Sample records for quadratic redshift-distance law

  1. Potential, velocity, and density fields from sparse and noisy redshift-distance samples - Method

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Faber, Sandra M.

    1990-01-01

    A method for recovering the three-dimensional potential, velocity, and density fields from large-scale redshift-distance samples is described. Galaxies are taken as tracers of the velocity field, not of the mass. The density field and the initial conditions are calculated using an iterative procedure that applies the no-vorticity assumption at an initial time and uses the Zel'dovich approximation to relate initial and final positions of particles on a grid. The method is tested using a cosmological N-body simulation 'observed' at the positions of real galaxies in a redshift-distance sample, taking into account their distance measurement errors. Malmquist bias and other systematic and statistical errors are extensively explored using both analytical techniques and Monte Carlo simulations.

  2. Inverse construction of the ΛLTB model from a distance-redshift relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokutake, Masato; Yoo, Chul-Moon, E-mail: tokutake@gravity.phys.nagoya-u.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp

    2016-10-01

    Spherically symmetric dust universe models with a positive cosmological constant Λ, known as Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) models, are considered. We report a method to construct the ΛLTB model from a given distance-redshift relation observed at the symmetry center. The spherical inhomogeneity is assumed to be composed of growing modes. We derive a set of ordinary differential equations for three functions of the redshift, which specify the spherical inhomogeneity. Once a distance-redshift relation is given, with careful treatment of possible singular points, we can uniquely determine the model by solving the differential equations for each value of Λ. As a demonstration, wemore » fix the distance-redshift relation as that of the flat ΛCDM model with (Ω{sup dis}{sub m0}, Ω{sup dis}{sub Λ0})=(0.3,0.7), where Ω{sup dis}{sub m0} and Ω{sup dis}{sub Λ0} are the normalized matter density and the cosmological constant, respectively. Then, we construct the ΛLTB model for several values of Ω{sub Λ0}:=Λ/(3 H {sub 0}{sup 2}), where H {sub 0} is the present Hubble parameter observed at the symmetry center. We obtain void (over dense) structure around the symmetry center for Ω{sub Λ0} < Ω{sup dis}{sub Λ0}(Ω{sub Λ0} > Ω{sup dis}{sub Λ0}). We show the relation between the ratio Ω{sub Λ0}/Ω{sup dis}{sub Λ0} and the amplitude of the inhomogeneity.« less

  3. Redshift-Independent Distances in the NASA/IPAC Extragalactic Database Surpass 166,000 Estimates for 77,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2017-01-01

    Redshift-independent extragalactic distance estimates are used by researchers to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006, the NASA/IPAC Extragalactic Database (NED) began providing users with a comprehensive tabulation of the redshift-independent extragalactic distance estimates published in the astronomical literature since 1980. A decade later, this compendium of distances (NED-D) surpassed 100,000 estimates for 28,000 galaxies, as reported in our recent journal article (Steer et al. 2016). Here, we are pleased to report NED-D has surpassed 166,000 distance estimates for 77,000 galaxies. Visualizations of the growth in data and of the statistical distributions of the most used distance indicators will be presented, along with an overview of the new data responsible for the most recent growth. We conclude with an outline of NED’s current plans to facilitate extragalactic research further by making greater use of redshift-independent distances. Additional information about other extensive updates to NED is presented at this meeting by Mazzarella et al. (2017). NED is operated by and this research is funded by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-05-01

    The measurements of the Hubble constant reveal a tension between high-redshift (CMB) and low-redshift (distance ladder) constraints. So far neither observational systematics nor new physics has been successfully implemented to explain away this tension. This paper presents a new solution to the Hubble constant problem. The solution is based on the Simsilun simulation (relativistic simulation of the large scale structure of the Universe) with the ray-tracing algorithm implemented. The initial conditions for the Simsilun simulation were set up as perturbations around the Λ CDM model. However, unlike in the standard cosmological model (i.e., Λ CDM model +perturbations ), within the Simsilun simulation relativistic and nonlinear evolution of cosmic structures lead to the phenomenon of emerging spatial curvature, where the mean spatial curvature evolves from the spatial flatness of the early Universe towards the slightly curved present-day Universe. Consequently, the present-day expansion rate is slightly faster compared to the spatially flat Λ CDM model. The results of the ray-tracing analysis show that the Universe which starts with initial conditions consistent with the Planck constraints should have the Hubble constant H0=72.5 ±2.1 km s-1 Mpc-1 . When the Simsilun simulation was rerun with no inhomogeneities imposed, the Hubble constant inferred within such a homogeneous simulation was H0=68.1 ±2.0 km s-1 Mpc-1 . Thus, the inclusion of nonlinear relativistic evolution that leads to the emergence of the spatial curvature can explain why the low-redshift measurements favor higher values compared to the high-redshift constraints and alleviate the tension between the CMB and distance ladder measurements of the Hubble constant.

  5. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  6. REDSHIFT-INDEPENDENT DISTANCES IN THE NASA/IPAC EXTRAGALACTIC DATABASE: METHODOLOGY, CONTENT, AND USE OF NED-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Ian; Madore, Barry F.; Mazzarella, Joseph M.

    Estimates of galaxy distances based on indicators that are independent of cosmological redshift are fundamental to astrophysics. Researchers use them to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006 the NASA/IPAC Extragalactic Database (NED) began making available a comprehensive compilation of redshift-independent extragalactic distance estimates. A decade later, this compendium of distances (NED-D) now contains more than 100,000 individual estimates based on primary and secondary indicators, available for more thanmore » 28,000 galaxies, and compiled from over 2000 references in the refereed astronomical literature. This paper describes the methodology, content, and use of NED-D, and addresses challenges to be overcome in compiling such distances. Currently, 75 different distance indicators are in use. We include a figure that facilitates comparison of the indicators with significant numbers of estimates in terms of the minimum, 25th percentile, median, 75th percentile, and maximum distances spanned. Brief descriptions of the indicators, including examples of their use in the database, are given in an appendix.« less

  7. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.« less

  8. The many flavours of photometric redshifts

    NASA Astrophysics Data System (ADS)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  9. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

  10. Mach's Principle to Hubble's Law and Light Relativity

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2018-01-01

    Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the

  11. Light propagation and the distance-redshift relation in a realistic inhomogeneous universe

    NASA Technical Reports Server (NTRS)

    Futamase, Toshifumi; Sasaki, Misao

    1989-01-01

    The propagation of light rays in a clumpy universe constructed by cosmological version of the post-Newtonian approximation was investigated. It is shown that linear approximation to the propagation equations is valid in the region where zeta is approximately less than 1 even if the density contrast is much larger than unity. Based on a gerneral order-of-magnitude statistical consideration, it is argued that the linear approximation is still valid where zeta is approximately greater than 1. A general formula for the distance-redshift relation in a clumpy universe is given. An explicit expression is derived for a simplified situation in which the effect of the gravitational potential of inhomogeneities dominates. In the light of the derived relation, the validity of the Dyer-Roeder distance is discussed. Also, statistical properties of light rays are investigated for a simple model of an inhomogeneous universe. The result of this example supports the validity of the linear approximation.

  12. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  13. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  14. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  15. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  16. Surface Brightness Test and Plasma Redshift

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2006-03-01

    The plasma redshift of photons in a hot sparse plasma follows from basic axioms of physics. It has no adjustable parameters (arXiv:astro-ph/0406437). Both the distance-redshift relation and the magnitude-redshift relation for supernovae and galaxies are well-defined functions of the average electron densities in intergalactic space. We have previously shown that the predictions of the magnitude-redshift relation in plasma- redshift cosmology match well the observed relations for the type Ia supernovae (SNe). No adjustable parameters such as the time variable ``dark energy'' and ``dark matter'' are needed. We have also shown that plasma redshift cosmology predicts well the intensity and black body spectrum of the cosmic microwave background (CMB). Plasma redshift explains also the spectrum below and above the 2.73 K black body CMB, and the X-ray background. In the following, we will show that the good observations and analyses of the relation between surface brightness and redshift for galaxies, as determined by Allan Sandage and Lori M. Lubin in 2001, are well predicted by the plasma redshift. All these relations are inconsistent with cosmic time dilation and the contemporary big-bang cosmology.

  17. Clustering in the SDSS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration

    2002-05-01

    We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.

  18. Redshift sensitivity of the Kaiser effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Fergus

    2010-02-15

    We explore potential strategies for testing general relativity via the coherent motions of galaxies. Our position at z=0 provides the reference point for distance measures in cosmology. By contrast, the cosmic microwave background at z{approx_equal}1100 acts as the point of reference for the growth of a large-scale structure. As a result, we find there is a lack of synergy between growth and distance measures. We show that, when measuring the gravitational growth index {gamma} using redshift-space distortions, typically 80% of the signal corresponds to the local growth rate at the galaxy bin location, while the remaining fraction is determined bymore » its behavior at higher redshifts. In order to clarify whether modified gravity may be responsible for the dark energy phenomenon, the aim is to search for a modification to the growth of structure. One might expect the magnitude of this deviation to be commensurate with the apparent dark energy density {Omega}{sub {Lambda}}(z). This provides an incentive to study redshift-space distortions at as low a redshift as is practical. Specifically, we find the region around z=0.5 offers the optimal balance of available volume and signal strength.« less

  19. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  20. Measuring Distances to Remote Galaxies and Quasars.

    ERIC Educational Resources Information Center

    McCarthy, Patrick J.

    1988-01-01

    Describes the use of spectroscopy and the redshift to measure how far an object is by measuring how fast it is receding from earth. Lists the most distant quasars yet found. Tables include "Redshift vs. Distance" and "Distances to Celestial Objects for Various Cosmologies." (CW)

  1. Study of a quadratic redshift-based correction in f(R) gravity with Baryonic matter

    NASA Astrophysics Data System (ADS)

    Masoudi, Mozhgan; Saffari, Reza

    2015-08-01

    This paper is considered as a second-order redshift-based corrections in derivative of modified gravitational action, f(R), to explain the late time acceleration which is appeared by Supernova Type Ia (SNeIa) without considering the dark components. Here, we obtained the cosmological dynamic parameters of universe for this redshift depended corrections. Next, we used the recent data of SNeIa Union2, shift parameter of the cosmic background radiation, Baryon acoustic oscillation from sloan digital sky survey (SDSS), and combined analysis of these observations to put constraints on the parameters of the selected F(z) model. It is very interesting that the well-known age problem of the three old objects for combined observations can be alleviated in this model. Finally, the reference action will be constructed in terms of its Taylor expansion. Also, we show that the reconstructed action definitely pass the solar system and stability of the cosmological solution tests.

  2. Multiple Regression Redshift Calibration for Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kalinkov, M.; Kuneva, I.; Valtchanov, I.

    A new procedure for calibration of distances to ACO (Abell et al.1989) clusters of galaxies has been developed. In the previous version of the Reference Catalog of ACO Clusters of Galaxies (Kalinkov & Kuneva 1992) an attempt has been made to compare various calibration schemes. For the Version 93 we have made some refinements. Many improvements from the early days of the photometric calibration have been made --- from Rowan-Robinson (1972), Corwin (1974), Kalinkov & Kuneva (1975), Mills Hoskins (1977) to more complicated --- Leir & van den Bergh (1977), Postman et al.(1985), Kalinkov Kuneva (1985, 1986, 1990), Scaramella et al.(1991), Zucca et al. (1993). It was shown that it is impossible to use the same calibration relation for northern (A) and southern (ACO) clusters of galaxies. Therefore the calibration have to be made separately for both catalogs. Moreover it is better if one could find relations for the 274 A-clusters, studied by the authors of ACO. We use the luminosity distance for H0=100km/s/Mpc and q0 = 0.5 and we have 1200 clusters with measured redshifts. The first step is to fit log(z) on m10 (magnitude of the tenth rank galaxy) for A-clusters and on m1, m3 and m10 for ACO clusters. The second step is to take into account the K-correction and the Scott effect (Postman et al.1985) with iterative process. To avoid the initial errors of the redshift estimates in A- and ACO catalogs we adopt Hubble's law for the apparent radial distribution of galaxies in clusters. This enable us to calculate a new cluster richness from preliminary redshift estimate. This is the third step. Further continues the study of the correlation matrix between log(z) and prospective predictors --- new richness groups, BM, RS and A types, radio and X-ray fluxes, apparent separations between the first three brightest galaxies, mean population (gal/sq.deg), Multiple linear as well as nonlinear regression estimators are found. Many clusters that deviate by more than 2.5 sigmas are

  3. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  4. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  5. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  6. Anisotropies of gravitational-wave standard sirens as a new cosmological probe without redshift information

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Namikawa, Toshiya; Taruya, Atsushi

    2016-03-01

    Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z 5. To extract cosmological information, previous studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time-consuming and rather challenging. Here we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that (i) this anisotropies can be measured even at very high-redshifts (z = 2), (ii) the expected constraints on the primordial non-Gaussianity with Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance. A.N. was supported by JSPS Postdoctoral Fellowships for Research Abroad No. 25-180.

  7. Cluster redshifts in five suspected superclusters

    NASA Technical Reports Server (NTRS)

    Ciardullo, R.; Ford, H.; Harms, R.

    1985-01-01

    Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.

  8. Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Rodney, Steven A.; Scolnic, Daniel M.; Shafer, Daniel L.; Strolger, Louis-Gregory; Ferguson, Henry C.; Postman, Marc; Graur, Or; Maoz, Dan; Jha, Saurabh W.; Mobasher, Bahram; Casertano, Stefano; Hayden, Brian; Molino, Alberto; Hjorth, Jens; Garnavich, Peter M.; Jones, David O.; Kirshner, Robert P.; Koekemoer, Anton M.; Grogin, Norman A.; Brammer, Gabriel; Hemmati, Shoubaneh; Dickinson, Mark; Challis, Peter M.; Wolff, Schuyler; Clubb, Kelsey I.; Filippenko, Alexei V.; Nayyeri, Hooshang; U, Vivian; Koo, David C.; Faber, Sandra M.; Kocevski, Dale; Bradley, Larry; Coe, Dan

    2018-02-01

    We present an analysis of 15 Type Ia supernovae (SNe Ia) at redshift z> 1 (9 at 1.5< z< 2.3) recently discovered in the CANDELS and CLASH Multi-Cycle Treasury programs using WFC3 on the Hubble Space Telescope. We combine these SNe Ia with a new compilation of ∼1050 SNe Ia, jointly calibrated and corrected for simulated survey biases to produce accurate distance measurements. We present unbiased constraints on the expansion rate at six redshifts in the range 0.07< z< 1.5 based only on this combined SN Ia sample. The added leverage of our new sample at z> 1.5 leads to a factor of ∼3 improvement in the determination of the expansion rate at z = 1.5, reducing its uncertainty to ∼20%, a measurement of H(z=1.5)/{H}0 = {2.69}-0.52+0.86. We then demonstrate that these six derived expansion rate measurements alone provide a nearly identical characterization of dark energy as the full SN sample, making them an efficient compression of the SN Ia data. The new sample of SNe Ia at z> 1.5 usefully distinguishes between alternative cosmological models and unmodeled evolution of the SN Ia distance indicators, placing empirical limits on the latter. Finally, employing a realistic simulation of a potential Wide-Field Infrared Survey Telescope SN survey observing strategy, we forecast optimistic future constraints on the expansion rate from SNe Ia.

  9. Redshift--Independent Distances of Spiral Galaxies: II. Internal Extinction at I Band

    NASA Astrophysics Data System (ADS)

    Giovanelli, R.; Haynes, M. P.; Salzer, J. J.; Wegner, G.; Dacosta, L. N.; Freudling, W.; Chamaraux, P.

    1993-12-01

    We analyze the photometric properties of a sample of 1450 Sbc--Sc galaxies with known redshifts, single--dish HI profiles and CCD I band images to derive laws that relate the measured isophotal radius at mu_I =23.5, magnitude, scale length and HI flux to the face--on aspect. Our results show that the central regions of spiral galaxies are substantially less transparent than most previous determinations suggest, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modelling exercise that utilizes the ``triplex'' model of Disney et al. (1989). Within the framework of that model, late spiral disks at I band have central optical depths on the order of tau_I ~ 5 and dust absorbing layers with scale heights on the order of half that of the stellar component. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully--Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO--Uppsala) are nearly proportional to face--on isophotal diameters.

  10. An Argument for the Application of Copyright Law to Distance Education.

    ERIC Educational Resources Information Center

    Lipinski, Tomas A.

    1999-01-01

    Presents a legal analysis of the application of copyright law to distance education environments, particularly as it applies to Web-based instruction and the construction of electronic reserves, or virtual libraries. Explores the dangers of moving toward a schema of universal or compulsory licensing of information. Suggests several possible…

  11. The ESO Slice Project (ESP) galaxy redshift survey. VII. The redshift and real-space correlation functions

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Bartlett, J. G.; Cappi, A.; Maurogordato, S.; Zucca, E.; Zamorani, G.; Balkowski, C.; Blanchard, A.; Cayatte, V.; Chincarini, G.; Collins, C. A.; Maccagni, D.; MacGillivray, H.; Merighi, R.; Mignoli, M.; Proust, D.; Ramella, M.; Scaramella, R.; Stirpe, G. M.; Vettolani, G.

    2000-03-01

    We present analyses of the two-point correlation properties of the ESO Slice Project (ESP) galaxy redshift survey, both in redshift and real space. From the redshift-space correlation function $xi (r) i(s) we are able to trace positive clustering out to separations as large as 50 h^{-1} Mpc, after which xi (r) i(s) smoothly breaks down, crossing the zero value between 60 and 80 h^{-1} Mpc. This is best seen from the whole magnitude-limited redshift catalogue, using the J_3 miniμm-variance weighting estimator. xi (r) i(s) is reasonably well described by a shallow power law with \\gamma\\sim 1.5 between 3 and 50 h^{-1} Mpc, while on smaller scales (0.2-2 h^{-1} Mpc) it has a shallower slope (\\gamma\\sim 1). This flattening is shown to be mostly due to the redshift-space damping produced by virialized structures, and is less evident when volume-limited samples of the survey are analysed. We examine the full effect of redshift-space distortions by computing the two-dimensional correlation function xi (r) i(r_p,\\pi) , from which we project out the real-space xi (r) i(r) below 10 h^{-1} Mpc. This function is well described by a power-law model (r/r_o)^{-\\gamma}, with r_o=4.15^{+0.20}_{-0.21} h^{-1} Mpc and \\gamma=1.67^{+0.07}_{-0.09} for the whole magnitude-limited catalogue. Comparison to other redshift surveys shows a consistent picture in which galaxy clustering remains positive out to separations of 50 h^{-1} Mpc or larger, in substantial agreement with the results obtained from angular surveys like the APM and EDSGC. Also the shape of the two-point correlation function is remarkably unanimous among these data sets, in all cases requiring more power on scales larger than 5 h^{-1} Mpc (a `shoulder'), with respect to a simple extrapolation of the canonical xi (r) i(r) =(r/5)^{-1.8}. The analysis of xi (r) i(s) for volume-limited subsamples with different luminosity shows evidence of luminosity segregation only for the most luminous sample with Mb_J <= -20.5. For

  12. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  13. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  14. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less

  15. Benford's law first significant digit and distribution distances for testing the reliability of financial reports in developing countries

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Ausloos, Marcel; Zhu, Tingting

    2018-02-01

    We discuss a common suspicion about reported financial data, in 10 industrial sectors of the 6 so called "main developing countries" over the time interval [2000-2014]. These data are examined through Benford's law first significant digit and through distribution distances tests. It is shown that several visually anomalous data have to be a priori removed. Thereafter, the distributions much better follow the first digit significant law, indicating the usefulness of a Benford's law test from the research starting line. The same holds true for distance tests. A few outliers are pointed out.

  16. Frequency-based redshift for cosmological observation and Hubble diagram from the 4-D spherical model in comparison with observed supernovae

    NASA Astrophysics Data System (ADS)

    Nagao, Shigeto

    2017-08-01

    According to the formerly reported 4-D spherical model of the universe, factors on Hubble diagrams are discussed. The observed redshift is not the prolongation of wavelength from that of the source at the emission but from the wavelength of spectrum of the present atom of the same element. It is equal to the redshift based on the shift of frequency from the time of emission. We demonstrate that the K-correction corresponds to conversion of the light propagated distance (luminosity distance) to the proper distance at present (present distance). Comparison of the graph of the present distance times 1 + z versus the frequency-based redshift with the reported Hubble diagrams from the Supernova Cosmology Project, which were time-dilated by 1 + z and K-corrected, showed an excellent fit for the Present Time (the radius of 4-D sphere) being c.a. 0.7 of its maximum.

