NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.
Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem
NASA Astrophysics Data System (ADS)
Tangpatiphan, Kritsana; Yokoyama, Akihiko
This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.
Quantum optimization for training support vector machines.
Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo
2003-01-01
Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.
The Factorability of Quadratics: Motivation for More Techniques
ERIC Educational Resources Information Center
Bosse, Michael J.; Nandakumar, N. R.
2005-01-01
Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…
Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization
NASA Astrophysics Data System (ADS)
Adhikari, Sam
2007-11-01
Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.
NASA Astrophysics Data System (ADS)
Liao, Haitao; Wu, Wenwang; Fang, Daining
2018-07-01
A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.
CAD of control systems: Application of nonlinear programming to a linear quadratic formulation
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.
Factorization method of quadratic template
NASA Astrophysics Data System (ADS)
Kotyrba, Martin
2017-07-01
Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.
Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming
2016-10-17
Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.
DE and NLP Based QPLS Algorithm
NASA Astrophysics Data System (ADS)
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
NASA Astrophysics Data System (ADS)
Kunze, Herb; La Torre, Davide; Lin, Jianyi
2017-01-01
We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.
ERIC Educational Resources Information Center
Martínez-Hernández, Cesar; Ulloa-Azpeitia, Ricardo
2017-01-01
Based on the theoretical elements of the instrumental approach to tool use known as Task-Technique-Theory (Artigue, 2002), this paper analyses and discusses the performance of graduate students enrolled in a Teacher Training program. The latter performance relates to tracing tangent lines to the curve of a quadratic function in Dynamic Geometry…
Comparison of optimization algorithms in intensity-modulated radiation therapy planning
NASA Astrophysics Data System (ADS)
Kendrick, Rachel
Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.
Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens
2009-11-01
In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.
Quadratic Programming for Allocating Control Effort
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2005-01-01
A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.
Seven Wonders of the Ancient and Modern Quadratic World.
ERIC Educational Resources Information Center
Taylor, Sharon E.; Mittag, Kathleen Cage
2001-01-01
Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)
SUBOPT: A CAD program for suboptimal linear regulators
NASA Technical Reports Server (NTRS)
Fleming, P. J.
1985-01-01
An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Geometric Approaches to Quadratic Equations from Other Times and Places.
ERIC Educational Resources Information Center
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang
2012-10-21
A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.
Visualising the Roots of Quadratic Equations with Complex Coefficients
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2014-01-01
This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…
Li, Shuai; Li, Yangming; Wang, Zheng
2013-03-01
This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
NASA Astrophysics Data System (ADS)
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.
NASA Astrophysics Data System (ADS)
Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka
Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.
ERIC Educational Resources Information Center
Bandele, Samuel Oye; Adekunle, Adeyemi Suraju
2015-01-01
The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
Manpower Targets and Educational Investments
ERIC Educational Resources Information Center
Ritzen, Jo M.
1976-01-01
Discusses the use of quadratic programming to calculate the optimal distribution of educational investments required to closely approach manpower targets when financial resources are insufficient to meet manpower targets completely. Demonstrates use of the quadratic programming approach by applying it to the training of supervisory technicians in…
NASA Astrophysics Data System (ADS)
Lesmana, E.; Chaerani, D.; Khansa, H. N.
2018-03-01
Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method
L2CXCV: A Fortran 77 package for least squares convex/concave data smoothing
NASA Astrophysics Data System (ADS)
Demetriou, I. C.
2006-04-01
Fortran 77 software is given for least squares smoothing to data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is also unknown of the optimization problem. A highly useful description of the constraints is that they follow from the assumption of initially increasing and subsequently decreasing rates of change, or vice versa, of the process considered. The underlying algorithm partitions the data into two disjoint sets of adjacent data and calculates the required fit by solving a strictly convex quadratic programming problem for each set. The piecewise linear interpolant to the fit is convex on the first set and concave on the other one. The partition into suitable sets is achieved by a finite iterative algorithm, which is made quite efficient because of the interactions of the quadratic programming problems on consecutive data. The algorithm obtains the solution by employing no more quadratic programming calculations over subranges of data than twice the number of the divided differences constraints. The quadratic programming technique makes use of active sets and takes advantage of a B-spline representation of the smoothed values that allows some efficient updating procedures. The entire code required to implement the method is 2920 Fortran lines. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes over subranges of data that is only proportional to the number of data. The results suggest that the package can be used for very large numbers of data values. Some examples with output are provided to help new users and exhibit certain features of the software. Important applications of the smoothing technique may be found in calculating a sigmoid approximation, which is a common topic in various contexts in applications in disciplines like physics, economics, biology and engineering. Distribution material that includes single and double precision versions of the code, driver programs, technical details of the implementation of the software package and test examples that demonstrate the use of the software is available in an accompanying ASCII file. Program summaryTitle of program:L2CXCV Catalogue identifier:ADXM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXM_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC Intel Pentium, Sun Sparc Ultra 5, Hewlett-Packard HP UX 11.0 Operating system:WINDOWS 98, 2000, Unix/Solaris 7, Unix/HP UX 11.0 Programming language used:FORTRAN 77 Memory required to execute with typical data:O(n), where n is the number of data No. of bits in a byte:8 No. of lines in distributed program, including test data, etc.:29 349 No. of bytes in distributed program, including test data, etc.:1 276 663 No. of processors used:1 Has the code been vectorized or parallelized?:no Distribution format:default tar.gz Separate documentation available:Yes Nature of physical problem:Analysis of processes that show initially increasing and then decreasing rates of change (sigmoid shape), as, for example, in heat curves, reactor stability conditions, evolution curves, photoemission yields, growth models, utility functions, etc. Identifying an unknown convex/concave (sigmoid) function from some measurements of its values that contain random errors. Also, identifying the inflection point of this sigmoid function. Method of solution:Univariate data smoothing by minimizing the sum of the squares of the residuals (least squares approximation) subject to the condition that the second order divided differences of the smoothed values change sign at most once. Ideally, this is the number of sign changes in the second derivative of the underlying function. The remarkable property of the smoothed values is that they consist of one separate section of optimal components that give nonnegative second divided differences (convexity) and one separate section of optimal components that give nonpositive second divided differences (concavity). The solution process finds the joint (that is the inflection point estimate of the underlying function) of the sections automatically. The underlying method is iterative, each iteration solving a structured strictly convex quadratic programming problem in order to obtain a convex or a concave section over a subrange of data. Restrictions on the complexity of the problem:Number of data, n, is not limited in the software package, but is limited to 2000 in the main driver. The total work of the method requires 2n-2 structured quadratic programming calculations over subranges of data, which in practice does not exceed the amount of O(n) computer operations. Typical running times:CPU time on a PC with an Intel 733 MHz processor operating in Windows 98: About 2 s to smooth n=1000 noisy measurements that follow the shape of the sine function over one period. Summary:L2CXCV is a package of Fortran 77 subroutines for least squares smoothing to n univariate data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is unknown. The piecewise linear interpolant to the smoothed values gives a convex/concave fit to the data. The underlying algorithm is based on the property that in this best convex/concave fit, the convex and the concave section are both optimal and separate. The algorithm is iterative, each iteration solving a strictly convex quadratic programming problem for the best convex fit to the first k data, starting from the best convex fit to the first k-1 data. By reversing the order and sign of the data, the algorithm obtains the best concave fit to the last n-k data. Then it chooses that k as the optimal position of the required sign change (which defines the inflection point of the fit), if the convex and the concave components to the first k and the last n-k data, respectively, form a convex/concave vector that gives the least sum of squares of residuals. In effect the algorithm requires at most 2n-2 quadratic programming calculations over subranges of data. The package employs a technique for quadratic programming, which takes advantage of a B-spline representation of the smoothed values and makes use of some efficient O(k) updating procedures, where k is the number of data of a subrange. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes that is about n, thus exhibiting quadratic performance in n. The Fortran codes have been designed to minimize the use of computing resources. Attention has been given to computer rounding errors details, which are essential to the robustness of the software package. Numerical examples with output are provided to help the use of the software and exhibit certain features of the method. Distribution material that includes driver programs, technical details of the installation of the package and test examples that demonstrate the use of the software is available in an ASCII file that accompanies this work.
A technique for sampling low shrub vegetation, by crown volume classes
Jay R. Bentley; Donald W. Seegrist; David A. Blakeman
1970-01-01
The effects of herbicides or other cultural treatments of low shrubs can be sampled by a new technique using crown volume as the key variable. Low shrubs were grouped in 12 crown volume classes with index values based on height times surface area of crown. The number of plants, by species, in each class is counted on quadrats. Many quadrats are needed for highly...
NASA Technical Reports Server (NTRS)
1972-01-01
The QL module of the Performance Analysis and Design Synthesis (PADS) computer program is described. Execution of this module is initiated when and if subroutine PADSI calls subroutine GROPE. Subroutine GROPE controls the high level logical flow of the QL module. The purpose of the module is to determine a trajectory that satisfies the necessary variational conditions for optimal performance. The module achieves this by solving a nonlinear multi-point boundary value problem. The numerical method employed is described. It is an iterative technique that converges quadratically when it does converge. The three basic steps of the module are: (1) initialization, (2) iteration, and (3) culmination. For Volume 1 see N73-13199.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
A comparison of two gears for quantifying abundance of lotic-dwelling crayfish
Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.
2014-01-01
Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.
Automation of reverse engineering process in aircraft modeling and related optimization problems
NASA Technical Reports Server (NTRS)
Li, W.; Swetits, J.
1994-01-01
During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems.
Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad
2017-12-01
A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.
2007-01-01
CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1990-01-01
Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.
s-Ordered Exponential of Quadratic Forms Gained via IWSOP Technique
NASA Astrophysics Data System (ADS)
Bazrafkan, M. R.; Shähandeh, F.; Nahvifard, E.
2012-11-01
Using the generalized bar{s}-ordered Wigner operator, in which bar{s} is a vector over the field of complex numbers, the technique of integration within an s-ordered product of operators (IWSOP) has been extended to multimode case. We derive the bar{s}-ordered form of the widely applicable multimode exponential of quadratic form exp\\{sum_{i,j = 1}n ai^{dag}\\varLambda_{ij}{aj}\\} , each mode being in some particular order s i , applying this method.
NASA Technical Reports Server (NTRS)
Soeder, J. F.
1983-01-01
As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.
Synthesis of concentric circular antenna arrays using dragonfly algorithm
NASA Astrophysics Data System (ADS)
Babayigit, B.
2018-05-01
Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.
Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering
2011-12-01
LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Jamie P...A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Presented to the Faculty Department of Electrical Engineering Graduate School of...actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
Optimization by nonhierarchical asynchronous decomposition
NASA Technical Reports Server (NTRS)
Shankar, Jayashree; Ribbens, Calvin J.; Haftka, Raphael T.; Watson, Layne T.
1992-01-01
Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness.
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1988-01-01
This Standard presents descriptive and analytical techniques for NASA trend analysis applications. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. Use of this Standard is not mandatory; however, it should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, generally, quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this Standard. The document presents the basic ideas needed for qualitative and quantitative assessment of trends, together with relevant examples. A list of references provides additional sources of information.
Accounting For Nonlinearity In A Microwave Radiometer
NASA Technical Reports Server (NTRS)
Stelzried, Charles T.
1991-01-01
Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.
Fractional Programming for Communication Systems—Part I: Power Control and Beamforming
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
NASA Astrophysics Data System (ADS)
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
Linear quadratic stochastic control of atomic hydrogen masers.
Koppang, P; Leland, R
1999-01-01
Data are given showing the results of using the linear quadratic Gaussian (LQG) technique to steer remote hydrogen masers to Coordinated Universal Time (UTC) as given by the United States Naval Observatory (USNO) via two-way satellite time transfer and the Global Positioning System (GPS). Data also are shown from the results of steering a hydrogen maser to the real-time USNO mean. A general overview of the theory behind the LQG technique also is given. The LQG control is a technique that uses Kalman filtering to estimate time and frequency errors used as input into a control calculation. A discrete frequency steer is calculated by minimizing a quadratic cost function that is dependent on both the time and frequency errors and the control effort. Different penalties, chosen by the designer, are assessed by the controller as the time and frequency errors and control effort vary from zero. With this feature, controllers can be designed to force the time and frequency differences between two standards to zero, either more or less aggressively depending on the application.
Evaluating detection probabilities for American marten in the Black Hills, South Dakota
Smith, Joshua B.; Jenks, Jonathan A.; Klaver, Robert W.
2007-01-01
Assessing the effectiveness of monitoring techniques designed to determine presence of forest carnivores, such as American marten (Martes americana), is crucial for validation of survey results. Although comparisons between techniques have been made, little attention has been paid to the issue of detection probabilities (p). Thus, the underlying assumption has been that detection probabilities equal 1.0. We used presence-absence data obtained from a track-plate survey in conjunction with results from a saturation-trapping study to derive detection probabilities when marten occurred at high (>2 marten/10.2 km2) and low (???1 marten/10.2 km2) densities within 8 10.2-km2 quadrats. Estimated probability of detecting marten in high-density quadrats was p = 0.952 (SE = 0.047), whereas the detection probability for low-density quadrats was considerably lower (p = 0.333, SE = 0.136). Our results indicated that failure to account for imperfect detection could lead to an underestimation of marten presence in 15-52% of low-density quadrats in the Black Hills, South Dakota, USA. We recommend that repeated site-survey data be analyzed to assess detection probabilities when documenting carnivore survey results.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Ku, T. J.
1981-01-01
A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes.
Grabska-Barwińska, Agnieszka; Latham, Peter E
2014-06-01
We use mean field techniques to compute the distribution of excitatory and inhibitory firing rates in large networks of randomly connected spiking quadratic integrate and fire neurons. These techniques are based on the assumption that activity is asynchronous and Poisson. For most parameter settings these assumptions are strongly violated; nevertheless, so long as the networks are not too synchronous, we find good agreement between mean field prediction and network simulations. Thus, much of the intuition developed for randomly connected networks in the asynchronous regime applies to mildly synchronous networks.
Aerodynamic design optimization via reduced Hessian SQP with solution refining
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1995-01-01
An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.
NASA Astrophysics Data System (ADS)
Voloshinov, V. V.
