution format:default tar.gz Separate documentation available:Yes Nature of physical problem:Analysis of processes that show initially increasing and then decreasing rates of change (sigmoid shape), as, for example, in heat curves, reactor stability conditions, evolution curves, photoemission yields, growth models, utility functions, etc. Identifying an unknown convex/concave (sigmoid) function from some measurements of its values that contain random errors. Also, identifying the inflection point of this sigmoid function. Method of solution:Univariate data smoothing by minimizing the sum of the squares of the residuals (least squares approximation) subject to the condition that the second order divided differences of the smoothed values change sign at most once. Ideally, this is the number of sign changes in the second derivative of the underlying function. The remarkable property of the smoothed values is that they consist of one separate section of optimal components that give nonnegative second divided differences (convexity) and one separate section of optimal components that give nonpositive second divided differences (concavity). The solution process finds the joint (that is the inflection point estimate of the underlying function) of the sections automatically. The underlying method is iterative, each iteration solving a structured strictly convex quadratic programming problem in order to obtain a convex or a concave section over a subrange of data. Restrictions on the complexity of the problem:Number of data, n, is not limited in the software package, but is limited to 2000 in the main driver. The total work of the method requires 2n-2 structured quadratic programming calculations over subranges of data, which in practice does not exceed the amount of O(n) computer operations. Typical running times:CPU time on a PC with an Intel 733 MHz processor operating in Windows 98: About 2 s to smooth n=1000 noisy measurements that follow the shape of the sine function over one period. Summary:L2CXCV is a package of Fortran 77 subroutines for least squares smoothing to n univariate data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is unknown. The piecewise linear interpolant to the smoothed values gives a convex/concave fit to the data. The underlying algorithm is based on the property that in this best convex/concave fit, the convex and the concave section are both optimal and separate. The algorithm is iterative, each iteration solving a strictly convex quadratic programming problem for the best convex fit to the first k data, starting from the best convex fit to the first k-1 data. By reversing the order and sign of the data, the algorithm obtains the best concave fit to the last n-k data. Then it chooses that k as the optimal position of the required sign change (which defines the inflection point of the fit), if the convex and the concave components to the first k and the last n-k data, respectively, form a convex/concave vector that gives the least sum of squares of residuals. In effect the algorithm requires at most 2n-2 quadratic programming calculations over subranges of data. The package employs a technique for quadratic programming, which takes advantage of a B-spline representation of the smoothed values and makes use of some efficient O(k) updating procedures, where k is the number of data of a subrange. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes that is about n, thus exhibiting quadratic performance in n. The Fortran codes have been designed to minimize the use of computing resources. Attention has been given to computer rounding errors details, which are essential to the robustness of the software package. Numerical examples with output are provided to help the use of the software and exhibit certain features of the method. Distribution material that includes driver programs, technical details of the installation of the package and test examples that demonstrate the use of the software is available in an ASCII file that accompanies this work.

  11. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    PubMed

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  12. Application’s Method of Quadratic Programming for Optimization of Portfolio Selection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro

    Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.

  13. Constrained multiple indicator kriging using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Erhan Tercan, A.

    2012-11-01

    Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.

  14. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, W.; Prieto, F.J.

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less

  15. DE and NLP Based QPLS Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo

    As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.

  16. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  17. Random regression analyses using B-spline functions to model growth of Nellore cattle.

    PubMed

    Boligon, A A; Mercadante, M E Z; Lôbo, R B; Baldi, F; Albuquerque, L G

    2012-02-01

    The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.

  18. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  19. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.

    PubMed

    Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R

    2011-08-11

    Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation. Copyright © 2011. Published by Elsevier Ltd.

  20. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  1. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  2. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  3. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  4. Factorization method of quadratic template

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  5. Solving the Integral of Quadratic Forms of Covariance Matrices for Applications in Polarimetric Radar Imagery

    NASA Astrophysics Data System (ADS)

    Marino, Armando; Hajnsek, Irena

    2015-04-01

    In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.

  6. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria.

    PubMed

    Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob

    2017-04-28

    This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.

  7. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  8. Multiplexed Predictive Control of a Large Commercial Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Richter, hanz; Singaraju, Anil; Litt, Jonathan S.

    2008-01-01

    Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.

  9. Determinants of Paracentrotus lividus sea urchin recruitment under oligotrophic conditions: Implications for conservation management.

    PubMed

    Oliva, Silvia; Farina, Simone; Pinna, Stefania; Guala, Ivan; Agnetta, Davide; Ariotti, Pierre Antoine; Mura, Francesco; Ceccherelli, Giulia

    2016-06-01

    Sea urchins may deeply shape the structure of macrophyte-dominated communities and require the implementation of sustainable management strategies. In the Mediterranean, the identification of the major recruitment determinants of the keystone sea urchin species Paracentrotus lividus is required, so that source areas of the populations can be identified and exploitation or programmed harvesting can be spatially managed. In this study a collection of eight possible determinants, these encompassing both the biotic (larvae, adult sea urchins, fish, encrusting coralline algae, habitat type and spatial arrangement of habitats) and abiotic (substrate complexity and nutritional status) realms was considered at different spatial scales (site, area, transect and quadrat). Data from a survey including sites subject to different levels of human influence (i.e. from urbanized to protected areas), but all corresponding to an oligotrophic and low-populated region were fitted by means of a generalized linear mixed model. Despite the extensive sampling effort of benthic quadrats, an overall paucity of recruits was found, recruits being aggregated in a very small number of quadrats and in few areas. The analysis of data detected substrate complexity, and adult sea urchin and predatory fish abundances as the momentous determinants of Paracentrotus lividus recruitment. Possible mechanisms of influence are discussed beyond the implications of conservation management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.

  11. Validation of drift and diffusion coefficients from experimental data

    NASA Astrophysics Data System (ADS)

    Riera, R.; Anteneodo, C.

    2010-04-01

    Many fluctuation phenomena, in physics and other fields, can be modeled by Fokker-Planck or stochastic differential equations whose coefficients, associated with drift and diffusion components, may be estimated directly from the observed time series. Its correct characterization is crucial to determine the system quantifiers. However, due to the finite sampling rates of real data, the empirical estimates may significantly differ from their true functional forms. In the literature, low-order corrections, or even no corrections, have been applied to the finite-time estimates. A frequent outcome consists of linear drift and quadratic diffusion coefficients. For this case, exact corrections have been recently found, from Itô-Taylor expansions. Nevertheless, model validation constitutes a necessary step before determining and applying the appropriate corrections. Here, we exploit the consequences of the exact theoretical results obtained for the linear-quadratic model. In particular, we discuss whether the observed finite-time estimates are actually a manifestation of that model. The relevance of this analysis is put into evidence by its application to two contrasting real data examples in which finite-time linear drift and quadratic diffusion coefficients are observed. In one case the linear-quadratic model is readily rejected while in the other, although the model constitutes a very good approximation, low-order corrections are inappropriate. These examples give warning signs about the proper interpretation of finite-time analysis even in more general diffusion processes.

  12. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  13. Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming.

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1986-01-01

    Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors

  14. Controller design approach based on linear programming.

    PubMed

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.

  15. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.

  16. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Assessing Spurious Interaction Effects in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming

    2015-01-01

    Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…

  18. Spatial taxation effects on regional coal economic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.W.; Labys, W.C.

    1982-01-01

    Taxation effects on resource production, consumption and prices are seldom evaluated especially in the field of spatial commodity modeling. The most commonly employed linear programming model has fixed-point estimated demands and capacity constraints; hence it makes taxation effects difficult to be modeled. The second type of resource allocation model, the interregional input-output models does not include a direct and explicit price mechanism. Therefore, it is not suitable for analyzing taxation effects. The third type or spatial commodity model has been econometric in nature. While such an approach has a good deal of flexibility in modeling political and non-economic variables, itmore » treats taxation (or tariff) effects loosely using only dummy variables, and, in many cases, must sacrifice the consistency criterion important for spatial commodity modeling. This leaves model builders only one legitimate choice for analyzing taxation effects: the quadratic programming model which explicitly allows the interplay of regional demand and supply relations via a continuous spatial price constructed by the authors related to the regional demand for and supply of coal from Appalachian markets.« less

  19. Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad

    2018-05-01

    The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo -Ling; Mehrotra, Sanjay

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  1. Replicator equations, maximal cliques, and graph isomorphism.

    PubMed

    Pelillo, M

    1999-11-15

    We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.

  2. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  3. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  4. Annual Review of Research Under the Joint Service Electronics Program.

    DTIC Science & Technology

    1979-10-01

    Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.

  5. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

    DOE PAGES

    Huang, Kuo -Ling; Mehrotra, Sanjay

    2016-11-08

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  6. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  7. An improved method for calculating power density in the Fresnel region of circular parabolic reflector antennas

    NASA Astrophysics Data System (ADS)

    Mize, Johnnie E.

    1988-03-01

    A computer program is presented which calculates power density in the Fresnel region of circular parabolic reflector antennas. The aperture illumination model is the one-parameter circular distribution developed by Hansen. The program is applicable to the analysis of electrically large, center-fed (or Cassegrain) paraboloids with linearly polarized feeds. The scalar Kirchoff diffraction integral is solved numerically by Romberg integration for points both on and perpendicular to the antenna boresight. Axial results cannot be directly compared to any others obtained with this illumination model, but they are consistent with what is expected in the Fresnel region where a quadratic must be added to the linear phase term of the integral expression. Graphical results are presented for uniform illumination and for cases where the first sidelobe ratio is 20, 25, 30, and 35 dB.

  8. Nonlinear model for an optical read-only-memory disk readout channel based on an edge-spread function.

    PubMed

    Kobayashi, Seiji

    2002-05-10

    A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.

  9. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  10. A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints

    NASA Technical Reports Server (NTRS)

    Hanson, R. J.; Krogh, Fred T.

    1992-01-01

    A new algorithm for solving nonlinear least-squares and nonlinear equation problems is proposed which is based on approximating the nonlinear functions using the quadratic-tensor model by Schnabel and Frank. The algorithm uses a trust region defined by a box containing the current values of the unknowns. The algorithm is found to be effective for problems with linear constraints and dense Jacobian matrices.

  11. Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality.

    PubMed

    Forti, Mauro; Nistri, Paolo; Quincampoix, Marc

    2006-11-01

    This paper considers a class of neural networks (NNs) for solving linear programming (LP) problems, convex quadratic programming (QP) problems, and nonconvex QP problems where an indefinite quadratic objective function is subject to a set of affine constraints. The NNs are characterized by constraint neurons modeled by ideal diodes with vertical segments in their characteristic, which enable to implement an exact penalty method. A new method is exploited to address convergence of trajectories, which is based on a nonsmooth Lojasiewicz inequality for the generalized gradient vector field describing the NN dynamics. The method permits to prove that each forward trajectory of the NN has finite length, and as a consequence it converges toward a singleton. Furthermore, by means of a quantitative evaluation of the Lojasiewicz exponent at the equilibrium points, the following results on convergence rate of trajectories are established: (1) for nonconvex QP problems, each trajectory is either exponentially convergent, or convergent in finite time, toward a singleton belonging to the set of constrained critical points; (2) for convex QP problems, the same result as in (1) holds; moreover, the singleton belongs to the set of global minimizers; and (3) for LP problems, each trajectory converges in finite time to a singleton belonging to the set of global minimizers. These results, which improve previous results obtained via the Lyapunov approach, are true independently of the nature of the set of equilibrium points, and in particular they hold even when the NN possesses infinitely many nonisolated equilibrium points.

  12. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  13. Gaussian Mean Field Lattice Gas

    NASA Astrophysics Data System (ADS)

    Scoppola, Benedetto; Troiani, Alessio

    2018-03-01

    We study rigorously a lattice gas version of the Sherrington-Kirckpatrick spin glass model. In discrete optimization literature this problem is known as unconstrained binary quadratic programming and it belongs to the class NP-hard. We prove that the fluctuations of the ground state energy tend to vanish in the thermodynamic limit, and we give a lower bound of such ground state energy. Then we present a heuristic algorithm, based on a probabilistic cellular automaton, which seems to be able to find configurations with energy very close to the minimum, even for quite large instances.

  14. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model

    NASA Technical Reports Server (NTRS)

    Younis, Bassam A.; Gatski, Thomas B.; Speziale, Charles G.

    1994-01-01

    Data from free turbulent jets both with and without swirl are used to assess the performance of the pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses. Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi model which are linear in the same terms. All models are used as part of a complete second-order closure based on the solution of differential transport equations for each non-zero component of the Reynolds stress tensor together with an equation for the scalar energy dissipation rate. For non-swirling jets, the quadratic model underestimates the measured spreading rate of the plane jet but yields a better prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the mean flow and the turbulence structure in sharp contrast with the linear models which yield results that are in serious error. The reasons for these differences are discussed.

  15. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  16. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases.

    PubMed

    D'Amico, María Belén; Calandrini, Guillermo L

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  17. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases

    NASA Astrophysics Data System (ADS)

    D'Amico, María Belén; Calandrini, Guillermo L.

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  18. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  19. OPTICON: Pro-Matlab software for large order controlled structure design

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1989-01-01

    A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.

  20. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  1. Design of Linear-Quadratic-Regulator for a CSTR process

    NASA Astrophysics Data System (ADS)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  2. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1990-01-01

    Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.

  3. Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.

    2014-12-01

    Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.

  4. Discrete-time pilot model. [human dynamics and digital simulation

    NASA Technical Reports Server (NTRS)

    Cavalli, D.

    1978-01-01

    Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.

  5. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    PubMed

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.

  6. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  7. Modeling of the WSTF frictional heating apparatus in high pressure systems

    NASA Technical Reports Server (NTRS)

    Skowlund, Christopher T.

    1992-01-01

    In order to develop a computer program able to model the frictional heating of metals in high pressure oxygen or nitrogen a number of additions have been made to the frictional heating model originally developed for tests in low pressure helium. These additions include: (1) a physical property package for the gases to account for departures from the ideal gas state; (2) two methods for spatial discretization (finite differences with quadratic interpolation or orthogonal collocation on finite elements) which substantially reduce the computer time required to solve the transient heat balance; (3) more efficient programs for the integration of the ordinary differential equations resulting from the discretization of the partial differential equations; and (4) two methods for determining the best-fit parameters via minimization of the mean square error (either a direct search multivariable simplex method or a modified Levenburg-Marquardt algorithm). The resulting computer program has been shown to be accurate, efficient and robust for determining the heat flux or friction coefficient vs. time at the interface of the stationary and rotating samples.

  8. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.

    PubMed

    Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei

    2012-06-18

    This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.

  9. Learning quadratic receptive fields from neural responses to natural stimuli.

    PubMed

    Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

    2013-07-01

    Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

  10. AESOP: An interactive computer program for the design of linear quadratic regulators and Kalman filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L. C.

    1984-01-01

    AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.

  11. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach, part 2

    NASA Technical Reports Server (NTRS)

    Hsia, Wei Shen

    1989-01-01

    A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.

  12. Preliminary demonstration of a robust controller design method

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1980-01-01

    Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.

  13. Using quadratic mean diameter and relative spacing index to enhance height-diameter and crown ratio models fitted to longitudinal data

    Treesearch

    Pradip Saud; Thomas B. Lynch; Anup K. C.; James M. Guldin

    2016-01-01

    The inclusion of quadratic mean diameter (QMD) and relative spacing index (RSI) substantially improved the predictive capacity of height–diameter at breast height (d.b.h.) and crown ratio models (CR), respectively. Data were obtained from 208 permanent plots established in western Arkansas and eastern Oklahoma during 1985–1987 and remeasured for the sixth time (2012–...

  14. Phonation threshold pressure across the pitch range: preliminary test of a model.

    PubMed

    Solomon, Nancy Pearl; Ramanathan, Pradeep; Makashay, Matthew J

    2007-09-01

    This study sought to examine the specific relationship between phonation threshold pressure (PTP) and voice fundamental frequency (F(0)) across the pitch range. A published theoretical model of this relationship described a quadratic equation, with PTP increasing exponentially with F(0). Prospective data from eight adults with normal, untrained voices were collected. Subjects produced their quietest phonation at 10 randomly ordered pitches from 5% to 95% of their semitone pitch range at 10% intervals. Analysis included curve fitting for individual and group data, as well as comparisons to the previous model. The group data fit a quadratic function similar to that proposed previously, but the specific quadratic coefficient and constant values differed. Four of the individual subjects' data were best fit by quartic functions, two by quadratic functions, and one by a linear function. This preliminary study indicates that PTP may be minimal at a "comfortable" pitch rather than the lowest pitch tested, and that, for some individuals, PTP may be slightly elevated during the passaggio between modal and falsetto vocal registers. These data support the general form of the theoretical PTP-F(0) function for these speakers, and indicate the possibility of potential refinements to the model. Future studies with larger groups of male and female subjects across a wider age range may eventually reveal the specific nature of the function.

  15. An exponential decay model for mediation.

    PubMed

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  16. An Exponential Decay Model for Mediation

    PubMed Central

    Fritz, Matthew S.

    2013-01-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, addresses many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed. PMID:23625557

  17. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  18. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    PubMed

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  19. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials.

    PubMed

    Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M

    2018-04-01

    The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.

  20. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team

    In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.

  1. Dynamical correlation functions of the quadratic coupling spin-Boson model

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  2. Design of a model observer to evaluate calcification detectability in breast tomosynthesis and application to smoothing prior optimization.