  17. Correlation function of the luminosity distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation functionmore » of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.« less

  18. Revisiting the Distance Duality Relation using a non-parametric regression method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha

    2016-07-01

    The interdependence of luminosity distance, D {sub L} and angular diameter distance, D {sub A} given by the distance duality relation (DDR) is very significant in observational cosmology. It is very closely tied with the temperature-redshift relation of Cosmic Microwave Background (CMB) radiation. Any deviation from η( z )≡ D {sub L} / D {sub A} (1+ z ){sup 2} =1 indicates a possible emergence of new physics. Our aim in this work is to check the consistency of these relations using a non-parametric regression method namely, LOESS with SIMEX. This technique avoids dependency on the cosmological model and worksmore » with a minimal set of assumptions. Further, to analyze the efficiency of the methodology, we simulate a dataset of 020 points of η ( z ) data based on a phenomenological model η( z )= (1+ z ){sup ε}. The error on the simulated data points is obtained by using the temperature of CMB radiation at various redshifts. For testing the distance duality relation, we use the JLA SNe Ia data for luminosity distances, while the angular diameter distances are obtained from radio galaxies datasets. Since the DDR is linked with CMB temperature-redshift relation, therefore we also use the CMB temperature data to reconstruct η ( z ). It is important to note that with CMB data, we are able to study the evolution of DDR upto a very high redshift z = 2.418. In this analysis, we find no evidence of deviation from η=1 within a 1σ region in the entire redshift range used in this analysis (0 < z ≤ 2.418).« less

  19. Average luminosity distance in inhomogeneous universes

    NASA Astrophysics Data System (ADS)

    Kostov, Valentin Angelov

    Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, an includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass- compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. For voids aligned in a certain direction, there is a cumulative gravitational lensing correction to the distance modulus that increases with redshift. That correction is present even for small voids and depends on the density contrast of the voids, not on their radius. Averaging over all directions destroys the cumulative correction even in a non-randomized simple cubic lattice of voids. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A formula for the maximum possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (1) have approximately constant densities in their interior and walls, (2) are not in a deep nonlinear regime. The actual average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximum. That is traced to cancelations between the corrections coming from the fronts and backs of different voids at the same redshift from the

  20. Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey

    NASA Astrophysics Data System (ADS)

    Xi, ChengYu; Taylor, James E.; Massey, Richard J.; Rhodes, Jason; Koekemoer, Anton; Salvato, Mara

    2018-06-01

    Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly characterized outside the Local Group, due to the difficulty of identifying them consistently at larger distances. We review a recently proposed method for estimating the average satellite population around a given sample of nearby bright galaxies, using a combination of size and magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements (to estimate the fraction of true satellites in the cut sample). We test this method using the high-precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts. These cuts are also fairly efficient, with more than one third of the selected objects being clustered satellites. We conclude that structural selection represents a useful tool in characterizing dwarf populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence of several dozen objects that appear resolved or partially resolved in the HST imaging, and are confirmed to be local (at distances of ˜250 Mpc or less) by their photometric or spectroscopic redshifts. This underlines the potential for future space-based surveys to reveal local populations of intrinsically faint galaxies through imaging alone.

  1. Multipole analysis of redshift-space distortions around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  2. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  3. Quadratic RK shooting solution for a environmental parameter prediction boundary value problem

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis Th.; Tsitouras, Ch.

    2014-10-01

    Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve, where the probability distribution functions in the case of our meteorological data are two parameter Weibull distributions, satisfies a 2nd order Boundary Value (BV) system. We study the numerical treatment of the resulting special quadratic form system using Shooting method. We compare the solutions of the problem when we employ a classical Singly Diagonally Implicit Runge Kutta (SDIRK) 4(3) pair of methods and a quadratic SDIRK 5(3) pair . Both pairs have the same computational costs whereas the second one attains higher order as it is specially constructed for quadratic problems.

  4. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  5. Identifying High-redshift Gamma-Ray Bursts with RATIR

    NASA Astrophysics Data System (ADS)

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Kutyrev, A. S.; Lee, W. H.; Richer, M. G.; Klein, C. R.; Fox, O. D.; Prochaska, J. X.; Bloom, J. S.; Troja, E.; Ramirez-Ruiz, E.; de Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Gehrels, N.; Moseley, H.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z phot, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z phot in the ranges of 4 < z phot <~ 8 and 9 < z phot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  6. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes

  7. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  8. Scalar potential model (SPM) of redshift and discrete redshift

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2005-11-01

    On the galactic scale the universe is inhomogeneous and redshift z is occasionally less than zero. Several differences among galaxy types suggest that spiral galaxies are Sources and that early type galaxies are Sinks of a scalar potential field (SPF). The morphology-radius and intragalactic medium cluster observations support a cell structure of galaxies. The SPF causes the mass expected by Newtonian mechanics to measure less in Source galaxies and more in Sink galaxies. The cell structure allows the universe to be bounded and flat without collapsing. An equation is derived relating z of particle photons and the distance D to galaxies. The calculated z has a correlation coefficient of 0.88 with the measured z for a sample of 32 spiral galaxies with a Cepheid based D. The equation is consistent with z <0 observations of close galaxies. At low cosmological distances, the equation reduces to z ~ KD, where K is a constant, positive value. The model qualitatively suggests the discrete variations in z, which was reported by W. G. Tifft, 1997, ApJ 485, 465 and others, are consistent with the SPM. Full text: http://web.infoave.net/ scjh.

  9. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  10. Non-Linear Cosmological Power Spectra in Real and Redshift Space

    NASA Technical Reports Server (NTRS)

    Taylor, A. N.; Hamilton, A. J. S.

    1996-01-01

    We present an expression for the non-linear evolution of the cosmological power spectrum based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to trace particle displacements, assuming Gaussian initial conditions. The model is found to exhibit the transfer of power from large to small scales expected in self-gravitating fields. Some exact solutions are found for power-law initial spectra. We have extended this analysis into red-shift space and found a solution for the non-linear, anisotropic redshift-space power spectrum in the limit of plane-parallel redshift distortions. The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to linear theory depends only weakly on the redshift-space distortion parameter, beta. The point of zero-crossing of the quadrupole, kappa(sub o), is found to obey a simple scaling relation and we calculate this scale in the Zel'dovich approximation. This model is found to be in good agreement with a series of N-body simulations on scales down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is underestimated. These results are applied to the quadrupole-to-monopole ratio found in the merged QDOT plus 1.2-Jy-IRAS redshift survey. Using a likelihood technique we have estimated that the distortion parameter is constrained to be beta greater than 0.5 at the 95 percent level. Our results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis suggests n = -2 un the translinear regime. The zero-crossing scale of the quadrupole is k(sub 0) = 0.5 +/- 0.1 h Mpc(exp -1) and from this we infer that the amplitude of clustering is sigma(sub 8) = 0.7 +/- 0.05. We suggest that the success of this model is due to non-linear redshift-space effects arising from infall on to caustic and is not dominated by virialized cluster cores

  11. Multipole analysis of redshift-space distortions around cosmic voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrainmore » the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.« less

  12. An Extremely Low Mid-infrared Extinction Law toward the Galactic Center and 4% Distance Precision to 55 Classical Cepheids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodian; Wang, Shu; Deng, Licai; de Grijs, Richard

    2018-06-01

    Distances and extinction values are usually degenerate. To refine the distance to the general Galactic Center region, a carefully determined extinction law (taking into account the prevailing systematic errors) is urgently needed. We collected data for 55 classical Cepheids projected toward the Galactic Center region to derive the near- to mid-infrared extinction law using three different approaches. The relative extinction values obtained are {A}J/{A}{K{{s}}}=3.005,{A}H/{A}{K{{s}}}=1.717, {A}[3.6]/{A}{K{{s}}}=0.478,{A}[4.5]/{A}{K{{s}}}=0.341, {A}[5.8]/{A}{K{{s}}}=0.234,{A}[8.0]/{A}{K{{s}}} =0.321,{A}W1/{A}{K{{s}}}=0.506, and {A}W2/{A}{K{{s}}}=0.340. We also calculated the corresponding systematic errors. Compared with previous work, we report an extremely low and steep mid-infrared extinction law. Using a seven-passband “optimal distance” method, we improve the mean distance precision to our sample of 55 Cepheids to 4%. Based on four confirmed Galactic Center Cepheids, a solar Galactocentric distance of R 0 = 8.10 ± 0.19 ± 0.22 kpc is determined, featuring an uncertainty that is close to the limiting distance accuracy (2.8%) for Galactic Center Cepheids.

  13. Probing the distance-duality relation with high- z data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Busti, V.C.; Lima, F.S.

    2017-09-01

    Measurements of strong gravitational lensing jointly with type Ia supernovae (SNe Ia) observations have been used to test the validity of the cosmic distance duality relation (CDDR), D{sub L}( z )/[(1+ z ){sup 2D{sub A}}( z )]=η=1, where D{sub L}(z) and D{sub A}(z) are the luminosity and the angular diameter distances to a given redshift z , respectively. However, several lensing systems lie in the interval 1.4 ≤ z ≤ 3.6 i.e., beyond the redshift range of current SNe Ia compilations ( z ≈ 1.50), which prevents this kind of test to be fully explored. In this paper, we circumventmore » this problem by testing the CDDR considering observations of strong gravitational lensing along with SNe Ia and (a subsample from) the latest gamma-ray burst distance modulus data, whose redshift range is 0.033 ≤ z ≤ 9.3. We parameterize their luminosity distances with a second degree polynomial function and search for possible deviations from the CDDR validity by using four different η( z ) functions: η( z )=1+η{sub 0z}, η( z )=1+η{sub 0z}/(1+ z ), η( z )=(1+ z ){sup η{sub 0}} and η( z )=1+η{sub 0ln}(1+ z ). Unlike previous tests done at redshifts lower than 1.50, the likelihood for η{sub 0} depends strongly on the η( z ) function considered, but we find no significant deviation from the CDDR validity (η{sub 0}=0). However, our analyses also point to the fact that caution is needed when one fits data in higher redshifts to test the CDDR as well as a better understanding of the mass distribution of lenses also is required for more accurate results.« less

  14. Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Rossi, Graziano; Sheth, Ravi K.

    2008-06-01

    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the colour-magnitude relation, the luminosity-size relation, the fundamental plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity) is often distance dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the Vmax method, and the other is a maximum-likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalogue, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation.

  15. Investigation of redshift- and duration-dependent clustering of gamma-ray bursts

    DOE PAGES

    Ukwatta, T. N.; Woźniak, P. R.

    2015-11-05

    Gamma-ray bursts (GRBs) are detectable out to very large distances and as such are potentially powerful cosmological probes. Historically, the angular distribution of GRBs provided important information about their origin and physical properties. As a general population, GRBs are distributed isotropically across the sky. However, there are published reports that once binned by duration or redshift, GRBs display significant clustering. We have studied the redshift- and duration-dependent clustering of GRBs using proximity measures and kernel density estimation. Utilizing bursts detected by Burst and Transient Source Experiment, Fermi/gamma-ray burst monitor, and Swift/Burst Alert Telescope, we found marginal evidence for clustering inmore » very short duration GRBs lasting less than 100 ms. As a result, our analysis provides little evidence for significant redshift-dependent clustering of GRBs.« less

  16. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  17. Dark energy equation of state parameter and its evolution at low redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in

    In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range ofmore » parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.« less

  18. Model independent constraints on transition redshift

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Holanda, R. F. L.; Pereira, S. H.

    2018-05-01

    This paper aims to put constraints on the transition redshift zt, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to perform our analyses, we consider a flat universe and assume a parametrization for the comoving distance DC(z) up to third degree on z, a second degree parametrization for the Hubble parameter H(z) and a linear parametrization for the deceleration parameter q(z). For each case, we show that type Ia supernovae and H(z) data complement each other on the parameter space and tighter constrains for the transition redshift are obtained. By combining the type Ia supernovae observations and Hubble parameter measurements it is possible to constrain the values of zt, for each approach, as 0.806± 0.094, 0.870± 0.063 and 0.973± 0.058 at 1σ c.l., respectively. Then, such approaches provide cosmological-model independent estimates for this parameter.

  19. Quadratic soliton self-reflection at a quadratically nonlinear interface

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  20. The Hubble relation for nonstandard candles and the origin of the redshift of quasars

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1974-01-01

    It is shown that the magnitude-log (redshift) relation for brightest quasars can have a slope different from the value expected for standard candles. The value of this slope depends on the luminosity function and its evolution. Therefore the difference of this slope from the expected value cannot be used as evidence against the cosmological origin of the redshift of the quasars. It is shown that the observed variation of the luminosity of the brightest objects with redshift is consistent with the cosmological hypothesis and that it agrees with (and perhaps could be used to complement) the luminosity function obtained from V/Vm analysis. It is also shown that the nonzero slope of the magnitude-log (redshift) relation rules out the local quasar hypothesis, where it is assumed that the sources are nearby (less than 500 Mpc), that the bulk of their redshift is intrinsic, and that there is no dependence on distance of the intrinsic properties of the sources.

  1. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  2. The redshift-space neighborhoods of 36 loose groups. 2: Analysis

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We explore the kinematics of 36 rich RGH89 groups identified from the first two complete slices of the CfA redshift survey. These groups have more than five members identified by a friends-of-friends algorithm at a number density contrast delta rho/rho greater than or equal to 80. To examine the stability of the determination of the velocity dispersion for these systems, we compare results for the original 232 members with results for a larger redshift sample, including 334 fainter members in the redshift neighborhoods. On average, we double the number of group members in each system. The observed distribution of velocity dispersions is stable. In fact, the velocity dispersion based on the original members identified in the CfA redshift survey is a reliable predictor of the value for the enlarged sample in an individual group. The velocity dispersion is thus a stable physical parameter for discrimination among systems galaxies. A larger sample of groups, particularly one selected from a distance limited catalog, should provide an interesting constraint on models for the formation of large-scale structure. We take H(sub 0) = km/s/Mpc.

  3. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  4. Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao's quadratic index.

    PubMed

    Ricotta, Carlo; Szeidl, Laszlo

    2006-11-01

    The diversity of a species assemblage has been studied extensively for many decades in relation to its possible connection with ecosystem functioning and organization. In this view most diversity measures, such as Shannon's entropy, rely upon information theory as a basis for the quantification of diversity. Also, traditional diversity measures are computed using species relative abundances and cannot account for the ecological differences between species. Rao first proposed a diversity index, termed quadratic diversity (Q) that incorporates both species relative abundances and pairwise distances between species. Quadratic diversity is traditionally defined as the expected distance between two randomly selected individuals. In this paper, we show that quadratic diversity can be interpreted as the expected conflict among the species of a given assemblage. From this unusual interpretation, it naturally follows that Rao's Q can be related to the Shannon entropy through a generalized version of the Tsallis parametric entropy.

  5. Optimized Clustering Estimators for BAO Measurements Accounting for Significant Redshift Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago

    2017-05-15

    We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the BAO information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line-of-sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertaintymore » $$\\sigma_z \\geq 0.02(1+z)$$ we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for $$\\sigma_z \\geq 0.02(1+z)$$. For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations of galaxy simulations mimicking the Dark Energy Survey Year 1 sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.« less

  6. TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.

    2015-11-15

    We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less

  7. Observing the high redshift Universe with Euclid

    NASA Astrophysics Data System (ADS)

    Laureijs, René; Euclid Collaboration

    2018-05-01

    Euclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ~260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid's standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.

  8. A redshift survey of IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-05-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L-2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  9. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less

  10. A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.

    We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the

  11. Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran

    2010-02-01

    We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.

  12. Optimized clustering estimators for BAO measurements accounting for significant redshift uncertainty

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago; Percival, Will J.; Dodelson, Scott; Garcia-Bellido, Juan; Crocce, Martin; Elvin-Poole, Jack; Giannantonio, Tommaso; Manera, Marc; Sevilla-Noarbe, Ignacio

    2017-12-01

    We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the baryon acoustic oscillation (BAO) information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line of sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertainty σz ≥ 0.02(1 + z), we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for σz ≥ 0.02(1 + z). For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations (combining two separate sets) of galaxy simulations mimicking the Dark Energy Survey Year 1 (DES Y1) sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.

  13. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  14. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE PAGES

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.; ...

    2016-12-02

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  15. A new method to search for high-redshift clusters using photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castignani, G.; Celotti, A.; Chiaberge, M.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) Wemore » use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.« less

  16. Photometric Redshifts of High-z BL Lacs from 3FGL Catalog

    NASA Astrophysics Data System (ADS)

    Kaur, A.; Rau, Arne; Ajello, Marco; Paliya, Vaidehi; Hartmann, Dieter; Greiner, Jochen; Bolmer, Jan; Schady, Patricia

    2017-08-01

    Determining redshifts for BL Lacertae (BL Lac) objects using the traditional spectroscopic method is challenging due to the absence of strong emission lines in their optical spectra. We employ the photometric dropout technique to determine redshifts for this class of blazars using the combined 13 broad-band filters from Swift-UVOT and the multi-channel imager GROND at the MPG 2.2 m telescope at ESO's La Silla Observatory. The wavelength range covered by these 13 filters extends from far ultraviolet to the near-Infrared. We report results on 40 new Fermi detected BL Lacs with the photometric redshifts determinations for 5 sources, with 3FGL J1918.2-4110 being the most distance in our sample at z=2.16. Reliable upper limits are provided for 20 sources in this sample. Using the highest energy photons for these Fermi-LAT sources, we evaluate the consistency with the Gamma-ray horizon due to the extragalactic background light.

  17. Intensity-distance attenuation law in the continental Portugal using intensity data points

    NASA Astrophysics Data System (ADS)

    Le Goff, Boris; Bezzeghoud, Mourad; Borges, José Fernando

    2013-04-01

    Several attempts have been done to evaluate the intensity attenuation with the epicentral distance in the Iberian Peninsula [1, 2]. So far, the results are not satisfying or not using the intensity data points of the available events. We developed a new intensity law for the continental Portugal, using the macroseismic reports that provide intensity data points, instrumental magnitudes and instrumental locations. We collected 31 events from the Instituto Portugues do Mar e da Atmosfera (IPMA, Portugal; ex-IM), covering the period between 1909 and 1997, with a largest magnitude of 8.2, closed to the African-Eurasian plate boundary. For each event, the intensity data points are plotted versus the distance and different trend lines are achieved (linear, exponential and logarithmic). The better fits are obtained with the logarithmic trend lines. We evaluate a form of the attenuation equation as follow: I = c0(M) + c1(M).ln(R) (1) where I, M and R are, respectively, the intensity, the magnitude and the epicentral distance. To solve this equation, we investigate two methods. The first one consists in plotting the slope of the different logarithmic trends versus the magnitude, to estimate the parameter c1(M), and to evaluate how the intensity behaves in function of the magnitude. Another plot, representing the intercepts versus the magnitude, allows to determine the second parameter, c0(M). The second method consists in using the inverse theory. From the data, we recover the parameters of the model, using a linear inverse matrix. Both parameters, c0(M) and c1(M), are provided with their associated errors. A sensibility test will be achieved, using the macroseismic data, to estimate the resolution power of both methods. This new attenuation law will be used with the Bakun and Wentworth method [3] in order to reestimate the epicentral region and the magnitude estimation of the 1909 Benavente event. This attenuation law may also be adapted to be used in Probabilistic Seismic

  18. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  19. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  20. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  1. Quadrat Data for Fermilab Prairie Plant Survey

    Science.gov Websites

    Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems

  2. High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara

    in the same object. Given that AGN feedback is thought to be a likely mechanism responsible for quenching star-formation, post-starburst quasars provide ideal laboratory for studying this link. We explored various ways to identify post-starburst quasars, and construct our sample with more than 600 objects at high-redshift. This is the largest sample of post-starburst quasars available in the literature, and will be useful for AGN feedback studies. Finally, we studied the clustering properties of post-starburst galaxies through cross-correlation with CMASS galaxies. The real-space cross correlation function is a power-law with correlation length r0 ˜ 9.2 Mpc, and power-law index gamma ˜ 1.8. We also measure the linear bias of post-starburst galaxies to be bPSG ˜ 1.74 at redshift z = 0.62, corresponding to a dark matter halo mass of Mhalo ˜ 1.5 x 1013 M [special characters removed]. We found no evidence for redshift evolution in clustering properties for post-starburst galaxies.

  3. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  4. Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.

    2005-11-01

    The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0redshift depth of z¯=0.0845. SARS covers the region 0deg<δ<-65deg, α<5h,α>21h (while avoiding the LMC and SMC), with |b|>40°. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs, while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15<=bJ<19. SARS used the Las Campanas 2.5 m du Pont telescope, observing either 65 or 128 objects concurrently over a 1.5 deg2 field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.

  5. Clustering of High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Timlin, John D., III

    (i ≥ 20.2) and high-redshift (2.9 ≤ z ≤ 5.1) which we use to compute the angular two-point correlation function. We fit a single power-law model with an index of delta = 1.39 +/- 0.618 and amplitude of theta0 = 0.71 +/- 0.546 arcmin to the correlation function, as well as a dark matter model with a bias of b = 6.78 +/- 1.79. The bias in our investigation suggests a model of quasar feedback that considers quasar activity as an intermittent phase in galaxy evolution. If this model is correct, quasar feedback is strong enough to periodically halt the accretion of gas onto the central supermassive black hole of the quasar, which shuts down quasar activity and causes the black hole to stop growing, however it is not strong enough to completely shut down the quasar in the early Universe.

  6. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  7. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE PAGES

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  8. Evolution of star formation conditions from high-redshift to low-redshift

    NASA Astrophysics Data System (ADS)

    Shirazi, Maryam

    2015-08-01

    There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.

  9. Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters

    NASA Technical Reports Server (NTRS)

    Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan

    2000-01-01

    We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.

  10. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  11. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; hide

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  12. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  13. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.

    PubMed

    Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander

    2017-04-21

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.

  14. Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.

    2002-05-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.

  15. Robust model comparison disfavors power law cosmology

    NASA Astrophysics Data System (ADS)

    Shafer, Daniel L.