2018-03-01
In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.
NASA Astrophysics Data System (ADS)
Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.
2016-04-01
Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
Analysis of explicit model predictive control for path-following control
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080
Analysis of explicit model predictive control for path-following control.
Lee, Junho; Chang, Hyuk-Jun
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.
A computational algorithm for spacecraft control and momentum management
NASA Technical Reports Server (NTRS)
Dzielski, John; Bergmann, Edward; Paradiso, Joseph
1990-01-01
Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.
Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P
2012-01-01
The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example for an extreme concave case. Quadratic programming is an alternative approach for inverse planning which generates clinically satisfying plans in comparison to the clinical system and constitutes an efficient optimization process characterized by uniqueness and reproducibility of the solution.
Minitrack tracking function description, volume 2
NASA Technical Reports Server (NTRS)
Englar, T. S.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.
1973-01-01
The minitrack tracking function is described and specific operations are identified. The subjects discussed are: (1) preprocessor listing, (2) minitrack hardware, (3) system calibration, (4) quadratic listing, and (5) quadratic flow diagram. Detailed information is provided on the construction of the tracking system and its operation. The calibration procedures are supported by mathematical models to show the application of the computer programs.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Li, Jun
2002-09-01
In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.
Issues in the digital implementation of control compensators. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Moroney, P.
1979-01-01
Techniques developed for the finite-precision implementation of digital filters were used, adapted, and extended for digital feedback compensators, with particular emphasis on steady state, linear-quadratic-Gaussian compensators. Topics covered include: (1) the linear-quadratic-Gaussian problem; (2) compensator structures; (3) architectural issues: serialism, parallelism, and pipelining; (4) finite wordlength effects: quantization noise, quantizing the coefficients, and limit cycles; and (5) the optimization of structures.
Estimating the quadratic mean diameters of fine woody debris in forests of the United States
Christopher W. Woodall; Vicente J. Monleon
2010-01-01
Most fine woody debris (FWD) line-intersect sampling protocols and associated estimators require an approximation of the quadratic mean diameter (QMD) of each individual FWD size class. There is a lack of empirically derived QMDs by FWD size class and species/forest type across the U.S. The objective of this study is to evaluate a technique known as the graphical...
Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos
NASA Technical Reports Server (NTRS)
Alvarez, L. S.; Nickerson, J.
1989-01-01
The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
The generalized quadratic knapsack problem. A neuronal network approach.
Talaván, Pedro M; Yáñez, Javier
2006-05-01
The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.
Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.
2016-01-04
Recent studies, and most of their predecessors, use tide gage data to quantify SL acceleration, ASL(t). In the current study, three techniques were used to calculate acceleration from tide gage data, and of those examined, it was determined that the two techniques based on sliding a regression window through the time series are more robust compared to the technique that fits a single quadratic form to the entire time series, particularly if there is temporal variation in the magnitude of the acceleration. The single-fit quadratic regression method has been the most commonly used technique in determining acceleration in tide gage data. The inability of the single-fit method to account for time-varying acceleration may explain some of the inconsistent findings between investigators. Properly quantifying ASL(t) from field measurements is of particular importance in evaluating numerical models of past, present, and future SLR resulting from anticipated climate change.
Sequential Quadratic Programming Algorithms for Optimization
1989-08-01
quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the
Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra
NASA Astrophysics Data System (ADS)
Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye
2018-04-01
Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
ERIC Educational Resources Information Center
Strickland, Tricia K.
2014-01-01
This case study analyzed the impact of a concrete manipulative program on the understanding of quadratic expressions for a high school student with a learning disability. The manipulatives were utilized as part of the Concrete-Representational-Abstract Integration (CRA-I) intervention in which participants engaged in tasks requiring them to…
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory
NASA Technical Reports Server (NTRS)
Koppang, Paul; Leland, Robert
1996-01-01
Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.
The algebraic decoding of the (41, 21, 9) quadratic residue code
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei
1992-01-01
A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.
High-order Newton-penalty algorithms
NASA Astrophysics Data System (ADS)
Dussault, Jean-Pierre
2005-10-01
Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Path Following in the Exact Penalty Method of Convex Programming
Zhou, Hua; Lange, Kenneth
2015-01-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044
NASA Astrophysics Data System (ADS)
Hassan Mohammed, Mohammed Ahmed
For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.
Time series forecasting using ERNN and QR based on Bayesian model averaging
NASA Astrophysics Data System (ADS)
Pwasong, Augustine; Sathasivam, Saratha
2017-08-01
The Bayesian model averaging technique is a multi-model combination technique. The technique was employed to amalgamate the Elman recurrent neural network (ERNN) technique with the quadratic regression (QR) technique. The amalgamation produced a hybrid technique known as the hybrid ERNN-QR technique. The potentials of forecasting with the hybrid technique are compared with the forecasting capabilities of individual techniques of ERNN and QR. The outcome revealed that the hybrid technique is superior to the individual techniques in the mean square error sense.
On the classification of elliptic foliations induced by real quadratic fields with center
NASA Astrophysics Data System (ADS)
Puchuri, Liliana; Bueno, Orestes
2016-12-01
Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser
NASA Astrophysics Data System (ADS)
Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.
2018-04-01
The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows
Wang, Di; Kleinberg, Robert D.
2009-01-01
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.
Wang, Di; Kleinberg, Robert D
2009-11-28
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.
Application’s Method of Quadratic Programming for Optimization of Portfolio Selection
NASA Astrophysics Data System (ADS)
Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro
Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.
NASA Astrophysics Data System (ADS)
Li, Shuang; Zhu, Yongsheng; Wang, Yukai
2014-02-01
Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.
Constrained multiple indicator kriging using sequential quadratic programming
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Erhan Tercan, A.
2012-11-01
Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
A sequential quadratic programming algorithm using an incomplete solution of the subproblem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, W.; Prieto, F.J.
1993-05-01
We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less
Farias, Paulo R S; Barbosa, José C; Busoli, Antonio C; Overal, William L; Miranda, Vicente S; Ribeiro, Susane M
2008-01-01
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In São Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Overview of computational control research at UT Austin
NASA Technical Reports Server (NTRS)
Bong, Wie
1989-01-01
An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.
Liao, Bolin; Zhang, Yunong; Jin, Long
2016-02-01
In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.
The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.
He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang
2013-01-01
We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Wang, Xiao-Lin; Duan, Zuo-Liang
2013-01-01
We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Lefkoff, L.J.; Gorelick, S.M.
1986-01-01
Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors
Cox, Kieran D; Black, Morgan J; Filip, Natalia; Miller, Matthew R; Mohns, Kayla; Mortimor, James; Freitas, Thaise R; Greiter Loerzer, Raquel; Gerwing, Travis G; Juanes, Francis; Dudas, Sarah E
2017-12-01
Diversity estimates play a key role in ecological assessments. Species richness and abundance are commonly used to generate complex diversity indices that are dependent on the quality of these estimates. As such, there is a long-standing interest in the development of monitoring techniques, their ability to adequately assess species diversity, and the implications for generated indices. To determine the ability of substratum community assessment methods to capture species diversity, we evaluated four methods: photo quadrat, point intercept, random subsampling, and full quadrat assessments. Species density, abundance, richness, Shannon diversity, and Simpson diversity were then calculated for each method. We then conducted a method validation at a subset of locations to serve as an indication for how well each method captured the totality of the diversity present. Density, richness, Shannon diversity, and Simpson diversity estimates varied between methods, despite assessments occurring at the same locations, with photo quadrats detecting the lowest estimates and full quadrat assessments the highest. Abundance estimates were consistent among methods. Sample-based rarefaction and extrapolation curves indicated that differences between Hill numbers (richness, Shannon diversity, and Simpson diversity) were significant in the majority of cases, and coverage-based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. Method validation highlighted the inability of the tested methods to capture the totality of the diversity present, while further supporting the notion of extrapolating abundances. Our results highlight the need for consistency across research methods, the advantages of utilizing multiple diversity indices, and potential concerns and considerations when comparing data from multiple sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kuo -Ling; Mehrotra, Sanjay
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
Replicator equations, maximal cliques, and graph isomorphism.
Pelillo, M
1999-11-15
We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang
2016-08-01
Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.
Annual Review of Research Under the Joint Service Electronics Program.
1979-10-01
Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.
Huang, Kuo -Ling; Mehrotra, Sanjay
2016-11-08
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
NASA Astrophysics Data System (ADS)
Kassa, Semu Mitiku; Tsegay, Teklay Hailay
2017-08-01
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.
Local classifier weighting by quadratic programming.
Cevikalp, Hakan; Polikar, Robi
2008-10-01
It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.
NASA Technical Reports Server (NTRS)
Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.
1985-01-01
A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Wahba, Maram A; Ashour, Amira S; Napoleon, Sameh A; Abd Elnaby, Mustafa M; Guo, Yanhui
2017-12-01
Basal cell carcinoma is one of the most common malignant skin lesions. Automated lesion identification and classification using image processing techniques is highly required to reduce the diagnosis errors. In this study, a novel technique is applied to classify skin lesion images into two classes, namely the malignant Basal cell carcinoma and the benign nevus. A hybrid combination of bi-dimensional empirical mode decomposition and gray-level difference method features is proposed after hair removal. The combined features are further classified using quadratic support vector machine (Q-SVM). The proposed system has achieved outstanding performance of 100% accuracy, sensitivity and specificity compared to other support vector machine procedures as well as with different extracted features. Basal Cell Carcinoma is effectively classified using Q-SVM with the proposed combined features.
Flight control synthesis for flexible aircraft using Eigenspace assignment
NASA Technical Reports Server (NTRS)
Davidson, J. B.; Schmidt, D. K.
1986-01-01
The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Subsonic Aircraft With Regression and Neural-Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2004-01-01
At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.
QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.
O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong
2016-05-04
Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeenson
1987-01-01
A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.
Diff-invariant kinetic terms in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Barbero G., J. Fernando; Villaseñor, Eduardo J.
2002-06-01
We study the physical content of quadratic diff-invariant Lagrangians in arbitrary dimensions by using covariant symplectic techniques. This paper extends previous results in dimension four. We discuss the difference between the even and odd dimensional cases.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
Support Vector Machine algorithm for regression and classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
Serang, Oliver
2012-01-01
Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiao; Dong, Jin; Djouadi, Seddik M
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less
NASA Astrophysics Data System (ADS)
Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello
2018-03-01
An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.
A reduced successive quadratic programming strategy for errors-in-variables estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.
Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.
A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.
NASA Technical Reports Server (NTRS)
Harris, J. D.
1971-01-01
The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES
RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT
2013-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974
NASA Astrophysics Data System (ADS)
Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.
2016-08-01
This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.
About the mechanism of ERP-system pilot test
NASA Astrophysics Data System (ADS)
Mitkov, V. V.; Zimin, V. V.
2018-05-01
In the paper the mathematical problem of defining the scope of pilot test is stated, which is a task of quadratic programming. The procedure of the problem solving includes the method of network programming based on the structurally similar network representation of the criterion and constraints and which reduces the original problem to a sequence of simpler evaluation tasks. The evaluation tasks are solved by the method of dichotomous programming.
Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis
2016-10-11
Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization,” (W. Bian, X. Chen, and Ye), Math Programming, 149 (2015) 301-327...Chen, Ge, Wang, Ye), Math Programming, 143 (1-2) (2014) 371-383. This paper resolved an important open question in cardinality constrained...Statistical Performance, and Algorithmic Theory for Local Solutions,” (H. Liu, T. Yao, R. Li, Y. Ye) manuscript, 2nd revision in Math Programming
Three-dimensional modeling of flexible pavements : executive summary, August 2001.
DOT National Transportation Integrated Search
2001-08-01
A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...
Three dimensional modeling of flexible pavements : final report, March 2002.
DOT National Transportation Integrated Search
2001-08-01
A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...
Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting
NASA Technical Reports Server (NTRS)
Badavi, F. F.; Everhart, Joel L.
1987-01-01
This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.
NASA Astrophysics Data System (ADS)
Kong, X. M.; Huang, G. H.; Fan, Y. R.; Li, Y. P.
2016-04-01
In this study, a duality theorem-based algorithm (DTA) for inexact quadratic programming (IQP) is developed for municipal solid waste (MSW) management under uncertainty. It improves upon the existing numerical solution method for IQP problems. The comparison between DTA and derivative algorithm (DAM) shows that the DTA method provides better solutions than DAM with lower computational complexity. It is not necessary to identify the uncertain relationship between the objective function and decision variables, which is required for the solution process of DAM. The developed method is applied to a case study of MSW management and planning. The results indicate that reasonable solutions have been generated for supporting long-term MSW management and planning. They could provide more information as well as enable managers to make better decisions to identify desired MSW management policies in association with minimized cost under uncertainty.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1975-01-01
A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.
The Cantor-Bendixson Rank of Certain Bridgeland-Smith Stability Conditions
NASA Astrophysics Data System (ADS)
Aulicino, David
2018-01-01
We provide a novel proof that the set of directions that admit a saddle connection on a meromorphic quadratic differential with at least one pole of order at least two is closed, which generalizes a result of Bridgeland and Smith, and Gaiotto, Moore, and Neitzke. Secondly, we show that this set has finite Cantor-Bendixson rank and give a tight bound. Finally, we present a family of surfaces realizing all possible Cantor-Bendixson ranks. The techniques in the proof of this result exclusively concern Abelian differentials on Riemann surfaces, also known as translation surfaces. The concept of a "slit translation surface" is introduced as the primary tool for studying meromorphic quadratic differentials with higher order poles.
Nonlinear response from transport theory and quantum field theory at finite temperature
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Defu, Hou; Kobes, R.
2001-07-01
We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.
Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.
Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq
2016-01-01
This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.
Optimization Models for Scheduling of Jobs
Indika, S. H. Sathish; Shier, Douglas R.
2006-01-01
This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921
Unsteady Propeller Hydrodynamics
2001-06-01
coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence ... function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.
Equations with Parameters: A Locus Approach
ERIC Educational Resources Information Center
Abramovich, Sergei; Norton, Anderson
2006-01-01
This paper introduces technology-based teaching ideas that facilitate the development of qualitative reasoning techniques in the context of quadratic equations with parameters. It reflects on activities designed for and used with prospective secondary mathematics teachers in accord with standards for teaching and recommendations for teachers in…
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Quadrat Data for Fermilab Prairie Plant Survey
Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems
ERIC Educational Resources Information Center
Lind, Georgia J.