    PubMed

    Michielsen, Koen; Nuyts, Johan; Cockmartin, Lesley; Marshall, Nicholas; Bosmans, Hilde

    2016-12-01

    In this work, the authors design and validate a model observer that can detect groups of microcalcifications in a four-alternative forced choice experiment and use it to optimize a smoothing prior for detectability of microcalcifications. A channelized Hotelling observer (CHO) with eight Laguerre-Gauss channels was designed to detect groups of five microcalcifications in a background of acrylic spheres by adding the CHO log-likelihood ratios calculated at the expected locations of the five calcifications. This model observer is then applied to optimize the detectability of the microcalcifications as a function of the smoothing prior. The authors examine the quadratic and total variation (TV) priors, and a combination of both. A selection of these reconstructions was then evaluated by human observers to validate the correct working of the model observer. The authors found a clear maximum for the detectability of microcalcification when using the total variation prior with weight β TV = 35. Detectability only varied over a small range for the quadratic and combined quadratic-TV priors when weight β Q of the quadratic prior was changed by two orders of magnitude. Spearman correlation with human observers was good except for the highest value of β for the quadratic and TV priors. Excluding those, the authors found ρ = 0.93 when comparing detection fractions, and ρ = 0.86 for the fitted detection threshold diameter. The authors successfully designed a model observer that was able to predict human performance over a large range of settings of the smoothing prior, except for the highest values of β which were outside the useful range for good image quality. Since detectability only depends weakly on the strength of the combined prior, it is not possible to pick an optimal smoothness based only on this criterion. On the other hand, such choice can now be made based on other criteria without worrying about calcification detectability.

  3. Functional properties of models for direction selectivity in the retina.

    PubMed

    Grzywacz, N M; Koch, C

    1987-01-01

    Poggio and Reichardt (Kybernetik, 13:223-227, 1973) showed that if the average response of a visual system to a moving stimulus is directionally selective, then this sensitivity must be mediated by a nonlinear operation. In particular, it has been proposed that at the behavioral level, motion-sensitive biological systems are implemented by quadratic nonlinearities (Hassenstein and Reichardt: Z. Naturforsch., 11b:513-524, 1956; van Santen and Sperling: J. Opt. Soc. Am. [A] 1:451-473, 1984; Adelson and Bergen: J. Opt. Soc. Am. [A], 2:284-299, 1985). This paper analyzes theoretically two nonlinear neural mechanisms that possibly underlie retinal direction selectivity and explores the conditions under which they behave as a quadratic nonlinearity. The first mechanism is shunting inhibition (Torre and Poggio: Proc. R. Soc. Lond. [Biol.], 202:409-416, 1978), and the second consists of the linear combination of the outputs of a depolarizing and a hyperpolarizing synapse, followed by a threshold operation. It was found that although sometimes possible, it is in practice hard to approximate the Shunting Inhibition and the Threshold models for direction selectivity by quadratic systems. For instance, the level of the threshold on the Threshold model must be close to the steady-state level of the cell's combined synaptic input. Furthermore, for both the Shunting and the Threshold models, the approximation by a quadratic system is only possible for a small range of low contrast stimuli and for situations where the rectifications due to the ON-OFF mechanisms, and to the ganglion cells' action potentials, can be linearized. The main question that this paper leaves open is, how do we account for the apparent quadratic properties of motion perception given that the same properties seem so fragile at the single cell level? Finally, as a result of this study, some system analysis experiments were proposed that can distinguish between different instances of the models.

  4. Dynamic metabolic modeling for a MAB bioprocess.

    PubMed

    Gao, Jianying; Gorenflo, Volker M; Scharer, Jeno M; Budman, Hector M

    2007-01-01

    Production of monoclonal antibodies (MAb) for diagnostic or therapeutic applications has become an important task in the pharmaceutical industry. The efficiency of high-density reactor systems can be potentially increased by model-based design and control strategies. Therefore, a reliable kinetic model for cell metabolism is required. A systematic procedure based on metabolic modeling is used to model nutrient uptake and key product formation in a MAb bioprocess during both the growth and post-growth phases. The approach combines the key advantages of stoichiometric and kinetic models into a complete metabolic network while integrating the regulation and control of cellular activity. This modeling procedure can be easily applied to any cell line during both the cell growth and post-growth phases. Quadratic programming (QP) has been identified as a suitable method to solve the underdetermined constrained problem related to model parameter identification. The approach is illustrated for the case of murine hybridoma cells cultivated in stirred spinners.

  5. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  6. Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior

    PubMed Central

    Serang, Oliver

    2012-01-01

    Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741

  7. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  8. An algorithm for the solution of dynamic linear programs

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.

  9. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  10. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  11. A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Harris, J. D.

    1971-01-01

    The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.

  12. Boundary element analysis of post-tensioned slabs

    NASA Astrophysics Data System (ADS)

    Rashed, Youssef F.

    2015-06-01

    In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.

  13. Reduced-order model based feedback control of the modified Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Ma, Z.

    2013-04-15

    In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less

  14. The Comparison Study of Quadratic Infinite Beam Program on Optimization Instensity Modulated Radiation Therapy Treatment Planning (IMRTP) between Threshold and Exponential Scatter Method with CERR® In The Case of Lung Cancer

    NASA Astrophysics Data System (ADS)

    Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.

    2016-08-01

    This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.

  15. Quantum Quench of the Sachdev-Ye-Kitaev Model

    NASA Astrophysics Data System (ADS)

    Steinberg, Julia; Eberlein, Andreas; Sachdev, Subir

    The Sachdev-Ye-Kitaev model is a single site model containing N flavors of fermions with random infinite range interactions. It is exactly solvable in the large N limit and has an emergent reparameterization symmetry in time at low temperatures and strong coupling. This leads to many interesting properties such as locally critical behavior in correlation functions and the saturation of the chaos bound proposed .We start with the generalized Sachdev-Ye-Kitaev with quadratic and quartic interactions. This Hamiltonian has the form of a 0+1d Fermi liquid and contains long-lived quasiparticles at all values of the quadratic coupling. We quench the system into a locally critical state without quasiparticles by turning off the quadratic coupling at some initial time. We numerically study the spectral function at intermediate and long times and determine the timescale in which the system loses memory of the quasiparticles. J.S. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144152.

  16. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino; Scomparin, Mattia

    2018-05-01

    We study cosmic structures in the quadratic Degenerate Higher Order Scalar Tensor (qDHOST) model, which has been proposed as the most general scalar-tensor theory (up to quadratic dependence on the covariant derivatives of the scalar field), which is not plagued by the presence of ghost instabilities. We then study a static, spherically symmetric object embedded in de Sitter space-time for the qDHOST model. This model exhibits breaking of the Vainshtein mechanism inside the cosmic structure and Schwarzschild-de Sitter space-time outside, where General Relativity (GR) can be recovered within the Vainshtein radius. We constrained the parameters of the qDHOST model by requiring the validity of the Vainshtein screening mechanism inside the cosmic structures and the consistency with the recently established bounds on gravitational wave speed from GW170817/GRB170817A event. We find that these two constraints rule out the same set of parameters, corresponding to the Lagrangians that are quadratic in second-order derivatives of the scalar field, for the shift symmetric qDHOST.

  17. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  18. Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Ma, Z.

    2013-01-28

    In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less

  19. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  20. About the mechanism of ERP-system pilot test

    NASA Astrophysics Data System (ADS)

    Mitkov, V. V.; Zimin, V. V.

    2018-05-01

    In the paper the mathematical problem of defining the scope of pilot test is stated, which is a task of quadratic programming. The procedure of the problem solving includes the method of network programming based on the structurally similar network representation of the criterion and constraints and which reduces the original problem to a sequence of simpler evaluation tasks. The evaluation tasks are solved by the method of dichotomous programming.

  1. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    DTIC Science & Technology

    2016-10-11

    Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization,” (W. Bian, X. Chen, and Ye), Math Programming, 149 (2015) 301-327...Chen, Ge, Wang, Ye), Math Programming, 143 (1-2) (2014) 371-383. This paper resolved an important open question in cardinality constrained...Statistical Performance, and Algorithmic Theory for Local Solutions,” (H. Liu, T. Yao, R. Li, Y. Ye) manuscript, 2nd revision in Math Programming

  2. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    PubMed

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  3. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  4. Sex differences of anthropometric indices of obesity by age among Iranian adults in northern Iran: A predictive regression model.

    PubMed

    Hajian-Tilaki, Karimollah; Heidari, Behzad

    2015-01-01

    The biological variation of body mass index (BMI) and waist circumference (WC) with age may vary by gender. The objective of this study was to investigate the functional relationship of anthropometric measures with age and sex. The data were collected from a population-based cross-sectional study of 1800 men and 1800 women aged 20-70 years in northern Iran. The linear and quadratic pattern of age on weight, height, BMI and WC and WHR were tested statistically and the interaction effect of age and gender was also formally tested. The quadratic model (age(2)) provided a significantly better fit than simple linear model for weight, BMI and WC. BMI, WC and weight explained a greater variance using quadratic form for women compared with men (for BMI, R(2)=0.18, p<0.001 vs R(2)=0.059, p<0.001 and for WC, R(2)=0.17, p<0.001 vs R(2)=0.047, p<0.001). For height, there is an inverse linear relationship while for WHR, a positive linear association was apparent by aging, the quadratic form did not add to better fit. These findings indicate the different patterns of weight gain, fat accumulation for visceral adiposity and loss of muscle mass between men and women in the early and middle adulthood.

  5. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  6. Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Everhart, Joel L.

    1987-01-01

    This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.

  7. A duality theorem-based algorithm for inexact quadratic programming problems: Application to waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Kong, X. M.; Huang, G. H.; Fan, Y. R.; Li, Y. P.

    2016-04-01

    In this study, a duality theorem-based algorithm (DTA) for inexact quadratic programming (IQP) is developed for municipal solid waste (MSW) management under uncertainty. It improves upon the existing numerical solution method for IQP problems. The comparison between DTA and derivative algorithm (DAM) shows that the DTA method provides better solutions than DAM with lower computational complexity. It is not necessary to identify the uncertain relationship between the objective function and decision variables, which is required for the solution process of DAM. The developed method is applied to a case study of MSW management and planning. The results indicate that reasonable solutions have been generated for supporting long-term MSW management and planning. They could provide more information as well as enable managers to make better decisions to identify desired MSW management policies in association with minimized cost under uncertainty.

  8. [Application of GIS and integrated mathematic models on estimating forest land wood productiveness and solar energy use efficiency].

    PubMed

    Xing, Shihe; Lin, Dexi; Shen, Jinquan; Cao, Rongbin

    2005-10-01

    Based on the meteorological elements observation and mountain soil survey in Fujian Province, this paper approached the application of geographic information system (GIS) and integrated mathematic models on estimating the grid wood productiveness and solar energy use efficiency (SEUE) of regional forest land. The results showed that there was a significant quadratic correlation of annual mean temperature, precipitation and total solar radiation energy(TSRE) with longitude, latitude and altitude, and their multiple correlation coefficients ranged from 0.692 to 0.981. The regional annual mean TSRE, temperature and precipitation could be well estimated by GIS and integrated models of quadratic tendency curve, and linear, quadratic and quartic inverse distance weighted interpolation. These annual means estimated by the models did not differ greatly from observed data, and the t test values were 1.29, 0.12 and 0.06, respectively. The grid wood productiveness and SEUE of regional forest land in Fujian could also be well estimated with the aid of GIS and integrated models, which ranged from 2.32 m3 x hm(-2) yr(-1) to 18.61 m3 x hm(-2) yr(-1) and from 0.11% to 0.91%, respectively.

  9. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  10. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery - part II: an illustrative example.

    PubMed

    Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo

    2007-11-22

    Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.

  11. A simple nonlinear model for the return to isotropy in turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, Sutanu; Speziale, Charles G.

    1990-01-01

    A quadratic nonlinear generalization of the linear Rotta model for the slow pressure-strain correlation of turbulence is developed. The model is shown to satisfy realizability and to give rise to no stable nontrivial equilibrium solutions for the anisotropy tensor in the case of vanishing mean velocity gradients. The absence of stable nontrivial equilibrium solutions is a necessary condition to ensure that the model predicts a return to isotropy for all relaxational turbulent flows. Both the phase space dynamics and the temporal behavior of the model are examined and compared against experimental data for the return to isotropy problem. It is demonstrated that the quadratic model successfully captures the experimental trends which clearly exhibit nonlinear behavior. Direct comparisons are also made with the predictions of the Rotta model and the Lumley model.

  12. Quadratic integrand double-hybrid made spin-component-scaled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.

    2016-03-28

    We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

  13. Constraints on geothermal reservoir volume change calculations from InSAR surface displacements and injection and production data

    NASA Astrophysics Data System (ADS)

    Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez

    2017-04-01

    Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.

  14. Quadrat Data for Fermilab Prairie Plant Survey

    Science.gov Websites

    Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems

  15. Enhancement of docosahexaenoic acid production by Schizochytrium SW1 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nazir, Mohd Yusuf Mohd; Al-Shorgani, Najeeb Kaid Nasser; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-09-01

    In this study, three factors (fructose concentration, agitation speed and monosodium glutamate (MSG) concentration) were optimized to enhance DHA production by Schizochytrium SW1 using response surface methodology (RSM). Central composite design was applied as the experimental design and analysis of variance (ANOVA) was used to analyze the data. The experiments were conducted using 500 mL flask with 100 mL working volume at 30°C for 96 hours. ANOVA analysis revealed that the process was adequately represented significantly by the quadratic model (p<0.0001) and two of the factors namely agitation speed and MSG concentration significantly affect DHA production (p<0.005). Level of influence for each variable and quadratic polynomial equation were obtained for DHA production by multiple regression analyses. The estimated optimum conditions for maximizing DHA production by SW1 were 70 g/L fructose, 250 rpm agitation speed and 12 g/L MSG. Consequently, the quadratic model was validated by applying of the estimated optimum conditions, which confirmed the model validity and 52.86% of DHA was produced.

  16. Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Nickerson, J.

    1989-01-01

    The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.

  17. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffrin, Carleton James; Hijazi, Hassan L; Van Hentenryck, Pascal R

    Here this work revisits the Semidefine Programming (SDP) relaxation of the AC power flow equations in light of recent results illustrating the benefits of bounds propagation, valid inequalities, and the Convex Quadratic (QC) relaxation. By integrating all of these results into the SDP model a new hybrid relaxation is proposed, which combines the benefits from all of these recent works. This strengthened SDP formulation is evaluated on 71 AC Optimal Power Flow test cases from the NESTA archive and is shown to have an optimality gap of less than 1% on 63 cases. This new hybrid relaxation closes 50% ofmore » the open cases considered, leaving only 8 for future investigation.« less

  19. MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system

    PubMed Central

    Ruymgaart, A. Peter; Cardenas, Alfredo E.; Elber, Ron

    2011-01-01

    We report an optimized version of the molecular dynamics program MOIL that runs on a shared memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The model is of heterogeneous computing system on a single node with several cores sharing the same memory and a GPU. This is a typical laboratory tool, which provides excellent performance at minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long simulations energy conservation is critical due to the phenomenon known as “energy drift” in which energy errors accumulate linearly as a function of simulation time. To achieve long time dynamics with acceptable accuracy the drift must be particularly small. We identify several means of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double precision. Double precision summation of real-space non-bonded interactions improves energy conservation. In our best option, the energy drift using 1fs for a time step while constraining the distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU implementations require changes in programming models. We consider the use of a list of neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic interpolation with a smaller number of grid points is faster than linear lookup tables (with finer representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical speedups are about a factor of 10 compared to a single-core single-precision code. PMID:22328867

  20. A simple nonlinear model for the return to isotropy in turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, Sutanu; Speziale, Charles G.

    1989-01-01

    A quadratic nonlinear generalization of the linear Rotta model for the slow pressure-strain correlation of turbulence is developed. The model is shown to satisfy realizability and to give rise to no stable non-trivial equilibrium solutions for the anisotropy tensor in the case of vanishing mean velocity gradients. The absence of stable non-trivial equilibrium solutions is a necessary condition to ensure that the model predicts a return to isotropy for all relaxational turbulent flows. Both the phase space dynamics and the temporal behavior of the model are examined and compared against experimental data for the return to isotropy problem. It is demonstrated that the quadratic model successfully captures the experimental trends which clearly exhibit nonlinear behavior. Direct comparisons are also made with the predictions of the Rotta model and the Lumley model.

  1. Investigation of metrics to assess vascular flow modifications for diverter device designs using hydrodynamics and angiographic studies

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    Intracranial aneurysm treatment with flow diverters (FD) is a new minimally invasive approach, recently approved for use in human patients. Attempts to correlate the flow reduction observed in angiograms with a parameter related to the FD structure have not been totally successful. To find the proper parameter, we investigated four porous-media flow models. The models describing the relation between the pressure drop and flow velocity that are investigated include the capillary theory linear model (CTLM), the drag force linear model (DFLM), the simple quadratic model (SQM) and the modified quadratic model (MQM). Proportionality parameters are referred to as permeability for the linear models and resistance for the quadratic ones. A two stage experiment was performed. First, we verified flow model validity by placing six different stainless-steel meshes, resembling FD structures, in known flow conditions. The best flow model was used for the second stage, where six different FD's were inserted in aneurysm phantoms and flow modification was estimated using angiographically derived time density curves (TDC). Finally, TDC peak variation was compared with the FD parameter. Model validity experiments indicated errors of: 70% for the linear models, 26% for the SQM and 7% for the MQM. The resistance calculated according to the MQM model correlated well with the contrast flow reduction. Results indicate that resistance calculated according to MQM is appropriate to characterize the FD and could explain the flow modification observed in angiograms.

  2. Bi-quadratic interlayer exchange coupling in Co{sub 2}MnSi/Ag/Co{sub 2}MnSi pseudo spin-valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goripati, Hari S.; Hono, K.; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047

    2011-12-15

    Bi-quadratic interlayer exchange coupling is found below 100 K in a Co{sub 2}MnSi/Ag/Co{sub 2}MnSi current-perpendicular-to-plane pseudo spin valves. The bi-quadratic coupling constant J{sub 2} was estimated to be {approx}-0.30 erg/cm{sup 2} at 5 K and the strong temperature dependence of the coupling strength points its likely origin to the ''loose spin'' model. Application of current of {approx}2 x 10{sup 7} A/cm{sup 2} below 100 K leads to an increase in the magnetoresistance (MR), indicating current induced antiparallel alignment of the two magnetic layers. These results strongly suggest that the presence of the bi-quadratic interlayer exchange coupling causes the reduction ofmore » the magnetoresistance at low temperature and illustrates the importance of understanding the influence of interlayer exchange coupling on magnetization configuration in magnetic nanostructures.« less

  3. Large radius of curvature measurement based on virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer.

    PubMed

    Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun

    2016-06-10

    We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.

  4. Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies

    NASA Astrophysics Data System (ADS)

    Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie

    2018-05-01

    In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .

  5. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  6. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    PubMed

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  7. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  8. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  9. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  10. A new formalism for modelling parameters α and β of the linear-quadratic model of cell survival for hadron therapy

    NASA Astrophysics Data System (ADS)

    Vassiliev, Oleg N.; Grosshans, David R.; Mohan, Radhe

    2017-10-01

    We propose a new formalism for calculating parameters α and β of the linear-quadratic model of cell survival. This formalism, primarily intended for calculating relative biological effectiveness (RBE) for treatment planning in hadron therapy, is based on a recently proposed microdosimetric revision of the single-target multi-hit model. The main advantage of our formalism is that it reliably produces α and β that have correct general properties with respect to their dependence on physical properties of the beam, including the asymptotic behavior for very low and high linear energy transfer (LET) beams. For example, in the case of monoenergetic beams, our formalism predicts that, as a function of LET, (a) α has a maximum and (b) the α/β ratio increases monotonically with increasing LET. No prior models reviewed in this study predict both properties (a) and (b) correctly, and therefore, these prior models are valid only within a limited LET range. We first present our formalism in a general form, for polyenergetic beams. A significant new result in this general case is that parameter β is represented as an average over the joint distribution of energies E 1 and E 2 of two particles in the beam. This result is consistent with the role of the quadratic term in the linear-quadratic model. It accounts for the two-track mechanism of cell kill, in which two particles, one after another, damage the same site in the cell nucleus. We then present simplified versions of the formalism, and discuss predicted properties of α and β. Finally, to demonstrate consistency of our formalism with experimental data, we apply it to fit two sets of experimental data: (1) α for heavy ions, covering a broad range of LETs, and (2) β for protons. In both cases, good agreement is achieved.

  11. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    PubMed

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  12. Solution of quadratic matrix equations for free vibration analysis of structures.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  13. VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM

    NASA Technical Reports Server (NTRS)

    White, J. S.

    1994-01-01

    VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.

  14. Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model

    NASA Astrophysics Data System (ADS)

    Deng, Guang-Feng; Lin, Woo-Tsong

    This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.

  15. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints

    PubMed Central

    2013-01-01

    Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729

  17. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.

    PubMed

    Ren, Shaogang; Zeng, Bo; Qian, Xiaoning

    2013-01-01

    Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.

  18. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  19. High-Speed Numeric Function Generator Using Piecewise Quadratic Approximations

    DTIC Science & Technology

    2007-09-01

    application; User specifies the fuction to approxiamte. % % This programs turns the function provided into an inline function... PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1> <secondary file 2> #CHIP2 = <file to compile to user chip

  20. The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao; Wu, Wenwang; Fang, Daining

    2018-07-01

    A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.

  1. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  2. Development of Quadratic Programming Algorithm Based on Interior Point Method with Estimation Mechanism of Active Constraints

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka

    Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.

  3. Two-Dimensional Signal Processing and Storage and Theory and Applications of Electromagnetic Measurements.

    DTIC Science & Technology

    1987-01-01

    the results of that problem to be applied to deblurring . Four procedures for finding the maximum entropy solution have been developed and have becn...distortion operator h, converges quadratically to an impulse and, as a result, the restoration x, converges quadratically to x. Therefore, when the standard...is concerned with the modeling of a * signal as the sum of sinusoids in white noise where the sinusoidal frequencies are varying as a function of time

  4. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  5. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method

    NASA Astrophysics Data System (ADS)

    Hong, H.; Zhu, A. X.

    2017-12-01

    Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic discriminant model (0.864), followed by logistic model tree (0.832), and weight-of-evidence (0.819). In general, the landslide maps can be applied for land use planning and management in the Anfu area.

  6. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  7. Sociophysics of sexism: normal and anomalous petrie multipliers

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-07-01

    A recent mathematical model by Karen Petrie explains how sexism towards women can arise in organizations where male and female are equally sexist. Indeed, the Petrie model predicts that such sexism will emerge whenever there is a male majority, and quantifies this majority bias by the ‘Petrie multiplier’: the square of the male/female ratio. In this paper—emulating the shift from ‘normal’ to ‘anomalous’ diffusion—we generalize the Petrie model to a stochastic Poisson model that accommodates heterogeneously sexist men and woman, and that extends the ‘normal’ quadratic Petrie multiplier to ‘anomalous’ non-quadratic multipliers. The Petrie multipliers span a full spectrum of behaviors which we classify into four universal types. A variation of the stochastic Poisson model and its Petrie multipliers is further applied to the context of cyber warfare.

  8. Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter

    PubMed Central

    Cai, Shaokun; Zhang, Kaidong; Wu, Meiping; Huang, Yangming

    2012-01-01

    Accelerometers are one of the most important sensors in a strapdown airborne gravimeter. The accelerometer's drift determines the long-term accuracy of the strapdown inertial navigation system (SINS), which is the primary and most critical component of the strapdown airborne gravimeter. A long-term stability test lasting 104 days was conducted to determine the characteristics of the strapdown airborne gravimeter's long-term drift. This stability test was based on the first set of strapdown airborne gravimeters built in China, the SGA-WZ. The test results reveal a quadratic drift in the strapdown airborne gravimeter data. A drift model was developed using the static data in the two end sections, and then this model was used to correct the test data. After compensating for the drift, the drift effect improved from 70 mGal to 3.46 mGal with a standard deviation of 0.63 mGal. The quadratic curve better reflects the drift's real characteristics. In comparison with other methodologies, modelling the drift as a quadratic curve was shown to be more appropriate. Furthermore, this method allows the drift to be adjusted throughout the course of the entire campaign. PMID:23112647

  9. Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin

    NASA Astrophysics Data System (ADS)

    Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas

    2016-05-01

    In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.

  10. Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Leyland, Jane

    2014-01-01

    In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.

  11. SCARE: A post-processor program to MSC/NASTRAN for the reliability analysis of structural ceramic components

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.

    1985-01-01

    A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  12. NOLIN: A nonlinear laminate analysis program

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.

    1975-01-01

    A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.

  13. A Sequential Linear Quadratic Approach for Constrained Nonlinear Optimal Control with Adaptive Time Discretization and Application to Higher Elevation Mars Landing Problem

    NASA Astrophysics Data System (ADS)

    Sandhu, Amit

    A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.

  14. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  15. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  16. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  17. Commande optimale minimisant la consommation d'energie d'un drone utilise comme relai de communication

    NASA Astrophysics Data System (ADS)

    Mechirgui, Monia

    The purpose of this project is to implement an optimal control regulator, particularly the linear quadratic regulator in order to control the position of an unmanned aerial vehicle known as a quadrotor. This type of UAV has a symmetrical and simple structure. Thus, its control is relatively easy compared to conventional helicopters. Optimal control can be proven to be an ideal controller to reconcile between the tracking performance and energy consumption. In practice, the linearity requirements are not met, but some elaborations of the linear quadratic regulator have been used in many nonlinear applications with good results. The linear quadratic controller used in this thesis is presented in two forms: simple and adapted to the state of charge of the battery. Based on the traditional structure of the linear quadratic regulator, we introduced a new criterion which relies on the state of charge of the battery, in order to optimize energy consumption. This command is intended to be used to monitor and maintain the desired trajectory during several maneuvers while minimizing energy consumption. Both simple and adapted, linear quadratic controller are implemented in Simulink in discrete time. The model simulates the dynamics and control of a quadrotor. Performance and stability of the system are analyzed with several tests, from the simply hover to the complex trajectories in closed loop.

  18. New Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Cai, Haiying

    In this thesis we discuss several extensons of the standard model, with an emphasis on the hierarchy problem. The hierachy problem related to the Higgs boson mass is a strong indication of new physics beyond the Standard Model. In the literature, several mechanisms, e.g. , supersymmetry (SUSY), the little Higgs and extra dimensions, are proposed to explain why the Higgs mass can be stabilized to the electroweak scale. In the Standard Model, the largest quadratically divergent contribution to the Higgs mass-squared comes from the top quark loop. We consider a few novel possibilities on how this contribution is cancelled. In the standard SUSY scenario, the quadratic divergence from the fermion loops is cancelled by the scalar superpartners and the SUSY breaking scale determines the masses of the scalars. We propose a new SUSY model, where the superpartner of the top quark is spin-1 rather than spin-0. In little Higgs theories, the Higgs field is realized as a psudo goldstone boson in a nonlinear sigma model. The smallness of its mass is protected by the global symmetry. As a variation, we put the little Higgs into an extra dimensional model where the quadratically divergent top loop contribution to the Higgs mass is cancelled by an uncolored heavy "top quirk" charged under a different SU(3) gauge group. Finally, we consider a supersymmetric warped extra dimensional model where the superpartners have continuum mass spectra. We use the holographic boundary action to study how a mass gap can arise to separate the zero modes from continuum modes. Such extensions of the Standard Model have novel signatures at the Large Hadron Collider.

  19. A Centered Projective Algorithm for Linear Programming

    DTIC Science & Technology

    1988-02-01

    zx/l to (PA Karmarkar’s algorithm iterates this procedure. An alternative method, the so-called affine variant (first proposed by Dikin [6] in 1967...trajectories, II. Legendre transform coordinates . central trajectories," manuscripts, to appear in Transactions of the American [6] I.I. Dikin ...34Iterative solution of problems of linear and quadratic programming," Soviet Mathematics Dokladv 8 (1967), 674-675. [7] I.I. Dikin , "On the speed of an

  20. Probability, Problem Solving, and "The Price is Right."

    ERIC Educational Resources Information Center

    Wood, Eric

    1992-01-01

    This article discusses the analysis of a decision-making process faced by contestants on the television game show "The Price is Right". The included analyses of the original and related problems concern pattern searching, inductive reasoning, quadratic functions, and graphing. Computer simulation programs in BASIC and tables of…

  1. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-04-29

    can be converted to a quadratic unconstrained binary optimization ( QUBO ) problem that uses 0/1-valued variables, and so they are often used...Frontiers in Physics, 2:5 (12 Feb 2014). [7] “Programming with QUBOs ,” (instructional document) D-Wave: The Quantum Computing Company, 2013. [8

  2. A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem

    DTIC Science & Technology

    1990-09-01

    Electr6nica e Inform’itica Industrial E.T.S. Ingenieros Industriales Universidad Polit6cnica, Madrid Technical Report SOL 90-12 September 1990 -Y...MURRAY* AND FRANCISCO J. PRIETOt *Systems Optimization Laboratory Department of Operations Research Stanford University tDept. de Automitica, Ingenieria

  3. NASA standard: Trend analysis techniques

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.

  4. Optimization Models for Scheduling of Jobs

    PubMed Central

    Indika, S. H. Sathish; Shier, Douglas R.

    2006-01-01

    This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921

  5. The role of modern control theory in the design of controls for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    The development, applications, and current research in modern control theory (MCT) are reviewed, noting the importance for fuel-efficient operation of turbines with variable inlet guide vanes, compressor stators, and exhaust nozzle area. The evolution of multivariable propulsion control design is examined, noting a basis in a matrix formulation of the differential equations defining the process, leading to state space formulations. Reports and papers which appeared from 1970-1982 which dealt with problems in MCT applications to turbine engine control design are outlined, including works on linear quadratic regulator methods, frequency domain methods, identification, estimation, and model reduction, detection, isolation, and accommodation, and state space control, adaptive control, and optimization approaches. Finally, NASA programs in frequency domain design, sensor failure detection, computer-aided control design, and plant modeling are explored

  6. Pinhole occulter experiment

    NASA Technical Reports Server (NTRS)

    Ring, Jeff; Pflug, John

    1987-01-01

    Viewgraphs and charts from a briefing summarize the accomplishments, results, conclusions, and recommendations of a feasibility study using the Pinhole Occulter Facility (POF). Accomplishments for 1986 include: (1) improved IPS Gimbal Model; (2) improved Crew Motion Disturbance Model; (3) use of existing shuttle on-orbit simulation to study the effects of orbiter attitude deadband size on POF performance; (4) increased understanding of maximum performance expected from current actuator/sensor set; (5) use of TREETOPS nonlinear time domain program to obtain system dynamics describing the complex multibody flexible structures; (6) use of HONEY-X design tool to design and evaluate multivariable compensator for stability, robustness, and performance; (7) application of state-of-the-art compensator design methodology Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR); and (8) examination of tolerance required on knowledge of the POF boom flexible mode frequencies to insure stability, using structure uncertainty analysis.

  7. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.

  8. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    NASA Astrophysics Data System (ADS)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  9. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  10. Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise

    NASA Astrophysics Data System (ADS)

    Ren, Ruibin; Luo, Maokang; Deng, Ke

    2017-02-01

    Stochastic resonance of a fractional oscillator subject to an external periodic field as well as to multiplicative and additive noise is investigated. The fluctuations of the eigenfrequency are modeled as the quadratic function of the trichotomous noise. Applying the moment equation method and Shapiro-Loginov formula, we obtain the exact expression of the complex susceptibility and related stability criteria. Theoretical analysis and numerical simulations indicate that the spectral amplification (SPA) depends non-monotonicly both on the external driving frequency and the parameters of the quadratic noise. In addition, the investigations into fractional stochastic systems have suggested that both the noise parameters and the memory effect can induce the phenomenon of stochastic multi-resonance (SMR), which is previously reported and believed to be absent in the case of the multiplicative noise with only a linear term.

  11. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  12. The cortisol reactivity threshold model: Direction of trait rumination and cortisol reactivity association varies with stressor severity.

    PubMed

    Vrshek-Schallhorn, Suzanne; Avery, Bradley M; Ditcheva, Maria; Sapuram, Vaibhav R

    2018-06-01

    Various internalizing risk factors predict, in separate studies, both augmented and reduced cortisol responding to lab-induced stress. Stressor severity appears key: We tested whether heightened trait-like internalizing risk (here, trait rumination) predicts heightened cortisol reactivity under modest objective stress, but conversely predicts reduced reactivity under more robust objective stress. Thus, we hypothesized that trait rumination would interact with a curvilinear (quadratic) function of stress severity to predict cortisol reactivity. Evidence comes from 85 currently non-depressed emerging adults who completed either a non-stressful control protocol (n = 29), an intermediate difficulty Trier Social Stress Test (TSST; n = 26), or a robustly stressful negative evaluative TSST (n = 30). Latent growth curve models evaluated relationships between trait rumination and linear and quadratic effects of stressor severity on the change in cortisol and negative affect over time. Among other findings, a significant Trait Rumination x Quadratic Stress Severity interaction effect for cortisol's Quadratic Trend of Time (i.e., reactivity, B = .125, p = .017) supported the hypothesis. Rumination predicted greater cortisol reactivity to intermediate stress (r p  = .400, p = .043), but blunted reactivity to more robust negative evaluative stress (r p  = -0.379, p = 0.039). Contrasting hypotheses, negative affective reactivity increased independently of rumination as stressor severity increased (B = .453, p = 0.044). The direction of the relationship between an internalizing risk factor (trait rumination) and cortisol reactivity varies as a function of stressor severity. We propose the Cortisol Reactivity Threshold Model, which may help reconcile several divergent reactivity literatures and has implications for internalizing psychopathology, particularly depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    NASA Astrophysics Data System (ADS)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.

  14. Parametric optimal control of uncertain systems under an optimistic value criterion

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhu, Yuanguo

    2018-01-01

    It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.

  15. A new accurate quadratic equation model for isothermal gas chromatography and its comparison with the linear model

    PubMed Central

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489

  16. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  17. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  18. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    PubMed

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  19. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  20. A comparison of two gears for quantifying abundance of lotic-dwelling crayfish

    USGS Publications Warehouse

    Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.

    2014-01-01

    Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.

  1. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  2. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.; Watson, Layne T.

    1998-01-01

    Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.

  3. EVALUATION OF A MEASUREMENT METHOD FOR FOREST VEGETATION IN A LARGE-SCALE ECOLOGICAL SURVEY

    EPA Science Inventory

    We evaluate a field method for determining species richness and canopy cover of vascular plants for the Forest Health Monitoring Program (FHM), an ecological survey of U.S. forests. Measurements are taken within 12 1-m2 quadrats on 1/15 ha plots in FHM. Species richness and cover...

  4. Primal Barrier Methods for Linear Programming

    DTIC Science & Technology

    1989-06-01

    A Theoretical Bound Concerning the difficulties introduced by an ill-conditioned H- 1, Dikin [Dik67] and Stewart [Stew87] show for a full-rank A...Dik67] I. I. Dikin (1967). Iterative solution of problems of linear and quadratic pro- gramming, Doklady Akademii Nauk SSSR, Tom 174, No. 4. [Fia79] A. V

  5. Interior-Point Methods for Linear Programming: A Challenge to the Simplex Method

    DTIC Science & Technology

    1988-07-01

    subsequently found that the method was first proposed by Dikin in 1967 [6]. Search directions are generated by the same system (5). Any hint of quadratic...1982). Inexact Newton methods, SIAM Journal on Numerical Analysis 19, 400-408. [6] I. I. Dikin (1967). Iterative solution of problems of linear and

  6. Optimization of a bundle divertor for FED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  7. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    ERIC Educational Resources Information Center

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  8. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  9. Adaptive dynamic programming for discrete-time linear quadratic regulation based on multirate generalised policy iteration

    NASA Astrophysics Data System (ADS)

    Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho

    2018-06-01

    In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.

  10. A path following algorithm for the graph matching problem.

    PubMed

    Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe

    2009-12-01

    We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.

  11. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.

  12. Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graber, P. Jameson, E-mail: jameson-graber@baylor.edu

    We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

  13. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  14. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    NASA Astrophysics Data System (ADS)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  15. VTOL controls for shipboard landing. M.S.Thesis

    NASA Technical Reports Server (NTRS)

    Mcmuldroch, C. G.

    1979-01-01

    The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.

  16. An empirical analysis of the quantitative effect of data when fitting quadratic and cubic polynomials

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1974-01-01

    A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.

  17. An EOQ model of time quadratic and inventory dependent demand for deteriorated items with partially backlogged shortages under trade credit

    NASA Astrophysics Data System (ADS)

    Singh, Pushpinder; Mishra, Nitin Kumar; Singh, Vikramjeet; Saxena, Seema

    2017-07-01

    In this paper a single buyer, single supplier inventory model with time quadratic and stock dependent demand for a finite planning horizon has been studied. Single deteriorating item which suffers shortage, with partial backlogging and some lost sales is considered. Model is divided into two scenarios, one with non permissible delay in payment and other with permissible delay in payment. Latter is called, centralized system, where supplier offers trade credit to retailer. In the centralized system cost saving is shared amongst the two. The objective is to study the difference in minimum costs borne by retailer and supplier, under two scenarios including the above mentioned parameters. To obtain optimal solution of the problem the model is solved analytically. Numerical example and a comparative study are then discussed supported by sensitivity analysis of each parameter.

  18. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  19. Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Valid Inequalities

    DOE PAGES

    Coffrin, Carleton James; Hijazi, Hassan L; Van Hentenryck, Pascal R

    2016-12-01

    Here this work revisits the Semidefine Programming (SDP) relaxation of the AC power flow equations in light of recent results illustrating the benefits of bounds propagation, valid inequalities, and the Convex Quadratic (QC) relaxation. By integrating all of these results into the SDP model a new hybrid relaxation is proposed, which combines the benefits from all of these recent works. This strengthened SDP formulation is evaluated on 71 AC Optimal Power Flow test cases from the NESTA archive and is shown to have an optimality gap of less than 1% on 63 cases. This new hybrid relaxation closes 50% ofmore » the open cases considered, leaving only 8 for future investigation.« less

  20. About the Atlantic RTOFS

    Science.gov Websites

    Quadratic bottom friction coefficient: 0.003 Bottom boundary layer thickness: 10 m EMC/MMAB Information . Provide seamless boundary and initial conditions to regional ocean physical and biogeochemical models RTOFS. Their report is available here (pdf). Model Configuration The dynamical model is HYCOM. The model

  1. Competition between Chaotic and Nonchaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev Model.

    PubMed

    Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei

    2017-11-17

    The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.

  2. Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Nunno, Giulia, E-mail: giulian@math.uio.no; Khedher, Asma, E-mail: asma.khedher@tum.de; Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be

    We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure withmore » infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.« less

  3. Dynamic Positioning Capability Analysis for Marine Vessels Based on A DPCap Polar Plot Program

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Jian-min; Xu, Sheng-wen

    2018-03-01

    Dynamic positioning capability (DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system. DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot (DPCPP) was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.

  4. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  5. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  6. An international age- and gender-controlled model for the Spinal Cord Injury Ability Realization Measurement Index (SCI-ARMI).

    PubMed

    Scivoletto, Giorgio; Glass, Clive; Anderson, Kim D; Galili, Tal; Benjamin, Yoav; Front, Lilach; Aidinoff, Elena; Bluvshtein, Vadim; Itzkovich, Malka; Aito, Sergio; Baroncini, Ilaria; Benito-Penalva, Jesùs; Castellano, Simona; Osman, Aheed; Silva, Pedro; Catz, Amiram

    2015-01-01

    Background. A quadratic formula of the Spinal Cord Injury Ability Realization Measurement Index (SCI-ARMI) has previously been published. This formula was based on a model of Spinal Cord Independence Measure (SCIM95), the 95th percentile of the SCIM III values, which correspond with the American Spinal Injury Association Motor Scores (AMS) of SCI patients. Objective. To further develop the original formula. Setting. Spinal cord injury centers from 6 countries and the Statistical Laboratory, Tel-Aviv University, Israel. Methods. SCIM95 of 661 SCI patients was modeled, using a quantile regression with or without adjustment for age and gender, to calculate SCI-ARMI values. SCI-ARMI gain during rehabilitation and its correlations were examined. Results. A new quadratic SCIM95 model was created. This resembled the previously published model, which yielded similar SCIM95 values in all the countries, after adjustment for age and gender. Without this adjustment, however, only 86% of the non-Israeli SCIM III observations were lower than those SCIM95 values (P < .0001). Adding the variables age and gender to the new model affected the SCIM95 value significantly (P < .04). Adding country information did not add a significant effect (P > .1). SCI-ARMI gain was positive (38.8 ± 22 points, P < .0001) and correlated weakly with admission age and AMS. Conclusions. The original quadratic SCI-ARMI formula is valid for an international population after adjustment for age and gender. The new formula considers more factors that affect functional ability following SCI. © The Author(s) 2014.

  7. Linkages between Snow Cover Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey; Tomaszewska, Monika; Kelgenbaeva, Kamilya

    2017-04-01

    In the highlands of Kyrgyzstan, vertical transhumance is the foundation of montane agropastoralism. Terrain attributes, such as elevation, slope, and aspect, affect snow cover seasonality, which is a key influence on the timing of plant growth and forage availability. Our study areas include the highland pastures in Central Tien Shan mountains, specifically in the rayons of Naryn and At-Bashy in Naryn oblast, and Alay and Chong-Alay rayons in Osh oblast. To explore the linkages between snow cover seasonality and land surface phenology as modulated by terrain and variations in thermal time, we use 16 years (2001-2016) of Landsat surface reflectance data at 30 m resolution with MODIS land surface temperature and snow cover products at 1 km and 500 m resolution, respectively, and two digital elevation models, SRTM and ASTER GDEM. We model snow cover seasonality using frost degree-days and land surface phenology using growing degree-days as quadratic functions of thermal time: a convex quadratic (CxQ) model for land surface phenology and a concave quadratic (CvQ) model for snow cover seasonality. From the fitted parameter coefficients, we calculated phenometrics, including "peak height" and "thermal time to peak" for the CxQ models and "trough depth" and "thermal time to trough" for the CvQ models. We explore how these phenometrics change as a function of elevation and slope-aspect interactions and due to interannual variability. Further, we examine how snow cover duration and timing affects the subsequent peak height and thermal time to peak in wetter, drier, and normal years.

  8. Biological effects and equivalent doses in radiotherapy: A software solution

    PubMed Central

    Voyant, Cyril; Julian, Daniel; Roustit, Rudy; Biffi, Katia; Lantieri, Céline

    2013-01-01

    Background The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding delivered doses or any future prescriptions relating to treatment changes. Aim We, therefore, propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). Materials and methods The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. Results and conclusions The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to an equivalent dose computed using standard calculators in seven French radiotherapy centers. PMID:24936319

  9. Microgravity vibration isolation: Optimal preview and feedback control

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.

    1992-01-01

    In order to achieve adequate low-frequency vibration isolation for certain space experiments an active control is needed, due to inherent passive-isolator limitations. Proposed here are five possible state-space models for a one-dimensional vibration isolation system with a quadratic performance index. The five models are subsets of a general set of nonhomogeneous state space equations which includes disturbance terms. An optimal control is determined, using a differential equations approach, for this class of problems. This control is expressed in terms of constant, Linear Quadratic Regulator (LQR) feedback gains and constant feedforward (preview) gains. The gains can be easily determined numerically. They result in a robust controller and offers substantial improvements over a control that uses standard LQR feedback alone.

  10. Computation and analysis for a constrained entropy optimization problem in finance

    NASA Astrophysics Data System (ADS)

    He, Changhong; Coleman, Thomas F.; Li, Yuying

    2008-12-01

    In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.

  11. Implicit Wiener series analysis of epileptic seizure recordings.

    PubMed

    Barbero, Alvaro; Franz, Matthias; van Drongelen, Wim; Dorronsoro, José R; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2009-01-01

    Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of non-linearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.

  12. NASA standard: Trend analysis techniques

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Standard presents descriptive and analytical techniques for NASA trend analysis applications. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. Use of this Standard is not mandatory; however, it should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, generally, quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this Standard. The document presents the basic ideas needed for qualitative and quantitative assessment of trends, together with relevant examples. A list of references provides additional sources of information.

  13. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  14. QSPIN: A High Level Java API for Quantum Computing Experimentation

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  15. Safety and control of accelerator-driven subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rief, H.; Takahashi, H.

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less

  16. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.

    PubMed

    Liu, Jiacai; Zhao, Wenjian

    2016-11-08

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.

  17. Simulation of superconducting tapes and coils with convex quadratic programming method

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Song, Yuntao; Wang, Lei; Liu, Xufeng

    2015-08-01

    Second-generation (2G) high-temperature superconducting coated conductors are playing an increasingly important role in power applications due to their large current density under high magnetic fields. In this paper, we conclude and explore the ability and possible potential of J formulation from the mathematical modeling point of view. An equivalent matrix form of J formulation has been presented and a relation between electromagnetic quantities and Karush-Kuhn-Tucker (KKT) conditions in optimization theory has been discovered. The use of the latest formulae to calculate inductance in a coil system and the primal-dual interior-point method algorithm is a trial to make the process of modeling stylized and build a bridge to commercial optimization solvers. Two different dependences of the critical current density on the magnetic field have been used in order to make a comparison with those published papers.

  18. Optimal cure cycle design of a resin-fiber composite laminate

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Sheen, Jeenson

    1987-01-01

    A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.

  19. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

    PubMed Central

    Araújo, Ricardo; Mateus, Octávio

    2015-01-01

    The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455

  20. Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the last of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. In this volume the solution of systems of linear and quadratic equations and inequalities in…

  1. Measuring Human Performance on Clustering Problems: Some Potential Objective Criteria and Experimental Research Opportunities

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2007-01-01

    The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…

  2. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  3. Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation.

    PubMed

    Ławryńczuk, Maciej

    2017-03-01

    This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. The Application of Various Nonlinear Models to Describe Academic Growth Trajectories: An Empirical Analysis Using Four-Wave Longitudinal Achievement Data from a Large Urban School District

    ERIC Educational Resources Information Center

    Shin, Tacksoo

    2012-01-01

    This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…

  5. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  6. Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line

    NASA Astrophysics Data System (ADS)

    Timings, Julian P.; Cole, David J.

    2012-06-01

    A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.

  7. A mixed-mode traffic assignment model with new time-flow impedance function

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Hua; Hu, Yu; Zou, Yuan-Yang

    2018-01-01

    Recently, with the wide adoption of electric vehicles, transportation network has shown different characteristics and been further developed. In this paper, we present a new time-flow impedance function, which may be more realistic than the existing time-flow impedance functions. Based on this new impedance function, we present an optimization model for a mixed-mode traffic network in which battery electric vehicles (BEVs) and gasoline vehicles (GVs) are chosen. We suggest two approaches to handle the model: One is to use the interior point (IP) algorithm and the other is to employ the sequential quadratic programming (SQP) algorithm. Three numerical examples are presented to illustrate the efficiency of these approaches. In particular, our numerical results show that more travelers prefer to choosing BEVs when the distance limit of BEVs is long enough and the unit operating cost of GVs is higher than that of BEVs, and the SQP algorithm is faster than the IP algorithm.

  8. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  9. Feed intake of sheep as affected by body weight, breed, sex, and feed composition.

    PubMed

    Lewis, R M; Emmans, G C

    2010-02-01

    The hypotheses tested were that genetic size-scaling for mature BW (A, kg) would reduce variation in intake between kinds of sheep and that quadratic polynomials on u = BW/A with zero intercept would provide good descriptions of the relationship between scaled intake (SI, g/A(0.73) d) and degree of maturity in BW (u) across feeds of differing quality. Both sexes of Suffolk sheep from 2 experimental lines (n = 225) and from 3 breed types (Suffolk, Scottish Blackface, and their cross; n = 149) were recorded weekly for ad libitum feed intake and BW; recording of intake was from weaning through, in some cases, near maturity. Six diets of different quality were fed ad libitum. The relationship between intake and BW on a given feed varied considerably between kinds of sheep. Much, but not all, of that variation was removed by genetic size-scaling. In males, the maximum value of SI was greater than in females (P = 0.07) and was greater in Suffolk than in Scottish Blackface, with the cross intermediate (P = 0.025); there was no difference between the 2 Suffolk lines used (P = 0.106). The quadratic polynomial model, through the origin, was compared with a split-line (spline) regression for describing how SI varied with u. For the spline model, the intercept was not different from zero in any case (P > 0.05). The values of u at which SI achieved its maximum value (u* and SI*) were calculated. Both models fit the data well; the quadratic was preferred because it predicted that SI* would be achieved within the range of the long-run data, as was observed. On a high quality feed, for the spline regression, u* varied little around 0.434 (SD = 0.020) for the 10 different kinds of sheep used. For the quadratic, the mean value of 0.643 (SD = 0.066) was more variable, but there were no consistent effects of kind of sheep. The values of u* and SI* estimated using the quadratic model varied among the 6 feeds: 0.643 and 78.5 on high quality; 0.760 and 79.6 on medium protein content; 0.859 and 73.3 on low protein content; 0.756 and 112 on a low energy content feed; 0.937 and 107 on ryegrass; and 1 (forced, as the fitted value of 1.11 was infeasible) and 135 on Lucerne. The value of u* tended to increase as feed digestibility decreased. We conclude that genetic size-scaling of intake is useful and that a quadratic polynomial with zero intercept provides a good description of the relationship between SI and u for different kinds of sheep on feeds of different quality. Up to u congruent with 0.45, intake was directly proportional to BW.

  10. Estimation of a Nonlinear Intervention Phase Trajectory for Multiple-Baseline Design Data

    ERIC Educational Resources Information Center

    Hembry, Ian; Bunuan, Rommel; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim

    2015-01-01

    A multilevel logistic model for estimating a nonlinear trajectory in a multiple-baseline design is introduced. The model is applied to data from a real multiple-baseline design study to demonstrate interpretation of relevant parameters. A simple change-in-levels (?"Levels") model and a model involving a quadratic function…

  11. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    NASA Astrophysics Data System (ADS)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.

  12. Elastic Model Transitions: a Hybrid Approach Utilizing Quadratic Inequality Constrained Least Squares (LSQI) and Direct Shape Mapping (DSM)

    NASA Technical Reports Server (NTRS)

    Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.

    2014-01-01

    A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.

  13. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  14. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  15. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION

    PubMed Central

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    2016-01-01

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864

  16. Quadratic Polynomial Regression using Serial Observation Processing:Implementation within DART

    NASA Astrophysics Data System (ADS)

    Hodyss, D.; Anderson, J. L.; Collins, N.; Campbell, W. F.; Reinecke, P. A.

    2017-12-01

    Many Ensemble-Based Kalman ltering (EBKF) algorithms process the observations serially. Serial observation processing views the data assimilation process as an iterative sequence of scalar update equations. What is useful about this data assimilation algorithm is that it has very low memory requirements and does not need complex methods to perform the typical high-dimensional inverse calculation of many other algorithms. Recently, the push has been towards the prediction, and therefore the assimilation of observations, for regions and phenomena for which high-resolution is required and/or highly nonlinear physical processes are operating. For these situations, a basic hypothesis is that the use of the EBKF is sub-optimal and performance gains could be achieved by accounting for aspects of the non-Gaussianty. To this end, we develop here a new component of the Data Assimilation Research Testbed [DART] to allow for a wide-variety of users to test this hypothesis. This new version of DART allows one to run several variants of the EBKF as well as several variants of the quadratic polynomial lter using the same forecast model and observations. Dierences between the results of the two systems will then highlight the degree of non-Gaussianity in the system being examined. We will illustrate in this work the differences between the performance of linear versus quadratic polynomial regression in a hierarchy of models from Lorenz-63 to a simple general circulation model.

  17. Estimation of stature from sternum - Exploring the quadratic models.

    PubMed

    Saraf, Ashish; Kanchan, Tanuj; Krishan, Kewal; Ateriya, Navneet; Setia, Puneet

    2018-04-14

    Identification of the dead is significant in examination of unknown, decomposed and mutilated human remains. Establishing the biological profile is the central issue in such a scenario, and stature estimation remains one of the important criteria in this regard. The present study was undertaken to estimate stature from different parts of the sternum. A sample of 100 sterna was obtained from individuals during the medicolegal autopsies. Length of the deceased and various measurements of the sternum were measured. Student's t-test was performed to find the sex differences in stature and sternal measurements included in the study. Correlation between stature and sternal measurements were analysed using Karl Pearson's correlation, and linear and quadratic regression models were derived. All the measurements were found to be significantly larger in males than females. Stature correlated best with the combined length of sternum, among males (R = 0.894), females (R = 0.859), and for the total sample (R = 0.891). The study showed that the models derived for stature estimation from combined length of sternum are likely to give the most accurate estimates of stature in forensic case work when compared to manubrium and mesosternum. Accuracy of stature estimation further increased with quadratic models derived for the mesosternum among males and combined length of sternum among males and females when compared to linear regression models. Future studies in different geographical locations and a larger sample size are proposed to confirm the study observations. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Estimating population size with correlated sampling unit estimates

    Treesearch

    David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey

    2003-01-01

    Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark–recapture or distance sampling methods occur...

  19. Quadratic soliton self-reflection at a quadratically nonlinear interface

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  20. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  1. Bianchi type-I universe in Lyra manifold with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Şen, R.; Aygün, S.

    2017-02-01

    In this study, we have solved Einstein field equations for Bianchi type I universe model in Lyra manifold with quadratic equation of state (EoS) p = ap(t)2 - ρ(t). Where α ≠0 is an important constant. Cosmic pressure, density and displacement vector (β2) are related with α constant. In this study β2 is a decreasing function of time and behaves like a cosmological constant. These solutions agree with the studies of Halford, Pradhan and Singh, Aygün et al., Agarwal et al., Yadav and Haque as well as SN Ia observations.

  2. Observation of linear and quadratic magnetic field-dependence of magneto-photocurrents in InAs/GaSb superlattice

    PubMed Central

    2014-01-01

    We experimentally studied the magneto-photocurrents generated by direct interband transition in InAs/GaSb type II superlattice. By varying the magnetic field direction, we observed that an in-plane magnetic field induces a photocurrent linearly proportional to the magnetic field; however, a magnetic field tilted to the sample plane induces a photocurrent presenting quadratic magnetic field dependence. The magneto-photocurrents in both conditions are insensitive to the polarization state of the incident light. Theoretical models involving excitation, relaxation and Hall effect are utilized to explain the experimental results. PMID:24936166

  3. Exshall: A Turkel-Zwas explicit large time-step FORTRAN program for solving the shallow-water equations in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Navon, I. M.; Yu, Jian

    A FORTRAN computer program is presented and documented applying the Turkel-Zwas explicit large time-step scheme to a hemispheric barotropic model with constraint restoration of integral invariants of the shallow-water equations. We then proceed to detail the algorithms embodied in the code EXSHALL in this paper, particularly algorithms related to the efficiency and stability of T-Z scheme and the quadratic constraint restoration method which is based on a variational approach. In particular we provide details about the high-latitude filtering, Shapiro filtering, and Robert filtering algorithms used in the code. We explain in detail the various subroutines in the EXSHALL code with emphasis on algorithms implemented in the code and present the flowcharts of some major subroutines. Finally, we provide a visual example illustrating a 4-day run using real initial data, along with a sample printout and graphic isoline contours of the height field and velocity fields.

  4. Cylindrically symmetric cosmological model of the universe in modified gravity

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Vadrevu, Samhita

    2017-02-01

    In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.

  5. Gain scheduled linear quadratic control for quadcopter

    NASA Astrophysics Data System (ADS)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  6. Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical

    NASA Astrophysics Data System (ADS)

    Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.

    2015-05-01

    The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

  7. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  8. Linear versus quadratic portfolio optimization model with transaction cost

    NASA Astrophysics Data System (ADS)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  9. Quadratic semiparametric Von Mises calculus

    PubMed Central

    Robins, James; Li, Lingling; Tchetgen, Eric

    2009-01-01

    We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than n–1/2-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at n–1/2-rate. PMID:23087487

  10. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  11. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  12. Extracellular Neural Microstimulation May Activate Much Larger Regions than Expected by Simulations: A Combined Experimental and Modeling Study

    PubMed Central

    Joucla, Sébastien; Branchereau, Pascal; Cattaert, Daniel; Yvert, Blaise

    2012-01-01

    Electrical stimulation of the central nervous system has been widely used for decades for either fundamental research purposes or clinical treatment applications. Yet, very little is known regarding the spatial extent of an electrical stimulation. If pioneering experimental studies reported that activation threshold currents (TCs) increase with the square of the neuron-to-electrode distance over a few hundreds of microns, there is no evidence that this quadratic law remains valid for larger distances. Moreover, nowadays, numerical simulation approaches have supplanted experimental studies for estimating TCs. However, model predictions have not yet been validated directly with experiments within a common paradigm. Here, we present a direct comparison between experimental determination and modeling prediction of TCs up to distances of several millimeters. First, we combined patch-clamp recording and microelectrode array stimulation in whole embryonic mouse spinal cords to determine TCs. Experimental thresholds did not follow a quadratic law beyond 1 millimeter, but rather tended to remain constant for distances larger than 1 millimeter. We next built a combined finite element – compartment model of the same experimental paradigm to predict TCs. While theoretical TCs closely matched experimental TCs for distances <250 microns, they were highly overestimated for larger distances. This discrepancy remained even after modifications of the finite element model of the potential field, taking into account anisotropic, heterogeneous or dielectric properties of the tissue. In conclusion, these results show that quadratic evolution of TCs does not always hold for large distances between the electrode and the neuron and that classical models may underestimate volumes of tissue activated by electrical stimulation. PMID:22879886

  13. A dual two dimensional electronic portal imaging device transit dosimetry model based on an empirical quadratic formalism

    PubMed Central

    Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A

    2015-01-01

    Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867

  14. A new universal dynamic model to describe eating rate and cumulative intake curves123

    PubMed Central

    Paynter, Jonathan; Peterson, Courtney M; Heymsfield, Steven B

    2017-01-01

    Background: Attempts to model cumulative intake curves with quadratic functions have not simultaneously taken gustatory stimulation, satiation, and maximal food intake into account. Objective: Our aim was to develop a dynamic model for cumulative intake curves that captures gustatory stimulation, satiation, and maximal food intake. Design: We developed a first-principles model describing cumulative intake that universally describes gustatory stimulation, satiation, and maximal food intake using 3 key parameters: 1) the initial eating rate, 2) the effective duration of eating, and 3) the maximal food intake. These model parameters were estimated in a study (n = 49) where eating rates were deliberately changed. Baseline data was used to determine the quality of model's fit to data compared with the quadratic model. The 3 parameters were also calculated in a second study consisting of restrained and unrestrained eaters. Finally, we calculated when the gustatory stimulation phase is short or absent. Results: The mean sum squared error for the first-principles model was 337.1 ± 240.4 compared with 581.6 ± 563.5 for the quadratic model, or a 43% improvement in fit. Individual comparison demonstrated lower errors for 94% of the subjects. Both sex (P = 0.002) and eating duration (P = 0.002) were associated with the initial eating rate (adjusted R2 = 0.23). Sex was also associated (P = 0.03 and P = 0.012) with the effective eating duration and maximum food intake (adjusted R2 = 0.06 and 0.11). In participants directed to eat as much as they could compared with as much as they felt comfortable with, the maximal intake parameter was approximately double the amount. The model found that certain parameter regions resulted in both stimulation and satiation phases, whereas others only produced a satiation phase. Conclusions: The first-principles model better quantifies interindividual differences in food intake, shows how aspects of food intake differ across subpopulations, and can be applied to determine how eating behavior factors influence total food intake. PMID:28077377

  15. Coupling long and short term decisions in the design of urban water supply infrastructure for added reliability and flexibility

    NASA Astrophysics Data System (ADS)

    Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.

    2016-12-01

    The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.

  16. FASTER 3: A generalized-geometry Monte Carlo computer program for the transport of neutrons and gamma rays. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1970-01-01

    The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.

  17. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  18. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  19. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  20. On the interpretation of kernels - Computer simulation of responses to impulse pairs

    NASA Technical Reports Server (NTRS)

    Hung, G.; Stark, L.; Eykhoff, P.

    1983-01-01

    A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.

  1. Dynamic Geometry Software and Tracing Tangents in the Context of the Mean Value Theorem: Technique and Theory Production

    ERIC Educational Resources Information Center

    Martínez-Hernández, Cesar; Ulloa-Azpeitia, Ricardo

    2017-01-01

    Based on the theoretical elements of the instrumental approach to tool use known as Task-Technique-Theory (Artigue, 2002), this paper analyses and discusses the performance of graduate students enrolled in a Teacher Training program. The latter performance relates to tracing tangent lines to the curve of a quadratic function in Dynamic Geometry…

  2. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  3. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

    NASA Astrophysics Data System (ADS)

    Long, Kai; Wang, Xuan; Gu, Xianguang

    2017-09-01

    The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.

  4. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  5. A review of spatio-temporal modelling of quadrat count data with application to striga occurrence in a pearl millet field

    NASA Astrophysics Data System (ADS)

    Hess, Dale; van Lieshout, Marie-Colette; Payne, Bill; Stein, Alfred

    This paper describes how spatial statistical techniques may be used to analyse weed occurrence in tropical fields. Quadrat counts of weed numbers are available over a series of years, as well as data on explanatory variables, and the aim is to smooth the data and assess spatial and temporal trends. We review a range of models for correlated count data. As an illustration, we consider data on striga infestation of a 60 × 24 m 2 millet field in Niger collected from 1985 until 1991, modelled by independent Poisson counts and a prior auto regression term enforcing spatial coherence. The smoothed fields show the presence of a seed bank, the estimated model parameters indicate a decay in the striga numbers over time, as well as a clear correlation with the amount of rainfall in 15 consecutive days following the sowing date. Such results could contribute to precision agriculture as a guide to more cost-effective striga control strategies.

  6. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  7. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  8. Modelling the breeding of Aedes Albopictus species in an urban area in Pulau Pinang using polynomial regression

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.

  9. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  10. Kinematic parameters of internal waves of the second mode in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey

    2017-10-01

    Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  11. Analysis of Maneuvering Targets with Complex Motions by Two-Dimensional Product Modified Lv's Distribution for Quadratic Frequency Modulation Signals.

    PubMed

    Jing, Fulong; Jiao, Shuhong; Hou, Changbo; Si, Weijian; Wang, Yu

    2017-06-21

    For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM) signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF) and modified scaled Fourier transform (mSFT), an effective parameter estimation algorithm is proposed-referred to as the Two-Dimensional product modified Lv's distribution (2D-PMLVD)-for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT) and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.

  12. Hybrid BEM/empirical approach for scattering of correlated sources in rocket noise prediction

    NASA Astrophysics Data System (ADS)

    Barbarino, Mattia; Adamo, Francesco P.; Bianco, Davide; Bartoccini, Daniele

    2017-09-01

    Empirical models such as the Eldred standard model are commonly used for rocket noise prediction. Such models directly provide a definition of the Sound Pressure Level through the quadratic pressure term by uncorrelated sources. In this paper, an improvement of the Eldred Standard model has been formulated. This new formulation contains an explicit expression for the acoustic pressure of each noise source, in terms of amplitude and phase, in order to investigate the sources correlation effects and to propagate them through a wave equation. In particular, the correlation effects between adjacent and not-adjacent sources have been modeled and analyzed. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach that allows an evaluation of the scattering effects. In the framework of the European Space Agency funded program VECEP (VEga Consolidation and Evolution Programme), these models have been applied for the prediction of the aeroacoustics loads of the VEGA (Vettore Europeo di Generazione Avanzata - Advanced Generation European Carrier Rocket) launch vehicle at lift-off and the results have been compared with experimental data.

  13. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

    PubMed

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J; Bao, Forrest Sheng

    2016-04-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.

  14. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming

    PubMed Central

    Wu, Stephen Gang; Wang, Yuxuan; Jiang, Wu; Oyetunde, Tolutola; Yao, Ruilian; Zhang, Xuehong; Shimizu, Kazuyuki; Tang, Yinjie J.; Bao, Forrest Sheng

    2016-01-01

    13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species. PMID:27092947

  15. Generalized model of seismic pulse

    NASA Astrophysics Data System (ADS)

    Rabinovich, E. V.; Filipenko, N. Y.; Shefel, G. S.

    2018-05-01

    The paper presents data on a pulse model, suitable for generalizing models of known seismic pulses. It is shown that for each of the known models it is possible to obtain a very accurate quadratic approximation using the proposed model. For example, the fragment of a real seismic trace is approximated by a pulses set formed on the basis of the proposed model, with a high accuracy.

  16. Modeling growth from weaning to maturity in beef cattle breeds

    USDA-ARS?s Scientific Manuscript database

    To better understand growth trajectory and maturity differences between beef breeds, three models – Brody, spline, and quadratic – were fit to cow growth data, and resulting parameter estimates were evaluated for 3 breed categories – British, continental, and Brahman-influenced. The data were weight...

  17. Measurement of pediatric regional cerebral blood flow from 6 months to 15 years of age in a clinical population.

    PubMed

    Carsin-Vu, Aline; Corouge, Isabelle; Commowick, Olivier; Bouzillé, Guillaume; Barillot, Christian; Ferré, Jean-Christophe; Proisy, Maia

    2018-04-01

    To investigate changes in cerebral blood flow (CBF) in gray matter (GM) between 6 months and 15 years of age and to provide CBF values for the brain, GM, white matter (WM), hemispheres and lobes. Between 2013 and 2016, we retrospectively included all clinical MRI examinations with arterial spin labeling (ASL). We excluded subjects with a condition potentially affecting brain perfusion. For each subject, mean values of CBF in the brain, GM, WM, hemispheres and lobes were calculated. GM CBF was fitted using linear, quadratic and cubic polynomial regression against age. Regression models were compared with Akaike's information criterion (AIC), and Likelihood Ratio tests. 84 children were included (44 females/40 males). Mean CBF values were 64.2 ± 13.8 mL/100 g/min in GM, and 29.3 ± 10.0 mL/100 g/min in WM. The best-fit model of brain perfusion was the cubic polynomial function (AIC = 672.7, versus respectively AIC = 673.9 and AIC = 674.1 with the linear negative function and the quadratic polynomial function). A statistically significant difference between the tested models demonstrating the superiority of the quadratic (p = 0.18) or cubic polynomial model (p = 0.06), over the negative linear regression model was not found. No effect of general anesthesia (p = 0.34) or of gender (p = 0.16) was found. we provided values for ASL CBF in the brain, GM, WM, hemispheres, and lobes over a wide pediatric age range, approximately showing inverted U-shaped changes in GM perfusion over the course of childhood. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  19. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  20. Travelling waves for a Frenkel-Kontorova chain

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Schwetlick, Hartmut; Zimmer, Johannes

    2017-08-01

    In this article, the Frenkel-Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of heteroclinic waves-making a transition from one well of the on-site potential to another-is proved by means of a Schauder fixed point argument. The setting developed here is general enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site potential. It is shown that the method can also establish the existence of two-transition waves for a piecewise quadratic on-site potential.

  1. A Monte Carlo study of the spin-1 Blume-Emery-Griffiths phase diagrams within biquadratic exchange anisotropy

    NASA Astrophysics Data System (ADS)

    Dani, Ibtissam; Tahiri, Najim; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2014-08-01

    The effect of the bi-quadratic exchange coupling anisotropy on the phase diagram of the spin-1 Blume-Emery-Griffiths model on simple-cubic lattice is investigated using mean field theory (MFT) and Monte Carlo simulation (MC). It is found that the anisotropy of the biquadratic coupling favors the stability of the ferromagnetic phase. By decreasing the parallel and/or perpendicular bi-quadratic coupling, the ferrimagnetic and the antiquadrupolar phases broaden in contrast, the ferromagnetic and the disordered phases become narrow. The behavior of magnetization and quadrupolar moment as a function of temperature is also computed, especially in the ferrimagnetic phase.

  2. Frontogenesis driven by horizontally quadratic distributions of density

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1991-01-01

    Attention is given to the quadratic density distribution in a channel, which has been established by Simpson and Linden to be the simplest case of the horizontally nonlinear distribution of fluid density required for the production of frontogenesis. The porous-media and Boussinesq flow models are examined, and their evolution equations are reduced to one-dimensional systems. While both the porous-media and the inviscid/nondiffusive Boussinesq systems exhibit classic frontogenesis behavior, the viscous Boussinesq system exhibits a more complex behavior: boundary-layer effects force frontogenesis away from the lower boundary, and at late times the steepest density gradients are close to mid-channel.

  3. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    PubMed

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  4. Resolving puzzles of massive gravity with and without violation of Lorentz symmetry

    NASA Astrophysics Data System (ADS)

    Mironov, Andrei; Mironov, Sergey; Morozov, Alexei; Morozov, Andrey

    2010-06-01

    We perform a systematic study of various versions of massive gravity with and without violations of the Lorentz symmetry in arbitrary dimension. These theories are well known to possess very unusual properties, unfamiliar from studies of gauge and Lorentz invariant models. These peculiarities are caused by the mixing of familiar transverse fields with the revived longitudinal and pure gauge (Stueckelberg) fields and are all seen already in the quadratic approximation. They are all associated with non-trivial dispersion laws, which easily allow superluminal propagation, ghosts, tachyons and essential irrationalities. Moreover, the coefficients in front of emerging modes are small, which makes the theories essentially non-perturbative within a large Vainshtein radius. Attempts to get rid of unwanted degrees of freedom by giving them infinite masses lead to the DVZ discontinuities in the parameter (moduli) space, caused by non-permutability of different limits. Also, the condition mgh = ∞ can not be preserved already in non-trivial gravitational backgrounds and is unstable under any other perturbations of the linearized gravity. At the same time, an a priori healthy model of massive gravity in the quadratic approximation definitely exists: it is provided by any mass level of the Kaluza-Klein tower. It bypasses the problems because the gravity field is mixed with other fields, and this explains why such mixing helps in other models. At the same time, this can imply that the really healthy massive gravity can still require an infinite number of extra fields beyond the quadratic approximation.

  5. Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography

    NASA Astrophysics Data System (ADS)

    Xiang, Zhongbo; Li, Yanqiu

    2017-10-01

    Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.

  6. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score.

    PubMed

    Zhang, Zhongheng; Ji, Xuqing

    2016-10-13

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO 2 ) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO 2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO 2 and its interaction with other covariates were explored. A total of 199,125 PaO 2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO 2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO 2 on mortality risk was in quadratic form. There was significant interaction between PaO 2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO 2 on SOFA score was nonlinear. The study shows that the effect of PaO 2 on mortality risk is in quadratic function form, and there is significant interaction between PaO 2 and severity of illness.

  7. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  8. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less

  9. An Estimating Equations Approach for the LISCOMP Model.

    ERIC Educational Resources Information Center

    Reboussin, Beth A.; Liang, Kung-Lee

    1998-01-01

    A quadratic estimating equations approach for the LISCOMP model is proposed that only requires specification of the first two moments. This method is compared with a three-stage generalized least squares approach through a numerical study and application to a study of life events and neurotic illness. (SLD)

  10. The bilinear-biquadratic model on the complete graph

    NASA Astrophysics Data System (ADS)

    Jakab, Dávid; Szirmai, Gergely; Zimborás, Zoltán

    2018-03-01

    We study the spin-1 bilinear-biquadratic model on the complete graph of N sites, i.e. when each spin is interacting with every other spin with the same strength. Because of its complete permutation invariance, this Hamiltonian can be rewritten as the linear combination of the quadratic Casimir operators of \

  11. Estimating the quadratic mean diameter of fine woody debris for forest type groups of the United States

    Treesearch

    Christopher W. Woodall; Vicente J. Monleon

    2009-01-01

    The Forest Inventory and Analysis program of the Forest Service, U.S. Department of Agriculture conducts a national inventory of fine woody debris (FWD); however, the sampling protocols involve tallying only the number of FWD pieces by size class that intersect a sampling transect with no measure of actual size. The line intersect estimator used with those samples...

  12. A design procedure and handling quality criteria for lateral directional flight control systems

    NASA Technical Reports Server (NTRS)

    Stein, G.; Henke, A. H.

    1972-01-01

    A practical design procedure for aircraft augmentation systems is described based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments.

  13. Modelling Transformations of Quadratic Functions: A Proposal of Inductive Inquiry

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2013-01-01

    This paper presents a study about using scientific simulations to enhance the process of mathematical modelling. The main component of the study is a lesson whose major objective is to have students mathematise a trajectory of a projected object and then apply the model to formulate other trajectories by using the properties of function…

  14. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1990-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  15. Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1991-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  16. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  17. An Automatic and Robust Algorithm of Reestablishment of Digital Dental Occlusion

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Gateno, Jaime; Xiong, Zixiang; Zhou, Xiaobo; Wong, Stephen T. C.

    2017-01-01

    In the field of craniomaxillofacial (CMF) surgery, surgical planning can be performed on composite 3-D models that are generated by merging a computerized tomography scan with digital dental models. Digital dental models can be generated by scanning the surfaces of plaster dental models or dental impressions with a high-resolution laser scanner. During the planning process, one of the essential steps is to reestablish the dental occlusion. Unfortunately, this task is time-consuming and often inaccurate. This paper presents a new approach to automatically and efficiently reestablish dental occlusion. It includes two steps. The first step is to initially position the models based on dental curves and a point matching technique. The second step is to reposition the models to the final desired occlusion based on iterative surface-based minimum distance mapping with collision constraints. With linearization of rotation matrix, the alignment is modeled by solving quadratic programming. The simulation was completed on 12 sets of digital dental models. Two sets of dental models were partially edentulous, and another two sets have first premolar extractions for orthodontic treatment. Two validation methods were applied to the articulated models. The results show that using our method, the dental models can be successfully articulated with a small degree of deviations from the occlusion achieved with the gold-standard method. PMID:20529735

  18. FAST TRACK COMMUNICATION The Bel-Robinson tensor for topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2011-02-01

    We construct, and establish the (covariant) conservation of, a 4-index 'super stress tensor' for topologically massive gravity. Separately, we discuss its invalidity in quadratic curvature models and suggest a generalization.

  19. Verification of a VRF Heat Pump Computer Model in EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigusse, Bereket; Raustad, Richard

    2013-06-15

    This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-loadmore » performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.« less

  20. A study of a diffusive model of asset returns and an empirical analysis of financial markets

    NASA Astrophysics Data System (ADS)

    Alejandro Quinones, Angel Luis

    A diffusive model for market dynamics is studied and the predictions of the model are compared to real financial markets. The model has a non-constant diffusion coefficient which depends both on the asset value and the time. A general solution for the distribution of returns is obtained and shown to match the results of computer simulations for two simple cases, piecewise linear and quadratic diffusion. The effects of discreteness in the market dynamics on the model are also studied. For the quadratic diffusion case, a type of phase transition leading to fat tails is observed as the discrete distribution approaches the continuum limit. It is also found that the model captures some of the empirical stylized facts observed in real markets, including fat-tails and scaling behavior in the distribution of returns. An analysis of empirical data for the EUR/USD currency exchange rate and the S&P 500 index is performed. Both markets show time scaling behavior consistent with a value of 1/2 for the Hurst exponent. Finally, the results show that the distribution of returns for the two markets is well fitted by the model, and the corresponding empirical diffusion coefficients are determined.

  1. Determination and evaluation of gas holdup time with the quadratic equation model and comparison with nonlinear equation models for isothermal gas chromatography

    PubMed Central

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    Gas holdup time (tM) is a basic parameter in isothermal gas chromatography (GC). Determination and evaluation of tM and retention behaviors of n-alkanes under isothermal GC conditions have been extensively studied since the 1950s, but still remains unresolved. The difference equation (DE) model [J. Chromatogr. A 1260:215–223] reveals retention behaviors of n-alkanes excluding tM, while the quadratic equation (QE) model [J. Chromatogr. A 1260:224–231] including tM is suitable for applications. In the present study, tM values were calculated with the QE model, which is referred to as tMT, evaluated and compared with other three typical nonlinear models. The QE model gives an accurate estimation of tM in isothermal GC. The tMT values are highly accurate, stable, and easy to calculate and use. There is only one tMT value at each GC condition. The proper classification of tM values can clarify their disagreement and facilitate GC retention data standardization for which tMT values are promising reference tM values. PMID:23726077

  2. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  3. A New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Non-Alkaline Media.

    PubMed

    Yang, Jin-Dong; Chen, Bao-Long; Zhu, Xiao-Qing

    2018-06-11

    For a long time, it has been controversial that the three-step (e-H+-e) or two-step (e-H•) mechanism was used for the oxidations of NADH and its models by metal ions in non-alkaline media. The latter mechanism has been accepted by the majority of researchers. In this work, 1-benzyl-1,4-dihydronicotinamide (BNAH) and 1-phenyl-l,4-dihydronicotinamide (PNAH) are used as NADH models, and ferrocenium (Fc+) metal ion as an electron acceptor. The kinetics for oxidations of the NADH models by Fc+ in pure acetonitrile were monitored by using UV-Vis absorption and quadratic relationship between of kobs and the concentrations of NADH models were found for the first time. The rate expression of the reactions developed according to the three-step mechanism is quite consistent with the quadratic curves. The rate constants, thermodynamic driving forces and KIEs of each elementary step for the reactions were estimated. All the results supported the three-step mechanism. The intrinsic kinetic barriers of the proton transfer from BNAH+• to BNAH and the hydrogen atom transfer from BNAH+• to BNAH+• were estimated, the results showed that the former is 11.8 kcal/mol, and the latter is larger than 24.3 kcal/mol. It is the large intrinsic kinetic barrier of the hydrogen atom transfer that makes the reactions choose the three-step rather than two-step mechanism. Further investigation of the factors affecting the intrinsic kinetic barrier of chemical reactions indicated that the large intrinsic kinetic barrier of the hydrogen atom transfer originated from the repulsion of positive charges between BNAH+• and BNAH+•. The greatest contribution of this work is the discovery of the quadratic dependence of kobs on the concentrations of the NADH models, which is inconsistent with the conventional viewpoint of the "two-step mechanism" on the oxidations of NADH and its models by metal ions in the non-alkaline media.

  4. A toolbox model of evolution of metabolic pathways on networks of arbitrary topology.

    PubMed

    Pang, Tin Yau; Maslov, Sergei

    2011-05-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks.

  5. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  6. Optimal Solar PV Arrays Integration for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less

  7. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-10-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.

  8. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games

    PubMed Central

    Liu, Jiacai; Zhao, Wenjian

    2016-01-01

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830

  9. A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics

    NASA Astrophysics Data System (ADS)

    Halpern, Federico

    2017-10-01

    The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.

  10. Nonlinear time-series-based adaptive control applications

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.

    1991-01-01

    A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.

  11. Singlet scalar top partners from accidental supersymmetry

    NASA Astrophysics Data System (ADS)

    Cheng, Hsin-Chia; Li, Lingfeng; Salvioni, Ennio; Verhaaren, Christopher B.

    2018-05-01

    We present a model wherein the Higgs mass is protected from the quadratic one-loop top quark corrections by scalar particles that are complete singlets under the Standard Model (SM) gauge group. While bearing some similarity to Folded Supersymmetry, the construction is purely four dimensional and enjoys more parametric freedom, allowing electroweak symmetry breaking to occur easily. The cancelation of the top loop quadratic divergence is ensured by a Z 3 symmetry that relates the SM top sector and two hidden top sectors, each charged under its own hidden color group. In addition to the singlet scalars, the hidden sectors contain electroweak-charged supermultiplets below the TeV scale, which provide the main access to this model at colliders. The phenomenology presents both differences and similarities with respect to other realizations of neutral naturalness. Generally, the glueballs of hidden color have longer decay lengths. The production of hidden sector particles results in quirk or squirk bound states, which later annihilate. We survey the possible signatures and corresponding experimental constraints.

  12. Observational effects of varying speed of light in quadratic gravity cosmological models

    NASA Astrophysics Data System (ADS)

    Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi

    We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.

  13. Growth of finiteness in the third year of life: replication and predictive validity.

    PubMed

    Hadley, Pamela A; Rispoli, Matthew; Holt, Janet K; Fitzgerald, Colleen; Bahnsen, Alison

    2014-06-01

    The authors of this study investigated the validity of tense and agreement productivity (TAP) scoring in diverse sentence frames obtained during conversational language sampling as an alternative measure of finiteness for use with young children. Longitudinal language samples were used to model TAP growth from 21 to 30 months of age for 37 typically developing toddlers. Empirical Bayes (EB) linear and quadratic growth coefficients and child sex were then used to predict elicited grammar composite scores on the Test of Early Grammatical Impairment (TEGI; Rice & Wexler, 2001) at 36 months. A random-effects quadratic model with no intercept best characterized TAP growth, replicating the findings of Rispoli, Hadley, and Holt (2009). The combined regression model was significant, with the 3 variables accounting for 55.5% of the variance in the TEGI composite scores. These findings establish TAP growth as a valid metric of finiteness in the 3rd year of life. Developmental and theoretical implications are discussed.

  14. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  15. Performance Analysis and Design Synthesis (PADS) computer program. Volume 2: Program description, part 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The QL module of the Performance Analysis and Design Synthesis (PADS) computer program is described. Execution of this module is initiated when and if subroutine PADSI calls subroutine GROPE. Subroutine GROPE controls the high level logical flow of the QL module. The purpose of the module is to determine a trajectory that satisfies the necessary variational conditions for optimal performance. The module achieves this by solving a nonlinear multi-point boundary value problem. The numerical method employed is described. It is an iterative technique that converges quadratically when it does converge. The three basic steps of the module are: (1) initialization, (2) iteration, and (3) culmination. For Volume 1 see N73-13199.

  16. Aging of the field-induced asymmetry in a disordered ferroelectric

    NASA Astrophysics Data System (ADS)

    Bonello, B.; Doussineau, P.; Dupuis, V.; Levelut, A.

    2006-07-01

    The isothermal aging of the asymmetry induced in the disordered dielectric crystal KTa_{1-x} Nbx O3 (x=0.027) submitted to the biasing electric field E, is investigated. To this end, the response of the complex dielectric constant to infinitesimal field changes δ{E}, applied to the sample after a variable aging delay, has been measured for different magnitudes of E and after different aging delays. Two different experimental procedures have been used: in both cases the response strongly depends on the time spent under field. For short aging delays, the response has a strong contribution proportional to δE and a weak quadratic contribution proportional to left({δ E}right)^2. As time elapses, the linear and the quadratic contributions age in opposite ways: the former decreases whereas the latter increases. This paradoxical behaviour is analyzed in the framework of a model which attributes aging and the related effects (rejuvenation, memory) to the evolution of polarization domain walls: the decrease of the linear contribution is related to the decrease of the total wall area, while the increase of the quadratic term is attributed to wall reconformations.

  17. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [applied to STOL autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    In connection with difficulties concerning an accurate mathematical representation of a linear quadratic state feedback (LQSF) system, it is often necessary to investigate the robustness (stability) of an LQSF design in the presence of system uncertainty and obtain some quantitative measure of the perturbations which such a design can tolerate. A study is conducted concerning the problem of expressing the robustness property of an LQSF design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices. Bounds are obtained for the general case of nonlinear, time-varying perturbations. It is pointed out that most of the presented results are readily applicable to practical situations for which a designer has estimates of the bounds on the system parameter perturbations. Relations are provided which help the designer to select appropriate weighting matrices in the quadratic performance index to attain a robust design. The developed results are employed in the design of an autopilot logic for the flare maneuver of the Augmentor Wing Jet STOL Research Aircraft.

  18. A review of distributed parameter groundwater management modeling methods

    USGS Publications Warehouse

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  19. A Review of Distributed Parameter Groundwater Management Modeling Methods

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  20. Data-driven quantification of the effect of wind on athletics performance.

    PubMed

    Moinat, M; Fabius, O; Emanuel, K S

    2018-06-11

    So far, the relationship between wind and athletics performance has been studied mainly for 100 m sprint, based on simulation of biomechanical models, requiring several assumptions. In this study, this relationship is quantified empirically for all five horizontal jump and sprint events where wind is measured, with freely available competition results. After systematic scraping several elite and sub-elite results sites, the obtained results (n = 150,169) were filtered and matched to athletes. A quadratic mixed effects model with athlete and season as random effects was applied to express the influence of wind velocity on performance in each event. Whether this effect differs with performance level was investigated by applying the model on subgroups based on performance level. In the fitted quadratic model, the linear coefficients were significant (p < .001) for all events; the quadratic coefficients were significant for all events (p < .001) except long jump (p = .138). A 2.0 m s -1 tail wind provides an average advantage of 0.125, 0.140 and 0.146-s for the 100, 200 and 100/110 m hurdles, respectively, and an advantage of 0.058 and 0.102 m for long jump and triple jump, respectively. Performance level had a significant effect on the wind influence only for 100 m (p < .001). Amateur athletes (∼13 s) benefit 69% more from a 2.0 m s -1 tail wind than elite athletes (∼10 s). Practical formulas are presented for each event. These can easily be used correct results for wind speed, allowing better talent scouting and championship selection. This study demonstrates the efficacy of answering scientific questions empirically, through freely available data.

  1. The contribution of benzene to smoking-induced leukemia.

    PubMed

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-04-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all < 1%. Thus, benzene is estimated to be responsible for approximately one-tenth to one-half of smoking-induced total leukemia mortality and up to three-fifths of smoking-related AML mortality. In contrast to theoretical arguments that linear models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.

  2. More on ghosts in the Dvali-Gabadaze-Porrati model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbunov, Dmitry; Sibiryakov, Sergei; Koyama, Kazuya

    2006-02-15

    It is shown by an explicit calculation that the excitations about the self-accelerating cosmological solution of the Dvali-Gabadaze-Porrati model contain a ghost mode. This raises serious doubts about viability of this solution. Our analysis reveals the similarity between the quadratic theory for the perturbations around the self-accelerating universe and an Abelian gauge model with two Stueckelberg fields.

  3. Comparison of yellow poplar growth models on the basis of derived growth analysis variables

    Treesearch

    Keith F. Jensen; Daniel A. Yaussy

    1986-01-01

    Quadratic and cubic polynomials, and Gompertz and Richards asymptotic models were fitted to yellow poplar growth data. These data included height, leaf area, leaf weight and new shoot height for 23 weeks. Seven growth analysis variables were estimated from each function. The Gompertz and Richards models fitted the data best and provided the most accurate derived...

  4. A Standard for RF Modulation Factor,

    DTIC Science & Technology

    1979-09-01

    Mathematics of Physics and Chemistry, pp. 474-477 (D. Van Nostrand Co., Inc., New York, N.Y., 1943). [23] Graybill , F. A., An Introduction to Linear ...circuit model . The primary limitation on the quadratic technique is the linearity and bandwidth of the analog multiplier. A high speed (5 MHz...o ...... . ..... 39 7.2.1. Nonlinearity Model ............................................... 41 7.2.2. Model Parameters

  5. Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.

    2016-08-01

    A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.

  6. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  7. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  8. Spatially Synchronous Extinction of Species under External Forcing

    NASA Astrophysics Data System (ADS)

    Amritkar, R. E.; Rangarajan, Govindan

    2006-06-01

    More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.

  9. Inflationary cosmology with Chaplygin gas in Palatini formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowiec, Andrzej; Wojnar, Aneta; Stachowski, Aleksander

    2016-01-01

    We present a simple generalisation of the ΛCDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favors negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initialmore » Big-Bang singularity is preferred.« less

  10. Longitudinal Models of Reading Achievement of Students with Learning Disabilities and without Disabilities

    ERIC Educational Resources Information Center

    Sullivan, Amanda L.; Kohli, Nidhi; Farnsworth, Elyse M.; Sadeh, Shanna; Jones, Leila

    2017-01-01

    Objective: Accurate estimation of developmental trajectories can inform instruction and intervention. We compared the fit of linear, quadratic, and piecewise mixed-effects models of reading development among students with learning disabilities relative to their typically developing peers. Method: We drew an analytic sample of 1,990 students from…

  11. Quasi-Maximum Likelihood Estimation of Structural Equation Models with Multiple Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Klein, Andreas G.; Muthen, Bengt O.

    2007-01-01

    In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…

  12. State Spending on Higher Education Capital Outlays

    ERIC Educational Resources Information Center

    Delaney, Jennifer A.; Doyle, William R.

    2014-01-01

    This paper explores the role that state spending on higher education capital outlays plays in state budgets by considering the functional form of the relationship between state spending on higher education capital outlays and four types of state expenditures. Three possible functional forms are tested: a linear model, a quadratic model, and the…

  13. Home Literacy Environment and Head Start Children's Language Development: The Role of Approaches to Learning

    ERIC Educational Resources Information Center

    Meng, Christine

    2015-01-01

    Research Findings: This study examined whether approaches to learning moderate the association between home literacy environment and English receptive vocabulary development. The Head Start Family and Child Experiences Survey (2003 cohort) was used for analysis. Latent growth curve modeling was utilized to test a quadratic model of English…

  14. The influence of SO4 and NO3 to the acidity (pH) of rainwater using minimum variance quadratic unbiased estimation (MIVQUE) and maximum likelihood methods

    NASA Astrophysics Data System (ADS)

    Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.

  15. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  16. Secondary School Advanced Mathematics, Chapter 6, The Complex Number System, Chapter 7, Equations of the First and Second Degree in Two Variables. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the fourth of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This text begins with a brief discussion of quadratic equations which motivates the…

  17. Controllability of semi-infinite rod heating by a point source

    NASA Astrophysics Data System (ADS)

    Khurshudyan, A.

    2018-04-01

    The possibility of control over heating of a semi-infinite thin rod by a point source concentrated at an inner point of the rod, is studied. Quadratic and piecewise constant solutions of the problem are derived, and the possibilities of solving appropriate problems of optimal control are indicated. Determining of the parameters of the piecewise constant solution is reduced to a problem of nonlinear programming. Numerical examples are considered.

  18. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  19. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

  20. Linking normative models of natural tasks to descriptive models of neural response.

    PubMed

    Jaini, Priyank; Burge, Johannes

    2017-10-01

    Understanding how nervous systems exploit task-relevant properties of sensory stimuli to perform natural tasks is fundamental to the study of perceptual systems. However, there are few formal methods for determining which stimulus properties are most useful for a given natural task. As a consequence, it is difficult to develop principled models for how to compute task-relevant latent variables from natural signals, and it is difficult to evaluate descriptive models fit to neural response. Accuracy maximization analysis (AMA) is a recently developed Bayesian method for finding the optimal task-specific filters (receptive fields). Here, we introduce AMA-Gauss, a new faster form of AMA that incorporates the assumption that the class-conditional filter responses are Gaussian distributed. Then, we use AMA-Gauss to show that its assumptions are justified for two fundamental visual tasks: retinal speed estimation and binocular disparity estimation. Next, we show that AMA-Gauss has striking formal similarities to popular quadratic models of neural response: the energy model and the generalized quadratic model (GQM). Together, these developments deepen our understanding of why the energy model of neural response have proven useful, improve our ability to evaluate results from subunit model fits to neural data, and should help accelerate psychophysics and neuroscience research with natural stimuli.

  1. Nonlinear analysis for the response and failure of compression-loaded angle-ply laminates with a hole

    NASA Technical Reports Server (NTRS)

    Mathison, Steven R.; Herakovich, Carl T.; Pindera, Marek-Jerzy; Shuart, Mark J.

    1987-01-01

    The objective was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system. Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180 deg rotational symmetry relationship was utilized and the finite element program was vectorized to run on a supercomputer. Laminate response was compared to experimentation revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis. A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experimentation for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates.

  2. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  3. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  4. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  5. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  6. Simply Prairie Homepage

    Science.gov Websites

    Ed Home - Data Home PRAIRIE ADVOCATES Project - QUADRAT STUDY Project Answer research questions multi-state quadrat study. Bob Lootens, Fermilab Join us! Check out the Quadrat Study Project. Prairie study a prairie "expert" to facilitate your research student Internet access an e-mail address

  7. The nonlinear effect of somatic cell count on milk composition, coagulation properties, curd firmness modeling, cheese yield, and curd nutrient recovery.

    PubMed

    Bobbo, T; Cipolat-Gotet, C; Bittante, G; Cecchinato, A

    2016-07-01

    The aim of this study was to investigate the relationships between somatic cell count (SCC) in milk and several milk technological traits at the individual cow level. In particular, we determined the effects of very low to very high SCC on traits related to (1) milk yield and composition; (2) coagulation properties, including the traditional milk coagulation properties (MCP) and the new curd firming model parameters; and (3) cheese yield and recovery of milk nutrients in the curd (or loss in the whey). Milk samples from 1,271 Brown Swiss cows from 85 herds were used. Nine coagulation traits were measured: 3 traditional MCP [rennet coagulation time (RCT, min), curd firming rate (k20, min), and curd firmness after 30 min (a30, mm)] and 6 new curd firming and syneresis traits [potential asymptotic curd firmness at infinite time (CFP, mm), curd firming instant rate constant (kCF, % × min(-1)), syneresis instant rate constant (kSR, % × min(-1)), rennet coagulation time estimated using the equation (RCTeq, min), maximum curd firmness achieved within 45 min (CFmax, mm), and time at achievement of CFmax (tmax, min)]. The observed cheese-making traits included 3 cheese yield traits (%CYCURD, %CYSOLIDS, and %CYWATER, which represented the weights of curd, total solids, and water, respectively, as a percentage of the weight of the processed milk) and 4 nutrient recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY, which each represented the percentage ratio between the nutrient in the curd and milk). Data were analyzed using a linear mixed model with the fixed effects of days in milk, parity, and somatic cell score (SCS), and the random effect of herd-date. Somatic cell score had strong influences on casein number and lactose, and also affected pH; these were traits characterized by a quadratic pattern of the data. The results also showed a negative linear relationship between SCS and milk yield. Somatic cell score influenced almost all of the tested coagulation traits (both traditional and modeled), with the exceptions of k20, CFP, and kSR. Gelation was delayed when the SCS decreased (slightly) and when it increased (strongly) with respect to a value of 2, as confirmed by the quadratic patterns observed for both RCT and RCTeq. The SCS effect on a30 showed a quadratic pattern almost opposite to that observed for RCT. With respect to the CFt parameters, kCF decreased linearly as SCS increased, resulting in a linear decrease of CFmax and a quadratic pattern for tmax. Milk SCS attained significance for %CYCURD, %CYWATER, and RECPROTEIN. As the SCS increased beyond 3, we observed a progressive quadratic decrease of the water retained in the curd (%CYWATER), which caused a parallel decrease in %CYCURD. With respect to RECPROTEIN, the negative effect of SCS was almost linear. Recovery of fat and (consequently) RECENERGY was characterized by a more evident quadratic trend, with the most favorable values associated with an intermediate SCS. Together, our results confirmed that high SCS has a negative effect on milk composition and technological traits, highlighting the nonlinear trends of some traits across the different classes of SCS. Moreover, we report that a very low SCS has a negative effect on some technological traits of milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The dynamic model of enterprise revenue management

    NASA Astrophysics Data System (ADS)

    Mitsel, A. A.; Kataev, M. Yu; Kozlov, S. V.; Korepanov, K. V.

    2017-01-01

    The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired.

  9. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  10. An Unexpected Influence on a Quadratic

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  11. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    NASA Astrophysics Data System (ADS)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  12. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    NASA Astrophysics Data System (ADS)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  13. Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach

    NASA Astrophysics Data System (ADS)

    Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar

    2010-10-01

    To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.

  14. MM Algorithms for Geometric and Signomial Programming

    PubMed Central

    Lange, Kenneth; Zhou, Hua

    2013-01-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545

  15. MM Algorithms for Geometric and Signomial Programming.

    PubMed

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  16. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  17. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  18. Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach

    PubMed Central

    Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.

    2011-01-01

    The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862

  19. Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model

    PubMed Central

    Zheng, Wendong; Zeng, Pingping

    2016-01-01

    ABSTRACT Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability of the 3/2 SVM by proposing a closed-form formula for the partial transform of the triple joint transition density which stand for the log asset price, the quadratic variation (continuous realized variance) and the instantaneous variance, respectively. Two distinct formulations are provided for deriving the main result. The closed-form partial transform enables us to deduce a variety of marginal partial transforms and characteristic functions and plays a crucial role in pricing discretely sampled variance derivatives and exotic options that depend on both the asset price and quadratic variation. Various applications and numerical examples on pricing moment swaps and timer options with discrete monitoring feature are given to demonstrate the versatility of the partial transform under the 3/2 model. PMID:28706460

  20. Extension of the general thermal field equation for nanosized emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyritsakis, A., E-mail: akyritsos1@gmail.com; Xanthakis, J. P.

    2016-01-28

    During the previous decade, Jensen et al. developed a general analytical model that successfully describes electron emission from metals both in the field and thermionic regimes, as well as in the transition region. In that development, the standard image corrected triangular potential barrier was used. This barrier model is valid only for planar surfaces and therefore cannot be used in general for modern nanometric emitters. In a recent publication, the authors showed that the standard Fowler-Nordheim theory can be generalized for highly curved emitters if a quadratic term is included to the potential model. In this paper, we extend thismore » generalization for high temperatures and include both the thermal and intermediate regimes. This is achieved by applying the general method developed by Jensen to the quadratic barrier model of our previous publication. We obtain results that are in good agreement with fully numerical calculations for radii R > 4 nm, while our calculated current density differs by a factor up to 27 from the one predicted by the Jensen's standard General-Thermal-Field (GTF) equation. Our extended GTF equation has application to modern sharp electron sources, beam simulation models, and vacuum breakdown theory.« less

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less

  3. Largest-Crown- Width Prediction Models for 53 Species in the Western United States

    Treesearch

    William A. Bechtold

    2004-01-01

    The mean crown diameters of stand-grown trees 5.0-in. dbh and larger were modeled as a function of stem diameter, live-crown ratio, stand-level basal area, latitude, longitude, elevation, and Hopkins bioclimatic index for 53 tree species in the western United States. Stem diameter was statistically significant in all models, and a quadratic term for stem diameter was...

  4. Crown-Diameter Prediction Models for 87 Species of Stand-Grown Trees in the Eastern United States

    Treesearch

    William A. Bechtold

    2003-01-01

    The mean crown diameters of stand-grown trees were modeled as a function of stem diameter, live-crown ratio, stand basal area, latitude, longitude, elevation, and Hopkins bioclimatic index for 87 tree species in the eastern United States. Stem diameter was statistically significant in all models, and a quadratic term for stem diameter was required for some species....

  5. Broiler responses to increasing selenium supplementation using Zn-L-selenomethionine with special attention to breast myopathies.

    PubMed

    Cemin, H S; Vieira, S L; Stefanello, C; Kindlein, L; Ferreira, T Z; Fireman, A K

    2018-05-01

    A study was conducted to evaluate growth performance, carcass and breast yields, and the occurrence and severity of white striping (WS) and wooden breast (WB) myopathies of broilers fed diets supplemented with increasing dietary levels of an organic source of selenium (Zn-L-SeMet). Broilers were fed 6 treatments with 12 replications of 26 birds in a 4-phase feeding program from 1 to 42 days. Corn-soy-based diets were supplemented with 0, 0.2, 0.4, 0.6, 0.8, and 1.0 ppm of Zn-L-SeMet. At 42 d, 6 birds were randomly selected from each pen (n = 72) and processed for carcass and breast yields. Breast fillets were scored for WS and WB at 42 days. Increasing Zn-L-SeMet led to quadratic responses (P < 0.05) for FCR from 1 to 7 d, BWG from 22 to 35 d, and for both responses from 8 to 21 d and 36 to 42 d, as well as in the overall period of 42 days. Carcass and breast yields presented a quadratic improvement (P < 0.01) with increasing Zn-L-SeMet supplementation and Se requirements were estimated at 0.85 and 0.86 ppm, respectively. In the overall period, estimates of Se requirements were 0.64 ppm for BWG and 0.67 ppm for FCR. White striping and WB scores presented quadratic increases (P < 0.01), and maximum scores were observed at 0.68 and 0.67 ppm, respectively. Broilers fed diets formulated without Se supplementation had a higher percentage of normal fillets compared to other Se supplementation levels (quadratic, P < 0.05). In conclusion, increasing Se supplementation to reach maximum growth performance led to higher degrees of severity of WS and WB. Selenium requirements determined in the present study were significantly higher than the present commercial recommendations.

  6. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  7. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  8. Analysis of Students' Error in Learning of Quadratic Equations

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  9. Using state variables to model the response of tumour cells to radiation and heat: a novel multi-hit-repair approach.

    PubMed

    Scheidegger, Stephan; Fuchs, Hans U; Zaugg, Kathrin; Bodis, Stephan; Füchslin, Rudolf M

    2013-01-01

    In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.

  10. Period changes of 7 bright RR Lyrae variables included in the BAV standard program.

    NASA Astrophysics Data System (ADS)

    Wunder, E.

    1995-11-01

    On the basis of 1578 times of maxima historical and present period changes of the RR Lyrae stars SW And, SW Aqr, AA Aql, X Ari, RS Boo, RR Cet and XZ Cyg are analysed. In tables the period jumps and the quadratic terms of the elements are quantified and timed; elements are given to describe the historical O-C-curves; instant elements are listed to support nowadays observations.

  11. Guidance/Navigation Requirements Study Final Report. Volume III. Appendices

    DTIC Science & Technology

    1978-04-30

    shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous

  12. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Zhou, Yuan

    2018-02-01

    Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln ⁡ f) x and u = 2(ln ⁡ f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

  13. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  14. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE PAGES

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; ...

    2015-12-09

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  15. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  16. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  17. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  18. The elusive Heisenberg limit in quantum-enhanced metrology

    PubMed Central

    Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin

    2012-01-01

    Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859

  19. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    PubMed

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  20. Optimal execution in high-frequency trading with Bayesian learning

    NASA Astrophysics Data System (ADS)

    Du, Bian; Zhu, Hongliang; Zhao, Jingdong

    2016-11-01

    We consider optimal trading strategies in which traders submit bid and ask quotes to maximize the expected quadratic utility of total terminal wealth in a limit order book. The trader's bid and ask quotes will be changed by the Poisson arrival of market orders. Meanwhile, the trader may update his estimate of other traders' target sizes and directions by Bayesian learning. The solution of optimal execution in the limit order book is a two-step procedure. First, we model an inactive trading with no limit order in the market. The dealer simply holds dollars and shares of stocks until terminal time. Second, he calibrates his bid and ask quotes to the limit order book. The optimal solutions are given by dynamic programming and in fact they are globally optimal. We also give numerical simulation to the value function and optimal quotes at the last part of the article.

  1. A trust region-based approach to optimize triple response systems

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen

    2014-05-01

    This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.

  2. Operations research applications in nuclear energy

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Lloyd

    This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.

  3. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  4. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  5. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  6. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  7. Regression model, artificial neural network, and cost estimation for biosorption of Ni(II)-ions from aqueous solutions by Potamogeton pectinatus.

    PubMed

    Fawzy, Manal; Nasr, Mahmoud; Adel, Samar; Helmi, Shacker

    2018-03-21

    This study investigated the application of Potamogeton pectinatus for Ni(II)-ions biosorption from aqueous solutions. FTIR spectra showed that the functional groups of -OH, C-H, -C = O, and -COO- could form an organometallic complex with Ni(II)-ions on the biomaterial surface. SEM/EDX analysis indicated that the voids on the biosorbent surface were blocked due to Ni(II)-ions uptake via an ion exchange mechanism. For Ni(II)-ions of 50 mg/L, the adsorption efficiency recorded 63.4% at pH: 5, biosorbent dosage: 10 g/L, and particle-diameter: 0.125-0.25 mm within 180 minutes. A quadratic model depicted that the plot of removal efficiency against pH or contact time caused quadratic-linear concave up curves, whereas the curve of initial Ni(II)-ions was quadratic-linear convex down. Artificial neural network with a structure of 5 - 6 - 1 was able to predict the adsorption efficiency (R 2 : 0.967). The relative importance of inputs was: initial Ni(II)-ions > pH > contact time > biosorbent dosage > particle-size. Freundlich isotherm described well the adsorption mechanism (R 2 : 0.974), which indicated a multilayer adsorption onto energetically heterogeneous surfaces. The net cost of using P. pectinatus for the removal of Ni(II)-ions (4.25 ± 1.26 mg/L) from real industrial effluents within 30 minutes was 3.4 $USD/m 3 .

  8. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  9. Dispersion and sampling of adult Dermacentor andersoni in rangeland in Western North America.

    PubMed

    Rochon, K; Scoles, G A; Lysyk, T J

    2012-03-01

    A fixed precision sampling plan was developed for off-host populations of adult Rocky Mountain wood tick, Dermacentor andersoni (Stiles) based on data collected by dragging at 13 locations in Alberta, Canada; Washington; and Oregon. In total, 222 site-date combinations were sampled. Each site-date combination was considered a sample, and each sample ranged in size from 86 to 250 10 m2 quadrats. Analysis of simulated quadrats ranging in size from 10 to 50 m2 indicated that the most precise sample unit was the 10 m2 quadrat. Samples taken when abundance < 0.04 ticks per 10 m2 were more likely to not depart significantly from statistical randomness than samples taken when abundance was greater. Data were grouped into ten abundance classes and assessed for fit to the Poisson and negative binomial distributions. The Poisson distribution fit only data in abundance classes < 0.02 ticks per 10 m2, while the negative binomial distribution fit data from all abundance classes. A negative binomial distribution with common k = 0.3742 fit data in eight of the 10 abundance classes. Both the Taylor and Iwao mean-variance relationships were fit and used to predict sample sizes for a fixed level of precision. Sample sizes predicted using the Taylor model tended to underestimate actual sample sizes, while sample sizes estimated using the Iwao model tended to overestimate actual sample sizes. Using a negative binomial with common k provided estimates of required sample sizes closest to empirically calculated sample sizes.

  10. A prospective study of change in bone mass with age in postmenopausal women.

    PubMed

    Hui, S L; Wiske, P S; Norton, J A; Johnston, C C

    1982-01-01

    For the first time a model for age-related bone loss has been developed from prospective data utilizing a new weighted least squares method. Two hundred and sixty-eight Caucasian women ranging in age from 50 to 95 were studied. A quadratic function best fit the data, and correcting for body weight and bone width reduced variance. The derived equation is: bone mass = (0.6032) (bone width) (cm) + (0.003059) (body weight) (kg) - (0.0163) (age - 50) + (0.0002249) (age - 50)2. Analysis of cross-sectional data on 583 Caucasian women of similar age showed a quadratic function with very similar coefficients. This quadratic function predicts an increase in bone mass after age 86, therefore 42 women over age 70 who had been followed for at least 2.5 yr were identified to test for this effect. of these, 13 had significantly positive regression coefficients of bone mass on age, and rate of change in bone width was positive in 40 of 42 individuals, of which 5 were significant. Since photon absorptiometry measures net changes on all bone envelopes, the most likely explanation for the observed changes is an early exponential loss of endosteal bone which ultimately slows or perhaps stops. There is a positive balance on the periosteal envelope which only becomes apparent in later years when the endosteal loss stops. These new statistical methods allow the development of models utilizing data collected at irregular intervals. The methods used are applicable to other biological data collected prospectively.

  11. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction.

    PubMed

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P; Estroff, Judy A; Warfield, Simon K

    2015-04-01

    To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. The 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). All biometry correlated with GA (Volume, Pearson's correlation coefficient (CC) = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD, and OD and a linear model to best fit volume. Orbital volume had the greatest correlation with GA, although BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  12. Variational principles for stochastic fluid dynamics

    PubMed Central

    Holm, Darryl D.

    2015-01-01

    This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083

  13. Feature to prototype transition in neural networks

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  14. Minimum mean squared error (MSE) adjustment and the optimal Tykhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE)

    NASA Astrophysics Data System (ADS)

    Schaffrin, Burkhard

    2008-02-01

    In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.

  15. Effect of Evolutionary Anisotropy on Earing Prediction in Cylindrical Cup Drawing

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Lee, K. J.; Choi, Y.; Bae, G.; Ahn, D.-C.; Lee, M.-G.

    2017-05-01

    The formability of sheet metals is associated with their planar anisotropy, and finite element simulations have been applied to the sheet metal-forming process by describing the anisotropic behaviors using yield functions and hardening models. In this study, the evaluation of anisotropic constitutive models was performed based on the non-uniform height profile or earing in circular cylindrical cup drawing. Two yield functions, a quadratic Hill1948 and a non-quadratic Yld2000-2d model, were used under non-associated and associated flow rules, respectively, to simultaneously capture directional differences in yield stress and r value. The effect of the evolution of anisotropy on the earing prediction was also investigated by employing simplified equivalent plastic strain rate-dependent anisotropic coefficients. The computational results were in good agreement with experiments when the proper choice of the yield function and flow rule, which predicts the planar anisotropy, was made. Moreover, the accuracy of the earing profile could be significantly enhanced if the evolution of anisotropy between uniaxial and biaxial stress states was additionally considered.

  16. Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Poga, C.; Brown, T. M.; Kuzyk, M. G.; Dirk, Carl W.

    1995-04-01

    We apply quadratic electroabsorption spectroscopy (QES) to thin-film solid solutions of squarylium dye molecules in poly(methyl methacrylate) polymer to study the dye's electronic excited states and to investigate the importance of these states with regard to their contribution to the third-order nonlinear-optical susceptibility. We first show that the room-temperature tensor ratio a= chi (3)3333/ chi (3)1133 \\approximately 3 throughout most of the visible region to establish that the electronic mechanism dominates. Because QES is a third-order nonlinear-optical susceptibility measurement, it can be used to identify two photon states. By obtaining good agreement between the quadratic electroabsorption spectrum and a three level model, we conclude that there are two dominant states that contribute to the near-resonant and a two-photon state that are separated by less than 0.2 eV in energy. QES is thus shown to be a versatile tool for measuring the nature of excited states in a molecule. Furthermore, by applying a Kramers-Kronig transformation to determine the real part of the response, we are able to assess the two-photon all-optical device figure of merit of these materials. Such an

  17. Folded Supersymmetry and the LDP Paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2006-09-21

    We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these ''folded supersymmetric'' theories the one loop quadratic divergences of the Standard Model Higgs field are canceled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters.more » By identifying the mechanism which underlies the cancellation of one loop quadratic divergences in these theories, we are able to construct simple extensions of the Standard Model which are radiatively stable at one loop. Ultraviolet completions of these theories can be obtained by imposing suitable boundary conditions on an appropriate supersymmetric higher dimensional theory compactified down to four dimensions. We construct a specific model based on these ideas which stabilizes the weak scale up to about 20 TeV and where the states which cancel the top loop are scalars not charged under Standard Model color. Its collider signatures are distinct from conventional supersymmetric theories and include characteristic events with hard leptons and missing energy.« less

  18. Anisotropic Resistivity Forward Modelling Using Automatic Generated Higher-order Finite Element Codes

    NASA Astrophysics Data System (ADS)

    Wang, W.; Liu, J.

    2016-12-01

    Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.

  19. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.

  20. Coexistence and community structure of tropical trees in a Hawaiian montane rain forest

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1996-01-01

    We measured the diameter at breast height of all trees and shrubs > 5 meters in height, including standing dead trees, on 68 0.04-hectare study plots in a montane, subtropical rain forest on Mauna Loa, Hawai`i. The canopy species consisted of 88 percent Metrosideros polymorpha (ohia) and 12 percent Acacia koa (koa). Negative associations were found between the densities of koa and ohia, the density of koa and the total basal area of ohia, and the total basal areas of koa and ohia. The two-species lottery competition model, a stochastic model in which the coexistence of two species in a space-limited community results from temporal variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by each species. A discrete version of the quadratic-beta distribution, the quadratic-beta binomial distribution, was fit to the live koa and ohia densities and assessed with goodness-of-fit tests. Likelihood ratio tests provided evidence that the mean adult death rates of the two species were equal but that the relative competitive abilities of the two species favored ohia. These tests were corroborated by a contingency table analysis of death rates based on standing dead trees and growth rate studies which report that koa grows much faster than ohia. The lottery model predicts a positive covariance between death rates and ohia recruitment when mean death rates are equal and koa has a higher growth rate than ohia. We argue that the competitive advantage of ohia is due to its superior dispersal ability into large gaps, which would yield the positive covariance described above, and it is this positive covariance term that skews the occupation of space in favor of ohia.

  1. Heuristic Model Of The Composite Quality Index Of Environmental Assessment

    NASA Astrophysics Data System (ADS)

    Khabarov, A. N.; Knyaginin, A. A.; Bondarenko, D. V.; Shepet, I. P.; Korolkova, L. N.

    2017-01-01

    The goal of the paper is to present the heuristic model of the composite environmental quality index based on the integrated application of the elements of utility theory, multidimensional scaling, expert evaluation and decision-making. The composite index is synthesized in linear-quadratic form, it provides higher adequacy of the results of the assessment preferences of experts and decision-makers.

  2. Evaluation of "e-rater"® for the "Praxis I"®Writing Test. Research Report. ETS RR-15-03

    ERIC Educational Resources Information Center

    Ramineni, Chaitanya; Trapani, Catherine S.; Williamson, David M.

    2015-01-01

    Automated scoring models were trained and evaluated for the essay task in the "Praxis I"® writing test. Prompt-specific and generic "e-rater"® scoring models were built, and evaluation statistics, such as quadratic weighted kappa, Pearson correlation, and standardized differences in mean scores, were examined to evaluate the…

  3. An analysis of the multiple model adaptive control algorithm. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, C. S.

    1978-01-01

    Qualitative and quantitative aspects of the multiple model adaptive control method are detailed. The method represents a cascade of something which resembles a maximum a posteriori probability identifier (basically a bank of Kalman filters) and a bank of linear quadratic regulators. Major qualitative properties of the MMAC method are examined and principle reasons for unacceptable behavior are explored.

  4. The Development of Science Achievement in Middle and High School: Individual Differences and School Effects.

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jessie L. M.

    2002-01-01

    Used hierarchical linear models with data from the Longitudinal Study of American Youth to model the growth of student science achievement in biology, physical science, and environmental science during middle and high school. Growth was quadratic across all areas, with rapid growth at the beginning of middle school and slow growth at the ending…

  5. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2013-01-01

    Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing the concave penalized solutions in generalized linear models. In contrast to the existing algorithms that use local quadratic or local linear approximation to the penalty function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy makes it possible to avoid the computation of a scaling factor in each update of the solutions, which improves the efficiency of coordinate descent. Under certain regularity conditions, we establish theoretical convergence property of the MMCD. We implement this algorithm for a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size. PMID:25309048

  6. Absorption by H2O and H2O-N2 mixtures at 153 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.; Tippings, R. H.

    1993-01-01

    New experimental data on and a theoretical analysis of the absorption coefficient at 153 GHz are presented for pure water vapor and water vapor-nitrogen mixtures. This frequency is 30 GHz lower than the resonant frequency of the nearest strong water line (183 GHz) and complements our previous measurements at 213 GHz. The pressure dependence is observed to be quadratic in the case of pure water vapor, while in the case of mixtures there are both linear and quadratic density components. By fitting our experimental data taken at several temperatures we have obtained the temperature dependence of the absorption. Our experimental data are compared to several theoretical models with and without a continuum contribution, and we find that none of the models is in very good agreement with the data; in the case of pure water vapor, the continuum contribution calculated using the recent theoretical absorption gives the best results. In general, the agreement between the data and the various models is less satisfactory than found previously in the high-frequency wing. The anisotropy in the observed absorption differs from that currently used in atmospheric models.

  7. [The enigma of the biological interpretation of the linear-quadratic model finally resolved? A summary for non-mathematicians].

    PubMed

    Bodgi, L; Canet, A; Granzotto, A; Britel, M; Puisieux, A; Bourguignon, M; Foray, N

    2016-06-01

    The linear-quadratic (LQ) model is the only mathematical formula linking cellular survival and radiation dose that is sufficiently consensual to help radiation oncologists and radiobiologists in describing the radiation-induced events. However, this formula proposed in the 1970s and α and β parameters on which it is based remained without relevant biological meaning. From a collection of cutaneous fibroblasts with different radiosensitivity, built over 12 years by more than 50 French radiation oncologists, we recently pointed out that the ATM protein, major actor of the radiation response, diffuses from the cytoplasm to the nucleus after irradiation. The evidence of this nuclear shuttling of ATM allowed us to provide a biological interpretation of the LQ model in its mathematical features, validated by a hundred of radiosensitive cases. A mechanistic explanation of the radiosensitivity of syndromes caused by the mutation of cytoplasmic proteins and of the hypersensitivity to low-dose phenomenon has been proposed, as well. In this review, we present our resolution of the LQ model in the most didactic way. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  9. Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School

    ERIC Educational Resources Information Center

    Kenan, Kok Xiao-Feng

    2017-01-01

    This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…

  10. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    ERIC Educational Resources Information Center

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  11. Comparative evaluation of a new lactation curve model for pasture-based Holstein-Friesian dairy cows.

    PubMed

    Adediran, S A; Ratkowsky, D A; Donaghy, D J; Malau-Aduli, A E O

    2012-09-01

    Fourteen lactation models were fitted to average and individual cow lactation data from pasture-based dairy systems in the Australian states of Victoria and Tasmania. The models included a new "log-quadratic" model, and a major objective was to evaluate and compare the performance of this model with the other models. Nine empirical and 5 mechanistic models were first fitted to average test-day milk yield of Holstein-Friesian dairy cows using the nonlinear procedure in SAS. Two additional semiparametric models were fitted using a linear model in ASReml. To investigate the influence of days to first test-day and the number of test-days, 5 of the best-fitting models were then fitted to individual cow lactation data. Model goodness of fit was evaluated using criteria such as the residual mean square, the distribution of residuals, the correlation between actual and predicted values, and the Wald-Wolfowitz runs test. Goodness of fit was similar in all but one of the models in terms of fitting average lactation but they differed in their ability to predict individual lactations. In particular, the widely used incomplete gamma model most displayed this failing. The new log-quadratic model was robust in fitting average and individual lactations, and was less affected by sampled data and more parsimonious in having only 3 parameters, each of which lends itself to biological interpretation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. SUBOPT: A CAD program for suboptimal linear regulators

    NASA Technical Reports Server (NTRS)

    Fleming, P. J.

    1985-01-01

    An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.

  13. Structural Optimization of a Distributed Actuation System in a Flexible In-Plane Morphing Wing

    DTIC Science & Technology

    2007-06-01

    Captain, USAF Approved: /signed/ 11 Jun 2007 Dr. Robert Canfield (Chairman) date /signed/ 11 Jun 2007 Dr. Brian Sanders (Member) date /signed/ 11 Jun...can be seen here at the Camp Roberts Flight Test Range [11]. separation, which ultimately increased the overall lift. During wind tunnel tests, the...Matlabr . The outermost loop was written by Mark Spillman and Dr. Robert Canfield and was based on Schittkowski’s Sequential Quadratic Programming (SQP

  14. A Bilinear-Quadratic Differential Game in Advertising.

    DTIC Science & Technology

    1978-05-01

    A dopolistic extension of the Vidale-Wolfe advertising model is formulated as a problem in differential games. An important feature of the problem is...the presence of reaction terms driven by the difference in the advertising expenditures of the two duopolistic firms under consideration. Formula for

  15. Influence of flooding duration on the biomass growth of alder and willow.

    Treesearch

    Lewis F. Ohmann; M. Dean Knighton; Ronald McRoberts

    1990-01-01

    Simple second-order (quadratic) polynomials were used to model the relationship between 3-year biomass increase (net ovendry weight in grams) and flooding duration (days) for four combinations of shrub type (alder, willow) and soils type (fine-sand, clay-loam).

  16. Quadratic dissipation effect on the moonpool resonance

    NASA Astrophysics Data System (ADS)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  17. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Taro; Kohri, Kazunori; White, Jonathan, E-mail: moritaro@post.kek.jp, E-mail: kohri@post.kek.jp, E-mail: jwhite@post.kek.jp

    We consider inflation in the system containing a Ricci scalar squared term and a canonical scalar field with quadratic mass term. In the Einstein frame this model takes the form of a two-field inflation model with a curved field space, and under the slow-roll approximation contains four free parameters corresponding to the masses of the two fields and their initial positions. We investigate how the inflationary dynamics and predictions for the primordial curvature perturbation depend on these four parameters. Our analysis is based on the δ N formalism, which allows us to determine predictions for the non-Gaussianity of the curvaturemore » perturbation as well as for quantities relating to its power spectrum. Depending on the choice of parameters, we find predictions that range from those of R {sup 2} inflation to those of quadratic chaotic inflation, with the non-Gaussianity of the curvature perturbation always remaining small. Using our results we are able to put constraints on the masses of the two fields.« less

  19. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  20. Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation

    PubMed Central

    Gayle, Andrew J.; Cook, Robert F.

    2016-01-01

    An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168

Top