    2015-05-01

    Late-time power law expansion has been proposed as an alternative to the standard cosmological model and shown to be consistent with some low-redshift data. We test power law expansion against the standard flat Λ CDM cosmology using goodness-of-fit and model comparison criteria. We consider type Ia supernova (SN Ia) data from two current compilations (JLA and Union2.1) along with a current set of baryon acoustic oscillation (BAO) measurements that includes the high-redshift Lyman-α forest measurements from BOSS quasars. We find that neither power law expansion nor Λ CDM is strongly preferred over the other when the SN Ia and BAO data are analyzed separately but that power law expansion is strongly disfavored by the combination. We treat the Rh=c t cosmology (a constant rate of expansion) separately and find that it is conclusively disfavored by all combinations of data that include SN Ia observations and a poor overall fit when systematic errors in the SN Ia measurements are ignored, despite a recent claim to the contrary. We discuss this claim and some concerns regarding hidden model dependence in the SN Ia data.

  16. UAS stealth: target pursuit at constant distance using a bio-inspired motion camouflage guidance law.

    PubMed

    Strydom, Reuben; Srinivasan, Mandyam V

    2017-09-21

    The aim of this study is to derive a guidance law by which an unmanned aerial system(s) (UAS) can pursue a moving target at a constant distance, while concealing its own motion. We derive a closed-form solution for the trajectory of the UAS by imposing two key constraints: (1) the shadower moves in such a way as to be perceived as a stationary object by the shadowee, and (2) the distance between the shadower and shadowee is kept constant. Additionally, the theory presented in this paper considers constraints on the maximum achievable speed and acceleration of the shadower. Our theory is tested through Matlab simulations, which validate the camouflage strategy for both 2D and 3D conditions. Furthermore, experiments using a realistic vision-based implementation are conducted in a virtual environment, where the results demonstrate that even with noisy state information it is possible to remain well camouflaged using the constant distance motion camouflage technique.

  17. Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

    NASA Astrophysics Data System (ADS)

    Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-09-01

    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.

  18. Quadratic spline subroutine package

    USGS Publications Warehouse

    Rasmussen, Lowell A.

    1982-01-01

    A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)

  19. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

  20. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  1. Cosmological Distortions in Redshift Space

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara S.

    1995-05-01

    The long-sought value of q_0, the deceleration parameter, remains elusive. One method of finding q_0 is to measure the distortions of large scale structure in redshift space. If the Hubble constant changes with time, then the mapping between redshift space and real space is nonlinear, even in the absence of peculiar motions. When q_0 > -1, structures in redshift space will be distorted along the line of sight; the distortion is proportional to (1 + q_0 ) z in the limit that the redshift z is small. The cosmological distortions at z <= 0.2 can be found by measuring the shapes of voids in redshift surveys of galaxies (such as the upcoming Sloane Digital Sky Survey). The cosmological distortions are masked to some extent by the distortions caused by small-scale peculiar velocities; it is difficult to measure the shape of a void when the fingers of God are poking into it. The cosmological distortions at z ~ 1 can be found by measuring the correlation function of quasars as a function of redshift and of angle relative to the line of sight. Finding q_0 by measuring distortions in redshift space, like the classical methods of determining q_0, is simple and elegant in principle but complicated and messy in practice.

  2. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    NASA Astrophysics Data System (ADS)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log}< N> =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  3. The Galaxy Count Correlation Function in Redshift Space Revisited

    NASA Astrophysics Data System (ADS)

    Campagne, J.-E.; Plaszczynski, S.; Neveu, J.

    2017-08-01

    In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.

  4. Stochastic Order Redshift Technique (SORT): a simple, efficient and robust method to improve cosmological redshift measurements

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.

    2018-01-01

    We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.

  5. Measurement of a cosmographic distance ratio with galaxy and cosmic microwave background lensing

    DOE PAGES

    Miyatake, Hironao; Madhavacheril, Mathew S.; Sehgal, Neelima; ...

    2017-04-17

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z~1 (background galaxies) and at the surface of last scattering at z~1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in themore » ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r = 0.390 +0.070 –0.062, at an effective redshift of z = 0.53. As a result, this is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r = 0.419.« less

  6. the-wizz: clustering redshift estimation for everyone

    NASA Astrophysics Data System (ADS)

    Morrison, C. B.; Hildebrandt, H.; Schmidt, S. J.; Baldry, I. K.; Bilicki, M.; Choi, A.; Erben, T.; Schneider, P.

    2017-05-01

    We present the-wizz, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of the-wizz is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an 'expert'. It allows the end user of a given survey to select any subsample of photometric galaxies with unknown redshifts, match this sample's catalogue indices into a value-added data file and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly survey and the Sloan Digital Sky Survey. The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. the-wizz can be downloaded at http://github.com/morriscb/The-wiZZ/.

  7. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less

  8. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)

  9. The Relation between Cosmological Redshift and Scale Factor for Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn; Department of Physics, Wuhan University, Wuhan 430072

    The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems;more » and the Sandage–Loeb effect. All of this method is feasible now or in the near future.« less

  10. Dusty Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Su, Ting

    2017-02-01

    Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter

  11. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  12. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  13. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  14. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  15. Modelling the large-scale redshift-space 3-point correlation function of galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2017-08-01

    We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.

  16. C3R2 - Complete Calibration of the Color-Redshift Relation: Keck spectroscopy to train photometric redshifts for Euclid and WFIRST

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; C3R2 Team

    2017-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. I will report on a multi-semester program, expected to total approximately 40 nights with Keck over the next two years. This program, supporting both the NASA PCOS and COR science goals, will obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation for the Euclid mission, and make significant progress towards the WFIRST requirements. The program, called C3R2 or Complete Calibration of the Color-Redshift Relation, already encompasses 10 allocated nights of NASA Keck Key Strategic Mission Support (PI D. Stern), 12 allocated nights from Caltech (PI J. Cohen), 3 allocated nights from the University of Hawaii (PI D. Sanders), and 1.5 allocated nights from UC-Riverside (PI B. Mobasher). We are also pursuing opportunities at additional 8- to 10-meter class telescopes, including Magellan, VLT and GCT. I will present the motivation for this program, the plans, and current results.

  17. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  18. Giving cosmic redshift drift a whirl

    NASA Astrophysics Data System (ADS)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  19. Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.

  20. High Redshift Supernova Search

    Science.gov Websites

    ;on schedule." Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift High Redshift Supernova Search Home Page of the Supernova Cosmology Project This is the Lawrence Foretell Fate of the Universe." Pictures from the ground and from the Hubble Space Telescope: [PDF

  1. Power law asymptotics in the creation of strange attractors in the quasi-periodically forced quadratic family

    NASA Astrophysics Data System (ADS)

    Ohlson Timoudas, Thomas

    2017-12-01

    Let Φ be a quasi-periodically forced quadratic map, where the rotation constant ω is a Diophantine irrational. A strange non-chaotic attractor (SNA) is an invariant (under Φ) attracting graph of a nowhere continuous measurable function ψ from the circle {T} to [0, 1] . This paper investigates how a smooth attractor degenerates into a strange one, as a parameter \

  2. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  3. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  4. Probing Cosmic Dust of the Early Universe through High-Redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liang, S. L.; Li, Aigen

    2009-01-01

    We explore the extinction properties of the dust in the distant universe through the afterglows of high-redshifted gamma-ray bursts (GRBs) based on the "Drude" model which, unlike previous studies, does not require a prior assumption of template extinction laws. We select GRB 070802 at z ≈ 2.45 (which shows clear evidence for the 2175 Å extinction bump) and GRB 050904 at z ≈ 6.29, the second most distant GRB observed to date. We fit their afterglow spectra to determine the extinction of their host galaxies. We find that (1) their extinction curves differ substantially from that of the Milky Way and the Small and Large Magellanic Clouds (which were widely adopted as template extinction laws in the literature); (2) the 2175 Å extinction feature appears to be also present in GRB 050904 at z ≈ 6.29; and (3) there does not appear to be strong evidence for the dependence of dust extinction on redshifts. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite, both of which are expected supernova condensates and have been identified in primitive meteorites as presolar grains originating from supernovae (which are considered as the main source of dust at high-z).

  5. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlationsmore » with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.« less

  6. Galaxy luminosity function: evolution at high redshift

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  7. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  8. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  9. Automated reliability assessment for spectroscopic redshift measurements

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  10. Observation of redshifting and harmonic radiation in inverse Compton scattering

    DOE PAGES

    Sakai, Y.; Pogorelsky, I.; Williams, O.; ...

    2015-06-17

    Inverse Compton scattering of laser photons by ultrarelativistic electron beam provides polarized x- to γ-ray pulses due to the Doppler blueshifting. Nonlinear electrodynamics in the relativistically intense linearly polarized laser field changes the radiation kinetics established during the Compton interaction. These are due to the induced figure-8 motion, which introduces an overall redshift in the radiation spectrum, with the concomitant emission of higher order harmonics. To experimentally analyze the strong field physics associated with the nonlinear electron-laser interaction, clear modifications to the angular and wavelength distributions of x rays are observed. The relativistic photon wave field is provided by themore » ps CO 2 laser of peak normalized vector potential of 0.5L<0.7, which due to the quadratic dependence of the strength of nonlinear phenomena on aL permits sufficient effects not observed in past 2 nd harmonic study with a L ≈ 0.3 laser [M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006)]. The angular spectral characteristics are revealed using K-, L-edge, and high energy attenuation filters. The observation indicates existence of the electrons’ longitudinal motion through frequency redshifting understood as the mass shift effect. The 3 rd harmonic radiation has been observed containing on-axis x-ray component that is directly associated with the induced figure-8 motion. These are further supported by an initial evidence of off-axis 2 nd harmonic radiation produced in a circularly polarized laser wave field. Total x-ray photon number per pulse, scattered by 65 MeV electron beam of 0.3 nC, at the interaction point is measured to be approximately 10 9.« less

  11. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  12. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0quadratic error potentials of subquadratic growth (PQSQ potentials). We develop a new and universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guaranteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on the notion of the cone of minorant functions, and represents a natural approximation formalism based on the application of min-plus algebra. The approach can be applied in most of existing machine learning methods, including methods of data approximation and regularized and sparse regression, leading to the improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational performance than the corresponding state-of-the-art methods, having similar or better approximation accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Distance correlation methods for discovering associations in large astrophysical databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P., E-mail: elizabeth.martinez@itam.mx, E-mail: mrichards@astro.psu.edu, E-mail: richards@stat.psu.edu

    2014-01-20

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension,more » can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.« less

  14. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to

  15. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of

  16. BL Lacertae Objects Beyond Redshift 1.3 - UV-to-NIR Photometry and Photometric Redshift for Fermi/LAT Blazars

    NASA Technical Reports Server (NTRS)

    Rau, A.; Schady, P.; Greiner, J.; Salvato, M.; Ajello, M.; Bottacini, E.; Gehrels, N.; Afonso, P. M. J.; Elliott, J.; Filgas, R.; hide

    2011-01-01

    Context. Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Aims. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. Methods. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. Results. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z > or approx. 1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615, with the best-fit solution at z approx. = 1.9.

  17. Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First 2 Years

    NASA Astrophysics Data System (ADS)

    Matheson, Thomas; Blondin, Stéphane; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Leibundgut, Bruno; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Tonry, John L.

    2005-05-01

    We present the results of spectroscopic observations of targets discovered during the first 2 years of the ESSENCE project. The goal of ESSENCE is to use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2<~z<~0.8) to place constraints on the equation of state of the universe. Spectroscopy not only provides the redshifts of the objects but also confirms that some of the discoveries are indeed SNe Ia. This confirmation is critical to the project, as techniques developed to determine luminosity distances to SNe Ia depend on the knowledge that the objects at high redshift have the same properties as the ones at low redshift. We describe the methods of target selection and prioritization, the telescopes and detectors, and the software used to identify objects. The redshifts deduced from spectral matching of high-redshift SNe Ia with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra. We show that the high-redshift SNe Ia match well with low-redshift templates. We include all spectra obtained by the ESSENCE project, including 52 SNe Ia, five core-collapse SNe, 12 active galactic nuclei, 19 galaxies, four possibly variable stars, and 16 objects with uncertain identifications. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF); the European Southern Observatory, Chile (ESO Programme 170.A-0519) the Gemini Observatory, which is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership (the NSF [United States], the Particle Physics and Astronomy Research Council [United Kingdom], the National Research Council [Canada], CONICYT [Chile], the Australian Research Council [Australia], CNPq [Brazil], and CONICET [Argentina] [programs GN-2002B-Q-14, GN-2003B-Q-14, and GS-2003B-Q-11]) the

  18. An Unexpected Influence on a Quadratic

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  19. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  20. The kinematic component of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Chodorowski, Michał J.

    2011-05-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.

  1. Calibrating the Galaxy Color-Redshift Relation: A Critical Foundation for Weak Lensing Cosmology with WFIRST and Euclid

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2016-08-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field, but to do so requires robust distances to billions of galaxies. We propose a 4-semester, 20-night Key Strategic Mission Support program, supporting both the NASA PCOS and COR science goals, to obtain the necessary galaxy spectroscopy to calibrate the color-redshift relation. Combined with a coordinated, similarly sized Caltech Keck proposal, the proposed program will achieve the photometric redshift calibration requirements for Euclid, and make significant progress towards the WFIRST requirements. [2016B is the 2nd semester of our 4-semester request.

  2. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  3. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  4. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  5. Action-reaction at a distance

    NASA Astrophysics Data System (ADS)

    Brand, Howard

    2002-03-01

    Lenz's law is used to demonstrate that Newton's third law includes forces acting at a distance. The action-reaction pair is the force on a magnet falling through a conducting tube at terminal velocity, and a force on the tube.

  6. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less

  7. Cosmological constraints with clustering-based redshifts

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  8. New insights on the accuracy of photometric redshift measurements

    NASA Astrophysics Data System (ADS)

    Massarotti, M.; Iovino, A.; Buzzoni, A.; Valls-Gabaud, D.

    2001-12-01

    We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at zspec < 1.5 shows that model libraries provide a good description of the galaxy population. At zspec >= 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range z in [0, 6], residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.

  9. Thermodynamics of charged Lifshitz black holes with quadratic corrections

    NASA Astrophysics Data System (ADS)

    Bravo-Gaete, Moisés; Hassaïne, Mokhtar

    2015-03-01

    In arbitrary dimension, we consider the Einstein-Maxwell Lagrangian supplemented by the more general quadratic-curvature corrections. For this model, we derive four classes of charged Lifshitz black hole solutions for which the metric function is shown to depend on a unique integration constant. The masses of these solutions are computed using the quasilocal formalism based on the relation established between the off-shell Abbott-Deser-Tekin and Noether potentials. Among these four solutions, three of them are interpreted as extremal in the sense that their masses vanish identically. For the last family of solutions, both the quasilocal mass and the electric charge are shown to depend on the integration constant. Finally, we verify that the first law of thermodynamics holds for each solution and a Smarr formula is also established for the four solutions.

  10. Paschen's law studies in cold gases

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Chu, P.; Dugger, C.; Elliott, S. R.; Rielage, K.; Xu, W.

    2017-06-01

    The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.

  11. The Redshift Completeness of Local Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Perley, D. A.; Miller, A. A.

    2018-06-01

    There is considerable interest in understanding the demographics of galaxies within the local universe (defined, for our purposes, as the volume within a radius of 200 Mpc or z ≤ 0.05). In this pilot paper, using supernovae (SNe) as signposts to galaxies, we investigate the redshift completeness of catalogs of nearby galaxies. In particular, type Ia SNe are bright and are good tracers of the bulk of the galaxy population, as they arise in both old and young stellar populations. Our input sample consists of SNe with redshift ≤0.05, discovered by the flux-limited ASAS-SN survey. We define the redshift completeness fraction (RCF) as the number of SN host galaxies with known redshift prior to SN discovery, determined, in this case, via the NASA Extragalactic Database, divided by the total number of newly discovered SNe. Using SNe Ia, we find {RCF}=78{+/- }76% (90% confidence interval) for z < 0.03. We examine the distribution of host galaxies with and without cataloged redshifts as a function of absolute magnitude and redshift, and, unsurprisingly, find that higher-z and fainter hosts are less likely to have a known redshift prior to the detection of the SN. However, surprisingly, some {L}* galaxies are also missing. We conclude with thoughts on the future improvement of RCF measurements that will be made possible from large SN samples resulting from ongoing and especially upcoming time-domain surveys.

  12. Redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, J. P.

    1991-01-01

    Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.

  13. New solution to the problem of the tension between the high-redshift and low-redshift measurements of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.

  14. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  15. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.

  16. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    NASA Astrophysics Data System (ADS)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9 redshifts to test continuum color selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with

  18. Testing the accuracy of clustering redshifts with simulations

    NASA Astrophysics Data System (ADS)

    Scottez, V.; Benoit-Lévy, A.; Coupon, J.; Ilbert, O.; Mellier, Y.

    2018-03-01

    We explore the accuracy of clustering-based redshift inference within the MICE2 simulation. This method uses the spatial clustering of galaxies between a spectroscopic reference sample and an unknown sample. This study give an estimate of the reachable accuracy of this method. First, we discuss the requirements for the number objects in the two samples, confirming that this method does not require a representative spectroscopic sample for calibration. In the context of next generation of cosmological surveys, we estimated that the density of the Quasi Stellar Objects in BOSS allows us to reach 0.2 per cent accuracy in the mean redshift. Secondly, we estimate individual redshifts for galaxies in the densest regions of colour space ( ˜ 30 per cent of the galaxies) without using the photometric redshifts procedure. The advantage of this procedure is threefold. It allows: (i) the use of cluster-zs for any field in astronomy, (ii) the possibility to combine photo-zs and cluster-zs to get an improved redshift estimation, (iii) the use of cluster-z to define tomographic bins for weak lensing. Finally, we explore this last option and build five cluster-z selected tomographic bins from redshift 0.2 to 1. We found a bias on the mean redshift estimate of 0.002 per bin. We conclude that cluster-z could be used as a primary redshift estimator by next generation of cosmological surveys.

  19. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; et al.

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy ofmore » $$\\sim0.02$$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $$\\texttt{COSMOS}$$ 30-band photometry and find that our two very different methods produce consistent constraints.« less

  20. Recovering a redshift-extended varying speed of light signal from galaxy surveys

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo

    2017-04-01

    We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114, 101304 (2015), 10.1103/PhysRevLett.114.101304; Phys. Rev. D 93, 063521 (2016), 10.1103/PhysRevD.93.063521], where it was argued that such a signal could be detected at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ˜1 % VSL signal can be detected at 3 σ confidence level in the redshift interval z ∈[0. ,1.55 ]. Smaller signals (˜0.1 % ) will be hardly detected (even if some lower possibility for a 1 σ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a 0.01-order curvature in the same redshift range with a very high confidence.

  1. Redshifts for Superliminal Candidates.II.

    NASA Astrophysics Data System (ADS)

    Vermeulen, R. C.; Taylor, G. B.; Readhead, A. C. S.; Browne, I. W. A.

    1996-03-01

    Spectra are presented for 24 compact extragalactic radio sources from complete samples being studied with VLBI. New emission line redshifts are given for 21 of the objects; in 7 of these we have also identified associated or intervening absorption line systems. In 1 other source there are absorption lines which provide a lower limit to the redshift. The remaining 2 objects have strong featureless spectra and are likely to be blazars.

  2. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method

    NASA Astrophysics Data System (ADS)

    Hong, H.; Zhu, A. X.

    2017-12-01

    Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic

  3. Baryonic Content in the Warm-Hot IGM at Low Redshift

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Shull, M.; Danforth, C.; Moos, W.

    2007-01-01

    Baryons are 4.5% of the universe's mass/energy density; only 10% of these are in stars, galaxies, and clusters. At low-redshift 90% of baryons are in the IGM, 30% in Ly-alpha forest, but most are in hot gas (10(exp 5-7) K) produced by shocks during structure formation. O VI 1032-38 A are the best tracers of this gas. The distribution of O VI absorbers observed by FUSE rises as N(sup -2+/-0.2, down to 10(exp 13)/sq cm. Integrated to logN=13, 7% of baryons reside in the O VI-bearing IGM at 10% solar metallicity, T approx. 10(exp 5.5) K. At redshift z<0.1 metals have been transported less than 800/h kpc from L* galaxies and 200/h kpc from 0.1 L* galaxies. The steepness of dN/dz means that low-N absorbers contribute an equal mass of hot IGM as higher N gas. The total mass of O VI-bearing gas in the IGM depends on determining the turnover in dN/dz at low N(O VI). Future observations by FUSE are needed to reach lower N and to reduce the uncertainty in the dN/dz power law.

  4. Testing star formation laws in a starburst galaxy at redshift 3 resolved with ALMA

    NASA Astrophysics Data System (ADS)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-07-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyse the star formation rate (SFR), gas content, and kinematics in SDP 81, a gravitationally lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} M_{⊙} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane of the sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight. Our measurements of the gas surface density, freefall time, and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt-Schmidt (KS) relation predicts an SFR surface density of ΣSFR, KS = 52 ± 17 M⊙ yr-1 kpc-2, the single-freefall model by Krumholz, Dekel, and McKee (KDM) predicts ΣSFR, KDM = 106 ± 37 M⊙ yr-1 kpc-2. In contrast, the multifreefall (turbulence) model by Salim, Federrath, and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} M_{⊙} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  5. Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA

    NASA Astrophysics Data System (ADS)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-04-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  6. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  7. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  8. Morpho-z: improving photometric redshifts with galaxy morphology

    NASA Astrophysics Data System (ADS)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  9. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  10. Observational effects of varying speed of light in quadratic gravity cosmological models

    NASA Astrophysics Data System (ADS)

    Izadi, Azam; Shacker, Shadi Sajedi; Olmo, Gonzalo J.; Banerjee, Robi

    We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (cST) may become variable in that local frame. For theories of the form f(ℛ,ℛμνℛ μν), this variation in cST has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.