2004-01-01
A hands on activity involving density, frequency and biomass using transects, quadrats and a local good deed by cleaning up the neighborhood while practicing important techniques in ecology is detailed. The activity is designed for KCC-STEP, whose primary goal is to expand the scientific knowledge and research experiences of their students, who…
Confidence set inference with a prior quadratic bound
NASA Technical Reports Server (NTRS)
Backus, George E.
1989-01-01
In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.
Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2002-01-01
Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-01-28
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
NASA Astrophysics Data System (ADS)
Sun, Jingliang; Liu, Chunsheng
2018-01-01
In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.
An historical survey of computational methods in optimal control.
NASA Technical Reports Server (NTRS)
Polak, E.
1973-01-01
Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.
Performance Trend of Different Algorithms for Structural Design Optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano
This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less
Solution of quadratic matrix equations for free vibration analysis of structures.
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1973-01-01
An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.
VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM
NASA Technical Reports Server (NTRS)
White, J. S.
1994-01-01
VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.
NASA Technical Reports Server (NTRS)
Hsia, Wei Shen
1989-01-01
A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.
CometBoards Users Manual Release 1.0
NASA Technical Reports Server (NTRS)
Guptill, James D.; Coroneos, Rula M.; Patnaik, Surya N.; Hopkins, Dale A.; Berke, Lazlo
1996-01-01
Several nonlinear mathematical programming algorithms for structural design applications are available at present. These include the sequence of unconstrained minimizations technique, the method of feasible directions, and the sequential quadratic programming technique. The optimality criteria technique and the fully utilized design concept are two other structural design methods. A project was undertaken to bring all these design methods under a common computer environment so that a designer can select any one of these tools that may be suitable for his/her application. To facilitate selection of a design algorithm, to validate and check out the computer code, and to ascertain the relative merits of the design tools, modest finite element structural analysis programs based on the concept of stiffness and integrated force methods have been coupled to each design method. The code that contains both these design and analysis tools, by reading input information from analysis and design data files, can cast the design of a structure as a minimum-weight optimization problem. The code can then solve it with a user-specified optimization technique and a user-specified analysis method. This design code is called CometBoards, which is an acronym for Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures. This manual describes for the user a step-by-step procedure for setting up the input data files and executing CometBoards to solve a structural design problem. The manual includes the organization of CometBoards; instructions for preparing input data files; the procedure for submitting a problem; illustrative examples; and several demonstration problems. A set of 29 structural design problems have been solved by using all the optimization methods available in CometBoards. A summary of the optimum results obtained for these problems is appended to this users manual. CometBoards, at present, is available for Posix-based Cray and Convex computers, Iris and Sun workstations, and the VM/CMS system.
QSPIN: A High Level Java API for Quantum Computing Experimentation
NASA Technical Reports Server (NTRS)
Barth, Tim
2017-01-01
QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.
Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.
Clarke, Clyde; Etienne-Cummings, Ralph
2006-01-01
A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Portfolio optimization using fuzzy linear programming
NASA Astrophysics Data System (ADS)
Pandit, Purnima K.
2013-09-01
Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.
High-Speed Numeric Function Generator Using Piecewise Quadratic Approximations
2007-09-01
application; User specifies the fuction to approxiamte. % % This programs turns the function provided into an inline function... PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1> <secondary file 2> #CHIP2 = <file to compile to user chip
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Documentation of the Fourth Order Band Model
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Hoitsma, D.
1979-01-01
A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2015-10-01
In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.
The design of a turboshaft speed governor using modern control techniques
NASA Technical Reports Server (NTRS)
Delosreyes, G.; Gouchoe, D. R.
1986-01-01
The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient.
NASA Astrophysics Data System (ADS)
Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-01
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-10
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argyros, I.K.
1984-01-01
In this dissertation perturbation techniques are developed, based on the contraction mapping principle which can be used to prove existence and uniqueness for the quadratic equation x = y + lambdaB(x,x) (1) in a Banach space X; here B: XxX..-->..X is a bounded, symmetric bilinear operator, lambda is a positive parameter and y as a subset of X is fixed. The following is the main result. Theorem. Suppose F: XxX..-->..X is a bounded, symmetric bilinear operator and that the equation z = y + lambdaF(z,z) has a solution z/sup */ of sufficiently small norm. Then equation (1) has a uniquemore » solution in a certain closed ball centered at z/sup */. Applications. The theorem is applied to the famous Chandrasekhar equation and to the Anselone-Moore system which are of the form (1) above and yields existence and uniqueness for a solution of (1) for larger values of lambda than previously known, as well as more accurate information on the location of solutions.« less
Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Leyland, Jane
2014-01-01
In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.
Phosphorus-31 MRI of bones using quadratic echo line-narrowing
NASA Astrophysics Data System (ADS)
Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua
2012-02-01
There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.
NOLIN: A nonlinear laminate analysis program
NASA Technical Reports Server (NTRS)
Kibler, J. J.
1975-01-01
A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.
NASA Astrophysics Data System (ADS)
Sandhu, Amit
A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.
NASA Astrophysics Data System (ADS)
Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid
2018-01-01
Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.
Active Vibration damping of Smart composite beams based on system identification technique
NASA Astrophysics Data System (ADS)
Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed
2018-03-01
In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.
NASA Astrophysics Data System (ADS)
Pan, Zhen; Anderes, Ethan; Knox, Lloyd
2018-05-01
One of the major targets for next-generation cosmic microwave background (CMB) experiments is the detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space, all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a crucial factorization of the pixel space covariance matrix of the polarization observations which allows one to compute the full Gaussian approximate likelihood profile, as a function of r , at the same computational cost of a single likelihood evaluation.
Application of the fractional Fourier transform to image reconstruction in MRI.
Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo
2012-07-01
The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.
Nonlinear Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Badavi, Forooz F.
1989-01-01
Nonlinear optimization algorithm helps in finding best-fit curve. Nonlinear Curve Fitting Program, NLINEAR, interactive curve-fitting routine based on description of quadratic expansion of X(sup 2) statistic. Utilizes nonlinear optimization algorithm calculating best statistically weighted values of parameters of fitting function and X(sup 2) minimized. Provides user with such statistical information as goodness of fit and estimated values of parameters producing highest degree of correlation between experimental data and mathematical model. Written in FORTRAN 77.
A Centered Projective Algorithm for Linear Programming
1988-02-01
zx/l to (PA Karmarkar’s algorithm iterates this procedure. An alternative method, the so-called affine variant (first proposed by Dikin [6] in 1967...trajectories, II. Legendre transform coordinates . central trajectories," manuscripts, to appear in Transactions of the American [6] I.I. Dikin ...34Iterative solution of problems of linear and quadratic programming," Soviet Mathematics Dokladv 8 (1967), 674-675. [7] I.I. Dikin , "On the speed of an
Probability, Problem Solving, and "The Price is Right."
ERIC Educational Resources Information Center
Wood, Eric
1992-01-01
This article discusses the analysis of a decision-making process faced by contestants on the television game show "The Price is Right". The included analyses of the original and related problems concern pattern searching, inductive reasoning, quadratic functions, and graphing. Computer simulation programs in BASIC and tables of…
A Comparison of Approaches for Solving Hard Graph-Theoretic Problems
2015-04-29
can be converted to a quadratic unconstrained binary optimization ( QUBO ) problem that uses 0/1-valued variables, and so they are often used...Frontiers in Physics, 2:5 (12 Feb 2014). [7] “Programming with QUBOs ,” (instructional document) D-Wave: The Quantum Computing Company, 2013. [8
A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem
1990-09-01
Electr6nica e Inform’itica Industrial E.T.S. Ingenieros Industriales Universidad Polit6cnica, Madrid Technical Report SOL 90-12 September 1990 -Y...MURRAY* AND FRANCISCO J. PRIETOt *Systems Optimization Laboratory Department of Operations Research Stanford University tDept. de Automitica, Ingenieria
NASA Astrophysics Data System (ADS)
Hong, H.; Zhu, A. X.
2017-12-01
Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic discriminant model (0.864), followed by logistic model tree (0.832), and weight-of-evidence (0.819). In general, the landslide maps can be applied for land use planning and management in the Anfu area.
Design of reinforced areas of concrete column using quadratic polynomials
NASA Astrophysics Data System (ADS)
Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.
2017-11-01
Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.
Heterochromatic Flicker Photometry for Objective Lens Density Quantification.
Najjar, Raymond P; Teikari, Petteri; Cornut, Pierre-Loïc; Knoblauch, Kenneth; Cooper, Howard M; Gronfier, Claude
2016-03-01
Although several methods have been proposed to evaluate lens transmittance, to date there is no consensual in vivo approach in clinical practice. The aim of this study was to compare ocular lens density and transmittance measurements obtained by an improved psychophysical scotopic heterochromatic flicker photometry (sHFP) technique to the results obtained by three other measures: a psychophysical threshold technique, a Scheimpflug imaging technique, and a clinical assessment using a validated subjective scale. Forty-three subjects (18 young, 9 middle aged, and 16 older) were included in the study. Individual lens densities were measured and transmittance curves were derived from sHFP indexes. Ocular lens densities were compared across methods by using linear regression analysis. The four approaches showed a quadratic increase in lens opacification with age. The sHFP technique revealed that transmittance decreased with age over the entire visual spectrum. This decrease was particularly pronounced between young and older participants in the short (53.03% decrease in the 400-500 nm range) wavelength regions of the light spectrum. Lens density derived from sHFP highly correlated with the values obtained with the other approaches. Compared to other objective measures, sHFP also showed the lowest variability and the best fit with a quadratic trend (r2 = 0.71) of lens density increase as a function of age. The sHFP technique offers a practical, reliable, and accurate method to measure lens density in vivo and predict lens transmittance over the visible spectrum. An accurate quantification of lens transmittance should be obtained in clinical practice, but also in research in visual and nonvisual photoreception.
A Project-Based Laboratory for Learning Embedded System Design with Industry Support
ERIC Educational Resources Information Center
Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong
2010-01-01
A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, F; Perez-Vara, C; Clavo, M
2016-06-15
Purpose: Dose protraction factor should be considered in order to model the TCP calculations. Nevertheless, this study describes a brief discussion showing that the lack of its inclusion should not invalidate these calculations for prostate VMAT treatments. Methods: Dose protraction factor (G) modifies the quadratic term of the linear-quadratic expression in order to take into account the sublethal damage repair of protracting the dose delivery. If the delivery takes a short time (instantaneous), G = 1. For any other dose delivery pattern, G < 1. The Lea-Catcheside dose protraction factor for external beam radiotherapy contains terms depending of on themore » tissue specific repair parameter (λ) and the irradiation time (T). Expanding the exponential term using a Taylor’s series and neglecting terms of order (λT){sup 3}, the approximation leads to G = 1. The described situation occurs for 3DCRT techniques, where treatment times are about few minutes. For IMRT techniques, fraction times are prolonged compared to 3DCRT times. Wang et al. (2003) and Fowler et al. (2004) investigated the protraction effect with respect to IMRT treatments, reporting clinically significant loss in biological effect associated with IMRT delivery times. Results: Treatment times are noticeably reduced for prostate treatments using VMAT techniques. These times are comparable to 3DCRT times, leading to consider the previous approximation. Conclusion: Dose protraction factor can be approximated by G = 1 in TCP calculations for prostate treatments using VMAT techniques.« less
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Optimal estimation and scheduling in aquifer management using the rapid feedback control method
NASA Astrophysics Data System (ADS)
Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric
2017-12-01
Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.
Quadratic trigonometric B-spline for image interpolation using GA
Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906
Quadratic trigonometric B-spline for image interpolation using GA.
Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.
2014-12-10
Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less
Nishith, Pallavi; Resick, Patricia A.; Griffin, Michael G.
2010-01-01
Curve estimation techniques were used to identify the pattern of therapeutic change in female rape victims with posttraumatic stress disorder (PTSD). Within-session data on the Posttraumatic Stress Disorder Symptom Scale were obtained, in alternate therapy sessions, on 171 women. The final sample of treatment completers included 54 prolonged exposure (PE) and 54 cognitive-processing therapy (CPT) completers. For both PE and CPT, a quadratic function provided the best fit for the total PTSD, reexperiencing, and arousal scores. However, a difference in the line of best fit was observed for the avoidance symptoms. Although a quadratic function still provided a better fit for the PE avoidance, a linear function was more parsimonious in explaining the CPT avoidance variance. Implications of the findings are discussed. PMID:12182271
Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru
2016-03-15
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas dragmore » by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.« less
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
Evaluating the effects of real power losses in optimal power flow based storage integration
Castillo, Anya; Gayme, Dennice
2017-03-27
This study proposes a DC optimal power flow (DCOPF) with losses formulation (the `-DCOPF+S problem) and uses it to investigate the role of real power losses in OPF based grid-scale storage integration. We derive the `- DCOPF+S problem by augmenting a standard DCOPF with storage (DCOPF+S) problem to include quadratic real power loss approximations. This procedure leads to a multi-period nonconvex quadratically constrained quadratic program, which we prove can be solved to optimality using either a semidefinite or second order cone relaxation. Our approach has some important benefits over existing models. It is more computationally tractable than ACOPF with storagemore » (ACOPF+S) formulations and the provably exact convex relaxations guarantee that an optimal solution can be attained for a feasible problem. Adding loss approximations to a DCOPF+S model leads to a more accurate representation of locational marginal prices, which have been shown to be critical to determining optimal storage dispatch and siting in prior ACOPF+S based studies. Case studies demonstrate the improved accuracy of the `-DCOPF+S model over a DCOPF+S model and the computational advantages over an ACOPF+S formulation.« less
EVALUATION OF A MEASUREMENT METHOD FOR FOREST VEGETATION IN A LARGE-SCALE ECOLOGICAL SURVEY
We evaluate a field method for determining species richness and canopy cover of vascular plants for the Forest Health Monitoring Program (FHM), an ecological survey of U.S. forests. Measurements are taken within 12 1-m2 quadrats on 1/15 ha plots in FHM. Species richness and cover...