  11. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  12. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  13. Accuracy evaluation of distance inverse square law in determining virtual electron source location in Siemens Primus linac.

    PubMed

    Douk, Hamid Shafaei; Aghamiri, Mahmoud Reza; Ghorbani, Mahdi; Farhood, Bagher; Bakhshandeh, Mohsen; Hemmati, Hamid Reza

    2018-01-01

    The aim of this study is to evaluate the accuracy of the inverse square law (ISL) method for determining location of virtual electron source ( S Vir ) in Siemens Primus linac. So far, different experimental methods have presented for determining virtual and effective electron source location such as Full Width at Half Maximum (FWHM), Multiple Coulomb Scattering (MCS), and Multi Pinhole Camera (MPC) and Inverse Square Law (ISL) methods. Among these methods, Inverse Square Law is the most common used method. Firstly, Siemens Primus linac was simulated using MCNPX Monte Carlo code. Then, by using dose profiles obtained from the Monte Carlo simulations, the location of S Vir was calculated for 5, 7, 8, 10, 12 and 14 MeV electron energies and 10 cm × 10 cm, 15 cm × 15 cm, 20 cm × 20 cm and 25 cm × 25 cm field sizes. Additionally, the location of S Vir was obtained by the ISL method for the mentioned electron energies and field sizes. Finally, the values obtained by the ISL method were compared to the values resulted from Monte Carlo simulation. The findings indicate that the calculated S Vir values depend on beam energy and field size. For a specific energy, with increase of field size, the distance of S Vir increases for most cases. Furthermore, for a special applicator, with increase of electron energy, the distance of S Vir increases for most cases. The variation of S Vir values versus change of field size in a certain energy is more than the variation of S Vir values versus change of electron energy in a certain field size. According to the results, it is concluded that the ISL method can be considered as a good method for calculation of S Vir location in higher electron energies (14 MeV).

  14. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  15. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large

  16. The gravitational redshift of a optical vortex being different from that of an gravitational redshift plane of an electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Portnov, Yuriy A.

    2018-06-01

    A hypothesis put forward in late 20th century and subsequently substantiated experimentally posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years optical vortices have found wide-ranging applications in a number of branches including cosmology. The main hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the gravitational fields of the Earth and the Sun.

  17. Perturbed redshifts from N -body simulations

    NASA Astrophysics Data System (ADS)

    Adamek, Julian

    2018-01-01

    In order to keep pace with the increasing data quality of astronomical surveys the observed source redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated with a Newtonian N -body code. A careful analysis reveals the presence of a correction term that has so far been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the gravitational redshift and hence amounts to an important relativistic effect.

  18. Evaluating and improving the redshifts of z > 2.2 quasars

    NASA Astrophysics Data System (ADS)

    Mason, Michelle; Brotherton, Michael S.; Myers, Adam

    2017-08-01

    Quasar redshifts require the best possible precision and accuracy for a number of applications, such as setting the velocity scale for outflows as well as measuring small-scale quasar-quasar clustering. The most reliable redshift standard in luminous quasars is arguably the narrow [O III] λλ4959, 5007 emission line doublet in the rest-frame optical. We use previously published [O III] redshifts obtained using near-infrared spectra in a sample of 45 high-redshift (z > 2.2) quasars to evaluate redshift measurement techniques based on rest-frame ultraviolet spectra. At redshifts above z = 2.2, the Mg II λ2798 emission line is not available in observed-frame optical spectra and the most prominent unblended and unabsorbed spectral feature available is usually C IV λ1549. Peak and centroid measurements of the C IV profile are often blueshifted relative to the rest-frame of the quasar, which can significantly bias redshift determinations. We show that redshift determinations for these high-redshift quasars are significantly correlated with the emission-line properties of C IV (I.e. the equivalent width, or EW, and the full width at half-maximum, or FWHM) as well as the luminosity, which we take from the Sloan Digital Sky Survey Data Release 7. We demonstrate that empirical corrections based on multiple regression analyses yield significant improvements in both the precision and accuracy of the redshifts of the most distant quasars and are required to establish consistency with redshifts determined in more local quasars.

  19. A faint field-galaxy redshift survey in quasar fields

    NASA Technical Reports Server (NTRS)

    Yee, Howard K. C.; Ellingson, Erica

    1993-01-01

    Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.

  20. Realization theory and quadratic optimal controllers for systems defined over Banach and Frechet algebras

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.

  1. Power spectrum precision for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Samsing, Johan

    2013-02-01

    Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS.

  2. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  3. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  4. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  5. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  6. Measures of large-scale structure in the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.

  7. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-06-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  8. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  9. Quasars at the High Redshift Frontier

    NASA Astrophysics Data System (ADS)

    Bosman, Sarah E. I.

    2017-11-01

    In recent years the formation of primordial galaxies, cosmic metal enrichment, and hydrogen reionisation have been studied using both refined observations and powerful numerical simulations. High-redshift quasars have become a ubiquitous tool in the study of this era with more than 115 quasars now spectroscopically confirmed at z>6.0. In this thesis, I use spectra of high-redshift quasars to provide improved observational constraints through a mixture of existing and new techniques. I first investigate the claim of neutral gas around the most distant known quasar, ULASJ1120+0641(J1120), with a cosmological redshift of z=7.1. Its spectrum shows a relatively weak Lyman-α emission line, which has been interpreted as evidence of absorption by neutral gas. Attributing this to a Gunn-Peterson damping wing has led to claims that the intergalactic medium is at least 10% neutral at that redshift. However, these claims rely on a reconstruction of the unabsorbed quasar emission. Initial attempts using composite spectra of lower-redshift quasars mismatched the CIV emission line of J1120, a feature known to correlate with Lyman-α and which is strongly blueshifted in J1120. I attempt to establish whether this mismatch could explain the apparently weak Lyman-α emission line. I find that among a C IV-matched sample the Lyman-α line of J1120 is not anomalous. This raises doubts as to the interpretation of absorbed Lyman-α emission lines in the context of reionisation. I then use a high quality X-Shooter spectrum of the same z=7 quasar to measure the abundances of diffuse metals within one billion years of the Big Bang. I measure the occurrence rates of CIV, CII, SiII, FeII and MgII, producing the first measurement at z>6 for many of these ions. I find that the incidence of CIV systems is consistent with a continuing decline in the total mass density of highly ionized metals, a trend seen at lower redshifts. The ratio CII/CIV, however, seems to remain constant or increase with

  10. Extracellular Neural Microstimulation May Activate Much Larger Regions than Expected by Simulations: A Combined Experimental and Modeling Study

    PubMed Central

    Joucla, Sébastien; Branchereau, Pascal; Cattaert, Daniel; Yvert, Blaise

    2012-01-01

    Electrical stimulation of the central nervous system has been widely used for decades for either fundamental research purposes or clinical treatment applications. Yet, very little is known regarding the spatial extent of an electrical stimulation. If pioneering experimental studies reported that activation threshold currents (TCs) increase with the square of the neuron-to-electrode distance over a few hundreds of microns, there is no evidence that this quadratic law remains valid for larger distances. Moreover, nowadays, numerical simulation approaches have supplanted experimental studies for estimating TCs. However, model predictions have not yet been validated directly with experiments within a common paradigm. Here, we present a direct comparison between experimental determination and modeling prediction of TCs up to distances of several millimeters. First, we combined patch-clamp recording and microelectrode array stimulation in whole embryonic mouse spinal cords to determine TCs. Experimental thresholds did not follow a quadratic law beyond 1 millimeter, but rather tended to remain constant for distances larger than 1 millimeter. We next built a combined finite element – compartment model of the same experimental paradigm to predict TCs. While theoretical TCs closely matched experimental TCs for distances <250 microns, they were highly overestimated for larger distances. This discrepancy remained even after modifications of the finite element model of the potential field, taking into account anisotropic, heterogeneous or dielectric properties of the tissue. In conclusion, these results show that quadratic evolution of TCs does not always hold for large distances between the electrode and the neuron and that classical models may underestimate volumes of tissue activated by electrical stimulation. PMID:22879886

  11. Learning curves in highly skilled chess players: a test of the generality of the power law of practice.

    PubMed

    Howard, Robert W

    2014-09-01

    The power law of practice holds that a power function best interrelates skill performance and amount of practice. However, the law's validity and generality are moot. Some researchers argue that it is an artifact of averaging individual exponential curves while others question whether the law generalizes to complex skills and to performance measures other than response time. The present study tested the power law's generality to development over many years of a very complex cognitive skill, chess playing, with 387 skilled participants, most of whom were grandmasters. A power or logarithmic function best fit grouped data but individuals showed much variability. An exponential function usually was the worst fit to individual data. Groups differing in chess talent were compared and a power function best fit the group curve for the more talented players while a quadratic function best fit that for the less talented. After extreme amounts of practice, a logarithmic function best fit grouped data but a quadratic function best fit most individual curves. Individual variability is great and the power law or an exponential law are not the best descriptions of individual chess skill development. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  13. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the

  14. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; ...

    2015-11-19

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the

  15. Limb darkening and exoplanets - II. Choosing the best law for optimal retrieval of transit parameters

    NASA Astrophysics Data System (ADS)

    Espinoza, Néstor; Jordán, Andrés

    2016-04-01

    Very precise measurements of exoplanet transit light curves both from ground- and space-based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such light curves such as the planetary radius. However, studies of the effect of limb-darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit light curves, both in terms of bias and precision, for a wide range of situations. We therefore recommend to study which law to use on a case-by-case basis. We provide code to guide the decision of when to use each of these laws and select the optimal one in a mean-square error sense, which we note has a dependence on both stellar and transit parameters. Finally, we demonstrate that the so-called exponential law is non-physical as it typically produces negative intensities close to the limb and should therefore not be used.

  16. Steep radio spectra in high-redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Chen, Wan

    1991-01-01

    The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.

  17. The Hubble Space Telescope quasar absorption line key project. v. redshift evolution of lyman limit absorption in the spectra of a large sample of quasars

    NASA Technical Reports Server (NTRS)

    Stengler-Larrea, Erik A.; Boksenberg, Alec; Steidel, Charles, C.; Sargent, W. L. W.; Bacall, John N.; Bergeron, Jacqueline; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.

    1995-01-01

    Using a sample of 119 QSOs, containing objects we have selected having previously available high quality ground-based and IUE spectral observations, together with Hubble Space Telescope (HST) observations of 26 QSOs from Bahcall et al. (1993, 1995) and Impey et al. (1995) and new optical observations of 41 objects by Steidel & Sargent (1995), we study the redshift evolution of Lyman limit absorption systems (LLSs; tau greater than 1.0) over the reshift range 0.32 less than or equal to z(sub LLS) less than or equal to 4.11. The HST observations significantly improve the determination of the low redshift (0.4 less than or equal to z(sub LLS) less than or equal to 1.4) distribution. We find the effect which may have been responsible for the apparent strong evolution at a(sub LLS) greater than or equal to 2.5 found by Lanzetta (1991), which led him to consider a broken, not single power law as a better description of the redshift distribution of LLSs. After removing objects which may bias our sample, leaving a total of 169 QSOs, we find the distribution is well described by a single power law, and obtain for the number density as a function of redshift the form N(z) = N(sub 0)(1 + z)(exp gamma) with gamma = 1.50 =/- 0.39 and N(sub 0) = 0.25(sup -0.10)(sub +0.17), consistent with a constant comoving density of absorbers in a Firedmann universe with q(sub 0) = 0 but indicating evolution if q(sub 0) = 1/2.

  18. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-10-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million `clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 `anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed `anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80 per cent when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.

  19. MARZ: Manual and automatic redshifting software

    NASA Astrophysics Data System (ADS)

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  20. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  1. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  2. The Enigmatic Local Hubble Flow: Probing the Nearby Peculiar Velocity Field with Consistent Distances to Neighboring Galaxies.

    NASA Astrophysics Data System (ADS)

    Mendez, B.; Davis, M.; Newman, J.; Madore, B. F.; Freedman, W. L.; Moustakas, J.

    2002-12-01

    The properties of the velocity field in the local volume (cz < 550 km s-1) have been difficult to constrain due to a lack of a consistent set of galaxy distances. The sparse observations available to date suggest a remarkably quiet flow, with little deviation from a pure Hubble law. However, velocity field models based on the distribution of galaxies in the 1.2 Jy IRAS redshift survey, predict a quadrupolar flow pattern locally with strong infall at the poles of the local Supergalactic plane. In an attempt to resolve this discrepency, we probe the local velocity field and begin to establish a consistent set of galactic distances. We have obtained images of nearby galaxies in I, V, and B bands from the W.M. Keck Observatory and in F814W and F555W filters from the Hubble Space Telescope. Where these galaxies are well resolved into stars we can use the Tip of the Red Giant Branch (TRGB) as a distance indicator. Using a maximum likelihood analysis to quantitatively measure the I magnitude of the TRGB we determine precise distances to several nearby galaxies. We supplement that dataset with published distances to local galaxies measured using Cepheids, Surface Brightness Fluctuations, and the TRGB. With these data we find that the amplitude of the local flow is roughly half that expected in linear theory and N-body simulations; thus the enigma of cold local flows persists. This work was supported in part by NASA through a grant from the Space Telescope Science Institute and a Predoctoral Fellowship for Minorities from the Ford Foundation.

  3. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  4. Geodetic methods to determine the relativistic redshift at the level of 10^{-18} in the context of international timescales: a review and practical results

    NASA Astrophysics Data System (ADS)

    Denker, Heiner; Timmen, Ludger; Voigt, Christian; Weyers, Stefan; Peik, Ekkehard; Margolis, Helen S.; Delva, Pacôme; Wolf, Peter; Petit, Gérard

    2017-12-01

    The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in 10^{18} level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about 0.1 m2 s^{-2} , equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about 2 × 10^{-18}.

  5. A study of ten quasars with redshifts greater than four

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1989-01-01

    Four quasars with redshifts greater than four were detected in a low-resolution CCD grism survey. CCD photometry and high S/N, moderate resolution spectra are presented for these quasars and the six other known quasars with redshifts above 4. The M sub B values of nine of the objects are between -27.5 and -25, with the tenth quasar having an M sub B value of -29. The emission lines and shapes of the continua of these ten quasars are similar to those of lower-redshift quasars. The results suggest that the C IV emission lines in high-redshift quasars may be weaker than those in lower-redshift quasars. The continua of all of the high-redshift quasars display strong depressions blueward of the Ly-alpha emission line.

  6. The stability of quadratic-reciprocal functional equation

    NASA Astrophysics Data System (ADS)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  7. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  8. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  9. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the

  10. Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk

    2016-01-01

    An expression for the average redshift drift in a statistically homogeneous and isotropic dust universe is given. The expression takes the same form as the expression for the redshift drift in FLRW models. It is used for a proof-of-principle study of the effects of backreaction on redshift drift measurements by combining the expression with two-region models. The study shows that backreaction can lead to positive redshift drift at low redshifts, exemplifying that a positive redshift drift at low redshifts does not require dark energy. Moreover, the study illustrates that models without a dark energy component can have an average redshiftmore » drift observationally indistinguishable from that of the standard model according to the currently expected precision of ELT measurements. In an appendix, spherically symmetric solutions to Einstein's equations with inhomogeneous dark energy and matter are used to study deviations from the average redshift drift and effects of local voids.« less

  11. Photometric redshifts in the SWIRE Survey

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael; Babbedge, Tom; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; Ilbert, Olivier; Le Févre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Mari; Farrah, Duncan; Vaccari, Mattia

    2008-05-01

    We present the SWIRE Photometric Redshift Catalogue 1025119 redshifts of unprecedented reliability and of accuracy comparable with or better than previous work. Our methodology is based on fixed galaxy and quasi-stellar object templates applied to data at 0.36-4.5 μm, and on a set of four infrared emission templates fitted to infrared excess data at 3.6-170 μm. The galaxy templates are initially empirical, but are given greater physical validity by fitting star formation histories to them, which also allows us to estimate stellar masses. The code involves two passes through the data, to try to optimize recognition of active galactic nucleus (AGN) dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, AV, is allowed as a free parameter. The full reduced χ2ν (z) distribution is given for each source, so the full error distribution can be used, and aliases investigated. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyse the performance of our method as a function of the number of photometric bands used in the solution and the reduced χ2ν. For seven photometric bands (5 optical + 3.6, 4.5 μm), the rms value of (zphot - zspec)/(1 + zspec) is 3.5 per cent, and the percentage of catastrophic outliers [defined as >15 per cent error in (1 + z)], is ~1 per cent. These rms values are comparable with the best achieved in other studies, and the outlier fraction is significantly better. The inclusion of the 3.6- and 4.5-μm IRAC bands is crucial in supression of outliers. We discuss the redshift distributions at 3.6 and 24 μm. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution, so the photometric redshifts are a powerful tool for large-scale structure studies. 10 per cent of sources in the SWIRE photometric redshift catalogue have z > 2, and 4 per cent

  12. A catalog of galaxy morphology and photometric redshift

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Shamir, Lior

    2018-01-01

    Morphology carries important information about the physical characteristics of a galaxy. Here we used machine learning to produce a catalog of ~3,000,000 SDSS galaxies classified by their broad morphology into spiral and elliptical galaxies. Comparison of the catalog to Galaxy Zooshows that the catalog contains a subset of 1.7*10^6 galaxies classified with the same level of consistency as the debiased “superclean” sub-sample. In addition to the morphology, we also computed the photometric redshifts of the galaxies. Several pattern recognition algorithms and variable selection strategies were tested, and the best accuracy of mean absolute error of ~0.0062 was achieved by using random forest with a combination of manually and automatically selected variables. The catalog shows that for redshift lower than 0.085 galaxies that visually look spiral become more prevalent as the redshift gets higher. For redshift greater than 0.085 galaxies thatvisually look elliptical become more prevalent. The catalog as well as the source code used to produce it is publicly available athttps://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593 .

  13. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  14. Phase transitions in the quadratic contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-06-01

    The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (10) at rate 1. In the QCP, a combination of two 1's is required to effect a 01 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered (VQCP) and edge-centered (EQCP) with birth events 1-0-11-1-1 and 1-1-01-1-1, respectively, where “-” represents an edge. We investigate the effects of network topology by considering the QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  15. Measuring our Universe from Galaxy Redshift Surveys.

    PubMed

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  16. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  17. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  18. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  19. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  20. Clustering analysis of high-redshift luminous red galaxies in Stripe 82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.; Shanks, T.; Sawangwit, U.

    2013-03-01

    We present a clustering analysis of luminous red galaxies (LRGs) in Stripe 82 from the Sloan Digital Sky Survey (SDSS). We study the angular two-point autocorrelation function, w(θ), of a selected sample of over 130 000 LRG candidates via colour-cut selections in izK with the K-band coverage coming from UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We have used the cross-correlation technique of Newman to establish the redshift distribution of the LRGs. Cross-correlating them with SDSS quasi-stellar objects (QSOs), MegaZ-LRGs and DEEP Extragalactic Evolutionary Probe 2 (DEEP2) galaxies, implies an average redshift of the LRGs to be z ≈ 1 with space density, ng ≈ 3.20 ± 0.16 × 10-4 h3 Mpc-3. For θ ≤ 10 arcmin (corresponding to ≈10 h-1 Mpc), the LRG w(θ) significantly deviates from a conventional single power law as noted by previous clustering studies of highly biased and luminous galaxies. A double power law with a break at rb ≈ 2.4 h-1 Mpc fits the data better, with best-fitting scale length, r0, 1 = 7.63 ± 0.27 h-1 Mpc and slope γ1 = 2.01 ± 0.02 at small scales and r0, 2 = 9.92 ± 0.40 h-1 Mpc and γ2 = 1.64 ± 0.04 at large scales. Due to the flat slope at large scales, we find that a standard Λ cold dark matter (Λ CDM) linear model is accepted only at 2-3σ, with the best-fitting bias factor, b = 2.74 ± 0.07. We also fitted the halo occupation distribution (HOD) models to compare our measurements with the predictions of the dark matter clustering. The effective halo mass of Stripe 82 LRGs is estimated as Meff = 3.3 ± 0.6 × 1013 h-1 M⊙. But at large scales, the current HOD models did not help explain the power excess in the clustering signal. We then compare the w(θ) results to the results of Sawangwit et al. from three samples of photometrically selected LRGs at lower redshifts to measure clustering evolution. We find that a long-lived model may be a poorer fit than at lower

  1. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  2. On orthogonality preserving quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  3. The Durham/UKST Galaxy Redshift Survey - VII. Redshift-space distortions in the power spectrum

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Hoyle, Fiona; Shanks, T.

    2001-03-01

    We investigate the effect of redshift-space distortions in the power spectrum parallel and perpendicular to the line of sight of the observer, PS(k∥,k⊥), using the optically selected Durham/UKST Galaxy Redshift Survey. On small, non-linear scales anisotropy in the power spectrum is dominated by the galaxy velocity dispersion; the `Finger of God' effect. On larger, linear scales coherent peculiar velocities caused by the infall of galaxies into overdense regions are the main cause of anisotropy. According to gravitational instability theory these distortions depend only on the density and bias parameters via β~Ωm0.6b. Geometrical distortions also occur if the wrong cosmology is assumed, although these would be relatively small given the low redshift of the survey. To quantify these effects, we assume the real-space power spectrum of the APM Galaxy Survey, and fit a simple model for the redshift-space and geometrical distortions. Assuming a flat Ωm=1 universe, we find values for the one-dimensional pairwise velocity dispersion of σp=410+/-170kms-1, and β=0.38+/-0.17. An open Ωm=0.3, and a flat Ωm=0.3, ΩΛ=0.7 universe yield σp=420kms-1, β=0.40, and σp=440kms-1, β=0.45, respectively, with comparable errors. These results are consistent with estimates using the two-point galaxy correlation function, ξ(σ,π), and favour either a low-density universe with Ωm~0.3 if galaxies trace the underlying mass distribution, or a bias factor of b~2.5 if Ωm=1.