Primal Barrier Methods for Linear Programming
1989-06-01
A Theoretical Bound Concerning the difficulties introduced by an ill-conditioned H- 1, Dikin [Dik67] and Stewart [Stew87] show for a full-rank A...Dik67] I. I. Dikin (1967). Iterative solution of problems of linear and quadratic pro- gramming, Doklady Akademii Nauk SSSR, Tom 174, No. 4. [Fia79] A. V
Interior-Point Methods for Linear Programming: A Challenge to the Simplex Method
1988-07-01
subsequently found that the method was first proposed by Dikin in 1967 [6]. Search directions are generated by the same system (5). Any hint of quadratic...1982). Inexact Newton methods, SIAM Journal on Numerical Analysis 19, 400-408. [6] I. I. Dikin (1967). Iterative solution of problems of linear and
Optimization of a bundle divertor for FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rothe, K.E.; Minkoff, M.
1982-01-01
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.
Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal
ERIC Educational Resources Information Center
Steinley, Douglas; Hubert, Lawrence
2008-01-01
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
Exploring quantum computing application to satellite data assimilation
NASA Astrophysics Data System (ADS)
Cheung, S.; Zhang, S. Q.
2015-12-01
This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.
NASA Astrophysics Data System (ADS)
Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2018-06-01
In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Fushiki, Tadayoshi
2009-07-01
The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.
On the time-weighted quadratic sum of linear discrete systems
NASA Technical Reports Server (NTRS)
Jury, E. I.; Gutman, S.
1975-01-01
A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
The Langley Research Center and Virginia Institute of Marine Science wave refraction computer model was applied to the Baltimore Canyon region of the mid-Atlantic continental shelf. Wave refraction diagrams for a wide range of normally expected wave periods and directions were computed by using three bottom topography approximation techniques: quadratic least squares, cubic least squares, and constrained bicubic interpolation. Mathematical or physical interpretation of certain features appearing in the computed diagrams is discussed.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
Using nonlinear quantile regression to estimate the self-thinning boundary curve
Quang V. Cao; Thomas J. Dean
2015-01-01
The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...
ERIC Educational Resources Information Center
Shin, Tacksoo
2012-01-01
This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…
A Standard for RF Modulation Factor,
1979-09-01
Mathematics of Physics and Chemistry, pp. 474-477 (D. Van Nostrand Co., Inc., New York, N.Y., 1943). [23] Graybill , F. A., An Introduction to Linear ...circuit model . The primary limitation on the quadratic technique is the linearity and bandwidth of the analog multiplier. A high speed (5 MHz...o ...... . ..... 39 7.2.1. Nonlinearity Model ............................................... 41 7.2.2. Model Parameters
THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY
Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...
Implications of a quadratic stream definition in radiative transfer theory.
NASA Technical Reports Server (NTRS)
Whitney, C.
1972-01-01
An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.
Araújo, Ricardo; Mateus, Octávio
2015-01-01
The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455
AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1994-01-01
AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.
Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line
NASA Astrophysics Data System (ADS)
Timings, Julian P.; Cole, David J.
2012-06-01
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.
Design Optimization for a Maglev System Employing Flux Eliminating Coils
NASA Technical Reports Server (NTRS)
Davey, Kent R.
1996-01-01
Flux eliminating coils have received no little attention over the past thirty years as an alternative for realizing lift in a MAGLEV system. When the magnets on board the vehicle are displaced from the equilibrium or null flux point of these coils, they induce current in those coils which act to restore the coil to its null flux or centerline position. The question being addressed in this paper is that of how to choose the best coil for a given system. What appears at first glance to be an innocent question is in fact one that is actually quite involved, encompassing both the global economics and physics of the system. The real key in analyzing that question is to derive an optimization index or functional which represents the cost of the system subject to constraints, the primary constraint being that the vehicle lift itself at a certain threshold speed. Outlined in this paper is one scenario for realizing a total system design which uses sequential quadratic programming techniques.
Video stereolization: combining motion analysis with user interaction.
Liao, Miao; Gao, Jizhou; Yang, Ruigang; Gong, Minglun
2012-07-01
We present a semiautomatic system that converts conventional videos into stereoscopic videos by combining motion analysis with user interaction, aiming to transfer as much as possible labeling work from the user to the computer. In addition to the widely used structure from motion (SFM) techniques, we develop two new methods that analyze the optical flow to provide additional qualitative depth constraints. They remove the camera movement restriction imposed by SFM so that general motions can be used in scene depth estimation-the central problem in mono-to-stereo conversion. With these algorithms, the user's labeling task is significantly simplified. We further developed a quadratic programming approach to incorporate both quantitative depth and qualitative depth (such as these from user scribbling) to recover dense depth maps for all frames, from which stereoscopic view can be synthesized. In addition to visual results, we present user study results showing that our approach is more intuitive and less labor intensive, while producing 3D effect comparable to that from current state-of-the-art interactive algorithms.
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyer, R.A.; Modica, G.
1990-01-01
Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less
Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current
Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo
2015-01-01
Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499
Connection dynamics of a gauge theory of gravity coupled with matter
NASA Astrophysics Data System (ADS)
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-10-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.
Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Student's Text.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This text is the last of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. In this volume the solution of systems of linear and quadratic equations and inequalities in…
User's guide for the northern hardwood stand models: SIMSAP and SIMTIM
Dale S. Solomon; Richard A. Hosmer; Richard A. Hosmer
1987-01-01
SIMSAP and SlMTlM are computer programs that have been developed to simulate the stand growth and development of natural and treated evenaged northern hardwood stands. SIMSAP begins with species distributions by quality classes in sapling stands after regeneration. SIMTIM, the poletimber-sawtimber-harvest phase, uses stocking guides based on quadratic mean stand...
ERIC Educational Resources Information Center
Brusco, Michael J.
2007-01-01
The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…
A New Control Paradigm for Stochastic Differential Equations
NASA Astrophysics Data System (ADS)
Schmid, Matthias J. A.
This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.
Estimating population size with correlated sampling unit estimates
David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey
2003-01-01
Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on markârecapture or distance sampling methods occur...
Quadratic soliton self-reflection at a quadratically nonlinear interface
NASA Astrophysics Data System (ADS)
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
ERIC Educational Resources Information Center
Withers, Christopher S.; Nadarajah, Saralees
2012-01-01
We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…
A Path Algorithm for Constrained Estimation
Zhou, Hua; Lange, Kenneth
2013-01-01
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
Orthogonality preserving infinite dimensional quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akın, Hasan; Mukhamedov, Farrukh
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Graphical Solution of the Monic Quadratic Equation with Complex Coefficients
ERIC Educational Resources Information Center
Laine, A. D.
2015-01-01
There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.
Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Becker, Stephen; Lee, Rena
2013-07-15
Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of themore » objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments by 10-15 and 30-35, relative to TV min. and quadratic min. based plans, while MIs decreases by about 20%-30% and 40%-60% over the plans by two existing techniques, respectively. With such conditions, the total treatment time of the plans obtained from our proposed method can be reduced by 12-30 s and 30-80 s mainly due to greatly shorter multileaf collimator (MLC) traveling time in IMRT step-and-shoot delivery.Conclusions: The reweighted L1-minimization technique provides a promising solution to simplify the fluence-map variations in IMRT inverse planning. It improves the delivery efficiency by reducing the entire segments and treatment time, while maintaining the plan quality in terms of target conformity and critical structure sparing.« less
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
NASA Astrophysics Data System (ADS)
Long, Kai; Wang, Xuan; Gu, Xianguang
2017-09-01
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.
Quadratic Optimisation with One Quadratic Equality Constraint
2010-06-01
This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.
Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra
NASA Astrophysics Data System (ADS)
Yates, L. A.; Jarvis, P. D.
2018-04-01
We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N = 1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N = 1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Denoised Wigner distribution deconvolution via low-rank matrix completion
Lee, Justin; Barbastathis, George
2016-08-23
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
Denoised Wigner distribution deconvolution via low-rank matrix completion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Justin; Barbastathis, George
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.
Cvitaš, Marko T
2018-03-13
The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.
2005-02-01
The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z)
Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Burken, John J.; Frost, Susan A.; Taylor, Brian R.
2011-01-01
When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.
NASA Astrophysics Data System (ADS)
Wehner, William; Schuster, Eugenio; Poli, Francesca
2016-10-01
Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.
Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential
NASA Astrophysics Data System (ADS)
Leonenko, N. N.; Ruiz-Medina, M. D.
2006-07-01
The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.
Christopher W. Woodall; Vicente J. Monleon
2009-01-01
The Forest Inventory and Analysis program of the Forest Service, U.S. Department of Agriculture conducts a national inventory of fine woody debris (FWD); however, the sampling protocols involve tallying only the number of FWD pieces by size class that intersect a sampling transect with no measure of actual size. The line intersect estimator used with those samples...
A design procedure and handling quality criteria for lateral directional flight control systems
NASA Technical Reports Server (NTRS)
Stein, G.; Henke, A. H.
1972-01-01
A practical design procedure for aircraft augmentation systems is described based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments.
Polarimetric image reconstruction algorithms
NASA Astrophysics Data System (ADS)
Valenzuela, John R.
In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters (traditional estimator), and when estimating Stokes parameters directly (Stokes estimator). We define our cost function for reconstruction by a weighted least squares data fit term and a regularization penalty. It is shown that under quadratic regularization, the traditional and Stokes estimators can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error in reconstruction. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods especially in the case of low SNR. The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate an object and optical system aberrations. We extend the technique of phase diversity to polarimetric imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes images and optical system aberrations involves a large parameter space. A closed-form expression for the estimate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that reduces the dimensionality of the search space to the number of aberration parameters only. We compare the performance of the joint estimator under both quadratic and edge-preserving regularization. The joint estimator with edge-preserving regularization yields higher fidelity polarization estimates than with quadratic regularization. Under quadratic regularization, using the reduced-parameter search strategy, accurate aberration estimates can be obtained without recourse to regularization "tuning". Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sensor for adaptive-optics systems. In a quadratically penalized weighted least squares estimation framework a closed form expression for the object being imaged in terms of the aberrations in the system is available. This expression offers a dramatic reduction of the dimensionality of the estimation problem and thus is of great interest for practical applications. We have derived an expression for an approximate joint covariance matrix for object and aberrations in the phase diversity context. Our expression for the approximate joint covariance is compared with the "known-object" Cramer-Rao lower bound that is typically used for system parameter optimization. Estimates of the optimal amount of defocus in a phase-diverse wavefront sensor derived from the joint-covariance matrix, the known-object Cramer-Rao bound, and Monte Carlo simulations are compared for an extended scene and a point object. It is found that our variance approximation, that incorporates the uncertainty of the object, leads to an improvement in predicting the optimal amount of defocus to use in a phase-diverse wavefront sensor.
PIFCGT: A PIF autopilot design program for general aviation aircraft
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1983-01-01
This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.
NASA Technical Reports Server (NTRS)
Oakley, Celia M.; Barratt, Craig H.
1990-01-01
Recent results in linear controller design are used to design an end-point controller for an experimental two-link flexible manipulator. A nominal 14-state linear-quadratic-Gaussian (LQG) controller was augmented with a 528-tap finite-impulse-response (FIR) filter designed using convex optimization techniques. The resulting 278-state controller produced improved end-point trajectory tracking and disturbance rejection in simulation and experimentally in real time.
NASA Astrophysics Data System (ADS)
Hess, Dale; van Lieshout, Marie-Colette; Payne, Bill; Stein, Alfred
This paper describes how spatial statistical techniques may be used to analyse weed occurrence in tropical fields. Quadrat counts of weed numbers are available over a series of years, as well as data on explanatory variables, and the aim is to smooth the data and assess spatial and temporal trends. We review a range of models for correlated count data. As an illustration, we consider data on striga infestation of a 60 × 24 m 2 millet field in Niger collected from 1985 until 1991, modelled by independent Poisson counts and a prior auto regression term enforcing spatial coherence. The smoothed fields show the presence of a seed bank, the estimated model parameters indicate a decay in the striga numbers over time, as well as a clear correlation with the amount of rainfall in 15 consecutive days following the sowing date. Such results could contribute to precision agriculture as a guide to more cost-effective striga control strategies.
A game theoretic approach to a finite-time disturbance attenuation problem
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1991-01-01
A disturbance attenuation problem over a finite-time interval is considered by a game theoretic approach where the control, restricted to a function of the measurement history, plays against adversaries composed of the process and measurement disturbances, and the initial state. A zero-sum game, formulated as a quadratic cost criterion subject to linear time-varying dynamics and measurements, is solved by a calculus of variation technique. By first maximizing the quadratic cost criterion with respect to the process disturbance and initial state, a full information game between the control and the measurement residual subject to the estimator dynamics results. The resulting solution produces an n-dimensional compensator which expresses the controller as a linear combination of the measurement history. A disturbance attenuation problem is solved based on the results of the game problem. For time-invariant systems it is shown that under certain conditions the time-varying controller becomes time-invariant on the infinite-time interval. The resulting controller satisfies an H(infinity) norm bound.
Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts
NASA Technical Reports Server (NTRS)
Gupta, Sandeep
1996-01-01
Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
Oliva, Silvia; Farina, Simone; Pinna, Stefania; Guala, Ivan; Agnetta, Davide; Ariotti, Pierre Antoine; Mura, Francesco; Ceccherelli, Giulia
2016-06-01
Sea urchins may deeply shape the structure of macrophyte-dominated communities and require the implementation of sustainable management strategies. In the Mediterranean, the identification of the major recruitment determinants of the keystone sea urchin species Paracentrotus lividus is required, so that source areas of the populations can be identified and exploitation or programmed harvesting can be spatially managed. In this study a collection of eight possible determinants, these encompassing both the biotic (larvae, adult sea urchins, fish, encrusting coralline algae, habitat type and spatial arrangement of habitats) and abiotic (substrate complexity and nutritional status) realms was considered at different spatial scales (site, area, transect and quadrat). Data from a survey including sites subject to different levels of human influence (i.e. from urbanized to protected areas), but all corresponding to an oligotrophic and low-populated region were fitted by means of a generalized linear mixed model. Despite the extensive sampling effort of benthic quadrats, an overall paucity of recruits was found, recruits being aggregated in a very small number of quadrats and in few areas. The analysis of data detected substrate complexity, and adult sea urchin and predatory fish abundances as the momentous determinants of Paracentrotus lividus recruitment. Possible mechanisms of influence are discussed beyond the implications of conservation management. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1971-01-01
A study of techniques for the prediction of crime in the City of Los Angeles was conducted. Alternative approaches to crime prediction (causal, quasicausal, associative, extrapolative, and pattern-recognition models) are discussed, as is the environment within which predictions were desired for the immediate application. The decision was made to use time series (extrapolative) models to produce the desired predictions. The characteristics of the data and the procedure used to choose equations for the extrapolations are discussed. The usefulness of different functional forms (constant, quadratic, and exponential forms) and of different parameter estimation techniques (multiple regression and multiple exponential smoothing) are compared, and the quality of the resultant predictions is assessed.
Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.
Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello
2007-01-01
A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Sunarsih; Kartono
2018-01-01
In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.
Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy
2015-10-01
In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.
Fast Algorithms for Designing Unimodular Waveform(s) With Good Correlation Properties
NASA Astrophysics Data System (ADS)
Li, Yongzhe; Vorobyov, Sergiy A.
2018-03-01
In this paper, we develop new fast and efficient algorithms for designing single/multiple unimodular waveforms/codes with good auto- and cross-correlation or weighted correlation properties, which are highly desired in radar and communication systems. The waveform design is based on the minimization of the integrated sidelobe level (ISL) and weighted ISL (WISL) of waveforms. As the corresponding optimization problems can quickly grow to large scale with increasing the code length and number of waveforms, the main issue turns to be the development of fast large-scale optimization techniques. The difficulty is also that the corresponding optimization problems are non-convex, but the required accuracy is high. Therefore, we formulate the ISL and WISL minimization problems as non-convex quartic optimization problems in frequency domain, and then simplify them into quadratic problems by utilizing the majorization-minimization technique, which is one of the basic techniques for addressing large-scale and/or non-convex optimization problems. While designing our fast algorithms, we find out and use inherent algebraic structures in the objective functions to rewrite them into quartic forms, and in the case of WISL minimization, to derive additionally an alternative quartic form which allows to apply the quartic-quadratic transformation. Our algorithms are applicable to large-scale unimodular waveform design problems as they are proved to have lower or comparable computational burden (analyzed theoretically) and faster convergence speed (confirmed by comprehensive simulations) than the state-of-the-art algorithms. In addition, the waveforms designed by our algorithms demonstrate better correlation properties compared to their counterparts.
Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality.
Forti, Mauro; Nistri, Paolo; Quincampoix, Marc
2006-11-01
This paper considers a class of neural networks (NNs) for solving linear programming (LP) problems, convex quadratic programming (QP) problems, and nonconvex QP problems where an indefinite quadratic objective function is subject to a set of affine constraints. The NNs are characterized by constraint neurons modeled by ideal diodes with vertical segments in their characteristic, which enable to implement an exact penalty method. A new method is exploited to address convergence of trajectories, which is based on a nonsmooth Lojasiewicz inequality for the generalized gradient vector field describing the NN dynamics. The method permits to prove that each forward trajectory of the NN has finite length, and as a consequence it converges toward a singleton. Furthermore, by means of a quantitative evaluation of the Lojasiewicz exponent at the equilibrium points, the following results on convergence rate of trajectories are established: (1) for nonconvex QP problems, each trajectory is either exponentially convergent, or convergent in finite time, toward a singleton belonging to the set of constrained critical points; (2) for convex QP problems, the same result as in (1) holds; moreover, the singleton belongs to the set of global minimizers; and (3) for LP problems, each trajectory converges in finite time to a singleton belonging to the set of global minimizers. These results, which improve previous results obtained via the Lyapunov approach, are true independently of the nature of the set of equilibrium points, and in particular they hold even when the NN possesses infinitely many nonisolated equilibrium points.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Minati, Federico
2010-03-01
Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.
NASA Astrophysics Data System (ADS)
Smylie, M. P.; Claus, H.; Welp, U.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Snezhko, A.
The low-temperature variation of the London penetration depth λ(T) in the candidate topological superconductor NbxBi2Se3 (x =0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (Hrf // c and Hrf // ab planes). All samples exhibited quadratic temperature dependence at low temperatures clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are not consistent with a complete superconducting gap. We interpret our data on NbxBi2Se3 in terms of a nematic odd-parity spin-triplet pairing state with Eu symmetry. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Contract No. DE-AC02-06CH11357. MPS thanks ND Energy for supporting his research and professional development through the ND Energy Postdoctoral Fellowship Program. YSH acknowledges support from National Science Foundation Grant Number DMR-1255607.
Proteinortho: detection of (co-)orthologs in large-scale analysis.
Lechner, Marcus; Findeiss, Sven; Steiner, Lydia; Marz, Manja; Stadler, Peter F; Prohaska, Sonja J
2011-04-28
Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.
Physician performance assessment using a composite quality index.
Liu, Kaibo; Jain, Shabnam; Shi, Jianjun
2013-07-10
Assessing physician performance is important for the purposes of measuring and improving quality of service and reducing healthcare delivery costs. In recent years, physician performance scorecards have been used to provide feedback on individual measures; however, one key challenge is how to develop a composite quality index that combines multiple measures for overall physician performance evaluation. A controversy arises over establishing appropriate weights to combine indicators in multiple dimensions, and cannot be easily resolved. In this study, we proposed a generic unsupervised learning approach to develop a single composite index for physician performance assessment by using non-negative principal component analysis. We developed a new algorithm named iterative quadratic programming to solve the numerical issue in the non-negative principal component analysis approach. We conducted real case studies to demonstrate the performance of the proposed method. We provided interpretations from both statistical and clinical perspectives to evaluate the developed composite ranking score in practice. In addition, we implemented the root cause assessment techniques to explain physician performance for improvement purposes. Copyright © 2012 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This text is the fourth of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This text begins with a brief discussion of quadratic equations which motivates the…
Cheetah: Starspot modeling code
NASA Astrophysics Data System (ADS)
Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam
2014-12-01
Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.
Controllability of semi-infinite rod heating by a point source
NASA Astrophysics Data System (ADS)
Khurshudyan, A.
2018-04-01
The possibility of control over heating of a semi-infinite thin rod by a point source concentrated at an inner point of the rod, is studied. Quadratic and piecewise constant solutions of the problem are derived, and the possibilities of solving appropriate problems of optimal control are indicated. Determining of the parameters of the piecewise constant solution is reduced to a problem of nonlinear programming. Numerical examples are considered.
Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela
2016-01-01
In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.
Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin
2014-01-01
This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2017-10-01
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography
NASA Astrophysics Data System (ADS)
Xiang, Zhongbo; Li, Yanqiu
2017-10-01
Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
NASA Technical Reports Server (NTRS)
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
Ed Home - Data Home PRAIRIE ADVOCATES Project - QUADRAT STUDY Project Answer research questions multi-state quadrat study. Bob Lootens, Fermilab Join us! Check out the Quadrat Study Project. Prairie study a prairie "expert" to facilitate your research student Internet access an e-mail address
Fast matrix multiplication and its algebraic neighbourhood
NASA Astrophysics Data System (ADS)
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Geometric quadratic stochastic operator on countable infinite set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar
2015-02-03
In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.
An Unexpected Influence on a Quadratic
ERIC Educational Resources Information Center
Davis, Jon D.
2013-01-01
Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…
NASA Astrophysics Data System (ADS)
Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.
2018-01-01
Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.
Roesler, Elizabeth L.; Grabowski, Timothy B.
2018-01-01
Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.
MM Algorithms for Geometric and Signomial Programming
Lange, Kenneth; Zhou, Hua
2013-01-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao
The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity providedmore » by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.« less
Support vector machines for nuclear reactor state estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1988-01-01
A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.
Multi-task feature selection in microarray data by binary integer programming.
Lan, Liang; Vucetic, Slobodan
2013-12-20
A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.
Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P
2015-03-01
The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.
Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach
Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.
2011-01-01
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862
Cemin, H S; Vieira, S L; Stefanello, C; Kindlein, L; Ferreira, T Z; Fireman, A K
2018-05-01
A study was conducted to evaluate growth performance, carcass and breast yields, and the occurrence and severity of white striping (WS) and wooden breast (WB) myopathies of broilers fed diets supplemented with increasing dietary levels of an organic source of selenium (Zn-L-SeMet). Broilers were fed 6 treatments with 12 replications of 26 birds in a 4-phase feeding program from 1 to 42 days. Corn-soy-based diets were supplemented with 0, 0.2, 0.4, 0.6, 0.8, and 1.0 ppm of Zn-L-SeMet. At 42 d, 6 birds were randomly selected from each pen (n = 72) and processed for carcass and breast yields. Breast fillets were scored for WS and WB at 42 days. Increasing Zn-L-SeMet led to quadratic responses (P < 0.05) for FCR from 1 to 7 d, BWG from 22 to 35 d, and for both responses from 8 to 21 d and 36 to 42 d, as well as in the overall period of 42 days. Carcass and breast yields presented a quadratic improvement (P < 0.01) with increasing Zn-L-SeMet supplementation and Se requirements were estimated at 0.85 and 0.86 ppm, respectively. In the overall period, estimates of Se requirements were 0.64 ppm for BWG and 0.67 ppm for FCR. White striping and WB scores presented quadratic increases (P < 0.01), and maximum scores were observed at 0.68 and 0.67 ppm, respectively. Broilers fed diets formulated without Se supplementation had a higher percentage of normal fillets compared to other Se supplementation levels (quadratic, P < 0.05). In conclusion, increasing Se supplementation to reach maximum growth performance led to higher degrees of severity of WS and WB. Selenium requirements determined in the present study were significantly higher than the present commercial recommendations.
Some Paradoxical Results for the Quadratically Weighted Kappa
ERIC Educational Resources Information Center
Warrens, Matthijs J.
2012-01-01
The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
Analysis of Students' Error in Learning of Quadratic Equations
ERIC Educational Resources Information Center
Zakaria, Effandi; Ibrahim; Maat, Siti Mistima
2010-01-01
The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…
Period changes of 7 bright RR Lyrae variables included in the BAV standard program.
NASA Astrophysics Data System (ADS)
Wunder, E.
1995-11-01
On the basis of 1578 times of maxima historical and present period changes of the RR Lyrae stars SW And, SW Aqr, AA Aql, X Ari, RS Boo, RR Cet and XZ Cyg are analysed. In tables the period jumps and the quadratic terms of the elements are quantified and timed; elements are given to describe the historical O-C-curves; instant elements are listed to support nowadays observations.
Guidance/Navigation Requirements Study Final Report. Volume III. Appendices
1978-04-30
shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
Chaotic coordinates for the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.
The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less
NASA Astrophysics Data System (ADS)
Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua
2008-10-01
In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.
Advanced fitness landscape analysis and the performance of memetic algorithms.
Merz, Peter
2004-01-01
Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
Hash Bit Selection for Nearest Neighbor Search.
Xianglong Liu; Junfeng He; Shih-Fu Chang
2017-11-01
To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
Engine With Regression and Neural Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2001-01-01
At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).
Linear and quadratic static response functions and structure functions in Yukawa liquids.
Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I
2014-08-01
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
Power-output regularization in global sound equalization.
Stefanakis, Nick; Sarris, John; Cambourakis, George; Jacobsen, Finn
2008-01-01
The purpose of equalization in room acoustics is to compensate for the undesired modification that an enclosure introduces to signals such as audio or speech. In this work, equalization in a large part of the volume of a room is addressed. The multiple point method is employed with an acoustic power-output penalty term instead of the traditional quadratic source effort penalty term. Simulation results demonstrate that this technique gives a smoother decline of the reproduction performance away from the control points.
Dynamical quadrupole structure factor of frustrated ferromagnetic chain
NASA Astrophysics Data System (ADS)
Onishi, Hiroaki
2018-05-01
We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Electrohydrodynamic effects in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.
1991-01-01
We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.
An Algebraic Approach for Solving Quadratic Inequalities
ERIC Educational Resources Information Center
Mahmood, Munir; Al-Mirbati, Rudaina
2017-01-01
In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…
Effects of Classroom Instruction on Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
Vaiyavutjamai, Pongchawee; Clements, M. A.
2006-01-01
Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…
On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product
ERIC Educational Resources Information Center
Valahas, Theodoros; Boukas, Andreas
2011-01-01
In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…
Sketching the General Quadratic Equation Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-03-09
Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO(3) cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm(-1)) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.; Watson, Layne T.
1998-01-01
Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.
NASA Technical Reports Server (NTRS)
Hada, M.; George, Kerry; Cucinotta, Francis A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.
Allen, Y.C.; Wilson, C.A.; Roberts, H.H.; Supan, J.
2005-01-01
Sidescan sonar holds great promise as a tool to quantitatively depict the distribution and extent of benthic habitats in Louisiana's turbid estuaries. In this study, we describe an effective protocol for acoustic sampling in this environment. We also compared three methods of classification in detail: mean-based thresholding, supervised, and unsupervised techniques to classify sidescan imagery into categories of mud and shell. Classification results were compared to ground truth results using quadrat and dredge sampling. Supervised classification gave the best overall result (kappa = 75%) when compared to quadrat results. Classification accuracy was less robust when compared to all dredge samples (kappa = 21-56%), but increased greatly (90-100%) when only dredge samples taken from acoustically homogeneous areas were considered. Sidescan sonar when combined with ground truth sampling at an appropriate scale can be effectively used to establish an accurate substrate base map for both research applications and shellfish management. The sidescan imagery presented here also provides, for the first time, a detailed presentation of oyster habitat patchiness and scale in a productive oyster growing area.
NASA Astrophysics Data System (ADS)
Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.
2014-07-01
Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.
Wing box transonic-flutter suppression using piezoelectric self-sensing actuators attached to skin
NASA Astrophysics Data System (ADS)
Otiefy, R. A. H.; Negm, H. M.