  4. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  5. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  6. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.ed, E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alonemore » Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys

  7. Accurate physical laws can permit new standard units: The two laws F→=ma→ and the proportionality of weight to mass

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne M.

    2014-04-01

    Three common approaches to F→=ma→ are: (1) as an exactly true definition of force F→ in terms of measured inertial mass m and measured acceleration a→; (2) as an exactly true axiom relating measured values of a→, F→ and m; and (3) as an imperfect but accurately true physical law relating measured a→ to measured F→, with m an experimentally determined, matter-dependent constant, in the spirit of the resistance R in Ohm's law. In the third case, the natural units are those of a→ and F→, where a→ is normally specified using distance and time as standard units, and F→ from a spring scale as a standard unit; thus mass units are derived from force, distance, and time units such as newtons, meters, and seconds. The present work develops the third approach when one includes a second physical law (again, imperfect but accurate)—that balance-scale weight W is proportional to m—and the fact that balance-scale measurements of relative weight are more accurate than those of absolute force. When distance and time also are more accurately measurable than absolute force, this second physical law permits a shift to standards of mass, distance, and time units, such as kilograms, meters, and seconds, with the unit of force—the newton—a derived unit. However, were force and distance more accurately measurable than time (e.g., time measured with an hourglass), this second physical law would permit a shift to standards of force, mass, and distance units such as newtons, kilograms, and meters, with the unit of time—the second—a derived unit. Therefore, the choice of the most accurate standard units depends both on what is most accurately measurable and on the accuracy of physical law.

  8. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  9. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    NASA Astrophysics Data System (ADS)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  10. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  11. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space.

    PubMed

    Masui, Kiyoshi Wesley; Sigurdson, Kris

    2015-09-18

    We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

  12. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley; Sigurdson, Kris

    2015-09-01

    We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

  13. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  14. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less

  15. Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

    NASA Astrophysics Data System (ADS)

    Salim, Samir; Boquien, Médéric; Lee, Janice C.

    2018-05-01

    We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).

  16. The Mystical "Quadratic Formula."

    ERIC Educational Resources Information Center

    March, Robert H.

    1993-01-01

    Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)

  17. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay L.

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet,more » and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.« less

  18. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  19. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE PAGES

    Ata, Metin

    2017-06-20

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  20. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Metin

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  1. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Baumgarten, Falk; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blazek, Jonathan A.; Bolton, Adam S.; Brinkmann, Jonathan; Brownstein, Joel R.; Burtin, Etienne; Chuang, Chia-Hsun; Comparat, Johan; Dawson, Kyle S.; de la Macorra, Axel; Du, Wei; du Mas des Bourboux, Hélion; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grabowski, Katie; Guy, Julien; Hand, Nick; Ho, Shirley; Hutchinson, Timothy A.; Ivanov, Mikhail M.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Laurent, Pierre; Le Goff, Jean-Marc; McEwen, Joseph E.; Mueller, Eva-Maria; Myers, Adam D.; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Prakash, Abhishek; Rodríguez-Torres, Sergio A.; Ross, Ashley J.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Slosar, Anže; Streblyanska, Alina; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Vivek, M.; Wang, Yuting; Yèche, Christophe; Yu, Liang; Zarrouk, Pauline; Zhao, Cheng; Zhao, Gong-Bo; Zhu, Fangzhou

    2018-02-01

    We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147 000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically averaged clustering in both configuration and Fourier space. Our observational data set and the 1400 simulated realizations of the data set allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: DV(z = 1.52) = 3843 ± 147(rd/rd, fid)Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fitting cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find ΩΛ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.

  2. Confronting Alternative Cosmological Models with the Highest-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Shafer, Daniel; Scolnic, Daniel; Riess, Adam

    2018-01-01

    High-redshift Type Ia supernovae (SNe Ia) from the HST CANDELS and CLASH programs significantly extend the Hubble diagram with 7 SNe at z > 1.5 suitable for cosmology, including one at z = 2.3. This unique leverage helps us distinguish "alternative" cosmological models from the standard Lambda-CDM model. Analyzing the Pantheon SN compilation, which includes these high-z SNe, we employ model comparison statistics to quantify the extent to which several proposed alternative expansion histories (e.g., empty universe, power law expansion, timescape cosmology) are disfavored even with SN Ia data alone. Using mock data, we demonstrate that some likelihood analyses used in the literature to support these models are sensitive to unrealistic assumptions and are therefore unsuitable for analysis of realistic SN Ia data.

  3. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  4. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  5. Using quasars as standard clocks for measuring cosmological redshift.

    PubMed

    Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda

    2012-06-08

    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.

  6. Gravitational Redshift in a Local Freely Falling Frame: A Proposed New Null Test of the Equivalence Principle

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1996-01-01

    We consider the gravitational redshift effect measured by an observer in a local freely failing frame (LFFF) in the gravitational field of a massive body. For purely metric theories of gravity, the metric in a LFFF is expected to differ from that of flat spacetime by only "tidal" terms of order (GM/c(exp 2)R)(r'/R )(exp 2), where R is the distance of the observer from the massive body, and r' is the coordinate separation relative to the origin of the LFFF. A simple derivation shows that a violation of the equivalence principle for certain types of "clocks" could lead to a larger apparent redshift effect of order (1 - alpha)(G M/c(exp 2)R)(r'/R), where alpha parametrizes the violation (alpha = 1 for purely metric theories, such as general relativity). Therefore, redshift experiments in a LFFF with separated clocks can provide a new null test of the equivalence principle. With presently available technology, it is possible to reach an accuracy of 0.01% in the gravitational field of the Sun using an atomic clock orbiting the Earth. A 1% test in the gravitational field of the galaxy would be possible if an atomic frequency standard were flown on a space mission to the outer solar system.

  7. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  8. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The significance of the quadratic Doppler effect for space travel and astrophysics

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    1985-09-01

    It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.

  10. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  11. Spacetime symmetries and Kepler's third law

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre

    2012-11-01

    The curved spacetime geometry of a system of two point masses moving on a circular orbit has a helical symmetry. We show how Kepler’s third law for circular motion, and its generalization in post-Newtonian theory, can be recovered from a simple, covariant condition on the norm of the associated helical Killing vector field. This unusual derivation can be used to illustrate some concepts of prime importance in a general relativity course, including those of Killing field, covariance, coordinate dependence and gravitational redshift.

  12. The effect of inhomogeneities on the distance to the last scattering surface and the accuracy of the CMB analysis

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2011-02-01

    The standard analysis of the CMB data assumes that the distance to the last scattering surface can be calculated using the distance-redshift relation as in the Friedmann model. However, in the inhomogeneous universe, even if langδρrang = 0, the distance relation is not the same as in the unperturbed universe. This can be of serious consequences as a change of distance affects the mapping of CMB temperature fluctuations into the angular power spectrum Cl. In addition, if the change of distance is relatively uniform no new temperature fluctuations are generated. It is therefore a different effect than the lensing or ISW effects which introduce additional CMB anisotropies. This paper shows that the accuracy of the CMB analysis can be impaired by the accuracy of calculation of the distance within the cosmological models. Since this effect has not been fully explored before, to test how the inhomogeneities affect the distance-redshift relation, several methods are examined: the Dyer-Roeder relation, lensing approximation, and non-linear Swiss-Cheese model. In all cases, the distance to the last scattering surface is different than when homogeneity is assumed. The difference can be as low as 1% and as high as 80%. An usual change of the distance is around 20-30%. Since the distance to the last scattering surface is set by the position of the CMB peaks, in order to have a good fit, the distance needs to be adjusted. After correcting the distance, the cosmological parameters change. Therefore, a not properly estimated distance to the last scattering surface can be a major source of systematics. This paper shows that if inhomogeneities are taken into account when calculating the distance then models with positive spatial curvature and with ΩΛ ~ 0.8-0.9 are preferred.

  13. Predicting the High Redshift Galaxy Population for JWST

    NASA Astrophysics Data System (ADS)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  14. Power law cosmology model comparison with CMB scale information

    NASA Astrophysics Data System (ADS)

    Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc

    2016-11-01

    Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.

  15. Digital robust control law synthesis using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1989-01-01

    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

  16. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  17. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    PubMed

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  18. Photometric Redshift Calibration Strategy for WFIRST Cosmology

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY

    2018-01-01

    In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.

  19. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  20. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  1. Void statistics of the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-11-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  2. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  3. Uncertain Photometric Redshifts with Deep Learning Methods

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.

    2017-06-01

    The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.

  4. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  5. Phase Transitions in the Quadratic Contact Process on Complex Networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-03-01

    The quadratic contact process (QCP) is a natural extension of the well studied linear contact process where a single infected (1) individual can infect a susceptible (0) neighbor and infected individuals are allowed to recover (1 --> 0). In the QCP, a combination of two 1's is required to effect a 0 --> 1 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks as a model for the change in a population via sexual reproduction and death. We define two versions of the QCP - vertex centered (VQCP) and edge centered (EQCP) with birth events 1 - 0 - 1 --> 1 - 1 - 1 and 1 - 1 - 0 --> 1 - 1 - 1 respectively, where ` -' represents an edge. We investigate the effects of network topology by considering the QCP on regular, Erdős-Rényi and power law random graphs. We perform mean field calculations as well as simulations to find the steady state fraction of occupied vertices as a function of the birth rate. We find that on the homogeneous graphs (regular and Erdős-Rényi) there is a discontinuous phase transition with a region of bistability, whereas on the heavy tailed power law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  6. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  7. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  8. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a singlemore » line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.« less

  9. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.

    2016-05-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C I], [N II], H2O and NH3. We further present Atacama Pathfinder Experiment [C II] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  10. Analysis of Students' Error in Learning of Quadratic Equations

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  11. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies

    NASA Astrophysics Data System (ADS)

    Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter

    2018-01-01

    In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.

  12. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux-redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the I-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  13. Effect of inhomogeneities on high precision measurements of cosmological distances

    NASA Astrophysics Data System (ADS)

    Peel, Austin; Troxel, M. A.; Ishak, Mustapha

    2014-12-01

    We study effects of inhomogeneities on distance measures in an exact relativistic Swiss-cheese model of the Universe, focusing on the distance modulus. The model has Λ CDM background dynamics, and the "holes" are nonsymmetric structures described by the Szekeres metric. The Szekeres exact solution of Einstein's equations, which is inhomogeneous and anisotropic, allows us to capture potentially relevant effects on light propagation due to nontrivial evolution of structures in an exact framework. Light beams traversing a single Szekeres structure in different ways can experience either magnification or demagnification, depending on the particular path. Consistent with expectations, we find a shift in the distance modulus μ to distant sources due to demagnification when the light beam travels primarily through the void regions of our model. Conversely, beams are magnified when they propagate mainly through the overdense regions of the structures, and we explore a small additional effect due to time evolution of the structures. We then study the probability distributions of Δ μ =μΛ CDM-μSC for sources at different redshifts in various Swiss-cheese constructions, where the light beams travel through a large number of randomly oriented Szekeres holes with random impact parameters. We find for Δ μ the dispersions 0.004 ≤σΔ μ≤0.008 mag for sources with redshifts 1.0 ≤z ≤1.5 , which are smaller than the intrinsic dispersion of, for example, magnitudes of type Ia supernovae. The shapes of the distributions we obtain for our Swiss-cheese constructions are peculiar in the sense that they are not consistently skewed toward the demagnification side, as they are in analyses of lensing in cosmological simulations. Depending on the source redshift, the distributions for our models can be skewed to either the demagnification or the magnification side, reflecting a limitation of these constructions. This could be the result of requiring the continuity of Einstein

  14. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1994-01-01

    The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  15. Flutter suppression digital control law design and testing for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  16. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and involved control law order reduction, a gain root-locus study and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  17. Verification of Emmert's law in actual and virtual environments.

    PubMed

    Nakamizo, Sachio; Imamura, Mariko

    2004-11-01

    We examined Emmert's law by measuring the perceived size of an afterimage and the perceived distance of the surface on which the afterimage was projected in actual and virtual environments. The actual environment consisted of a corridor with ample cues as to distance and depth. The virtual environment was made from the CAVE of a virtual reality system. The afterimage, disc-shaped and one degree in diameter, was produced by flashing with an electric photoflash. The observers were asked to estimate the perceived distance to surfaces located at various physical distances (1 to 24 m) by the magnitude estimation method and to estimate the perceived size of the afterimage projected on the surfaces by a matching method. The results show that the perceived size of the afterimage was directly proportional to the perceived distance in both environments; thus, Emmert's law holds in virtual as well as actual environments. We suggest that Emmert's law is a specific case of a functional principle of distance scaling by the visual system.

  18. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Self-accelerating parabolic beams in quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Dolev, Ido; Libster, Ana; Arie, Ady

    2012-09-01

    We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.

  20. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  1. Binary Inspiral in Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2015-01-01

    Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.

  2. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  3. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  4. Directly Imaging Damped Ly-Alpha Galaxies at Redshifts Greater Than 2. III: The Star Formation Rates of Neutral Gas Reservoirs at Redshifts of Approximately 2.7

    NASA Technical Reports Server (NTRS)

    Fumagalli, Michele; OMeara, John M.; Prochaska, J. Xavier; Rafelski, Marc; Kanekar, Nissim

    2014-01-01

    We present results from a survey designed to probe the star formation properties of 32 damped Ly alpha systems (DLAs) at redshifts of approximately 2.7. By using the "double-DLA" technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame FUV flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2 sigma limits of psi less than 0.09-0.27 solar mass yr(exp -1), corresponding to SFR surface densities sigma(sub sfr) less than 10(exp -2.6)-10(exp -1.5) solar mass yr(exp -1) kpc(exp -2). The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that less than or equal to 13% of the hosts have psi greater than or equal to 2 solar mass yr(exp -1) at impact parameters b(sub dla) less than or equal to (psi/solar mass yr(exp -1))(exp 0.8) + 6 kpc, differently from current samples of confirmed DLA galaxies. Our observations also disfavor a scenario in which the majority of DLAs arise from bright LBGs at distances 20 less than or equal to b(sub dla) less than 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed.

  5. Supernovae - A new selection effect. [statistical distribution in and radial distance from center of parent galaxy

    NASA Technical Reports Server (NTRS)

    Shaw, R. L.

    1979-01-01

    A sample of 228 supernovae that occurred in galaxies with known redshifts is used to show that the mean projected linear supernova distance from the center of the parent galaxy increases with increasing redshift. This effect is interpreted as an observational bias: the discovery rate of supernovae is reduced in the inner parts of distant, poorly resolved galaxies. Even under the optimistic assumption that no selection effects work in galaxies closer than 33 Mpc, about 50% of all supernovae are lost in the inner regions of galaxies beyond 150 Mpc. This observational bias must be taken into account in the derivation of statistical properties of supernovae.

  6. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.; hide

    2011-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.

  7. Understanding redshift space distortions in density-weighted peculiar velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: teppei.oku@gmail.com, E-mail: dns@astro.princeton.edu

    2016-07-01

    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is themore » change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ∼ 30 h {sup -1} Mpc for dark matter particles at the redshifts of z =0.0, 0.5, and 1.0.« less

  8. Normalized distance aggregation of discriminative features for person reidentification

    NASA Astrophysics Data System (ADS)

    Hou, Li; Han, Kang; Wan, Wanggen; Hwang, Jenq-Neng; Yao, Haiyan

    2018-03-01

    We propose an effective person reidentification method based on normalized distance aggregation of discriminative features. Our framework is built on the integration of three high-performance discriminative feature extraction models, including local maximal occurrence (LOMO), feature fusion net (FFN), and a concatenation of LOMO and FFN called LOMO-FFN, through two fast and discriminant metric learning models, i.e., cross-view quadratic discriminant analysis (XQDA) and large-scale similarity learning (LSSL). More specifically, we first represent all the cross-view person images using LOMO, FFN, and LOMO-FFN, respectively, and then apply each extracted feature representation to train XQDA and LSSL, respectively, to obtain the optimized individual cross-view distance metric. Finally, the cross-view person matching is computed as the sum of the optimized individual cross-view distance metric through the min-max normalization. Experimental results have shown the effectiveness of the proposed algorithm on three challenging datasets (VIPeR, PRID450s, and CUHK01).

  9. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  10. Relativistic redshifts in quasar broad lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott; Shen, Yue; Liu, Xin

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomlymore » oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.« less

  11. Dynamics of voids and their shapes in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr

    2011-08-01

    We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.

  12. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  13. Long High Redshift GRB and Xrt/swift Lightcurves

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    At February of 2010 the volume of Swift GRB subset with known redshift consisted of more than 150 bursts. Long GRB redshift distribution analysis has shown that confidence level of single peak approximation of this distribution is only ˜60%. Moreover, more than 40% of GRB are in very heavy tails outside 3σ level for this fit. More detailed analysis of long GRB redshift distribution reveals that at 97% confidence level at least two subgroups could be separated with following parameters: = 0.9 ± 0.1 and = 2.7 ± 0.2. It allows to make conclusion that Swift long GRB sources subset is not uniform. In the presented article attention is paid on the measure of discrepancy of long GRB with z>3 and subset of other long GRB with known redshifts. XRT/Swift lightcurves for these groups of GRB were considered and it have shown that at least 90% XRT/Swift lightcurves for GRB with z>3 are more complicated and have got a number of maxima.

  14. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    NASA Astrophysics Data System (ADS)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.

  15. Designing a space-based galaxy redshift survey to probe dark energy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni

    2010-12-01

    A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

  16. Modified circular velocity law

    NASA Astrophysics Data System (ADS)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  17. Predicting pathologic tumor response to chemoradiotherapy with histogram distances characterizing longitudinal changes in 18F-FDG uptake patterns

    PubMed Central

    Tan, Shan; Zhang, Hao; Zhang, Yongxue; Chen, Wengen; D’Souza, Warren D.; Lu, Wei

    2013-01-01

    Purpose: A family of fluorine-18 (18F)-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) features based on histogram distances is proposed for predicting pathologic tumor response to neoadjuvant chemoradiotherapy (CRT). These features describe the longitudinal change of FDG uptake distribution within a tumor. Methods: Twenty patients with esophageal cancer treated with CRT plus surgery were included in this study. All patients underwent PET/CT scans before (pre-) and after (post-) CRT. The two scans were first rigidly registered, and the original tumor sites were then manually delineated on the pre-PET/CT by an experienced nuclear medicine physician. Two histograms representing the FDG uptake distribution were extracted from the pre- and the registered post-PET images, respectively, both within the delineated tumor. Distances between the two histograms quantify longitudinal changes in FDG uptake distribution resulting from CRT, and thus are potential predictors of tumor response. A total of 19 histogram distances were examined and compared to both traditional PET response measures and Haralick texture features. Receiver operating characteristic analyses and Mann-Whitney U test were performed to assess their predictive ability. Results: Among all tested histogram distances, seven bin-to-bin and seven crossbin distances outperformed traditional PET response measures using maximum standardized uptake value (AUC = 0.70) or total lesion glycolysis (AUC = 0.80). The seven bin-to-bin distances were: L2 distance (AUC = 0.84), χ2 distance (AUC = 0.83), intersection distance (AUC = 0.82), cosine distance (AUC = 0.83), squared Euclidean distance (AUC = 0.83), L1 distance (AUC = 0.82), and Jeffrey distance (AUC = 0.82). The seven crossbin distances were: quadratic-chi distance (AUC = 0.89), earth mover distance (AUC = 0.86), fast earth mover distance (AUC = 0.86), diffusion distance (AUC = 0.88), Kolmogorov-Smirnov distance (AUC = 0.88), quadratic form distance

  18. Contact- and distance-based principal component analysis of protein dynamics.

    PubMed

    Ernst, Matthias; Sittel, Florian; Stock, Gerhard

    2015-12-28

    To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between Cα-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.

  19. Contact- and distance-based principal component analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Ernst, Matthias; Sittel, Florian; Stock, Gerhard

    2015-12-01

    To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between Cα-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.

  20. Student Identity and Authentication in Distance Education: A Primer for Distance Learning Administrators

    ERIC Educational Resources Information Center

    Aceves, Patricia A.; Aceves, Robert I.

    2009-01-01

    Since the signing of the Higher Education Opportunity Act (HEOA) in August 2008, providers of distance education courses and programs have been looking into procedures and technologies that will satisfy the accrediting agencies responsible for enforcing the law. Continuing education administrators are at the forefront because of the pervasiveness…

  1. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; hide

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  2. Photo-z-SQL: Photometric redshift estimation framework

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2017-04-01

    Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

  3. Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Alpaslan, M.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Cluver, M. E.; Croom, S. M.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Hopkins, A. M.; Kelvin, L. S.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Norberg, P.; Peacock, J.; Robotham, A. S. G.; Taylor, E. N.

    2014-07-01

    The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33 km s-1.

  4. An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.

    PubMed

    Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A

    2006-03-09

    The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

  5. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    NASA Astrophysics Data System (ADS)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  6. A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John P.; Davis, Marc; Yahil, Amos; Fisher, Karl B.; Tonry, John

    1992-01-01

    We present the data for a redshift survey of galaxies selected from the database of the Infrared Astronomical Satellite (IRAS). The sample is flux limited to 1.936 Jy at 60 microns and covers 11.01 sr of the sky. It consists of 5014 objects, of which 2658 are galaxies. The remaining 2356 sources are listed in a separate table with identifications. Redshift data are also given for 212 IRAS galaxies which are not part of the complete sample, but were measured in conjunction with this project.

  7. Consistency among distance measurements: transparency, BAO scale and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Avgoustidis, Anastasios; Verde, Licia; Jimenez, Raul

    2009-06-01

    We explore consistency among different distance measures, including Supernovae Type Ia data, measurements of the Hubble parameter, and determination of the Baryon acoustic oscillation scale. We present new constraints on the cosmic transparency combining H(z) data together with the latest Supernovae Type Ia data compilation. This combination, in the context of a flat ΛCDM model, improves current constraints by nearly an order of magnitude although the constraints presented here are parametric rather than non-parametric. We re-examine the recently reported tension between the Baryon acoustic oscillation scale and Supernovae data in light of possible deviations from transparency, concluding that the source of the discrepancy may most likely be found among systematic effects of the modelling of the low redshift data or a simple ~ 2-σ statistical fluke, rather than in exotic physics. Finally, we attempt to draw model-independent conclusions about the recent accelerated expansion, determining the acceleration redshift to be zacc = 0.35+0.20-0.13 (1-σ).

  8. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  9. Online Quadrat Study - Site Index

    Science.gov Websites

    Study Project - Prairie Advocates Project ) Background Information - Data Collection and Entry - Data Data Entry Data Summaries and Graphs Quadrat Study Poster for your classroom. Directions for Looking at by Prairie Study Prairie Experts For Non-Fermilab Prairie researchers: Complete step-by-step

  10. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which aremore » physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.« less

  11. Using Perturbative Least Action to Reconstruct Redshift-Space Distortions

    NASA Astrophysics Data System (ADS)

    Goldberg, David M.

    2001-05-01

    In this paper, we present a redshift-space reconstruction scheme that is analogous to and extends the perturbative least action (PLA) method described by Goldberg & Spergel. We first show that this scheme is effective in reconstructing even nonlinear observations. We then suggest that by varying the cosmology to minimize the quadrupole moment of a reconstructed density field, it may be possible to lower the error bars on the redshift distortion parameter, β, as well as to break the degeneracy between the linear bias parameter, b, and ΩM. Finally, we discuss how PLA might be applied to realistic redshift surveys.

  12. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  13. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on

  15. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  16. How Accurately Can We Measure Galaxy Environment at High Redshift Using Only Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Jogee, Shardha; Sherman, Sydney; Papovich, Casey J.; Finkelstein, Steven L.; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Ciardullo, Robin; Gronwall, Caryl; SHELA/HETDEX

    2017-06-01

    We use a powerful synergy of six deep photometric surveys (Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray) and a future optical spectroscopic survey (HETDEX) in the Stripe 82 field to study galaxy evolution during the 1.9 < z < 3.5 epoch when cosmic star formation and black hole activity peaked, and protoclusters began to collapse. With an area of 24 sq. degrees, a sample size of ~ 0.8 million galaxies complete in stellar mass above M* ~ 10^10 solar masses, and a comoving volume of ~ 0.45 Gpc^3, our study will allow us to make significant advancements in understanding the connection between galaxies and their respective dark matter components. In this poster, we characterize how robustly we can measure environment using only our photometric redshifts. We compare both local and large-scale measures of environment (e.g., projected two-point correlation function, projected nearest neighbor densities, and galaxy counts within some projected aperture) at different photometric redshifts to cosmological simulations in order to quantify the uncertainty in our estimates of environment. We also explore how robustly one can recover the variation of galaxy properties with environment, when using only photometric redshifts. In the era of large photometric surveys, this work has broad implications for studies addressing the impact of environment on galaxy evolution at early cosmic epochs. We acknowledge support from NSF grants AST-1614798, AST-1413652 and NSF GRFP grant DGE-1610403.

  17. Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes.

    PubMed

    Coe, Benjamin J; Beljonne, David; Vogel, Henryk; Garín, Javier; Orduna, Jesús

    2005-11-10

    N-Arylation of the pyridinium electron acceptor unit in stilbazolium chromophores has been found by previous experimental hyper-Rayleigh scattering and electronic Stark effect (electroabsorption) spectroscopic studies to lead to substantial increases in the static first hyperpolarizability beta(0). We show here that INDO/SCI calculations on the isolated cations trans-4'-(dimethylamino)-N-R-4-stilbazolium (R = methyl 1, phenyl 2, 2,4-dinitrophenyl 3, or 2-pyrimidyl 4) predict only slight red-shifts in the energy of the intramolecular charge-transfer (ICT) transition and accompanying relatively small changes in beta(0) on moving along the series. The inclusion of acetonitrile solvent using a polarizable continuum model affords a somewhat better agreement with the experimental data, especially the red-shifting of the ICT transition and the increase in beta(0) on going from 1 to 4. Time-dependent density functional theory (TD-DFT), finite field, and coupled perturbed Hartree-Fock calculations reproduce even more closely the empirical data and trends; the latter two approaches lead to the highest quadratic nonlinear optical (NLO) response of the studied chromophores for 3, for which the predicted beta(0) is ca. 50-100% larger than that of the analogous N-methylated cation 1. Although the TD-DFT and INDO/SCI approaches give quite different results for ground- and excited-state dipole moments, the overall conclusions of these two methods regarding the ICT absorption and NLO responses are similar.

  18. Dark Energy and the Hubble Law

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  19. A model of urban scaling laws based on distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Fabiano L.; Meirelles, Joao; Ferreira, Fernando F.; Neto, Camilo Rodrigues

    2017-03-01

    Socio-economic related properties of a city grow faster than a linear relationship with the population, in a log-log plot, the so-called superlinear scaling. Conversely, the larger a city, the more efficient it is in the use of its infrastructure, leading to a sublinear scaling on these variables. In this work, we addressed a simple explanation for those scaling laws in cities based on the interaction range between the citizens and on the fractal properties of the cities. To this purpose, we introduced a measure of social potential which captured the influence of social interaction on the economic performance and the benefits of amenities in the case of infrastructure offered by the city. We assumed that the population density depends on the fractal dimension and on the distance-dependent interactions between individuals. The model suggests that when the city interacts as a whole, and not just as a set of isolated parts, there is improvement of the socio-economic indicators. Moreover, the bigger the interaction range between citizens and amenities, the bigger the improvement of the socio-economic indicators and the lower the infrastructure costs of the city. We addressed how public policies could take advantage of these properties to improve cities development, minimizing negative effects. Furthermore, the model predicts that the sum of the scaling exponents of social-economic and infrastructure variables are 2, as observed in the literature. Simulations with an agent-based model are confronted with the theoretical approach and they are compatible with the empirical evidences.

  20. A model of urban scaling laws based on distance dependent interactions

    PubMed Central

    Ribeiro, Fabiano L.; Meirelles, Joao; Ferreira, Fernando F.

    2017-01-01

    Socio-economic related properties of a city grow faster than a linear relationship with the population, in a log–log plot, the so-called superlinear scaling. Conversely, the larger a city, the more efficient it is in the use of its infrastructure, leading to a sublinear scaling on these variables. In this work, we addressed a simple explanation for those scaling laws in cities based on the interaction range between the citizens and on the fractal properties of the cities. To this purpose, we introduced a measure of social potential which captured the influence of social interaction on the economic performance and the benefits of amenities in the case of infrastructure offered by the city. We assumed that the population density depends on the fractal dimension and on the distance-dependent interactions between individuals. The model suggests that when the city interacts as a whole, and not just as a set of isolated parts, there is improvement of the socio-economic indicators. Moreover, the bigger the interaction range between citizens and amenities, the bigger the improvement of the socio-economic indicators and the lower the infrastructure costs of the city. We addressed how public policies could take advantage of these properties to improve cities development, minimizing negative effects. Furthermore, the model predicts that the sum of the scaling exponents of social-economic and infrastructure variables are 2, as observed in the literature. Simulations with an agent-based model are confronted with the theoretical approach and they are compatible with the empirical evidences. PMID:28405381

  1. A model of urban scaling laws based on distance dependent interactions.

    PubMed

    Ribeiro, Fabiano L; Meirelles, Joao; Ferreira, Fernando F; Neto, Camilo Rodrigues

    2017-03-01

    Socio-economic related properties of a city grow faster than a linear relationship with the population, in a log-log plot, the so-called superlinear scaling . Conversely, the larger a city, the more efficient it is in the use of its infrastructure, leading to a sublinear scaling on these variables. In this work, we addressed a simple explanation for those scaling laws in cities based on the interaction range between the citizens and on the fractal properties of the cities. To this purpose, we introduced a measure of social potential which captured the influence of social interaction on the economic performance and the benefits of amenities in the case of infrastructure offered by the city. We assumed that the population density depends on the fractal dimension and on the distance-dependent interactions between individuals. The model suggests that when the city interacts as a whole, and not just as a set of isolated parts, there is improvement of the socio-economic indicators. Moreover, the bigger the interaction range between citizens and amenities, the bigger the improvement of the socio-economic indicators and the lower the infrastructure costs of the city. We addressed how public policies could take advantage of these properties to improve cities development, minimizing negative effects. Furthermore, the model predicts that the sum of the scaling exponents of social-economic and infrastructure variables are 2, as observed in the literature. Simulations with an agent-based model are confronted with the theoretical approach and they are compatible with the empirical evidences.

  2. Efficient dual approach to distance metric learning.

    PubMed

    Shen, Chunhua; Kim, Junae; Liu, Fayao; Wang, Lei; van den Hengel, Anton

    2014-02-01

    Distance metric learning is of fundamental interest in machine learning because the employed distance metric can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. The worst case complexity of solving an SDP problem involving a matrix variable of size D×D with O(D) linear constraints is about O(D(6.5)) using interior-point methods, where D is the dimension of the input data. Thus, the interior-point methods only practically solve problems exhibiting less than a few thousand variables. Because the number of variables is D(D+1)/2, this implies a limit upon the size of problem that can practically be solved around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here, we propose a significantly more efficient and scalable approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is roughly O(D(3)), which is significantly lower than that of the SDP approach. Experiments on a variety of data sets demonstrate that the proposed method achieves an accuracy comparable with the state of the art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius norm regularized SDP problems approximately.

  3. Definitive test of the Rh = ct universe using redshift drift

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2016-11-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the Rh = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Δv = -15 cm s-1 yr-1 due to the redshift drift in Planck ΛCDM, while Δv = 0 cm s-1 yr-1 in Rh = ct. With an anticipated ELT-HIRES measurement error of ±5 cm s-1 yr-1 after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between Rh = ct and Planck ΛCDM at ˜3σ, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the Rh = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5σ.

  4. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less

  5. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  6. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  7. Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on its redshift

    DOE PAGES

    Acciari, V. A.; Aliu, E.; Arlen, T.; ...

    2009-12-18

    Here, we report the first detection of very high energy 83Gamma-ray emission above 100 GeV. (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 ± 0.5 stat ± 0.3 syst and a flux normalization at 200 GeV of (5.1 ± 0.9 stat ± 0.5 syst) × 10 –11 TeV –1 cm –2 s –1, where stat and syst denote the statistical and systematical uncertainties, respectively. The VHE flux is steadymore » over the observation period between MJD 54881 and 55003 (from 2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high-energy observations with the Fermi Large Area Telescope. Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution is well described by a one-zone synchrotron self-Compton model favoring a redshift of less than 0.1. We can conclude after using the photon index measured with Fermi in combination with recent extragalactic background light absorption models that the VERITAS data has a redshift of PKS 1424+240 less than 0.66.« less

  8. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Prada, Francisco

    2017-10-01

    The standard relation between the cosmological redshift and cosmic scalefactor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the Λ cold-dark-matter (ΛCDM) cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryon acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h = 0.48 ± 0.02, and its local determination, hobs = 0.73 ± 0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ωm = 0.87 ± 0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck ΛCDM cosmology. The model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the PlanckΛCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.

  9. Redshift Space Distortion on the Small Scale Clustering of Structure

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Sabiu, Cristiano; Li, Xiao-dong; Park, Changbom; Kim, Juhan

    2018-01-01

    The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  10. H2-based star formation laws in hierarchical models of galaxy formation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna

    2017-07-01

    We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (I) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (II) reproduces the measured evolution of the galaxy stellar mass function; (III) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.

  11. A Catalog of Photometric Redshift and the Distribution of Broad Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Virag, Nicholas; Shamir, Lior

    2018-06-01

    We created a catalog of photometric redshift of ~3,000,000 SDSS galaxies annotated by their broad morphology. The photometric redshift was optimized by testing and comparing several pattern recognition algorithms and variable selection strategies, trained and tested on a subset of the galaxies in the catalog that had spectra. The galaxies in the catalog have i magnitude brighter than 18 and Petrosian radius greater than 5.5''. The majority of these objects are not included in previous SDSS photometric redshift catalogs such as the photoz table of SDSS DR12. Analysis of the catalog shows that the number of galaxies in the catalog that are visually spiral increases until redshift of ~0.085, where it peaks and starts to decrease. It also shows that the number of spiral galaxies compared to elliptical galaxies drops as the redshift increases. The catalog is publicly available at https://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593

  12. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  13. correlcalc: Two-point correlation function from redshift surveys

    NASA Astrophysics Data System (ADS)

    Rohin, Yeluripati

    2017-11-01

    correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

  14. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  15. The XXL Survey XIV. AAOmega Redshifts for the Southern XXL Field

    NASA Astrophysics Data System (ADS)

    Lidman, C.; Ardila, F.; Owers, M.; Adami, C.; Chiappetti, L.; Civano, F.; Elyiv, A.; Finet, F.; Fotopoulou, S.; Goulding, A.; Koulouridis, E.; Melnyk, O.; Menanteau, F.; Pacaud, F.; Pierre, M.; Plionis, M.; Surdej, J.; Sadibekova, T.

    2016-01-01

    We present a catalogue containing the redshifts of 3 660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1 515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field.

  16. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  17. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  18. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  19. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE PAGES

    Gatti, M.

    2018-02-22

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  20. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatti, M.

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  1. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  2. Cosmography by GRBs: Gamma Ray Bursts as possible distance indicators

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Izzo, L.

    2009-10-01

    A new method to constrain the cosmological equation of state is proposed by using combined samples of gammaray bursts (GRBs) and supernovae (SNeIa). The Chevallier-Polarski-Linder parameterization is adopted for the equation of state in order to find out a realistic approach to achieve the deceleration/acceleration transition phase of dark energy models. As results, we find that GRBs, calibrated by SNeIa, could be, at least, good distance indicators capable of discriminating cosmological models with respect to ΛCDM at high redshift.

  3. Weakening gravity on redshift-survey scales with kinetic matter mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field asmore » well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.« less

  4. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  5. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  6. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE PAGES

    Davis, C.; Rozo, E.; Roodman, A.; ...

    2018-03-26

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  7. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; Rozo, E.; Roodman, A.

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  8. Results of an integrated structure/control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.

  9. Radio polarization properties of quasars and active galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z < 3) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of 50 ± 22 rad m-2 for z > 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  10. Exploring Quadratic Functions with Logger "Pro"

    ERIC Educational Resources Information Center

    Pope, Derek

    2018-01-01

    The author shares the lesson that he used to introduce the quadratic unit to students in an extended second-year algebra class, demonstrate why it was appropriate for his struggling learners, and discuss possible future modifications to this lesson.

  11. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    ERIC Educational Resources Information Center

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  12. Expanding wave solutions of the Einstein equations that induce an anomalous acceleration into the Standard Model of Cosmology.

    PubMed

    Temple, Blake; Smoller, Joel

    2009-08-25

    We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.

  13. The Cognitive and Perceptual Laws of the Inclined Plane.

    PubMed

    Masin, Sergio Cesare

    2016-09-01

    The study explored whether laypersons correctly tacitly know Galileo's law of the inclined plane and what the basis of such knowledge could be. Participants predicted the time a ball would take to roll down a slope with factorial combination of ball travel distance and slope angle. The resulting pattern of factorial curves relating the square of predicted time to travel distance for each slope angle was identical to that implied by Galileo's law, indicating a correct cognitive representation of this law. Intuitive physics research suggests that this cognitive representation may result from memories of past perceptions of objects rolling down a slope. Such a basis and the correct cognitive representation of Galileo's law led to the hypothesis that Galileo's law is also perceptually represented correctly. To test this hypothesis, participants were asked to judge the perceived travel time of a ball actually rolling down a slope, with perceived travel distance and perceived slope angle varied in a factorial design. The obtained pattern of factorial curves was equal to that implied by Galileo's law, indicating that the functional relationships defined in this law were perceptually represented correctly. The results foster the idea that laypersons may tacitly know both linear and nonlinear multiplicative physical laws of the everyday world. As a practical implication, the awareness of this conclusion may help develop more effective methods for teaching physics and for improving human performance in the physical environment.

  14. Newton's laws of motion in the form of a Riccati equation.

    PubMed

    Nowakowski, Marek; Rosu, Haret C

    2002-04-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.

  15. Geometrical and Graphical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  16. A luminous quasar at a redshift of z = 7.085.

    PubMed

    Mortlock, Daniel J; Warren, Stephen J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzáles-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Röttgering, Huub J A

    2011-06-29

    The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.

  17. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    DOE PAGES

    Wojtak, Radosław; Prada, Francisco

    2017-06-21

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less

  18. Digital robust active control law synthesis for large order flexible structure using parameter optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    1988-01-01

    A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.

  19. On the Redshift of TeV BL Lac Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiano, Simona; Falomo, Renato; Landoni, Marco

    2017-03-10

    We report results of a spectroscopic campaign carried out at the 10 m Gran Telescopio Canarias for a sample of 22 BL Lac objects detected (or candidates) at TeV energies, aiming to determine or constrain their redshift. This is of fundamental importance for the interpretation of their emission models and for population studies and is also mandatory for studying the interaction of high-energy photons with the extragalactic background light using TeV sources. Optical spectra with high signal-to-noise ratios in the range 4250–10000 Å were obtained to search for faint emission or absorption lines from both the host galaxy and themore » nucleus. We determine a new redshift for PKS 1424+240 ( z = 0.604) and a tentative one for 1ES 0033+595 ( z = 0.467). We are able to set new spectroscopic redshift lower limits for three other sources on the basis of Mg ii and Ca ii intervening absorption features: BZB J1243+3627 ( z > 0.483), BZB J1540+8155 ( z > 0.672), and BZB 0J2323+4210 ( z > 0.267). We confirm previous redshift estimates for four blazars: S3 0218+357 ( z = 0.944), 1ES 1215+303 ( z = 0.129), W Comae ( z = 0.102), and MS 1221.8+2452 ( z = 0.218). For the remaining targets, in seven cases (S2 0109+22, 3C 66A, VER J0521+211, S4 0954+65, BZB J1120+4214, S3 1227+25, BZB J2323+4210), we do not validate the proposed redshift. Finally, for all sources of still-unknown redshift, we set a lower limit based on the minimum equivalent width of absorption features expected from the host galaxy.« less

  20. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco Kind, Matias

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets bymore » using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are

  1. Close Companions to Two High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  2. The inevitable youthfulness of known high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Blundell, Katherine M.; Rawlings, Steve

    1999-05-01

    Some galaxies are very luminous in the radio part of the spectrum. These `radio galaxies' have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole. Some radio galaxies can be seen at very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift, without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.

  3. Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.

    PubMed

    Sayyari, Erfan; Mirarab, Siavash

    2016-11-11

    Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.

  4. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  5. Relationships between weekly walking distance and adiposity in27,596 women are nonlinear with respect to both distance andadiposity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T.

    2004-12-01

    The cross-sectional relationships of weekly walking distance to BMI, body circumferences, and bra cup sizes are reported for 27,596 women. The percent reductions between walking 40-50 km/wk and < 10km/wk were greatest for BMI, substantial for waist circumference and cupsize, and least for hip and chest circumferences. The relationships between distance and adiposity were nonlinear with respect to both the independent (quadratic function of distance) and dependent variables(slope and curvilinearity depending upon the percentile of BMI, circumference, or cup size). The slope relating adiposity to km/wk were greatest (most negative) in overweight sedentary women and least in lean active women.more » For example, compared to women averaging 10 km/wk, the slope of BMI versus km/wk was 43 percent less at 25 km/wk and 87 percent less at 40 km/wk in overweight women (95th BMI percentile), but negligible at all distances in lean women (5th BMI percentile). The greater estimated decrease in BMI per km/wk in walkers than runners was largely accounted for (over 75 percent) by the walkers greater adiposity. Thus classical representations of the relationship between adiposity and moderate physical activity are inadequate for either statistical analyses or descriptive purposes. The clinical implications of these results and their statistical ramifications are discussed.« less

  6. The redshift-space neighborhoods of 36 loose groups of galaxies. 1: The data

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We have selected 36 loose groups of galaxies (RGH89) with at least five members, and with mean redshift average value of CZ is greater than 3200 km/s. These groups all lie within the first two slices of the CfA redshift survey 8(sup h) less than or equal to alpha less than or equal to 17(sup h) and 26.5 deg less than or equal to delta less than or equal to 38.5 deg). For each of these groups, we define the redshift-space neighborhood as a region centered on the group coordinates and delimited by a circle of projected radius R(sub cir) = 1.5/h Mpc on the sky, and by a velocity interval delta (sub cz) = 3000 km/s. Here we give the redshifts of 334 galaxies in these redshift-space neighborhoods. For completeness, we also give the redshifts of the 232 original members. These data include 199 new redshifts. We demonstrate that these samples of fainter galaxies significantly increase the number of members.