2010-12-01
The main objective of this research is to study the capability of piezoelectric (PZT) self-sensing actuators to suppress the transonic wing box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified transonic small disturbance (TSD) equation is used to model the transonic flow about the wing. The wing box structure and piezoelectric actuators are modeled using the equivalent plate method, which is based on the first order shear deformation plate theory (FSDPT). The piezoelectric actuators are bonded to the skin. The optimal electromechanical coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies, a linear quadratic Gaussian (LQG) which combines the linear quadratic regulator (LQR) with the Kalman filter estimator (KFE), an optimal static output feedback (SOF), and a classic feedback controller (CFC), are studied and compared. The optimum actuator and sensor locations are determined using the norm of feedback control gains (NFCG) and norm of Kalman filter estimator gains (NKFEG) respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.
Optimal helicopter trajectory planning for terrain following flight
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.
NASA Technical Reports Server (NTRS)
Chen, George T.
1987-01-01
An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.
Active distribution network planning considering linearized system loss
NASA Astrophysics Data System (ADS)
Li, Xiao; Wang, Mingqiang; Xu, Hao
2018-02-01
In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.
A different approach to X-ray stress analysis
NASA Astrophysics Data System (ADS)
Ogilvie, Robert E.
2007-07-01
A different approach to X-ray stress analysis has been developed. At the outset, it must be noted that the material to be analyzed is assumed homogeneous and isotropic. If a sphere with radius r within a specimen is subjected to a state of stress, the sphere is deformed into an ellipsoid. The semi-axes of the ellipsoid have the values of ( r + ɛx), ( r + ɛy), and ( r + ɛz), which are replaced by dx, dy, and dz, or for the cubic case, ax, ay, and az. In this technique, at a particular ϕ angle (see Fig. 1), the two-theta position of a high angle (hkl) peak is determined at ψ angles of 0, 15, 30, and 45°. These measurements are repeated for 3 to 6 ϕ angles in steps of 30°. The dϕψ or aϕψ values are then determined from the peak positions. The data is then fitted to the general quadratic equation for an ellipsoid by the method of least squares. From the coefficients of the quadratic equation, the angle between the laboratory and the specimen coordinates (direction of the principle stress) can be determined. Applying the general rotation of axes equations to the quadratic, the equation of the ellipse in the x- y plane is determined. The ax, ay, and az values for the principal axes of the lattice parameter ellipsoid are then evaluated. It is then possible to determine the unstressed a0 value from Hooke's Law using ax, ay, and az. The magnitude of the principal strains/stresses is then determined.
NASA Astrophysics Data System (ADS)
Romano, Francesco; Cimmino, Rosario F.
2017-09-01
This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very innovative, it shows a very good adherence with results obtained with the conventional techniques in current usage.
Tangent Lines without Derivatives for Quadratic and Cubic Equations
ERIC Educational Resources Information Center
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School
ERIC Educational Resources Information Center
Kenan, Kok Xiao-Feng
2017-01-01
This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…
Geometrical Solutions of Some Quadratic Equations with Non-Real Roots
ERIC Educational Resources Information Center
Pathak, H. K.; Grewal, A. S.
2002-01-01
This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.
Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit
2018-07-01
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
Sparse Recovery via Differential Inclusions
2014-07-01
2242. [Wai09] Martin J. Wainwright, Sharp thresholds for high-dimensional and noisy spar- sity recovery using l1 -constrained quadratic programming...solution, (1.11) βt = { 0, if t < 1/y; y(1− e−κ(t−1/y)), otherwise, which converges to the unbiased Bregman ISS estimator exponentially fast. Let us ...are not given the support set S, so the following two prop- erties are used to evaluate the performance of an estimator β̂. 1. Model selection
Structural Optimization of a Distributed Actuation System in a Flexible In-Plane Morphing Wing
2007-06-01
Captain, USAF Approved: /signed/ 11 Jun 2007 Dr. Robert Canfield (Chairman) date /signed/ 11 Jun 2007 Dr. Brian Sanders (Member) date /signed/ 11 Jun...can be seen here at the Camp Roberts Flight Test Range [11]. separation, which ultimately increased the overall lift. During wind tunnel tests, the...Matlabr . The outermost loop was written by Mark Spillman and Dr. Robert Canfield and was based on Schittkowski’s Sequential Quadratic Programming (SQP
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Akhter, Khalid P; Ahmad, Mahmood; Khan, Shujaat Ali; Ramzan, Munazza; Shafi, Ishrat; Muryam, Burhana; Javed, Zafar; Murtaza, Ghulam
2012-01-01
This study presents an application of the piecewise rational quadratic interpolant to the AUC calculation in the bioavailability study. The objective of this work is to find an area under the plasma concentration-time curve (AUC) for multiple doses of salbutamol sulfate sustained release tablets (Ventolin oral tablets SR 8 mg, GSK, Pakistan) in the group of 24 healthy adults by using computational mathematics techniques. Following the administration of 4 doses of Ventolin tablets 12 hourly to 24 healthy human subjects and bioanalysis of obtained plasma samples, plasma drug concentration-time profile was constructed. The approximated AUC was computed by using computational mathematics techniques such as extended rectangular, extended trapezium and extended Simpson's rule and compared with exact value of AUC calculated by using software - Kinetica to find best computational mathematics method that gives AUC values closest to exact. The exact values of AUC for four consecutive doses of Ventolin oral tablets were 150.58, 157.81, 164.41 and 162.78 ngxh/mL while the closest approximated AUC values were 149.24, 157.33, 164.25 and 162.28 ngxh/mL, respectively, as found by extended rectangular rule. The errors in the approximated values of AUC were negligible. It is concluded that all computational tools approximated values of AUC accurately but the extended rectangular rule gives slightly better approximated values of AUC as compared to extended trapezium and extended Simpson's rules.
ERIC Educational Resources Information Center
Ozaltun Celik, Aytug; Bukova Guzel, Esra
2017-01-01
The quadratic function is an important concept for calculus but the students at high school have many difficulties related to this concept. It is important that the teaching of the quadratic function is realized considering the students' thinking. In this context, the aim of this study conducted through a qualitative case study is to reveal the…
Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo
2007-11-22
Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.
Quadratic spline subroutine package
Rasmussen, Lowell A.
1982-01-01
A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)
NASA Astrophysics Data System (ADS)
Marino, Armando; Hajnsek, Irena
2015-04-01
In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.
Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R.; Sridhar, B.
1976-01-01
The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.
Comparison of rangeland vegetation sampling techniques in the Central Grasslands
Stohlgren, T.J.; Bull, K.A.; Otsuki, Yuka
1998-01-01
Maintaining native plant diversity, detecting exotic species, and monitoring rare species are becoming important objectives in rangeland conservation. Four rangeland vegetation sampling techniques were compared to see how well they captured local pant diversity. The methods tested included the commonly used Parker transects, Daubenmire transects as modified by the USDA Forest Service, a new transect and 'large quadrat' design proposed by the USDA Agricultural Research Service, and the Modified-Whittaker multi-scale vegetation plot. The 4 methods were superimposed in shortgrass steppe, mixed grass prairie, northern mixed prairie, and tallgrass prairie in the Central Grasslands of the United States with 4 replicates in each prairie type. Analysis of variance tests showed significant method effects and prairie type effects, but no significant method X type interactions for total species richness, the number of native species, the number of species with less than 1 % cover, and the time required for sampling. The methods behaved similarly in each prairie type under a wide variety of grazing regimens. The Parker, large quadrat, and Daubenmire transects significantly underestimated the total species richness and the number of native species in each prairie type, and the number of species with less than 1 % cover in all but the tallgrass prairie type. The transect techniques also consistently missed half the exotic species, including noxious weeds, in each prairie type. The Modified-Whittaker method, which included an exhaustive search for plant species in a 20 x 50 m plot, served as the baseline for species richeness comparisons. For all prairie types, the Modified-Whittaker plot captured an average of 42. (?? 2.4; 1 S.E.) plant species per site compared to 15.9 (?? 1.3), 18.9 (?? 1.2), and 22.8 (?? 1.6) plant species per site using the Parker, large quadrat, and Daubenmire transect methods, respectively. The 4 methods captured most of the dominant species at each site and thus produced similar results for total foliar cover and soil cover. The detection and measurement of exotic plant species were greatly enhanced by using ten 1 m2 subplots in a multi-scale sampling design and searching a larger area (1,000 m2) at each site. Even with 4 replicate sites, the transect methods usually captured, and thus would monitor, 36 to 66 % of the plant species at each site. To evaluate the status and trends of common, rare, and exotic plant species at local, regional, and national scales, innovative, multi-scale methods must replace the commonly used transect methods to the past.
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Feiveson, A. H.; Hall, F. G.; Bauer, M. E.; Davis, B. J.; Malila, W. A.; Rice, D. P.
1975-01-01
The CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data processing (ADP) techniques. Each technique was applied to data acquired to recognize and estimate proportions of corn and soybeans. The CITARS documentation summarizes, interprets, and discusses the crop identification performances obtained using (1) different ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability information derived from historic data; (4) local versus nonlocal recognition training statistics and the associated use of preprocessing; (5) multitemporal data; (6) classification bias and mixed pixels in proportion estimation; and (7) data with differnt site characteristics, including crop, soil, atmospheric effects, and stages of crop maturity.
The stability of quadratic-reciprocal functional equation
NASA Astrophysics Data System (ADS)
Song, Aimin; Song, Minwei
2018-04-01
A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.
Test spaces and characterizations of quadratic spaces
NASA Astrophysics Data System (ADS)
Dvurečenskij, Anatolij
1996-10-01
We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.
Jeffrey H. Gove
2003-01-01
This note seeks to extend the utility of size-biased distribution theory as applied to forestry through two relationships regarding the quadratic mean stand diameter. First, the quadratic mean stand diameter's relationship to the harmonic mean basal area for horizontal point sampling, which has been known algebraically from early on, is proved under size-biased...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yunbin, E-mail: zhaoyy@maths.bham.ac.u
2010-12-15
While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called 'scaled matrices' associated with quadratic forms involved. The main result claims that if the conditionmore » number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer's fixed point of a mapping) with a special structure. Thus, a broader question than the open 'Question 11' in Hiriart-Urruty (SIAM Rev. 49, 225-273, 2007) is addressed in this paper.« less
Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong
2018-05-19
In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu
2014-01-01
The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281
Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements
Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.
2016-01-01
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation. Copyright © 2011. Published by Elsevier Ltd.
1988-06-01
abilities when I lost confidence. Without her help I would not have completed the program. Next, I wish to thank Dr. Peter Maybeck, my research ...being not only a resource for my research . but also for being a friend who listened when I needed a shoulder to cry on. Finally, I wish to give thanks...considered in this research are assumed to be linear quadratic Gaussian (LQG) based controllers. This research first uses a direct approach to
Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio
2011-12-01
This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).
On the structure of nonlinear constitutive equations for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Jansson, Stefan
1992-01-01
The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
Proteinortho: Detection of (Co-)orthologs in large-scale analysis
2011-01-01
Background Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. Results The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Conclusions Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware. PMID:21526987
Advanced Energy Storage Management in Distribution Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu
2016-01-01
With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) andmore » control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.« less
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.
DEM interpolation weight calculation modulus based on maximum entropy
NASA Astrophysics Data System (ADS)
Chen, Tian-wei; Yang, Xia
2015-12-01
There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.
Digital program for solving the linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, B.
1975-01-01
A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.
Benko, Matúš; Gfrerer, Helmut
2018-01-01
In this paper, we consider a sufficiently broad class of non-linear mathematical programs with disjunctive constraints, which, e.g. include mathematical programs with complemetarity/vanishing constraints. We present an extension of the concept of [Formula: see text]-stationarity which can be easily combined with the well-known notion of M-stationarity to obtain the stronger property of so-called [Formula: see text]-stationarity. We show how the property of [Formula: see text]-stationarity (and thus also of M-stationarity) can be efficiently verified for the considered problem class by computing [Formula: see text]-stationary solutions of a certain quadratic program. We consider further the situation that the point which is to be tested for [Formula: see text]-stationarity, is not known exactly, but is approximated by some convergent sequence, as it is usually the case when applying some numerical method.
Searches for millisecond pulsations in low-mass X-ray binaries
NASA Technical Reports Server (NTRS)
Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.
1991-01-01
High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.
The application of LQR synthesis techniques to the turboshaft engine control problem
NASA Technical Reports Server (NTRS)
Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.
1984-01-01
A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.
Synthesis of robust nonlinear autopilots using differential game theory
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1991-01-01
A synthesis technique for handling unmodeled disturbances in nonlinear control law synthesis was advanced using differential game theory. Two types of modeling inaccuracies can be included in the formulation. The first is a bias-type error, while the second is the scale-factor-type error in the control variables. The disturbances were assumed to satisfy an integral inequality constraint. Additionally, it was assumed that they act in such a way as to maximize a quadratic performance index. Expressions for optimal control and worst-case disturbance were then obtained using optimal control theory.
Modification of smoothing in 4253H[T
NASA Astrophysics Data System (ADS)
Azmi, Nurul Nisa'Khairol; Adam, Mohd Bakri; Shitan, Mahendran; Ali, Norhaslinda Mohd
2017-05-01
Some modified non-linear smoothers particularly 4253H[T] are explained in this paper. The modifications are focused on estimating the middle point of running median for even span by applying the following types of means; geometric, harmonic, quadratic and contraharmonic. The performance of the techniques is assessed by applying it to daily price index of a bank in Malaysia that issues sukuk for funding in Islamic banking and financial business. The results show that 4253H[T] with geometric mean modification is better than others in preserving variation and curve fitting.
Nonquadratic gauge fixing and ghosts for gauge theories on the hypersphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, F. T.; McKeon, D. G. C.; Department of Mathematics and Computer Science, Algoma University, Sault St. Marie, Ontario P6A 2G4
2011-10-15
It has been suggested that using a gauge fixing Lagrangian that is not quadratic in a gauge fixing condition is most appropriate for gauge theories formulated on a hypersphere. We reexamine the appropriate ghost action that is to be associated with gauge fixing, applying a technique that has been used for ensuring that the propagator for a massless spin-two field is transverse and traceless. It is shown that this nonquadratic gauge fixing Lagrangian leads to two pair of complex Fermionic ghosts and two Bosonic real ghosts.
NASA Technical Reports Server (NTRS)
Kaminer, Isaac; Benson, Russell A.; Coleman, Edward E.; Ebrahimi, Yaghoob S.
1990-01-01
Two designs are presented for control systems for the NASA Transport System Research Vehicle (TSRV) using integral Linear Quadratic Gaussian (LQG) methodology. The first is an integrated longitudinal autopilot/autothrottle design and the second design is an integrated lateral autopilot/yaw damper/sideslip controller design. It is shown that a systematic top-down approach to a complex design problem combined with proper application of modern control synthesis techniques yields a satisfactory solution in a reasonable period of time.
Crew emergency return vehicle autoland feasibility study
NASA Technical Reports Server (NTRS)
Bossi, J. A.; Langehough, M. A.; Lee, K. L.
1989-01-01
The crew emergency return vehicle (CERV) autoland feasibility study focused on determining the controllability of the NASA Langley high lift over drag CERV for performing an automatic landing at a prescribed runway. An autoland system was developed using integral linear quadratic Gaussian (LQG) design techniques. The design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrate that the CERV configuration is a very flyable configuration for performing an autoland mission. Adequate stability and control was demonstrated for wind turbulence and wind shear. Control surface actuator requirements were developed.
Veronese geometry and the electroweak vacuum moduli space
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.
2014-09-01
We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. We moreover give a detailed description of this geometry, realising an extra branch as a zero-dimensional point when quadratic Higgs lifting deformations are incorporated into the superpotential.
\\mathscr{H}_2 optimal control techniques for resistive wall mode feedback in tokamaks
NASA Astrophysics Data System (ADS)
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; Navratil, Gerald
2018-04-01
DIII-D experiments show that a new, advanced algorithm enables resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic flux diffusion time of the vacuum vessel wall. Experiments have shown that modern control techniques like linear quadratic Gaussian (LQG) control require less current than the proportional controller in use at DIII-D when using control coils external to DIII-D’s vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high βN experiments also show that advanced feedback techniques using external control coils may be as effective as internal control coil feedback using classical control techniques.
Two-color walking Peregrine solitary waves.
Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru
2017-09-15
We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.
Self-accelerating parabolic beams in quadratic nonlinear media
NASA Astrophysics Data System (ADS)
Dolev, Ido; Libster, Ana; Arie, Ady
2012-09-01
We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
NASA Astrophysics Data System (ADS)
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
NASA Astrophysics Data System (ADS)
Yamada, Katsuhiko; Jikuya, Ichiro
2014-09-01
Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.
Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A
2015-05-29
In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
The contribution of benzene to smoking-induced leukemia.
Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J
2000-04-01
Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all < 1%. Thus, benzene is estimated to be responsible for approximately one-tenth to one-half of smoking-induced total leukemia mortality and up to three-fifths of smoking-related AML mortality. In contrast to theoretical arguments that linear models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.
Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
NASA Astrophysics Data System (ADS)
Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan
2018-03-01
Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.
Confidence set inference with a prior quadratic bound
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z = (z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y(0)=(y sub 1(0),...,y sub D(0)) knowledge of the statistical distribution of the random errors in y(0). The data space Y containing y(0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x (e.g., energy or dissipation rate), Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. CSI is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface. Neither the heat flow nor the energy bound is strong enough to permit estimation of B(r) at single points on the CMB, but the heat flow bound permits estimation of uniform averages of B(r) over discs on the CMB, and both bounds permit weighted disc-averages with continous weighting kernels. Both bounds also permit estimation of low-degree Gauss coefficients at the CMB. The heat flow bound resolves them up to degree 8 if the crustal field at satellite altitudes must be treated as a systematic error, but can resolve to degree 11 under the most favorable statistical treatment of the crust. These two limits produce circles of confusion on the CMB with diameters of 25 deg and 19 deg respectively.
Liu, X T; Ma, W F; Zeng, X F; Xie, C Y; Thacker, P A; Htoo, J K; Qiao, S Y
2015-10-01
Four 28-d experiments were conducted to determine the standardized ileal digestible (SID) valine (Val) to lysine (Lys) ratio required for 26- to 46- (Exp. 1), 49- to 70- (Exp. 2), 71- to 92- (Exp. 3), and 94- to 119-kg (Exp. 4) pigs fed low CP diets supplemented with crystalline AA. The first 3 experiments utilized 150 pigs (Duroc × Landrace × Large White), while Exp. 4 utilized 90 finishing pigs. Pigs in all 4 experiments were randomly allocated to 1 of 5 diets with 6 pens per treatment (3 pens of barrows and 3 pens of gilts) and 5 pigs per pen for the first 3 experiments and 3 pigs per pen for Exp. 4. Diets for all experiments were formulated to contain SID Val to Lys ratios of 0.55, 0.60, 0.65, 0.70, or 0.75. In Exp. 1 (26 to 46 kg), ADG increased (linear, = 0.039; quadratic, = 0.042) with an increasing dietary Val:Lys ratio. The SID Val:Lys ratio to maximize ADG was 0.62 using a linear broken-line model and 0.71 using a quadratic model. In Exp. 2 (49 to 70 kg), ADG increased (linear, = 0.021; quadratic, = 0.042) as the SID Val:Lys ratio increased. G:F improved (linear, = 0.039) and serum urea nitrogen (SUN) decreased (linear, = 0.021; quadratic, = 0.024) with an increased SID Val:Lys ratio. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.65, respectively, using a linear broken-line model and 0.72 and 0.71, respectively, using a quadratic model. In Exp. 3 (71 to 92 kg), ADG increased (linear, = 0.007; quadratic, = 0.022) and SUN decreased (linear, = 0.011; quadratic, = 0.034) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.67, respectively, using a linear broken-line model and 0.72 and 0.74, respectively, using a quadratic model. In Exp. 4 (94 to 119 kg), ADG increased (linear, = 0.041) and G:F was improved (linear, = 0.004; quadratic, = 0.005) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratio to maximize G:F was 0.68 using a linear broken-line model and 0.72 using a quadratic model. Carcass traits and muscle quality were not influenced by SID Val:Lys ratio. In conclusion, the dietary SID Val:Lys ratios required for 26- to 46-, 49- to 70-, 71- to 92-, and 94- to 119-kg pigs were estimated to be 0.62, 0.66, 0.67, and 0.68, respectively, using a linear broken-line model and 0.71, 0.72, 0.73, and 0.72, respectively, using a quadratic model.
Geometrical and Graphical Solutions of Quadratic Equations.
ERIC Educational Resources Information Center
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Linear quadratic optimization for positive LTI system
NASA Astrophysics Data System (ADS)
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Roh, Kum-Hwan; Kim, Ji Yeoun; Shin, Yong Hyun
2017-01-01
In this paper, we investigate the optimal consumption and portfolio selection problem with negative wealth constraints for an economic agent who has a quadratic utility function of consumption and receives a constant labor income. Due to the property of the quadratic utility function, we separate our problem into two cases and derive the closed-form solutions for each case. We also illustrate some numerical implications of the optimal consumption and portfolio.
Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator
NASA Astrophysics Data System (ADS)
Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping
2017-07-01
A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.
NASA Astrophysics Data System (ADS)
Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim
2017-09-01
Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1980-01-01
Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.
2013-01-01
Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729
Ren, Shaogang; Zeng, Bo; Qian, Xiaoning
2013-01-01
Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.
$$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim
DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less
$$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; ...
2018-02-28
DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742
Quadratic RK shooting solution for a environmental parameter prediction boundary value problem
NASA Astrophysics Data System (ADS)
Famelis, Ioannis Th.; Tsitouras, Ch.
2014-10-01
Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve, where the probability distribution functions in the case of our meteorological data are two parameter Weibull distributions, satisfies a 2nd order Boundary Value (BV) system. We study the numerical treatment of the resulting special quadratic form system using Shooting method. We compare the solutions of the problem when we employ a classical Singly Diagonally Implicit Runge Kutta (SDIRK) 4(3) pair of methods and a quadratic SDIRK 5(3) pair . Both pairs have the same computational costs whereas the second one attains higher order as it is specially constructed for quadratic problems.
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
NASA Astrophysics Data System (ADS)
Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez
2017-04-01
Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.
Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.
Liang, Lihua; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller. PMID:29709008
NASA Astrophysics Data System (ADS)
Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.
2007-09-01
When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.
In vivo hyperspectral CARS and FWM microscopy of carotenoid accumulation in H. Pluvialis
NASA Astrophysics Data System (ADS)
Slepkov, Aaron D.; Barlow, Aaron M.; Ridsdale, Andrew; McGinn, Patrick J.; Stolow, Albert
2014-02-01
Coherent anti-Stokes Raman scattering (CARS) and four-wave-mixing (FWM) microscopy are a related pair of powerful nonlinear optical characterization tools. These techniques often yield strong signals from concentrated samples, but because of their quadratic dependence on concentration, they are not typically employed for imaging or identifying dilute cellular constituents. We report here that, depending on the excitation wavelengths employed, both CARS and degenerate-FWM signals from carotenoid accumulations in alga cysts can be exceptionally large, allowing for low-power imaging of astaxanthin (AXN) deposits in Haematococcus pluvialis microalga. By use of a broadband laser pulse scheme for CARS and FWM, we are able to simultaneously collect strong intrinsic two-photon-excitation fluorescence signals from cellular chlorophyll in vivo. We show that CARS signals from astaxanthin (AXN) samples in vitro strictly follow the expected quadratic dependence on concentration, and we demonstrate the collection of wellresolved CARS spectra in the fingerprint region with sensitivity below 2mM. We suggest that multimodal nonlinear optical microscopy is sufficiently sensitive to AXN and chlorophyll concentrations that it will allow for non-invasive monitoring of carotenogenesis in live H. pluvialis microalgae.
Chalal, Hocine; Abed-Meraim, Farid
2018-06-20
In the current contribution, prismatic and hexahedral quadratic solid⁻shell (SHB) finite elements are proposed for the geometrically nonlinear analysis of thin structures made of functionally graded material (FGM). The proposed SHB finite elements are developed within a purely 3D framework, with displacements as the only degrees of freedom. Also, the in-plane reduced-integration technique is combined with the assumed-strain method to alleviate various locking phenomena. Furthermore, an arbitrary number of integration points are placed along a special direction, which represents the thickness. The developed elements are coupled with functionally graded behavior for the modeling of thin FGM plates. To this end, the Young modulus of the FGM plate is assumed to vary gradually in the thickness direction, according to a volume fraction distribution. The resulting formulations are implemented into the quasi-static ABAQUS/Standard finite element software in the framework of large displacements and rotations. Popular nonlinear benchmark problems are considered to assess the performance and accuracy of the proposed SHB elements. Comparisons with reference solutions from the literature demonstrate the good capabilities of the developed SHB elements for the 3D simulation of thin FGM plates.
Schoneveld, Elke A; Lichtwarck-Aschoff, Anna; Granic, Isabela
2018-02-01
A large proportion of children experience subclinical levels of anxiety and cognitive-behavioral therapy (CBT) aimed at preventing anxiety disorders is moderately effective. However, most at-risk children do not seek help or drop out of programs prematurely because of stigma, lack of motivation, and accessibility barriers. Applied games have received increased attention as viable alternatives and have shown promising results, but direct comparisons between applied games and the gold-standard CBT are lacking. Our aim was to investigate whether the applied game MindLight is as effective as CBT (i.e., Coping Cat) within an indicated prevention context. We conducted a randomized controlled non-inferiority trial with a sample of 174 children (7- to 12-year olds) with elevated levels of anxiety, comparing MindLight to CBT. Anxiety was assessed with self- and parent-reports at pre- and post-program, and at 3- and 6-month follow-ups. Intention-to-treat and completers-only confidence interval approach and latent growth curve modeling showed an overall significant quadratic decrease in child- and parent-reported anxiety symptoms over time and, as predicted, the magnitude of improvement was the same for MindLight and CBT. The within-group effect sizes were small to medium at post-test (- 0.32 to - 0.63), and medium to large (- 0.60 to - 1.07) at 3- and 6-month follow-ups. Furthermore, MindLight and CBT were rated equally anxiety inducing, difficult, and appealing; CBT was rated as more relevant to daily life than MindLight. The current study adds to the growing research on applied games for mental health and shows that these games hold potential as alternative delivery models for evidence-based therapeutic techniques.
Energy-efficient human body communication receiver chipset using wideband signaling scheme.
Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun
2007-01-01
This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.
NASA Technical Reports Server (NTRS)
Alston, D. W.
1981-01-01
The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.
One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations
NASA Astrophysics Data System (ADS)
Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro
2017-10-01
In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.
Schur Stability Regions for Complex Quadratic Polynomials
ERIC Educational Resources Information Center
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
NASA Astrophysics Data System (ADS)
Peng, Yu; Wang, Qinghui; Fan, Min
2017-11-01
When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.
Chang, Weng-Long
2012-03-01
Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.
Quadratic correlation filters for optical correlators
NASA Astrophysics Data System (ADS)
Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.
2003-08-01
Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.
Gaussian Mean Field Lattice Gas
NASA Astrophysics Data System (ADS)
Scoppola, Benedetto; Troiani, Alessio
2018-03-01
We study rigorously a lattice gas version of the Sherrington-Kirckpatrick spin glass model. In discrete optimization literature this problem is known as unconstrained binary quadratic programming and it belongs to the class NP-hard. We prove that the fluctuations of the ground state energy tend to vanish in the thermodynamic limit, and we give a lower bound of such ground state energy. Then we present a heuristic algorithm, based on a probabilistic cellular automaton, which seems to be able to find configurations with energy very close to the minimum, even for quite large instances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez, Enrique; González-Martín, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: sergio.gonzalez.martin@csic.es
2017-02-01
The on shell equivalence of first order and second order formalisms for the Einstein-Hilbert action does not hold for those actions quadratic in curvature. It would seem that by considering the connection and the metric as independent dynamical variables, there are no quartic propagators for any dynamical variable. This suggests that it is possible to get both renormalizability and unitarity along these lines. We have studied a particular instance of those theories, namely Weyl gravity. In this first paper we show that it is not possible to implement this program with the Weyl connection alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.
McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T
2013-12-13
Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.
D'Amico, María Belén; Calandrini, Guillermo L
2015-11-01
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
On orthogonality preserving quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
NASA Astrophysics Data System (ADS)
D'Amico, María Belén; Calandrini, Guillermo L.
2015-11-01
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
Quantum superintegrable system with a novel chain structure of quadratic algebras
NASA Astrophysics Data System (ADS)
Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong
2018-06-01
We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.
Solution of the symmetric eigenproblem AX=lambda BX by delayed division
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Bains, N. J. C.
1986-01-01
Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.
Optical properties and progressive sterical hindering in pyridinium phenoxides
NASA Astrophysics Data System (ADS)
Boeglin, A.; Barsella, A.; Fort, A.; Mançois, F.; Rodriguez, V.; Diemer, V.; Chaumeil, H.; Defoin, A.; Jacques, P.; Carré, C.
2007-07-01
Pyridinium phenoxides are model compounds associating large dipole moments with high optical nonlinearities. A progression of sterically hindered forms of such zwitterions has been synthesized in order to investigate their structure/property relationships. Their UV-vis absorption in acetonitrile has been analyzed as a function of concentration in order to assess the presence of aggregates and the level of protonation. The quadratic optical properties have been measured by the EFISH and hyper-Rayleigh techniques and are interpreted via semi-empirical calculations. The solvation model used leads to results that agree with our experimental findings indicating an increased response for intermediate twist angles.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
1988-01-01
A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.
Quantum speedup of the traveling-salesman problem for bounded-degree graphs
NASA Astrophysics Data System (ADS)
Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley
2017-03-01
The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.
Alternative kinetic energy metrics for Lagrangian systems
NASA Astrophysics Data System (ADS)
Sarlet, W.; Prince, G.
2010-11-01
We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.
Patra, Amlan Kumar; Yu, Zhongtang
2013-07-01
Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but TMP tended to increase due to increasing bicarbonate concentration. Although total VFA concentration and molar percentage of butyrate were unchanged, the molar percentage of acetate, and acetate-to-propionate ratio decreased, whereas the molar percentage of propionate increased quadratically with increasing bicarbonate concentration. This study demonstrated for the first time that headspace composition, especially CO2 content, and bicarbonate concentration in media could significantly influence gas and methane production, and rumen fermentation in gas production techniques. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cui, Yao-Ming; Wang, Jing; Lu, Wei; Zhang, Hai-Jun; Wu, Shu-Geng; Qi, Guang-Hai
2018-04-11
The objective of this study was to evaluate the effects of dietary supplementation with Moringa oleifera leaf (MOL) on performance, carcass characteristics, meat quality, and oxidative stability of breast muscle in broilers. A total of 720 1-d-old male Arbor Acres birds were randomly divided into 6 dietary groups, which were fed a basal diet supplemented with 0, 1, 2, 5, 10, and 15% MOL, respectively. Each group had 6 replicates of 20 birds each. The feeding trial lasted for 42 d. The results showed dietary MOL supplementation linearly and quadratically decreased body weight and average daily gain (P < 0.01), and increased feed conversion ratio (P < 0.001). Abdominal fat decreased linearly and quadratically in response to the supplementation of MOL in diets, both on d 21 and 42 (P < 0.001). In breast muscle, dietary supplementation with MOL quadratically increased the contents of C18:2, C18:3n-3, C20:4, polyunsaturated fatty acids (PUFA), n-3 PUFA, n-6 PUFA (P < 0.01), and decreased thrombogenic index (TI; P = 0.019). Dietary inclusion of MOL improved meat color, evidenced by quadratically reduced b* (yellowness) values (45 min postmortem, P = 0.001; 24 h postmortem, P = 0.018) and increased a* (redness) values (24 h postmortem, P < 0.001). Besides, diets supplemented with MOL quadratically decreased malondialdehyde (MDA) levels in breast muscle during storage (P < 0.001). Plasma total anti-oxidative capacity, total superoxide dismutase, glutathione peroxidase activities increased quadratically (P < 0.01), whereas MDA decreased quadratically (P < 0.001), in response to dietary MOL supplementation. In summary, MOL could be used as a feed ingredient for broilers to improve PUFA contents, oxidative stability, color of breast muscle, and abdominal fat without adverse effects on growth performance, with an inclusion of 1.56% in the diets.
Exploring Quadratic Functions with Logger "Pro"
ERIC Educational Resources Information Center
Pope, Derek
2018-01-01
The author shares the lesson that he used to introduce the quadratic unit to students in an extended second-year algebra class, demonstrate why it was appropriate for his struggling learners, and discuss possible future modifications to this lesson.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
NASA Astrophysics Data System (ADS)
Burns-Childers, Annie; Vidakovic, Draga
2018-07-01
The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ziyang; Yang, Tao; Li, Guoqi
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
On Volterra quadratic stochastic operators with continual state space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar
2015-05-15
Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on themore » segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.« less
Ricotta, Carlo; Szeidl, Laszlo
2006-11-01
The diversity of a species assemblage has been studied extensively for many decades in relation to its possible connection with ecosystem functioning and organization. In this view most diversity measures, such as Shannon's entropy, rely upon information theory as a basis for the quantification of diversity. Also, traditional diversity measures are computed using species relative abundances and cannot account for the ecological differences between species. Rao first proposed a diversity index, termed quadratic diversity (Q) that incorporates both species relative abundances and pairwise distances between species. Quadratic diversity is traditionally defined as the expected distance between two randomly selected individuals. In this paper, we show that quadratic diversity can be interpreted as the expected conflict among the species of a given assemblage. From this unusual interpretation, it naturally follows that Rao's Q can be related to the Shannon entropy through a generalized version of the Tsallis parametric entropy.
Homotopy approach to optimal, linear quadratic, fixed architecture compensation
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1991-01-01
Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.
Meng, Ziyang; Yang, Tao; Li, Guoqi; ...
2017-09-18
Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less
User's manual: Subsonic/supersonic advanced panel pilot code
NASA Technical Reports Server (NTRS)
Moran, J.; Tinoco, E. N.; Johnson, F. T.
1978-01-01
Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.
A new performance index for the repetitive motion of mobile manipulators.
Xiao, Lin; Zhang, Yunong
2014-02-01
A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.
Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob
2017-04-28
This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.
Theory of Band Warping and its Effects on Thermoelectronic Transport Properties
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco
2015-03-01
Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.
Electromagnetic tracking system with reduced distortion using quadratic excitation.
Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg
2014-03-01
Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Field-antifield and BFV formalisms for quadratic systems with open gauge algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirov, K.S.; Razumov, A.V.
1992-09-20
In this paper the Lagrangian field-antifield (BV) and Hamiltonian (BFV) BRST formalisms for the general quadratic systems with open gauge algebra are considered. The equivalence between the Lagrangian and Hamiltonian formalisms is proven.
Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid
ERIC Educational Resources Information Center
Brilleslyper, Michael A.
2004-01-01
Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.
Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Martin, Corless
2004-01-01
We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.
Realizable optimal control for a remotely piloted research vehicle. [stability augmentation
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1980-01-01
The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.
NASA Astrophysics Data System (ADS)
Drap, P.; Royer, J. P.; Nawaf, M. M.; Saccone, M.; Merad, D.; López-Sanz, À.; Ledoux, J. B.; Garrabou, J.
2017-02-01
PErfECT "Photogrammetry, gEnetic, Ecology for red coral ConservaTion" is a project leaded by the Laboratoire des Sciences de lInformation et des Systmes (LSIS - UMR 7296 CNRS) from the Aix-Marseille University (France) in collaboration with the Spanish National Agency for Scientific Research (CSIC, Spain). The main objective of the project is to develop innovative Tools for the conservation of the Mediterranean red coral, Corallium rubrum. PErfECT was funded by the Total Fundation. The adaptation of digital photogrammetric techniques for use in submarine is rapidly increasing in recent years. In fact, these techniques are particularly well suited for use in underwater environments. PErfECT developed different photogrammetry tools to enhance the red coral population surveys based in: (i) automatic orientation on coded quadrats, (ii) use of NPR (Non Photo realistic Rendering) techniques, (iii) the calculation of distances between colonies within local populations and finally (iv) the use of plenoptic approaches in underwater conditions.
Model Reduction for Control System Design
NASA Technical Reports Server (NTRS)
Enns, D. F.
1985-01-01
An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.
Hyers-Ulam stability of a generalized Apollonius type quadratic mapping
NASA Astrophysics Data System (ADS)
Park, Chun-Gil; Rassias, Themistocles M.
2006-10-01
Let X,Y be linear spaces. It is shown that if a mapping satisfies the following functional equation: then the mapping is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.
Ghost-free, finite, fourth-order D = 3 gravity.
Deser, S
2009-09-04
Canonical analysis of a recently proposed linear + quadratic curvature gravity model in D = 3 establishes its pure, irreducibly fourth derivative, quadratic curvature limit as both ghost-free and power-counting UV finite, thereby maximally violating standard folklore. This limit is representative of a generic class whose kinetic terms are conformally invariant in any dimension, but it is unique in simultaneously avoiding the transverse-traceless graviton ghosts plaguing D > 3 quadratic actions as well as double pole propagators in its other variables. While the two-term model is also unitary, its additional mode's second-derivative nature forfeits finiteness.
Configuration of separability and tests for multipartite entanglement in bell-type experiments.
Nagata, Koji; Koashi, Masato; Imoto, Nobuyuki
2002-12-23
We derive tight quadratic inequalities for all kinds of hybrid separable-inseparable n-particle density operators on an arbitrary dimensional space. This methodology enables us to derive a tight quadratic inequality as tests for full n-partite entanglement in various Bell-type correlation experiments on the systems that may not be identified as a collection of qubits, e.g., those involving photons measured by incomplete detectors. It is also proved that when the two measured observables are assumed to precisely anticommute, a stronger quadratic inequality can be used as a witness of full n-partite entanglement.
Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.-W, E-mail: attwl@asu.edu; An, Keju
2016-06-15
We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.
Self-repeating properties of four-petal Gaussian vortex beams in quadratic index medium
NASA Astrophysics Data System (ADS)
Zou, Defeng; Li, Xiaohui; Chai, Tong; Zheng, Hairong
2018-05-01
In this paper, we investigate the propagation properties of four-petal Gaussian vortex (FPGV) beams propagating through the quadratic index medium, obtaining the analytical expression of FPGV beams. The effects of beam order n, topological charge m and beam waist ω0 are investigated. Results show that quadratic index medium support periodic distributions of FPGV beams. A hollow optical wall or an optical central principal maximum surrounded by symmetrical sidelobes will occur at the center of a period. At length, they will evolve into four petals structure, exactly same as the intensity distributions at source plane.
Smoothing optimization of supporting quadratic surfaces with Zernike polynomials
NASA Astrophysics Data System (ADS)
Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu
2018-03-01
A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.
Polynomials to model the growth of young bulls in performance tests.
Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B
2014-03-01
The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.
Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
NASA Astrophysics Data System (ADS)
Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio
2012-12-01
We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.
An Automatic and Robust Algorithm of Reestablishment of Digital Dental Occlusion
Chang, Yu-Bing; Xia, James J.; Gateno, Jaime; Xiong, Zixiang; Zhou, Xiaobo; Wong, Stephen T. C.
2017-01-01
In the field of craniomaxillofacial (CMF) surgery, surgical planning can be performed on composite 3-D models that are generated by merging a computerized tomography scan with digital dental models. Digital dental models can be generated by scanning the surfaces of plaster dental models or dental impressions with a high-resolution laser scanner. During the planning process, one of the essential steps is to reestablish the dental occlusion. Unfortunately, this task is time-consuming and often inaccurate. This paper presents a new approach to automatically and efficiently reestablish dental occlusion. It includes two steps. The first step is to initially position the models based on dental curves and a point matching technique. The second step is to reposition the models to the final desired occlusion based on iterative surface-based minimum distance mapping with collision constraints. With linearization of rotation matrix, the alignment is modeled by solving quadratic programming. The simulation was completed on 12 sets of digital dental models. Two sets of dental models were partially edentulous, and another two sets have first premolar extractions for orthodontic treatment. Two validation methods were applied to the articulated models. The results show that using our method, the dental models can be successfully articulated with a small degree of deviations from the occlusion achieved with the gold-standard method. PMID:20529735
Shape optimization of self-avoiding curves
NASA Astrophysics Data System (ADS)
Walker, Shawn W.
2016-04-01
This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent
2015-08-01
Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards.
Objective Assessment of Patient Inhaler User Technique Using an Audio-Based Classification Approach.
Taylor, Terence E; Zigel, Yaniv; Egan, Clarice; Hughes, Fintan; Costello, Richard W; Reilly, Richard B
2018-02-01
Many patients make critical user technique errors when using pressurised metered dose inhalers (pMDIs) which reduce the clinical efficacy of respiratory medication. Such critical errors include poor actuation coordination (poor timing of medication release during inhalation) and inhaling too fast (peak inspiratory flow rate over 90 L/min). Here, we present a novel audio-based method that objectively assesses patient pMDI user technique. The Inhaler Compliance Assessment device was employed to record inhaler audio signals from 62 respiratory patients as they used a pMDI with an In-Check Flo-Tone device attached to the inhaler mouthpiece. Using a quadratic discriminant analysis approach, the audio-based method generated a total frame-by-frame accuracy of 88.2% in classifying sound events (actuation, inhalation and exhalation). The audio-based method estimated the peak inspiratory flow rate and volume of inhalations with an accuracy of 88.2% and 83.94% respectively. It was detected that 89% of patients made at least one critical user technique error even after tuition from an expert clinical reviewer. This method provides a more clinically accurate assessment of patient inhaler user technique than standard checklist methods.
Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.
An approach of traffic signal control based on NLRSQP algorithm
NASA Astrophysics Data System (ADS)
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
A Unified Approach to Teaching Quadratic and Cubic Equations.
ERIC Educational Resources Information Center
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems
Jiang, Yanan; Han, Maoan; Xiao, Dongmei
2014-01-01
We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980
ERIC Educational Resources Information Center
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds
NASA Astrophysics Data System (ADS)
Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.
2012-06-01
The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.
NASA Astrophysics Data System (ADS)
Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture
2017-10-01
Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.
Gorban, A N; Mirkes, E M; Zinovyev, A
2016-12-01
Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0
A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery
NASA Technical Reports Server (NTRS)
Athans, M.
1986-01-01
In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.