  7. Long-term multiwavelength studies of high-redshift blazar 0836+710

    DOE PAGES

    Akyuz, A.; Thompson, D. J.; Donato, D.; ...

    2013-07-30

    The observation of γ-ray flares from blazar 0836+710 in 2011, following a period of quiescence, offered an opportunity to study correlated activity at different wavelengths for a high-redshift (z = 2.218) active galactic nucleus. Here, optical and radio monitoring, plus Fermi-LAT γ-ray monitoring provided 20082–2012 coverage, while Swift offered auxiliary optical, ultraviolet, and X-ray information. Other contemporaneous observations were used to construct a broad-band spectral energy distribution. As a result, there is evidence of correlation but not a measurable lag between the optical and γ-ray flaring emission. In contrast, there is no clear correlation between radio and γ-ray activity, indicatingmore » radio emission regions that are unrelated to the parts of the jet that produce the γ rays. In conclusion, the γ-ray energy spectrum is unusual in showing a change of shape from a power law to a curved spectrum when going from the quiescent state to the active state.« less

  8. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  9. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1more » + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.« less

  10. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-01-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  11. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    PubMed

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  13. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Empirical Modeling of the Redshift Evolution of the [{\\rm{N}}\\,{\\rm{II}}]/Hα Ratio for Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Masters, Daniel; Wang, Yun; Merson, Alexander; Capak, Peter; Malhotra, Sangeeta; Rhoads, James E.

    2018-03-01

    We present an empirical parameterization of the [N II]/Hα flux ratio as a function of stellar mass and redshift valid at 0 < z < 2.7 and 8.5< {log}(M/{M}ȯ )< 11.0. This description can (i) easily be applied to simulations for modeling [N II]λ6584 line emission, (ii) deblend [N II] and Hα in current low-resolution grism and narrow-band observations to derive intrinsic Hα fluxes, and (iii) reliably forecast the number counts of Hα emission-line galaxies for future surveys, such as those planned for Euclid and the Wide Field Infrared Survey Telescope (WFIRST). Our model combines the evolution of the locus on the Baldwin, Phillips & Terlevich (BPT) diagram measured in spectroscopic data out to z ∼ 2.5 with the strong dependence of [N II]/Hα on stellar mass and [O III]/Hβ observed in local galaxy samples. We find large variations in the [N II]/Hα flux ratio at a fixed redshift due to its dependency on stellar mass; hence, the assumption of a constant [N II] flux contamination fraction can lead to a significant under- or overestimate of Hα luminosities. Specifically, measurements of the intrinsic Hα luminosity function derived from current low-resolution grism spectroscopy assuming a constant 29% contamination of [N II] can be overestimated by factors of ∼8 at {log}(L)> 43.0 for galaxies at redshifts z ∼ 1.5. This has implications for the prediction of Hα emitters for Euclid and WFIRST. We also study the impact of blended Hα and [N II] on the accuracy of measured spectroscopic redshifts.

  15. Non-Friedmann cosmology for the Local Universe, significance of the universal Hubble constant, and short-distance indicators of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Baryshev, Yu. V.

    2006-09-01

    Based on the increasing evidence of the cosmological relevance of the local Hubble flow, we consider a simple analytical cosmological model for the Local Universe. This is a non-Friedmann model with a non-uniform static space-time. The major dynamical factor controlling the local expansion is the antigravity produced by the omnipresent and permanent dark energy of the cosmic vacuum (or the cosmological constant). The antigravity dominates at larger distances than 1-2 Mpc from the center of the Local group. The model gives a natural explanation of the two key quantitative characteristics of the local expansion flow, which are the local Hubble constant and the velocity dispersion of the flow. The observed kinematical similarity of the local and global flows of expansion is clarified by the model. We analytically demonstrate the efficiency of the vacuum cooling mechanism that allows one to see the Hubble law this close to the Local group. The "universal Hubble constant" HV (≈60 km s-1 Mpc-1), depending only on the vacuum density, has special significance locally and globally. The model makes a number of verifiable predictions. It also unexpectedly shows that the dwarf galaxies of the local flow with the shortest distances and lowest redshifts may be the most sensitive indicators of dark energy in our neighborhood.

  16. On the perturbation of the luminosity distance by peculiar motions

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick; Hudson, Michael J.

    2015-06-01

    We consider some aspects of the perturbation to the luminosity distance d(z) that are of relevance for SN1a cosmology and for future peculiar velocity surveys at non-negligible redshifts. (1) Previous work has shown that the correction to the lowest order perturbation δd/d = -δv/cz has the peculiar characteristic that it appears to depend on the absolute state of motion of sources, rather than on their motion relative to that of the observer. The resolution of this apparent violation of the equivalence principle is that it is necessary to allow for evolution of the velocities with time, and also, when considering perturbations on the scale of the observer-source separation, to include the gravitational redshift effect. We provide an expression for δd/d that provides a physically consistent way to measure peculiar velocities and determine their impact for SN1a cosmology. (2) We then calculate the perturbation to the redshift as a function of source flux density, which has been proposed as an alternative probe of large-scale motions. We show how the inclusion of surface brightness modulation modifies the relation between δz(m) and the peculiar velocity, and that, while the noise properties of this method might appear promising, the velocity signal is swamped by the effect of galaxy clustering for most scales of interest. (3) We show how, in linear theory, peculiar velocity measurements are biased downwards by the effect of smaller scale motions or by measurement errors (such as in photometric redshifts). Our results nicely explain the effects seen in simulations by Koda et al. We critically examine the prospects for extending peculiar velocity studies to larger scales with near-term future surveys.

  17. Dark matter annihilation in the circumgalactic medium at high redshifts

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Wyithe, J. S. B.

    2018-03-01

    Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However, when modelling such potential signals at high redshift, the emergence of both DM and baryonic structure, as well as the complexities of the energy transfer process, needs to be taken into account. In the following paper, we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating DM at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 105-107 M⊙ haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionization and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the `filtered' annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star-forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.

  18. Digital robust active control law synthesis for large order systems using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1987-01-01

    This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.

  19. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.

    2014-08-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a viewmore » of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2« less

  20. Improving Photometric Redshifts for Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Speagle, Josh S.; Leauthaud, Alexie; Eisenstein, Daniel; Bundy, Kevin; Capak, Peter L.; Leistedt, Boris; Masters, Daniel C.; Mortlock, Daniel; Peiris, Hiranya; HSC Photo-z Team; HSC Weak Lensing Team

    2017-01-01

    Deriving accurate photometric redshift (photo-z) probability distribution functions (PDFs) are crucial science components for current and upcoming large-scale surveys. We outline how rigorous Bayesian inference and machine learning can be combined to quickly derive joint photo-z PDFs to individual galaxies and their parent populations. Using the first 170 deg^2 of data from the ongoing Hyper Suprime-Cam survey, we demonstrate our method is able to generate accurate predictions and reliable credible intervals over ~370k high-quality redshifts. We then use galaxy-galaxy lensing to empirically validate our predicted photo-z's over ~14M objects, finding a robust signal.

  1. On Volterra quadratic stochastic operators with continual state space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on themore » segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.« less

  2. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  3. Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan

    2015-01-01

    Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  4. Probing Pre-galactic Metal Enrichment with High-redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-11-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature >~ 104 K. We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm-3. In more massive halos, corresponding to the first galaxies, the density may be larger, n >~ 100 cm-3. The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z >~ 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may distinguish whether the first heavy elements were produced in a pair

  5. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  6. The universe at moderate redshift

    NASA Technical Reports Server (NTRS)

    Ostriker, Jeremiah P.

    1992-01-01

    The Final Report on the universe at moderate redshift covering the period from 1 Mar. 1988 to 28 Feb. 1991 is presented. Areas of research included: galaxy formation and large-scale structure; intergalactic medium and background radiation fields; quasar statistics and evolution; and gravitational lenses.

  7. Going beyond the Kaiser redshift-space distortion formula: A full general relativistic account of the effects and their detectability in galaxy clustering

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Hamaus, Nico; Seljak, Uroš; Zaldarriaga, Matias

    2012-09-01

    Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M≥1012h-1M⊙ (this can increase to 10-σ or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.

  8. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    NASA Technical Reports Server (NTRS)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  9. Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS: Searching for Prompt Explosions in the Early Universe

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Hayden, Brian; Jha, Saurabh W.; Jones, David O.; Kirshner, Robert P.; Koekemoer, Anton M.; McCully, Curtis; Mobasher, Bahram; Patel, Brandon; Weiner, Benjamin J.; Cenko, S. Bradley; Clubb, Kelsey I.; Cooper, Michael; Filippenko, Alexei V.; Frederiksen, Teddy F.; Hjorth, Jens; Leibundgut, Bruno; Matheson, Thomas; Nayyeri, Hooshang; Penner, Kyle; Trump, Jonathan; Silverman, Jeffrey M.; U, Vivian; Azalee Bostroem, K.; Challis, Peter; Rajan, Abhijith; Wolff, Schuyler; Faber, S. M.; Grogin, Norman A.; Kocevski, Dale

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg2 with ~900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ~ 2.5. We classify ~24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f_{P}\\,{=}\\,0.53^{\\ \\,\\, +/- 0.09}_{stat0.10} {}^{\\ \\, +/- 0.10}_{sys 0.26}, consistent with a delay time distribution that follows a simple t -1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  10. The Universe Adventure - Redshift

    Science.gov Websites

    redshifted. The Doppler Effect in action. A moving fire truck's siren changes pitch as it moves past you . This is known as the Doppler Effect. To get a better idea of how this actually works, we'll look at a common phenomenon: the Doppler Effect. Imagine you hear a fire truck coming right toward you. As the

  11. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  12. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE PAGES

    Jouvel, S.; Delubac, T.; Comparat, J.; ...

    2017-03-24

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  13. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouvel, S.; Delubac, T.; Comparat, J.

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  14. The x-ray luminosity-redshift relationship of quasars

    PubMed Central

    Segal, I. E.; Segal, W.

    1980-01-01

    Chronometric cosmology provides an excellent fit for the phenomenological x-ray luminosity-redshift relationship for 49 quasars observed by the Einstein satellite. Analysis of the data on the basis of the Friedmann cosmology leads to a correlation of absolute x-ray luminosity with redshift of >0.8, which is increased to ∼1 in the bright envelope. Although the trend might be ascribed a priori to an observational magnitude bias, it persists after nonparametric, maximum-likelihood removal of this bias. PMID:16592826

  15. Extent of warm haloes around medium-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.

    1989-01-01

    The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.

  16. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  17. Recovering the systemic redshift of galaxies from their Lyman alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-07-01

    The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.

  18. Recovering the systemic redshift of galaxies from their Lyman-alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-04-01

    The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.

  19. The CfA redshift survey - Data for the NGP + 30 zone

    NASA Technical Reports Server (NTRS)

    Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.

    1990-01-01

    Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.

  20. The nature of the redshift and directly observed quasar statistics.

    PubMed

    Segal, I E; Nicoll, J F; Wu, P; Zhou, Z

    1991-07-01

    The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.

  1. The luminosity function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.

  2. Geometrical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Grewal, A. S.; Godloza, L.

    1999-01-01

    Demonstrates that the equation of a circle (x-h)2 + (y-k)2 = r2 with center (h; k) and radius r reduces to a quadratic equation x2-2xh + (h2 + k2 -r2) = O at the intersection with the x-axis. Illustrates how to determine the center of a circle as well as a point on a circle. (Author/ASK)

  3. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  4. Bright Compact Bulges (BCBs) at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-04-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z < 1.0), disc dominated (nB < 2.5) galaxies from HST/ACS and WFC3 in Chandra Deep Field South, in rest-frame B and I-band, we found a new class of bulges which is brighter and more compact than ellipticals. We refer to them as "Bright, Compact Bulges" (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12% of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al. (2011), we find that only ˜0.2% of the bulges can be classified as BCBs in the local Universe. Bulge to total ratio (B/T) of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact and passive elliptical galaxies observed at higher redshifts. Those high redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs supports a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  5. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  6. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  7. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE PAGES

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; ...

    2018-04-18

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  8. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  9. The TexOx-1000 redshift survey of radio sources I: the TOOT00 region

    NASA Astrophysics Data System (ADS)

    Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.

    2010-01-01

    We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.

  10. Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher J.; Chapman, Scott C.; Windhorst, Rogier A.

    2003-10-01

    Submillimeter-detected galaxies located at redshifts z>1 host a major fraction of the bolometric luminosity at high redshifts due to thermal emission from heated dust grains, yet the nature of these objects remains a mystery. The major problem in understanding their origin is whether the dust-heating mechanism is predominantly caused by star formation or active galactic nuclei and what triggered this activity. We address this issue by examining the structures of 11 submillimeter galaxies imaged with STIS on the Hubble Space Telescope. We argue that ~61%+/-21% of these submillimeter sources are undergoing an active major merger using the CAS (concentration, asymmetry, clumpiness) quantitative morphological system. We rule out at ~5 σ confidence that these submillimeter galaxies are normal Hubble types at high redshift. This merger fraction appears to be higher than for Lyman break galaxies undergoing mergers at similar redshifts. Using reasonable constraints on the stellar masses of Lyman break galaxies and these submillimeter sources, we further argue that at redshifts z~2-3, systems with high stellar masses are more likely than lower mass galaxies to be involved in major mergers.

  11. Fitts’ Law in Early Postural Adjustments

    PubMed Central

    Bertucco, M.; Cesari, P.; Latash, M.L

    2012-01-01

    We tested a hypothesis that the classical relation between movement time and index of difficulty (ID) in quick pointing action (Fitts’ Law) reflects processes at the level of motor planning. Healthy subjects stood on a force platform and performed quick and accurate hand movements into targets of different size located at two distances. The movements were associated with early postural adjustments that are assumed to reflect motor planning processes. The short distance did not require trunk rotation, while the long distance did. As a result, movements over the long distance were associated with substantiual Coriolis forces. Movement kinematics and contact forces and moments recorded by the platform were studied. Movement time scaled with ID for both movements. However, the data could not be fitted with a single regression: Movements over the long distance had a larger intercept corresponding to movement times about 140 ms longer than movements over the shorter distance. The magnitude of postural adjustments prior to movement initiation scaled with ID for both short and long distances. Our results provide strong support for the hypothesis that Fitts’ Law emerges at the level of motor planning, not at the level of corrections of ongoing movements. They show that, during natural movements, changes in movement distance may lead to changes in the relation between movement time and ID, for example when the contribution of different body segments to the movement varies and when the action of Coriolis force may require an additional correction of the movement trajectory. PMID:23211560

  12. High-Redshift SNe with Subaru and HST

    NASA Astrophysics Data System (ADS)

    Rubin, David; Suzuki, Nao; Regnault, Nicolas; Aldering, Gregory; Amanullah, Rahman; Antilogus, Pierre; Astier, Pierre; Barbary, Kyle; Betoule, Marc; Boone, Kyle Robert; Currie, Miles; Deustua, Susana; Doi, Mamoru; Fruchter, Andrew; Goobar, Ariel; Hayden, Brian; Hazenberg, Francois; Hook, Isobel; Huang, Xiaosheng; Jiang, Jian; Kato, Takahiro; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Maeda, Keiichi; Morokuma, Tomoki; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Ruiz-Lapuente, Pilar; Sako, Masao; Myers Saunders, Clare; Spadafora, Anthony L.; Tanaka, Masaomi; Tominaga, Nozomu; Yasuda, Naoki; Yoshida, Naoki

    2018-01-01

    High-redshift type Ia supernovae are crucial for constraining any time variation in dark energy. Here, we present the first discoveries and light curves from the SUbaru Supernovae with Hubble Infrared (SUSHI) program, which combines high-redshift SN discoveries from the Subaru Strategic Program (SSP, as well as other Subaru time) with HST WFC3 IR followup. This program efficiently uses the wide field and high collecting area of Subaru Hyper Suprime-Cam for optical light curves, but still obtains a precision NIR color. We are on track to double the number of well-measured SNe Ia at z > 1.1, triggering on 23 SNe Ia in our first season.

  13. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  14. A γ-ray burst at a redshift of z~8.2

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; Cavanagh, B.; de Ugarte Postigo, A.; Dopita, M. A.; Fatkhullin, T. A.; Fruchter, A. S.; Foley, R. J.; Gorosabel, J.; Kennea, J.; Kerr, T.; Klose, S.; Krimm, H. A.; Komarova, V. N.; Kulkarni, S. R.; Moskvitin, A. S.; Mundell, C. G.; Naylor, T.; Page, K.; Penprase, B. E.; Perri, M.; Podsiadlowski, P.; Roth, K.; Rutledge, R. E.; Sakamoto, T.; Schady, P.; Schmidt, B. P.; Soderberg, A. M.; Sollerman, J.; Stephens, A. W.; Stratta, G.; Ukwatta, T. N.; Watson, D.; Westra, E.; Wold, T.; Wolf, C.

    2009-10-01

    Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  15. The Physical Origin of Galaxy Morphologies and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Steinmetz, Matthias; Navarro, Julio F.

    2002-01-01

    We propose a numerical study designed to interpret the origin and evolution of galaxy properties revealed by space- and ground-based imaging and spectroscopical surveys. Our aim is to unravel the physical processes responsible for the development of different galaxy morphologies and for the establishment of scaling laws such as the Tully-Fisher relation for spirals and the Fundamental Plane of ellipticals. In particular, we plan to address the following major topics: (1) The morphology and observability of protogalaxies, and in particular the relationship between primordial galaxies and the z approximately 3 'Ly-break' systems identified in the Hubble Deep Field and in ground-based searches; (2) The origin of the disk and spheroidal components in galaxies, the timing and mode of their assembly, the corresponding evolution in galaxy morphologies and its sensitivity to cosmological parameters; (3) The origin and redshift evolution of the scaling laws that link the mass, luminosity size, stellar content, and metal abundances of galaxies of different morphological types. This investigation will use state-of-the-art N-body/gasdynamical codes to provide a spatially resolved description of the galaxy formation process in hierarchically clustering universes. Coupled with population synthesis techniques. our models can be used to provide synthetic 'observations' that can be compared directly with observations of galaxies both nearby and at cosmologically significant distances. This study will thus provide insight into the nature of protogalaxies and into the formation process of galaxies like our own Milky Way. It will also help us to assess the cosmological significance of these observations within the context of hierarchical theories of galaxy formation and will supply a theoretical context within which current and future observations can be interpreted.

  16. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

    PubMed Central

    Araújo, Ricardo; Mateus, Octávio

    2015-01-01

    The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455

  17. Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe.

    PubMed

    Ibata, Neil G; Ibata, Rodrigo A; Famaey, Benoit; Lewis, Geraint F

    2014-07-31

    Recent work has shown that the Milky Way and the Andromeda galaxies both possess the unexpected property that their dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures. It is interesting to evaluate the incidence of such planar structures in the larger galactic population, because the Local Group may not be a representative environment. Here we report measurements of the velocities of pairs of diametrically opposed satellite galaxies. In the local Universe (redshift z < 0.05), we find that satellite pairs out to a distance of 150 kiloparsecs from the galactic centre are preferentially anti-correlated in their velocities (99.994 per cent confidence level), and that the distribution of galaxies in the larger-scale environment (out to distances of about 2 megaparsecs) is strongly clumped along the axis joining the inner satellite pair (>7σ confidence). This may indicate that planes of co-rotating satellites, similar to those seen around the Andromeda galaxy, are ubiquitous, and their coherent motion suggests that they represent a substantial repository of angular momentum on scales of about 100 kiloparsecs.

  18. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  19. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  20. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in

  1. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  2. Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Ze-sen, Lin; Xu, Kong

    2018-01-01

    Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).

  3. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20%more » of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.« less

  4. Distance-weighted city growth.

    PubMed

    Rybski, Diego; García Cantú Ros, Anselmo; Kropp, Jürgen P

    2013-04-01

    Urban agglomerations exhibit complex emergent features of which Zipf's law, i.e., a power-law size distribution, and fractality may be regarded as the most prominent ones. We propose a simplistic model for the generation of citylike structures which is solely based on the assumption that growth is more likely to take place close to inhabited space. The model involves one parameter which is an exponent determining how strongly the attraction decays with the distance. In addition, the model is run iteratively so that existing clusters can grow (together) and new ones can emerge. The model is capable of reproducing the size distribution and the fractality of the boundary of the largest cluster. Although the power-law distribution depends on both, the imposed exponent and the iteration, the fractality seems to be independent of the former and only depends on the latter. Analyzing land-cover data, we estimate the parameter-value γ≈2.5 for Paris and its surroundings.

  5. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  6. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    NASA Astrophysics Data System (ADS)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  7. A high deuterium abundance at redshift z = 0.7.

    PubMed

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  8. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    NASA Astrophysics Data System (ADS)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  9. Scaling and Multifractality in Road Accidental Distances

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Wan, Chi; Zou, Xiang-Xiang; Wang, Xiao-Fan

    Accidental distance dynamics is investigated, based on the road accidental data of the Great Britain. The distance distribution of all the districts as an ensemble presents a power law tail, which is different from that of the individual district. A universal distribution is found for different districts, by rescaling the distribution functions of individual districts, which can be well fitted by the Weibull distribution. The male and female drivers behave similarly in the distance distribution. The multifractal characteristic is further studied for the individual district and all the districts as an ensemble, and different behaviors are also revealed between them. The accidental distances of the individual district show a weak multifractality, whereas of all the districts present a strong multifractality when taking them as an ensemble.

  10. “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.

    2018-06-01

    We study the direct gas-phase oxygen abundance using the well-detected auroral line [O III]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O III]λ5007/Hβ versus [N II]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances (7.8< 12+{log}({{O}}/{{H}})< 8.4) and the N2 (log([N II]λ6584/Hα))/O3N2 (log(([O III]λ5007/Hβ)/([N II]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H II regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O III]λλ4959,5007+[O II]λλ3726,3729)/Hβ)), O32(log([O III]λλ4959,5007/[O II]λλ3726,3729)), {log}([O III]λ5007/Hβ), and log([Ne III]λ3869/[O II]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure

  11. The power laws of nanoscale forces in ambient conditions

    NASA Astrophysics Data System (ADS)

    Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun

    Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only

  12. Gravitational wave source counts at high redshift and in models with extra dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Bellido, Juan; Nesseris, Savvas; Trashorras, Manuel, E-mail: juan.garciabellido@uam.es, E-mail: savvas.nesseris@csic.es, E-mail: manuel.trashorras@csic.es

    2016-07-01

    Gravitational wave (GW) source counts have been recently shown to be able to test how gravitational radiation propagates with the distance from the source. Here, we extend this formalism to cosmological scales, i.e. the high redshift regime, and we discuss the complications of applying this methodology to high redshift sources. We also allow for models with compactified extra dimensions like in the Kaluza-Klein model. Furthermore, we also consider the case of intermediate redshifts, i.e. 0 < z ∼< 1, where we show it is possible to find an analytical approximation for the source counts dN / d ( S /more » N ). This can be done in terms of cosmological parameters, such as the matter density Ω {sub m} {sub ,0} of the cosmological constant model or the cosmographic parameters for a general dark energy model. Our analysis is as general as possible, but it depends on two important factors: a source model for the black hole binary mergers and the GW source to galaxy bias. This methodology also allows us to obtain the higher order corrections of the source counts in terms of the signal-to-noise S / N . We then forecast the sensitivity of future observations in constraining GW physics but also the underlying cosmology by simulating sources distributed over a finite range of signal-to-noise with a number of sources ranging from 10 to 500 sources as expected from future detectors. We find that with 500 events it will be possible to provide constraints on the matter density parameter at present Ω {sub m} {sub ,0} on the order of a few percent and with the precision growing fast with the number of events. In the case of extra dimensions we find that depending on the degeneracies of the model, with 500 events it may be possible to provide stringent limits on the existence of the extra dimensions if the aforementioned degeneracies can be broken.« less

  13. Does Hooke's law work in helical nanosprings?

    PubMed

    Ben, Sudong; Zhao, Junhua; Rabczuk, Timon

    2015-08-28

    Hooke's law is a principle of physics that states that the force needed to extend a spring by some distance is proportional to that distance. The law is always valid for an initial portion of the elastic range for nearly all helical macrosprings. Here we report the sharp nonlinear force-displacement relation of tightly wound helical carbon nanotubes at even small displacement via a molecular mechanics model. We demonstrate that the van der Waals (vdW) interaction between the intertube walls dominates the nonlinear relation based on our analytical expressions. This study provides physical insights into the origin of huge nonlinearity of the helical nanosprings.

  14. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, David F.; Winther, Hans A.

    2011-05-20

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less

  15. Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions

    NASA Astrophysics Data System (ADS)

    Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.

    2018-02-01

    Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.

  16. Real- and redshift-space halo clustering in f(R) cosmologies

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder

    2017-05-01

    We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.

  17. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - II. Implementation

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    With an eye towards the computational requirements of future large-scale surveys such as Euclid and Large Synoptic Survey Telescope (LSST) that will require photometric redshifts (photo-z's) for ≳ 109 objects, we investigate a variety of ways that 'fuzzy archetypes' can be used to improve photometric redshifts and explore their respective statistical interpretations. We characterize their relative performance using an idealized LSST ugrizY and Euclid YJH mock catalogue of 10 000 objects spanning z = 0-6 at Y = 24 mag. We find most schemes are able to robustly identify redshift probability distribution functions that are multimodal and/or poorly constrained. Once these objects are flagged and removed, the results are generally in good agreement with the strict accuracy requirements necessary to meet Euclid weak lensing goals for most redshifts between 0.8 ≲ z ≲ 2. These results demonstrate the statistical robustness and flexibility that can be gained by combining template-fitting and machine-learning methods and provide useful insights into how astronomers can further exploit the colour-redshift relation.

  18. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  19. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  20. Photometric redshifts for the CFHTLS T0004 deep and wide fields

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.

    2009-06-01

    Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is

  1. Spectrophotometric Redshifts in the Faint Infrared Grism Survey: Finding Overdensities of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James; Ryan, Russell; Tilvi, Vithal; Pirzkal, Norbert; Finkelstein, Steven; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Zheng, Zhenya; Hathi, Nimish; Kim, Keunho; Joshi, Bhavin; Yang, Huan; Christensen, Lise; Cimatti, Andrea; Gardner, Jonathan P.; Zakamska, Nadia; Ferreras, Ignacio; Hibon, Pascale; Pasquali, Anna

    2018-04-01

    We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope (HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.

  2. High-redshift post-reionization cosmology with 21cm intensity mapping

    NASA Astrophysics Data System (ADS)

    Obuljen, Andrej; Castorina, Emanuele; Villaescusa-Navarro, Francisco; Viel, Matteo

    2018-05-01

    We investigate the possibility of performing cosmological studies in the redshift range 2.5distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, N eff. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like fσ8, are completely degenerate with ΩHI and bHI, and propose several strategies to independently constrain them through cross-correlations with other probes. Assuming 5% priors on ΩHI and bHI, kmax=0.2 h Mpc‑1 and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of Δ z=0.1: 1) the value of fσ8 at simeq4%, 2) the value of DA and H at simeq1%. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to 23 meV (1σ), while Neff can be constrained within 0.02 (1σ). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on bHI and Ω HI. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters.

  3. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  4. Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration–Acceleration Transition Redshift, and Spatial Curvature

    NASA Astrophysics Data System (ADS)

    Yu, Hai; Ratra, Bharat; Wang, Fa-Yin

    2018-03-01

    We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.

  5. Distance-dependent energy transfer between indole and anthracene moieties in Langmuir Blodgett films

    NASA Astrophysics Data System (ADS)

    Saha, D. C.; Bhattacharjee, D.; Misra, T. N.

    1998-09-01

    1,2-Diphenyl indole (DPI) and 9,10-diphenyl anthracene (DPA) are non-amphiphilic molecules but form excellent LB films when mixed with stearic acid (SA). Spectroscopic investigations of these films indicate formation of aggregates of DPI and DPA in the mixed LB films. DPA has been used as the quencher of the fluorescence of the DPI donor. Distance-dependent energy transfer between donor and acceptor monolayers in the LB film, where they can be precisely separated by inert spacers of stearic acid layers of varied thickness, is shown to satisfy Khun's quadratic equation. This suggests that the donor excitations are delocalized. The large critical transfer distance estimated from the experimental results has been attributed to the formation of aggregates of the molecules in a LB monolayer.

  6. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  7. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  8. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  9. Analytic halo approach to the bispectrum of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki

    2017-02-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  10. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    NASA Astrophysics Data System (ADS)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  11. Weighted Distances in Scale-Free Configuration Models

    NASA Astrophysics Data System (ADS)

    Adriaans, Erwin; Komjáthy, Júlia

    2018-01-01

    In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent τ \\in (2,3) . We assign independent and identically distributed (i.i.d.) weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time—called explosive branching process—Baroni, Hofstad and the second author showed in Baroni et al. (J Appl Probab 54(1):146-164, 2017) that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the τ \\in (2,3) case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is O(log log n) , where n is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.

  12. Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.

  13. Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad

    2017-12-01

    A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

  14. Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928

    NASA Astrophysics Data System (ADS)

    Bañados, Eduardo; Connor, Thomas; Stern, Daniel; Mulchaey, John; Fan, Xiaohui; Decarli, Roberto; Farina, Emanuele P.; Mazzucchelli, Chiara; Venemans, Bram P.; Walter, Fabian; Wang, Feige; Yang, Jinyi

    2018-04-01

    We present a 45 ks Chandra observation of the quasar ULAS J1342+0928 at z = 7.54. We detect {14.0}-3.7+4.8 counts from the quasar in the observed-frame energy range 0.5–7.0 keV (6σ detection), representing the most distant non-transient astronomical source identified in X-rays to date. The present data are sufficient only to infer rough constraints on the spectral parameters. We find an X-ray hardness ratio of { \\mathcal H }{ \\mathcal R }=-{0.51}-0.28+0.26 between the 0.5–2.0 keV and 2.0–7.0 keV ranges and derive a power-law photon index of {{Γ }}={1.95}-0.53+0.55. Assuming a typical value for high-redshift quasars of Γ = 1.9, ULAS J1342+0928 has a 2–10 keV rest-frame X-ray luminosity of {L}2-10={11.6}-3.5+4.3× {10}44 {erg} {{{s}}}-1. Its X-ray-to-optical power-law slope is {α }OX}=-{1.67}-0.10+0.16, consistent with the general trend indicating that the X-ray emission in the most bolometrically powerful quasars is weaker relative to their optical emission.

  15. Redshifts of twenty radio galaxies.

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Strittmatter, P. A.

    1972-01-01

    Spectroscopic observations and redshifts of 20 radio galaxies obtained with the Lick 120-inch telescope are presented. Ten of the radio galaxies are from the 3C R catalog, and the remainder are from the 4C, 5C, Ohio, and Parkes catalogs. The reported results represent a continuation of Burbidge's (1970) previously published data.

  16. The Inverse-Square Law with Data Loggers

    ERIC Educational Resources Information Center

    Bates, Alan

    2013-01-01

    The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…

  17. The Confirmation of the Inverse Square Law Using Diffraction Gratings

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2014-01-01

    Understanding the inverse square law, how for example the intensity of light or sound varies with distance, presents conceptual and mathematical challenges. Students know intuitively that intensity decreases with distance. A light source appears dimmer and sound gets fainter as the distance from the source increases. The difficulty is in…

  18. A supernova origin for dust in a high-redshift quasar.

    PubMed

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  19. An automated algorithm for determining photometric redshifts of quasars

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Yanxia; Zhao, Yongheng

    2010-07-01

    We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.

  20. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  1. SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, R. J.; Chornock, R.; Silverman, J. M.

    We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. and used in the cosmological analyses of Davis et al. and Wood-Vasey et al. The sample represents 273 hr of spectroscopic observations with 6.5-10 m class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 184 spectra of 156 objects. Combining this sample with that of Matheson et al., we have a total sample of 329 spectramore » of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.« less

  2. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  3. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  4. The Weyl Definition of Redshifts

    ERIC Educational Resources Information Center

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  5. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

    NASA Astrophysics Data System (ADS)

    Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng

    2018-06-01

    We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). This data set includes 148 659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 deg2. We use the Convolution Lagrangian Perturbation Theory approach with a Gaussian Streaming model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter haloes hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s) {{}km s}^{-1} Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid) {}Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-cold dark matter cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity to higher redshifts (z > 1). This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

  6. Machine- z: Rapid machine-learned redshift indicator for Swift gamma-ray bursts

    DOE PAGES

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-03-08

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce ‘machine-z’, a redshift prediction algorithm and a ‘high-z’ classifier for Swift GRBs based on machine learning. Our method relies exclusively onmore » canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve ~100 per cent recall. As a result, the most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.« less

  7. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  8. Redshift Survey Strategies

    NASA Astrophysics Data System (ADS)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  9. Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School

    ERIC Educational Resources Information Center

    Kenan, Kok Xiao-Feng

    2017-01-01

    This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…

  10. Determination of the Flux-distance Relationship for Pulsars in the Parkes Multibeam Survey: Violation of the Inverse Square Law Gives Support for a New Model of Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Singleton, John; Sengupta, P.; Middleditch, J.; Graves, T.; Schmidt, A.; Perez, M.; Ardavan, H.; Ardavan, A.; Fasel, J.

    2010-01-01

    Soon after the discovery of pulsars, it was realized that their unique periodic emissions must be associated with a source that rotates. Despite this insight and forty one years of subsequent effort, a detailed understanding of the pulsar emission mechanism has proved elusive. Here, using data for 983 pulsars taken from the Parkes Multibeam Survey, we show that their fluxes at 1400 MHz (S(1400)) decay with distance d according to a non-standard power-law; we suggest that S(1400) is proportional to 1/d. This distance dependence is revealed by two independent statistical techniques, (i) the Maximum Likelihood Method and (ii) analysis of the distance evolution of the cumulative distribution functions of pulsar flux. Moreover, the derived power law is valid for both millisecond and longer-period pulsars, and is robust against possible errors in the NE2001 method for obtaining pulsar distances from dispersion measure. This observation provides strong support for a mechanism of pulsar emission due to superluminal (faster than light in vacuo) polarization currents. Such superluminal polarization currents have been extensively studied by Bolotovskii, Ginzburg and others, who showed both that they do not violate Special Relativity (since the oppositely-charged particles that make them move relatively slowly) and that they form a bona-fide source term in Maxwell's equations. Subsequently, emission of radiation by superluminal polarization currents was demonstrated in laboratory experiments. By extending these ideas to a superluminal polarization current whose distribution pattern follows a circular orbit, we can explain the 1/d dependence of the flux suggested by our analyses of the observational data. In addition, we show that a model of pulsar emission due to such a rotating superluminal polarization current can predict the the frequency spectrum of nine pulsars over 16 orders of magnitude of frequency quantitatively. This work is supported by the DoE LDRD program at Los

  11. Constraining the CO intensity mapping power spectrum at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa

    2018-04-01

    We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.

  12. TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, C.; Aldering, G.; Aragon, C.

    2015-02-10

    We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less

  13. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  14. Fitts' Law is modulated by movement history.

    PubMed

    Tang, Rixin; Shen, Bingyao; Sang, Zhiqin; Song, Aixia; Goodale, Melvyn A

    2017-08-24

    Fitts' Law is one of the most robust and well-studied principles in psychology. It holds that movement time (MT) for target-directed aiming movements increases as a function of target distance and decreases as a function of target width. The purpose of this study was to determine whether Fitts' Law is affected not only by the demands of the target on the current trial but also by the requirements for performance on the previous trial. Experiments 1 and 2 examined trial-to-trial effects of varying target width; Experiment 3 examined trial-to-trial effects of varying target distance. The findings from Experiments 1 and 2 showed that moving a finger or cursor towards a large object on a previous trial shortened the movement time on the current trial, whereas the opposite occurred with a small object. In contrast, target distance on the previous trial had no effect on movement time on the current trial. These findings suggest that performance on trial n has a clear and predictable effect on trial n+1 (at least for target width) and that Fitts' Law as it is normally expressed does not accurately predict performance when the width of the target varies from trial to trial.

  15. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  16. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  17. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.

  18. A faint galaxy redshift survey behind massive clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Brenda Louise

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. Themore » gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.« less

  19. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  20. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durret, F.; Adami, C.; Bertin, E.

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  1. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ∼0.25 deg{sup 2} with ∼900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ∼ 2.5. We classify ∼24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reachingmore » for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ∼3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup ±0.09}{sub sys0.26}{sup ±0.10}, consistent with a delay time distribution that follows a simple t {sup –1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.« less

  2. Distance Learning Course Design Expectations in China and the United Kingdom

    ERIC Educational Resources Information Center

    Xu, Jingjing; Rees, Terri

    2016-01-01

    This article provides insight into different expectations between Chinese and British academic culture for distance learning. The article is based on a pedagogic research project, a case study, and is centered on a distance learning course in maritime law proposed by a British university for a university in China. Some important commonalities and…

  3. The [CII] 158 μm line emission in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the

  4. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  5. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE PAGES

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; ...

    2018-03-15

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  6. Selecting ultra-faint dwarf candidate progenitors in cosmological N-body simulations at high redshifts

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Ji, Alexander P.; Dooley, Gregory A.; Frebel, Anna; Scannapieco, Evan; Gómez, Facundo A.; O'Shea, Brian W.

    2018-06-01

    The smallest satellites of the Milky Way ceased forming stars during the epoch of reionization and thus provide archaeological access to galaxy formation at z > 6. Numerical studies of these ultrafaint dwarf galaxies (UFDs) require expensive cosmological simulations with high mass resolution that are carried out down to z = 0. However, if we are able to statistically identify UFD host progenitors at high redshifts with relatively high probabilities, we can avoid this high computational cost. To find such candidates, we analyse the merger trees of Milky Way type haloes from the high-resolution Caterpillar suite of dark matter only simulations. Satellite UFD hosts at z = 0 are identified based on four different abundance matching (AM) techniques. All the haloes at high redshifts are traced forward in time in order to compute the probability of surviving as satellite UFDs today. Our results show that selecting potential UFD progenitors based solely on their mass at z = 12 (8) results in a 10 per cent (20 per cent) chance of obtaining a surviving UFD at z = 0 in three of the AM techniques we adopted. We find that the progenitors of surviving satellite UFDs have lower virial ratios (η), and are preferentially located at large distances from the main MW progenitor, while they show no correlation with concentration parameter. Haloes with favorable locations and virial ratios are ≈3 times more likely to survive as satellite UFD candidates at z = 0.

  7. Optical Identifications of High-Redshift Galaxy Clusters from the Planck Sunyaev-Zeldovich Survey

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Bikmaev, I. F.; Khamitov, I. M.; Zaznobin, I. A.; Khorunzhev, G. A.; Eselevich, M. V.; Afanasiev, V. L.; Dodonov, S. N.; Rubiño-Martín, J.-A.; Aghanim, N.; Sunyaev, R. A.

    2018-05-01

    We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev-Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7-0.9. We used the data of optical observations with the Russian-Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, z ≈ 0.8.

  8. Galaxy growth from redshift 5 to 0 at fixed comoving number density

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke

    2016-10-01

    Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.

  9. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  10. Highly Accreting Quasars at High Redshift

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  11. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  12. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  13. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  14. High-redshift galaxy populations and their descendants

    NASA Astrophysics Data System (ADS)

    Guo, Qi; White, Simon D. M.

    2009-06-01

    We study predictions in the concordance Λ cold dark matter cosmology for the abundance and clustering of high-redshift galaxies and for the properties of their descendants. We focus on three high-redshift populations: Lyman break galaxies (LBGs) at z ~ 3, optically selected star-forming galaxies at z ~ 2 (BXs) and distant red galaxies (DRGs) at z ~ 2. We select galaxies from mock catalogues based on the Millennium Simulation using the observational colour and apparent magnitude criteria. With plausible dust assumptions, our galaxy formation model can simultaneously reproduce the abundances, redshift distributions and clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting differing initial mass functions and scatter in model dust properties. About 85 per cent of model galaxies selected as DRGs are star forming, with SFRs in the range 1 to ~100Msolaryr-1. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5 < z < 3.2; many massive, star-forming galaxies are predicted to be too heavily obscured to appear in these populations. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal poor, in disagreement with recent observational results. The model galaxies are predominantly disc dominated. Stellar masses for LBGs and BXs are ~109.9Msolar, and for DRGs are ~1010.7Msolar. Only about 30 per cent of model galaxies with M* > 1011Msolar are classified as LBGs or BXs at the relevant redshifts, while 65 per cent are classified as DRGs. Almost all model LBGs and BXs are the central galaxies of their dark haloes, but fewer than half of the haloes of any given mass have an LBG or BX central galaxy. Half of all LBG descendants at z = 2 would be identified as BXs, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations

  15. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  16. A gamma-ray burst at a redshift of z approximately 8.2.

    PubMed

    Tanvir, N R; Fox, D B; Levan, A J; Berger, E; Wiersema, K; Fynbo, J P U; Cucchiara, A; Krühler, T; Gehrels, N; Bloom, J S; Greiner, J; Evans, P A; Rol, E; Olivares, F; Hjorth, J; Jakobsson, P; Farihi, J; Willingale, R; Starling, R L C; Cenko, S B; Perley, D; Maund, J R; Duke, J; Wijers, R A M J; Adamson, A J; Allan, A; Bremer, M N; Burrows, D N; Castro-Tirado, A J; Cavanagh, B; de Ugarte Postigo, A; Dopita, M A; Fatkhullin, T A; Fruchter, A S; Foley, R J; Gorosabel, J; Kennea, J; Kerr, T; Klose, S; Krimm, H A; Komarova, V N; Kulkarni, S R; Moskvitin, A S; Mundell, C G; Naylor, T; Page, K; Penprase, B E; Perri, M; Podsiadlowski, P; Roth, K; Rutledge, R E; Sakamoto, T; Schady, P; Schmidt, B P; Soderberg, A M; Sollerman, J; Stephens, A W; Stratta, G; Ukwatta, T N; Watson, D; Westra, E; Wold, T; Wolf, C

    2009-10-29

    Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  17. A distortion of very-high-redshift galaxy number counts by gravitational lensing.

    PubMed

    Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude

    2011-01-13

    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

  18. Investigating Students' Mathematical Difficulties with Quadratic Equations

    ERIC Educational Resources Information Center

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  19. An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1994-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  20. Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.

    1993-12-01

    Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect