Science.gov

Sample records for quadrature laser interferometer

  1. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity.

    PubMed

    Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao

    2016-09-01

    The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method. PMID:27607285

  2. Optimization of quadrature signal processing for laser interferometers for demanding applications

    NASA Astrophysics Data System (ADS)

    PodŻorny, Tomasz; Budzyń, Grzegorz; Tkaczyk, Jakub

    2016-06-01

    Presented paper performs an analysis of quadrature signal processing algorithms for high demanding laser interferometry applications. Careful signal processing is required to minimize nonlinearities which come from optical path and components' imperfections, and reduce overall instrumental error. Paper focuses on algebraic fits, because implementation for real time systems was a main requirement. The most demanding applications are stationary measurements where the position slightly fluctuates in the range below one fringe period. Therefore, analysis was performed for samples that were spread along a few milliradians of a full circle.

  3. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  4. Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique.

    PubMed

    Kim, Jong-Ahn; Kang, Chu-Shik; Eom, Tae Bong; Jin, Jonghan; Suh, Ho Suhng; Kim, Jae Wan

    2014-07-10

    A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique. The proposed system can measure a thickness profile with high speed and nanometric resolution, and obtain higher accuracy through real-time nonlinear error compensation. The thickness profile, measured by a transmissive-type experimental setup, coincided with a comparative result obtained using a contact-type thickness measurement system within the range of ±40  nm. The standard deviations of the measured thickness profiles and their waviness components were less than 3 nm with a scanning speed of 300  mm/s.

  5. Quantitative phase imaging using grating-based quadrature phase interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei

    2007-02-01

    In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.

  6. Balancing a retroreflector to minimize rotation errors using a pendulum and quadrature interferometer.

    PubMed

    Niebauer, T M; Constantino, A; Billson, R; Hankla, A; Nelson, P G

    2015-06-20

    A corner-cube retroreflector has the property that the optical path length for a reflected laser beam is insensitive to rotations about a mathematical point called its optical center (OC). This property is exploited in ballistic absolute gravity meters in which a proof mass containing a corner-cube retroreflector is dropped in a vacuum, and its position is accurately determined with a laser interferometer. In order to avoid vertical position errors when the proof mass rotates during free fall, it is important to collocate its center of mass (COM) with the OC of the retroreflector. This is commonly done using a mechanical scale-based balancing procedure, which has limited accuracy due to the difficulty in finding the exact position of the COM and the OC. This paper describes a novel way to achieve the collocation by incorporating the proof mass into a pendulum and using a quadrature interferometer to interrogate its apparent translation in its twist mode. The mismatch between the COM and OC generates a signal in a quiet part of the spectrum where no mechanical resonance exists. This allows us to tune the position of the COM relative to the OC to an accuracy of about 1 μm in all three axes. This provides a way to directly demonstrate that a rotation of the proof mass by several degrees causes an apparent translation in the direction of the laser beam of less than 1 nm. This technique allows an order of magnitude improvement over traditional methods of balancing.

  7. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  8. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  9. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  10. 15-m laser-stabilized imaging interferometer

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin T.; Bender, Peter L.; Chen, Che Jen; Page, Norman A.; Meier, D.; Dupree, A. K.

    1995-06-01

    The LAser-Stabilized Imaging Interferometer (LASII) concept is being developed as an astronomical telescope for the next generation of optical resolution beyond Hubble Space Telescope (HST). The essential ingredients are: a rigid and stable structure to minimize mechanical and thermal distortion, active control of the optical geometry by a laser metrology system, a self-deploying structure fitting into a single launch vehicle, and ultraviolet operation. We have modified earlier design concepts to fit the scale of an intermediate sized NASA mission. Our present design calls for 24 0.5 m apertures in a Mills Cross configuration, supported on four trusses. A fifth truss perpendicular to the primary surface would support the secondary mirror and the laser metrology control points. Either separate interferometers or two guide telescopes would track guide stars. This instrument would have about 6 times the resolution of HST in the visible and the same collecting area. The resolution would reach 2.5 mas at 150 nm. The primary trusses would fold along the secondary truss for launch, and automatically deploy on orbit. Possible orbits are sun-synchronous at 900 km altitude, high earth orbit or solar orbit. Infrared capability could be included, if desired.

  11. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    Creating an optical model of the Laser Interferometer Space antenna which can be used to predict optical sensitivities and set tolerances sufficiently well such that picometer level displacements can be reliably seen poses certain challenges. In part, because the distances between key optical elements, the proof masses, are constantly changing, at speeds of meters/second, the separation between them is about 5 million kilometers and a contributing factor to optical jitter is the self-gravity of the spacecraft. A discussion of the current state and future approach(s) to the creation of such an optical model will be presented.

  12. Modified Phasemeter for a Heterodyne Laser Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank M.

    2010-01-01

    Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.

  13. Gravitational Wave Detection with Single-Laser Atom Interferometers

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  14. Pulsed laser interferometry with sub-picometer resolution using quadrature detection.

    PubMed

    Shao, Lei; Gorman, Jason J

    2016-07-25

    Femtosecond pulsed laser interferometry has important applications in measuring picometer-level displacements on sub-nanosecond time scales. In this paper, we experimentally examine its achievable displacement resolution, as well as the relationship between the laser's optical spectrum and the interferometer's effective wavelength. The resulting broadband displacement noise and noise floor of the pulsed laser Michelson interferometer are equivalent to that achieved with a stabilized continuous wave HeNe laser, where values of 1.01 nm RMS and 27.75 fm/√Hz have been demonstrated. It is also shown that a single effective wavelength can accurately describe the fringes of the pulsed laser interferometer but the effective wavelength value can only be determined from the optical spectrum under certain conditions. These results will be used for time-resolved displacement metrology with picosecond temporal resolution in the future. PMID:27464192

  15. Vibrationally compensated far infrared laser interferometer for plasma density measurements

    SciTech Connect

    Mansfield, D.K.; Johnson, L.C.; Mendelsohn, A.

    1980-12-01

    A modulated far-infrared laser interferometer presently operating on the PDX experiment at Princeton is described. The interferometer geometry permits the characterization of inside 'D', outside 'D', and circular discharges. To achieve this versatility, a titanium corner cube reflector, mounted inside the PDX vacuum vessel is used in conjunction with a second visible wavelength interferometer for vibration corrections. In addition, the use of room temperature quasi-optical Schottky diodes in the far-infrared interferometer is reported. The minimum detectable line average density of the system is about 5 x 10 to the 11th per cu cm.

  16. Polarization Considerations for the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna's (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required picometer level interferometry. All of the computational steps are described in detail. This should eliminate any ambiguities associated with polarization ray trace modeling of interferometers and provide a basis for determining its limitations and serve as a clearly defined starting point for future improvements.

  17. Submillimeter laser interferometer for high density plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, V. K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1995-06-01

    There are presented the results of investigation of the one-channel homodyne laser interferometer λ=119 µm made on the basis of the hollow dielectric beamguide and quasioptical functional devices. The interferometer is designed for determination of the plasma electron density of the TOKAMAK-7. The density response threshold is 0.7% from the expected plasma density and the phase difference measurement total error is 5°

  18. Polarization considerations for the Laser Interferometer Space Antenna

    NASA Astrophysics Data System (ADS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-08-01

    A polarization ray trace model of the Laser Interferometer Space Antenna's (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model's limitations and serve as a clearly defined starting point for future work.

  19. Suppressing the mechanical quadrature error of a quartz double-H gyroscope through laser trimming

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Feng, Li-Hui; Wang, Qian-Qian; Liu, Ming-Zhi; Wang, Ben-Guo; Cui, Fang; Sun, Yu-Nan

    2013-11-01

    In this paper, we introduce a z-axis quartz gyroscope using a double-H tuning fork, which has a high sensitivity. However, it also causes a large mechanical quadrature error. The laser trimming method is used to suppress this error at quartz level. The trimming law is obtained through the finite element method (FEM). A femtosecond laser processing system is used to trim the gold balancing masses on the beams, and experimental results are basically consistent with the simulated ones. The mechanical quadrature error is suppressed by 96%, from 26.3° s-1 to 1.1° s-1. Nonlinearity changes from 1.48% to 0.30%, angular random walk (ARW) is reduced from 2.19° h-1/2 to 1.42° h-1/2, and bias instability is improved by a factor of 7.7, from 197.6° h-1 to 25.4° h-1.

  20. Performance analysis of a swept-source optical coherence tomography system with a quadrature interferometer and optical amplification

    NASA Astrophysics Data System (ADS)

    Mao, Youxin; Flueraru, Costel; Chang, Shoude; Popescu, Dan P.; Sowa, Michael G.

    2011-05-01

    A performance analysis of signal to noise ratio for an optical coherence tomography system with quadrature detection and a semiconductor optical amplifier in the sample arm is discussed. The results are compared and discussed in relation to a conventional OCT system (without optical amplification). An increase of the signal to noise ratio up to 14 dB at a depth of 0.5 mm is obtained compared to the system without the optical amplifier. Overall, an improvement was demonstrated for signal coming from deeper regions within the samples. Arterial plaque from a myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbit is visualized and characterized using this system. Improvement of signal to noise ratio increases the penetration depth possible for OCT images, from 1 mm to 2 mm within the vessel wall of an artery. Preliminary results show that vulnerable plaque with fibrous cap, macrophage accumulations and calcification in the arterial tissue are measurable with this OCT system.

  1. Submillimeter laser interferometer-polarimeter for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu. E.; Kiselyev, Vladimir K.; Kuleshov, E. M.; Knyaz'kov, B. N.; Kononenko, V. K.; Nesterov, P. K.; Yanovsky, M. S.

    1994-08-01

    There are presented the results of investigation of the homodyne laser interferometer-polarimeter (lambda) equals 195 micrometers made on the quasioptical element basis and designed for the synchronous determination of the plasma electron density ne and the poloidal magnetic field Bp in 'TOKAMAK' mountings of the thermonuclear fusion.

  2. Laser Cooled Strontium Source for an Ion Interferometer

    NASA Astrophysics Data System (ADS)

    Lyon, Mary; Archibald, James; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    We present a Strontium-87 magneto-optical trap (MOT) in a Low-Velocity-Intense-Source (LVIS) as the source of cooled, collimated atoms for an ion interferometer. Laser cooling and trapping is accomplished with a 461 nm frequency doubled laser and a pair of permanent magnets. A beam of cooled atoms is produced by passing the atoms through a hole drilled in one of the retroreflecting optics. The atoms are then photo-ionized in a two photon process.

  3. Arm Locking for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  4. Long-term laser frequency stabilization using fiber interferometers

    SciTech Connect

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W.

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  5. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  6. Dual-frequency laser displacement and angle interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Shijie; Wei, Haoyun; Li, Yan

    2014-11-01

    Traditional laser angular interferometers based on a Michelson Interferometer or its modifications have the same principle: changing the angle displacement to an optical path difference. However, measuring the angular error of stage travels is a dynamic process. The main trouble is lack of displacement information and need to be solved urgently. A obvious method is using two dual-frequency interferometers to get the displacement and angular. In this paper, a new kind of displacement and angle interferometer (DIAI) is introduced. In this DIAI, displacement and angular are measured simultaneously by special optical path. The DIAI consists of a stabilized orthogonal polarization dualfrequency laser, a monolithic prism and additional optical and electronic components. The dual-frequency laser is divided into reference light and measurement light by a beam-splitting prism. The measurement light spatially separated into horizontal polarized light and vertical polarized light by the polarization splitting prism. Changing by a fixed 45°- tilted reflector, the vertical polarized light is parallel to the horizontal polarized light. These parallel lights reflected by two corner cube retroreflectors at a moving target. Compared with the reference light, the displacement and angular are measured. Different from the traditional method, there is only one reference corner cube retroreflector in this system. Thus, the angular measurement accuracy is better. The accuracy of the DIAI is better than +/-0.25 arcsec in comparison with an autocollimator.

  7. A lunar gravitational wave antenna using a laser interferometer

    NASA Astrophysics Data System (ADS)

    Stebbins, R. T.; Bender, P. L.

    1990-03-01

    A moon-based laser interferometer for detecting gravitational radiation could detect signals in the band 0.1 - 10,000 Hz. A preliminary evaluation of the noise budget for an optimistic antenna design is reported here and compared to that for other planned gravitational wave interferometers. Over most of the frequency range, the sensitivity is controlled by the thermal noise in the test mass suspensions. From roughly 3 to a few hundred Hertz, it is about the same as the sensitivity expected in terrestrial antennas of the same construction, which will have been operating for at least a decade. Below 0.3 Hz, a proposed space-based interferometer, designed for operation down to 10 exp -5 Hz, would have better sensitivity.

  8. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  9. Comb-referenced laser distance interferometer for industrial nanotechnology

    NASA Astrophysics Data System (ADS)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10‑10. The uncertainty is estimated to be in a 10‑8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10‑10 level in vacuum.

  10. Comb-referenced laser distance interferometer for industrial nanotechnology.

    PubMed

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-25

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10(-10). The uncertainty is estimated to be in a 10(-8) level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10(-10) level in vacuum.

  11. A digital heterodyne laser interferometer for studying cochlear mechanics.

    PubMed

    Jacob, Stefan; Johansson, Cecilia; Ulfendahl, Mats; Fridberger, Anders

    2009-05-15

    Laser interferometry is the technique of choice for studying the smallest displacements of the hearing organ. For low intensity sound stimulation, these displacements may be below 1 nm. This cannot be reliably measured with other presently available techniques in an intact organ of Corti. In a heterodyne interferometer, light is projected against an object of study and motion of the target along the optical axis causes phase and frequency modulations of the back-reflected light. To recover object motion, the reflected light is made to interfere with a reference beam of artificially altered frequency, producing a beating signal. In conventional interferometers, this carrier signal is demodulated with analog electronics. In this paper, we describe a digital implementation of the technique, using direct carrier sampling. In order to obtain the necessary reference signal for demodulation we introduce an additional third light path. Together, this results in lower noise and reduces the cost of the system. Within the hearing organ, different structures may move in different directions. It is therefore necessary to precisely measure the angle of incidence of the laser light, and to precisely localize the anatomical structure where the measurement is performed. Therefore, the interferometer is integrated with a laser scanning confocal microscope that permits us to map crucial morphometric parameters in each experiment. We provide key construction parameters and a detailed performance characterization. We also show that the system accurately measures the diminutive vibrations present in the apical turn of the cochlea during low-level sound stimulation. PMID:19428537

  12. A simple pendulum laser interferometer for determining the gravitational constant

    PubMed Central

    Parks, Harold V.; Faller, James E.

    2014-01-01

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994

  13. A simple pendulum laser interferometer for determining the gravitational constant.

    PubMed

    Parks, Harold V; Faller, James E

    2014-10-13

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses.

  14. Novel phase measurement technique of the heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; Park, Kyihwan; La, Jongpil

    2005-09-15

    This article describes a novel phase measurement technique to increase the measurement velocity compared to the previous arc-tangent method in the heterodyne laser interferometer. The proposed method can reduce the calculation load because the pulse width modulation signal has a linear relation between the phase difference, while the nonlinear function such as arc tangent is required to demodulate the sinusoidal interferent signal. The brief analysis and measurement scheme of the system, and the experimental result using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed phase measurement technique is proven to be three times faster and more robust than previous arc-tangent method.

  15. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  16. Detection of atmospheric infrasound with a ring laser interferometer

    NASA Astrophysics Data System (ADS)

    Dunn, Robert W.; Meredith, John A.; Lamb, Angela B.; Kessler, Elijah G.

    2016-09-01

    In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.

  17. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  18. Note: Laser wavelength precision measurement based on a laser synthetic wavelength interferometer

    NASA Astrophysics Data System (ADS)

    Yan, Liping; Chen, Benyong; Zhang, Shihua; Liu, Pengpeng; Zhang, Enzheng

    2016-08-01

    A laser wavelength precision measurement method is presented based on the laser synthetic wavelength interferometer (LSWI). According to the linear relation between the displacements of measurement and reference arms in the interferometer, the synthetic wavelength produced by an unknown wavelength and a reference wavelength can be measured by detecting the phase coincidences of two interference signals. The advantage of the method is that a larger synthetic wavelength resulting from an unknown wavelength very close to the reference wavelength can be easily determined according to the linear relation in the interferometer. Then the unknown wavelength is derived according to the one-to-one corresponding relationship between single wavelength and synthetic wavelength. Wavelengths of an external cavity diode laser and two He-Ne lasers were determined experimentally. The experimental results show that the proposed method is able to realize a relative uncertainty on the order of 10-8.

  19. Note: Laser wavelength precision measurement based on a laser synthetic wavelength interferometer.

    PubMed

    Yan, Liping; Chen, Benyong; Zhang, Shihua; Liu, Pengpeng; Zhang, Enzheng

    2016-08-01

    A laser wavelength precision measurement method is presented based on the laser synthetic wavelength interferometer (LSWI). According to the linear relation between the displacements of measurement and reference arms in the interferometer, the synthetic wavelength produced by an unknown wavelength and a reference wavelength can be measured by detecting the phase coincidences of two interference signals. The advantage of the method is that a larger synthetic wavelength resulting from an unknown wavelength very close to the reference wavelength can be easily determined according to the linear relation in the interferometer. Then the unknown wavelength is derived according to the one-to-one corresponding relationship between single wavelength and synthetic wavelength. Wavelengths of an external cavity diode laser and two He-Ne lasers were determined experimentally. The experimental results show that the proposed method is able to realize a relative uncertainty on the order of 10(-8). PMID:27587172

  20. Data processing for LISA's laser interferometer tracking system (LITS)

    NASA Astrophysics Data System (ADS)

    Hellings, Ronald W.

    2001-10-01

    In this paper, we present results on the subject of data processing for LISA. We present, for the first time, time-domain algorithms for the elimination of clock jitter noise algorithms that avoid the singularities of the previous frequency-domain method. We also discuss how to generate the data averages that each spacecraft will eventually need to telemeter to the ground, thereby inferring what a realistic scientific data rate will be for LISA. Finally, we argue, based partly on these results, that a laser interferometer tracking system (LITS) that employs independent lasers in each spacecraft is preferable, for reasons of simplicity, to one in which the lasers in two of the spacecraft are locked to the incoming beam from the third.

  1. Explosive component acceptance tester using laser interferometer technology

    NASA Technical Reports Server (NTRS)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  2. Design of laser system for absolute gravimeter based on 87Rb atom interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Shaokai; Zhuang, Wei; Fang, Fang; Li, Tianchu

    2015-08-01

    We present a laser system design for an absolute gravimeter based on 87Rb atom interferometer. By skillful design, lasers with 9 different frequencies are based on two diode lasers including tapered amplifier. Two electrical feedback systems are used for laser frequency stabilization and the Raman lasers generation respectively. All other lasers are based on two Raman lasers and realized with frequency shift by acoustic optical modulators. This laser system not only has the compact and simple construction, but meets all requirements for laser power and frequency controlling for the atom interferometer. It has the characteristic of reliability and integrity.

  3. Measurement of the emission linewidth of a single-frequency semiconductor laser with a ring fibre interferometer

    SciTech Connect

    Trikshev, A I; Kurkov, Andrei S; Tsvetkov, V B; Pyrkov, Yu N; Paramonov, V N

    2011-07-31

    A simple scanning interferometer is implemented for measuring the emission linewidth of single-frequency semiconductor lasers. The free dispersion region of the interferometer is 28 MHz, the spectral resolution being 470 kHz. (laser spectroscopy)

  4. The laser interferometer system for the large optics diamond turning machine

    SciTech Connect

    Baird, E D; Donaldson, R R; Patterson, S R

    1999-06-29

    The purpose of this report is to describe the Laser Interferometer System designed for the Large Optics Diamond Turning Machine (LODTM). To better understand the laser interferometer system, it is useful to begin with an overview of the LODTM metrology system.

  5. Analytic and interferometric techniques for the Laser Interferometer Space Antenna

    NASA Astrophysics Data System (ADS)

    Pollack, Scott E.

    The Laser Interferometer Space Antenna (LISA) is being designed to detect and study in detail gravitational waves from sources throughout the Universe such as massive black holes. The conceptual formulation of the LISA space-borne gravitational wave detector is now well developed. The interferometric measurements between the sciencecraft remain one of the most important technological and scientific design areas for the mission. Our work has concentrated on developing the interferometric technologies to create a LISA-like optical signal and to measure the phase of that signal using commercially available instruments. One of the most important goals of this research is to demonstrate the LISA phase timing and phase reconstruction for a LISA-like fringe signal, in the case of a high fringe rate and a low signal level. To this end we have constructed a table-top interferometer which produces LISA-like fringe signals. Over the past few years questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified our table-top interferometer by applying a phase modulation to the laser beam in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations. Each spacecraft in LISA houses a proof mass which follows a geodesic through space. Disturbances that change the proof mass position, momentum, and acceleration will appear in the LISA data stream as additive quadratic functions. These data disturbances inhibit signal extraction and must be removed. Much of our analytical work has been focused on discussing the

  6. Comb-referenced laser distance interferometer for industrial nanotechnology.

    PubMed

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10(-10). The uncertainty is estimated to be in a 10(-8) level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10(-10) level in vacuum. PMID:27558016

  7. Comb-referenced laser distance interferometer for industrial nanotechnology

    PubMed Central

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10−10. The uncertainty is estimated to be in a 10−8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10−10 level in vacuum. PMID:27558016

  8. Selection of linear-cavity fibre laser radiation using a reflection interferometer

    SciTech Connect

    Terentyev, V S; Simonov, V A

    2013-08-31

    We consider the use of a two-mirror multibeam reflection interferometer as a selector of linear-cavity single-mode fibre laser radiation and present experimental data on continuous wavelength tuning of an erbium-doped fibre laser. Conditions are found for single-longitudinal-mode operation of the fibre laser cavity using a reflection interferometer, with the possibility of broadband wavelength tuning. (control of laser pulse parameters)

  9. Multicomponent wavefield characterization with a novel scanning laser interferometer.

    PubMed

    Blum, Thomas E; van Wijk, Kasper; Pouet, Bruno; Wartelle, Alexis

    2010-07-01

    The in-plane component of the wavefield provides valuable information about media properties from seismology to nondestructive testing. A new compact scanning laser ultrasonic interferometer collects light scattered away from the angle of incidence to provide the absolute ultrasonic displacement for both the out-of-plane and an in-plane components. This new system is tested by measuring the radial and vertical polarization of a Rayleigh wave in an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical displacement agrees well with the theoretical value. The phase difference exhibits a small bias between the two components due to a slightly different frequency response between the two processing channels of the prototype electronic circuitry. PMID:20687699

  10. Thermal Noise in Laser Interferometer Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Flaminio, Raffaele

    Thermal noise is one of the major limitations to the sensitivity of present and future laser interferometers devoted to gravitational wave detection. According to the fluctuation-dissipation theorem any mechanical oscillator is affected by a motion of thermal origin directly related to its thermodynamic temperature. The mirrors and their suspensions that are used in gravitational wave detectors such as Virgo or LIGO are examples of such mechanical oscillators. As a consequence their position is affected by this thermal vibration and the sensitivity of the gravitational wave detector is thermal noise limited over a wide range of frequencies. After recalling briefly the fluctuation-dissipation theorem and its origins, this chapter describes the main types of thermal noise affecting gravitational wave detectors. In the last part of the chapter a special emphasis is given to the thermal noise due to dissipation in the mirrors optical coatings.

  11. The GRACE Follow-On Laser Ranging Interferometer

    NASA Astrophysics Data System (ADS)

    Müller, Vitali

    2016-07-01

    The GRACE Follow-On mission consists of a pair of satellites to be launched in 2017 into a low-Earth polar orbit. As the precursor mission GRACE, it will provide monthly global maps of Earth's gravity field to study mass changes within the System Earth, like glacier melting or ground-water depletion. The new mission will be equipped with two ranging instruments: a conventional Microwave Ranging Instrument, as already present in the precursor mission, and with a Laser Ranging Interferometer (LRI). Latter acts as a technical demonstrator, which will show the capability for enhanced sensitivity and additional precise attitude information of this new technology. The satellite and in particular the LRI working principle will be introduced together with observables and major noise and error contributors. Furthermore potential modifications and extensions for future gravimetric missions are addressed as well as applications in space-based gravitational wave detectors (i.e. eLISA).

  12. Multicomponent wavefield characterization with a novel scanning laser interferometer

    SciTech Connect

    Blum, Thomas E.; Wijk, Kasper van; Pouet, Bruno; Wartelle, Alexis

    2010-07-15

    The in-plane component of the wavefield provides valuable information about media properties from seismology to nondestructive testing. A new compact scanning laser ultrasonic interferometer collects light scattered away from the angle of incidence to provide the absolute ultrasonic displacement for both the out-of-plane and an in-plane components. This new system is tested by measuring the radial and vertical polarization of a Rayleigh wave in an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical displacement agrees well with the theoretical value. The phase difference exhibits a small bias between the two components due to a slightly different frequency response between the two processing channels of the prototype electronic circuitry.

  13. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  14. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    SciTech Connect

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-11-15

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  15. Differential interferometer for measurement of displacement of laser resonator mirrors

    NASA Astrophysics Data System (ADS)

    Macúchová, Karolina; Němcová, Šárka; Hošek, Jan

    2015-01-01

    This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.

  16. Laser beam collimation using a phase conjugate Twyman-Green interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, M.; George, M. C.; Venkateswarlu, Putcha

    1991-01-01

    This paper presents an improved technique for testing laser beam collimation using a phase conjugate Twyman-Green interferometer. The technique is useful for measuring laser beam divergence. It is possible using this technique to detect the defocusing of the order of one micrometer for a well corrected collimating lens. A relation is derived for the defocusing that can be detected by the phase conjugate interferometer.

  17. Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.

  18. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory. PMID:27139664

  19. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.

  20. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    SciTech Connect

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-09-15

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  1. Detection of low frequency hurricane emissions using a ring laser interferometer

    NASA Astrophysics Data System (ADS)

    Dunn, Robert W.; Slaton, William V.; Kendall, Lauren M.

    2012-10-01

    Over the last decade, large horizontally mounted ring laser interferometers have demonstrated the capacity to measure numerous geophysical effects. In this paper, responses from large ring laser interferometers to low frequency hurricane emissions are presented. Hurricanes create a broad spectrum of noise that extends into the millihertz range. In addition to microseisms, hurricanes with established eyewalls were found to create distinct frequency peaks close to 7 mHz as they came ashore or moved over shallow water. Selected emissions from Hurricanes Katrina, Wilma, and Dean are presented. The exact coupling mechanism between the ˜7 mHz hurricane emissions and the ring lasers remains under active investigation.

  2. Cancellation of Laser Noise in an Unequal-arm Interferometer Detector of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, M.; Armstrong, J. W.

    1998-01-01

    In this paper we present a method for exactly cancelling the laser noise in a one-bounce unequal-arm Michelson interferometer. The method requries separate measurements of the phase difference in each arm, made by interfering the returning laser light in each arm with the outgoing light.

  3. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    PubMed

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  4. Time-resolved spectral measurements on a multielectrode DFB laser using a Fabry-Perot interferometer. [Distributed feedback laser

    SciTech Connect

    Davis, M.G.; O'Dowd, R.F. . Dept. of Electronic Engineering)

    1994-01-01

    A Fabry-Perot interferometer based time-resolved spectral measurement system capable of transform limited performance is described here. The system results from a model developed for the Fabry-Perot interferometer from which the mirror reflectivity emerges as the critical parameter in determining both the temporal and spectral response. Using this system, the response of a multi-electrode DFB laser under a number of different modulation formats is investigated.

  5. Interspacecraft link simulator for the laser ranging interferometer onboard GRACE Follow-On.

    PubMed

    Sanjuan, Josep; Gohlke, Martin; Rasch, Stefan; Abich, Klaus; Görth, Alexander; Heinzel, Gerhard; Braxmaier, Claus

    2015-08-01

    Link acquisition strategies are key aspects for interspacecraft laser interferometers. We present an optical fiber-based setup able to simulate the interspacecraft link for the laser ranging interferometer (LRI) on gravity recovery and climate experiment Follow-On. It allows one to accurately recreate the far-field intensity profile depending on the mispointing between the spacecraft, Doppler shifts, and spacecraft attitude jitter. Furthermore, it can be used in late integration stages of the mission, since no physical contact with the spacecraft is required. The setup can also be easily adapted to other similar missions and different acquisition algorithms.

  6. Measuring of object vibration using sinusoidal-modulation laser-diode active interferometer

    NASA Astrophysics Data System (ADS)

    Ai, Yong; Cao, Qinfeng; Lu, Su

    1996-09-01

    Using the character that the emitting optical frequency of the laser diode is controlled by the injected current, the ability of eliminating environmental disturbance of the sinusoidal modulation laser diode active interferometer will be raised by more than one hundred times through putting the disturbed interference signal produced by the environment into the interferometer. When vibrating frequency of objects is different from that of the sinusoidol modulation, 'beat- frequency' will be produced in the interfere signal, which can be analyzed to get the vibrating frequency of objects. This paper described the operation principle and theoretical delusion of the 'beat-frequency' method.

  7. Cancellation of Laser Noise in Space-Based Interferometer Detectors of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1999-01-01

    We presented a time-domain procedure for accurately cancelling laser noise fluctuations in an unequal-arm Michelson interferometer. The method involves separately measuring the phase of the returning light relative to the phase of the transmitted light in each arm. By suitable offsetting and differencing of these two time series, the common laser noise is cancelled exactly. The technique presented in this paper is general, in such that it can be implemented with any (Earth as well as space-based) unequal-arms Michelson interferometers,

  8. Interspacecraft link simulator for the laser ranging interferometer onboard GRACE Follow-On.

    PubMed

    Sanjuan, Josep; Gohlke, Martin; Rasch, Stefan; Abich, Klaus; Görth, Alexander; Heinzel, Gerhard; Braxmaier, Claus

    2015-08-01

    Link acquisition strategies are key aspects for interspacecraft laser interferometers. We present an optical fiber-based setup able to simulate the interspacecraft link for the laser ranging interferometer (LRI) on gravity recovery and climate experiment Follow-On. It allows one to accurately recreate the far-field intensity profile depending on the mispointing between the spacecraft, Doppler shifts, and spacecraft attitude jitter. Furthermore, it can be used in late integration stages of the mission, since no physical contact with the spacecraft is required. The setup can also be easily adapted to other similar missions and different acquisition algorithms. PMID:26368080

  9. A phase-modulated laser system of ultra-low phase noise for compact atom interferometers

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Se; Kim, Jaewan; Lee, Sang-Bum; Park, Sang Eon; Kwon, Taek Yong

    2015-07-01

    A compact and robust laser system is essential for mobile atom interferometers. Phase modulation can provide the two necessary phase-coherent frequencies without sophisticated phase-locking between two different lasers. However, the additional laser frequencies generated can perturb the atom interferometer. In this article, we report on a novel method to produce a single high-power laser beam composed of two phase-coherent sidebands without the perturbing carrier mode. Light from a diode laser is phase-modulated by using a fiber-coupled electro-optic modulator driven at 3.4 GHz and passes through a Fabry-Perot cavity with a 6.8 GHz free spectral range. The cavity filters the carrier mode to leave the two first-order sidebands for the two-photon Raman transition between the two hyperfine ground states of 87Rb. The laser beam is then fed to a single tapered amplifier, and the two sidebands are both amplified without mode competition. The phase noise is lower than that of a state-of-the-art optically phase-locked external-cavity diode laser (-135 dBrad2/Hz at 10 kHz) at frequencies above 10 Hz. This technique can be used in all-fiber-based laser systems for future mobile atom interferometers.

  10. Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kwon, Il Bum; Lee, Wang Joo; Lee, Jung Ju

    2002-06-01

    This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT).

  11. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz1/2 and 0.5 nrad/Hz1/2 at 1 Hz.

  12. Laser-ranging long-baseline differential atom interferometers for space

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2015-12-01

    High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.

  13. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer.

    PubMed

    Chu, Shu-Chun; Yang, Chao-Shun; Otsuka, Kenju

    2008-11-24

    This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p x p vortex array beams from Ince-Gaussian modes, IG(e) (p,p) modes. An incident IG(e)(p,p) laser beam of variety order p can easily be generated from an end-pumped solid-state laser system with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation, analytically derives the vortex positions of the resulting vortex array laser beams, and discusses beam propagation effects. The resulting vortex array laser beam can be applied to optical tweezers and atom traps in the form of two-dimensional arrays, or used to study the transfer of angular momentum to micro particles or atoms (Bose-Einstein condensate).

  14. Arm locking with the GRACE follow-on laser ranging interferometer

    NASA Astrophysics Data System (ADS)

    Thorpe, James Ira; McKenzie, Kirk

    2016-02-01

    Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.

  15. Development Towards a Space Qualified Laser Stabilization System in Support of Space-Based Optical Interferometers

    NASA Technical Reports Server (NTRS)

    Seidel, David J.; Dubovitsky, Serge

    2000-01-01

    We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the

  16. Simple method for reducing the first-order optical nonlinearity in a heterodyne laser interferometer.

    PubMed

    Fu, Haijin; Hu, Pengcheng; Tan, Jiubin; Fan, Zhigang

    2015-07-10

    A simple method was proposed by using a tunable attenuator fitted in the reference or measurement arm of a heterodyne laser interferometer to adjust the values of mixing laser beams while the spectrum of the measurement signal is monitored using a signal analyzer. The effectiveness of the proposed method in reducing the first-order optical nonlinearity was verified through experiments. Results indicated that the peak value of the first-order optical nonlinearity could be reduced from 5.15 to 0.24 nm. It was therefore concluded that the proposed method was applicable to ultraprecision laser interferometry. PMID:26193410

  17. Laser noise mitigation through time delay interferometry for space-based gravitational wave interferometers using the UF laser interferometry simulator

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn J.

    2012-06-01

    The existence of gravitational waves was theorized in 1916 by Albert Einstein in accordance with the linearized theory of general relativity. Most experiments and observations to date have supported general relativity, but now, nearly 100 years later, the scientific community has yet devise a method to directly measure gravitational radiation. With the first attempts towards a gravitational wave measurement in the 1960s, many methods have been proposed and tested since then, all failing thus far to provide a positive detection. The most promising gravitational radiation detection method is through the use of a space-based laser interferometer and with the advancement of modern technologies, these space-based gravitational wave measurements will eventually provide important scientific data to physics, astro-physics, and astronomy communities. The Laser Interferometer Space Antenna (LISA) is one such space-based laser interferometer. LISA's proposed design objective is to measure gravitational radiation in the frequency range from 30 microHz to 1 Hz using a modified Michelson interferometer. The interferometer arms are 5 Gm in length measured between each of the 3 spacecraft in the interferometer constellation. The differential arm-length will be measured to an accuracy of 18 pm/ Hz resulting in a baseline strain sensitivity of 3.6 x 10 --21 / Hz . Unfortunately, the dynamics of the spacecraft orbits complicate the differential arm-length measurements. The arms of the interferometer change in length resulting in time-dependent, unequal arm-lengths and laser Doppler shifts. Thus, to cancel the laser noise, laser beatnotes are formed between lasers on separate SC and, using these one-way laser phase measurements, one can reconstruct an equal-arm interferometer in post-processing. This is commonly referred to as time-delay interferometry (TDI) and can be exploited to cancel the laser phase noise and extract the gravitational wave (GW) induced arm-length strain. The

  18. Laser-tracking interferometer system based on trilateration and a restriction on the position of its laser trackers

    NASA Astrophysics Data System (ADS)

    Takatsuji, Toshiyuki; Koseki, Yoshihiko; Goto, Mitsuo; Kurosawa, Tomizo; Tanimura, Yoshihisa

    1998-07-01

    To measure three dimensional coordinate we have been developing a laser tracking interferometer system (LTS). Four laser interferometers chase the movement of a target cat's eye and measure the change in distance between them. The position of the cat's eye is determined from the measured distances based on the principle of trilateration. Taking advantage of measurement redundancy produced by the fourth tracker, the position of the trackers and the initial position of the cat's eye can be estimated by a self-calibration algorithm. A restriction on the arrangement of the laser trackers to perform the self-calibration algorithm is theoretically studied. Finally a preliminary experiment was made to show the measurement error of about 40 micrometers for a 1 m measurement.

  19. Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

    NASA Astrophysics Data System (ADS)

    Schütze, Daniel; LRI Team

    2016-05-01

    The GRACE mission that was launched in 2002 has impressively proven the feasibility of low-orbit satellite-to-satellite tracking for Earth gravity observations. Especially mass transport related to Earth's hydrological system could be well resolved both spatially and temporally. This allows to study processes such as polar ice sheet decline and ground water depletion in great detail. Owing to GRACE's success, NASA and GFZ will launch the successor mission GRACE Follow-On in 2017. In addition to the microwave ranging system, GRACE Follow-On will be the first mission to use a Laser Ranging Interferometer as technology demonstrator to track intersatellite distance changes with unprecedented precision. This new ranging device inherits some of the technologies which have been developed for the future spaceborne gravitational wave detector LISA. I will present the architecture of the Laser Ranging Interferometer, point out similarities and differences to LISA, and conclude with the current status of the flight hardware production.

  20. Performance comparison of piezoelectric accelerometer and laser interferometer in vibration monitoring and measurements

    NASA Astrophysics Data System (ADS)

    Wei, Hong; Stout, Kenneth J.

    1995-12-01

    In this paper, vibration monitoring and measurement carried out in the newly developed nanometer metrology laboratory in Birmingham University, is described with respect to measurement methods and instrument performance. Two types of instrument -- piezoelectric accelerometer (B&K type 8318 with a type 2140 bus-controlled frequency analyzer) and laser interferometer (Renishaw ML10 laser interferometer with the Keithley multi-channel FFT analyzer) were used in vibration measurement on capability verification of a vibration isolation system. Vibration results from a concrete block are presented. From the point of view of the measured vibration results, it is demonstrated that the performance of the above two instruments is not completely the same in the different frequency ranges. The related comparison and discussions are presented in this paper.

  1. Recent Progress of the HL-2A Multi-Channel HCOOH Laser Interferometer/Polarimeter

    NASA Astrophysics Data System (ADS)

    Li, Yonggao; Zhou, Yan; Deng, Zhongchao; Li, Yuan; Yi, Jiang; Wang, Haoxi

    2015-05-01

    A multichannel methanoic acid (HCOOH, λ = 432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ = 337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of ˜30 mW, and a power stability <10% in 50 min. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase-comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign. supported by the National Magnetic Confinement Fusion Science Programs of China (Nos. 2010GB101002 and 2014GB109001), and National Natural Science Foundation of China (Nos. 11075048 and 11275059)

  2. Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-06-01

    We outline laser interferometer measurements to search for variation of the electromagnetic fine-structure constant α and particle masses (including a nonzero photon mass). We propose a strontium optical lattice clock—silicon single-crystal cavity interferometer as a small-scale platform for these measurements. Our proposed laser interferometer measurements, which may also be performed with large-scale gravitational-wave detectors, such as LIGO, Virgo, GEO600, or TAMA300, may be implemented as an extremely precise tool in the direct detection of scalar dark matter that forms an oscillating classical field or topological defects.

  3. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  4. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    SciTech Connect

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  5. Two-color CO2/HeNe laser interferometer for C-2 experiment.

    PubMed

    Gornostaeva, O; Deng, B H; Garate, E; Gota, H; Kinley, J; Schroeder, J; Tuszewski, M

    2010-10-01

    A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO(2) laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than ±5°, corresponding to a line integral density of 3×10(18) m(-2). The time resolution for routine operation is 2 μs.

  6. A multi-wavelength erbium-doped fiber ring laser using an intrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Jauregui-Vazquez, D.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Lopez-Dieguez, Y.; Sierra-Hernandez, J. M.

    2016-10-01

    In this experimental paper, a multi-wavelength erbium-doped ring fiber laser based on an all fiber intrinsic Fabry-Perot interferometer is presented and demonstrated. The interferometer was fabricated by an arc and splicing technique using hollow core photonic crystal fiber (HCPCF) and conventional single mode fiber (SMF28). The fiber laser can be operated in single, dual and triple lasing mode by applying a transversal load over the all fiber interferometer. The laser spectrums present minimal mode spacing of 1 nm, high wavelength stability and power fluctuations around 0.5 dB. The average signal to noise ratio (SNR) of the laser emissions spectrum is around 35 dB. This fiber laser offers low cost, compactness and high wavelength stability.

  7. Ultrasound-modulated optical imaging using a photorefractive interferometer and a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2009-02-01

    Ultrasound-modulated optical imaging is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the spatial localization of an optically absorbing object embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. The practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must satisfy the biomedical safety limits. In this paper, we propose to use a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source allows illuminating the tissues mainly during the transit time of the ultrasonic wave. A single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue. When pumped by high intensity laser pulses, such an interferometer provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation encountered in biomedical applications. Consequently, the combination of a large-etendue photorefractive interferometer with a high-power pulsed laser could allow obtaining both the sensitivity and the fast response time necessary for biomedical applications. Measurements performed in 30- and 60-mm thick optical phantoms made of titanium dioxide particles dispersed in sunflower oil are presented. Results obtained in 30- and 60-mm thick chicken breast samples are also reported.

  8. Direct inscription of intrinsic Fabry-Perot interferometers in optical fiber tapers with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Zhang, Xiaobei; Wang, Wenyuan; Pang, Fufei; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    In this work, we report a sensing configuration of the fiber taper intrinsic Fabry-Perot interferometer directly inscribed in single-mode optical fiber tapers with different waist diameters from 14 to 80 μm using a femtosecond laser micromachining system. By controlling the inscribing depth and intensity of the fs laser pulse, the fringe visibility can exceed 9.0 dB when the fiber taper waist diameter is around 15 μm, which is sufficient for most sensing applications. The sensor sensitivity depends on the fiber taper waist diameter, while a smaller diameter corresponds to a large sensitivity. Different free spectral ranges can be achieved for various cavity lengths. Such a structure can combine the high sensitivity properties of fiber taper sensors with the high resolution features of Fabry-Perot interferometer sensors. Meanwhile, this structure can have a number of outstanding advantages, such as its small size, unique geometry, easy fabrication, low cost and capability for mass production. These fiber taper intrinsic Fabry-Perot interferometer sensors have high potential in fast detection and high precision measurement while maintaining superior reliability for chemical and biological sensing.

  9. Computational signal-to-noise ratio analysis for optical quadrature microscopy.

    PubMed

    Warger, William C; DiMarzio, Charles A

    2009-02-16

    Optical quadrature microscopy (OQM) was invented in 1997 to reconstruct a full-field image of quantitative phase, and has been used to count the number of cells in live mouse embryos. Here we present a thorough SNR analysis that incorporates noise terms for fluctuations in the laser, aberrations within the individual paths of the Mach-Zehnder interferometer, and imperfections within the beamsplitters and CCD cameras to create a model for the resultant phase measurements. The current RMS error of the OQM phase images has been calculated to be 0.08 radians from substituting images from the instrumentation into the model.

  10. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  11. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  12. Large-Optics white light interferometer for laser wavefront test: apparatus and application

    NASA Astrophysics Data System (ADS)

    Luan, Zhu; Liu, Liren; Wang, Lijuan; Liu, De'an

    2008-08-01

    There is transmitting optics of 250mm aperture with about 8 microradians in SILEX system. This is often large aperture and diffraction-limited laser beam in the laser communications. Large-Optics white light interferometer using double-shearing structure has been submitted to analysis the laser wavefront before. Six optical plates of 490 millimeters apertures are manufactured now one of which is also aperture-divided so that the precision of measured wave front is higher than the full aperture design. It is suitable for measurement of minimum diffraction-limited laser wave front and any wavelength. The interference is happened between equal optical path of the reflection and the other. The plates are the basic structures which are precisely parallel or perpendicular needed for either two plates. There are several tools equipped with the interferometer including white light test source and collimators and so on to confirm the precision of several seconds angle. The apparatus and application is explained in detail in this paper. The adjustment is important for the realization of white light test.

  13. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Day, Timothy; Gustafson, Eric K.; Byer, Robert L.

    1992-01-01

    Two-diode laser-pumped Nd:YAG lasers have been frequency stabilized to a commercial 6.327-GHz free spectral range Fabry-Perot interferometer yielding a best-case beatnote linewidth of 330 mHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 has been built, and when substituted in place of the commercial interferometer produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  14. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  15. Note: Design of a laser feedback interferometer with double diffraction system

    SciTech Connect

    Guo, Dongmei Wang, Ming

    2015-09-15

    A novel laser feedback interferometer with double diffraction system is proposed in this paper. A beam emitted from the laser is incident onto a transmission grating. The mth order beam is vertically reflected by a mirror and diffracted again by the grating. The double-diffracted beam returns into the laser cavity and mixes with the light inside the active cavity, thus generating a modulation of both the amplitude and the frequency of the lasing field. Theoretical analysis and experimental observations show that the output signal of the proposed system depends on the grating pitch and the direction of the phase movement can be obtained from inclination of the interference signal. It provides a potential displacement sensor with high stability and quite a compact configuration.

  16. The GRACE Follow-On Laser Ranging Interferometer; A inter-spacecraft laser interferometry technology demonstrator with similarities to LISA

    NASA Astrophysics Data System (ADS)

    Klipstein, William; McKenzie, Kirk; Grace Follow-On LASER Ranging Interferometer Team

    2016-03-01

    GRACE Follow-On will replace the Gravity Recovery and Climate Experiment (GRACE) mission, which has been measuring Earth's gravity field since 2002. Like GRACE, GRACE Follow-On will use a microwave link as its primary instrument to measure micron-level changes in the 200km separation of a pair of satellites in a following polar orbit. GRACE Follow-On will also include a 2-way laser-link, the Laser Ranging Interferometer (LRI), as a technology demonstrator package. The LRI is an NASA/German partnership and will demonstrate inter-spacecraft laser interferometry with a goal of 10 times better precision than the microwave instrument, or about 90 nm/ √(Hz) between 10 and 100 mHz. The similarities between the LRI and a single arm of Laser Interferometer Space Antenna (LISA) mean many of the required technologies will be the same. This talk will give an overview of the LRI and the status of the LRI instruments, and implications for LISA.

  17. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    PubMed

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  18. Q-switching of a high-power solid-state laser by a fast scanning Fabry-Perot interferometer

    SciTech Connect

    Baburin, N V; Borozdov, Yu V; Danileiko, Yu K; Denker, B I; Ivanov, A D; Osiko, Vyacheslav V; Sverchkov, S E; Sidorin, A V; Chikov, V A; Ifflander, R; Hack, R; Kertesz, I; Kroo, N

    1998-07-31

    An investigation was made of the suitability of a Q-switch, based on a piezoelectrically scanned short-base Fabry-Perot interferometer, for an Nd{sup 3+}:YAG laser with an average output radiation power up to 2 kW. The proposed switch made it possible to generate of giant pulses of 60 - 300 ns duration at a repetition rate of 20 - 100 kHz. Throughout the investigated range of the pulse repetition rates the average power was at least equal to that obtained by cw lasing. Special requirements to be satisfied by the interferometer, essential for efficient Q-switching, were considered. (control of laser radiation parameters)

  19. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser.

    PubMed

    Weng, Jidong; Wang, Xiang; Ma, Yun; Tan, Hua; Cai, Lingcang; Li, Jianfeng; Liu, Cangli

    2008-11-01

    A compact all-fiber displacement interferometer (AFDI) system, working at 1550 nm, has been developed and tested, and its working fundamentals will be introduced in this letter. In contrast with other models of fiber-optic velocity interferometer system, AFDI adopts a single-mode optic fiber pigtail as the detect head, diameter of which is only 1 mm, to collect directly the reflect laser beam from the moving surface, which makes this instrument have some unique advantages in observing the point movements of a small flyer. Preliminary experiments using this instrument to measure the velocity history of a small aluminum thin foil driven by a nanosecond pulse laser were conducted successfully, the precise velocity history profile deduced from the sharp interference fringes and the nanometer resolution in displacement gives an eloquent proof of its eminent abilities. The field depth (approximately 2 mm) of our AFDI is a little smaller than the DISAR [Weng et al., Appl. Phys. Lett. 89, 111101 (2006)] system, but its compact structure makes it much convenient to operate. Further applications for multipoints velocity history measurements of small targets are under consideration.

  20. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  1. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    SciTech Connect

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio; Wang Bin; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Hatai, Keigo; Fukui, Akihiro; Arakawa, Yoshihiro

    2011-04-15

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.

  2. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  3. Studies of Laser Interferometer Design and a Vibration Isolation System for Interferometric Gravitational Wave Detectors.

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph Anthony

    1995-01-01

    Two techniques are developed that are needed in the design of an interferometric gravitational wave (GW) detector such as the LIGO, or Long-baseline Interferometric Gravitational-wave Observatory. The detector sensitivity of a long-baseline instrument is studied. A multi-layer mechanical isolation stack to filter seismic noise from test masses is designed, modeled and tested in vacuum. This is a four-stage elastomer (spring) and stainless steel (mass) stack, consisting of a table resting on three separate legs of three layers each. The visco-elastic properties of elastomer springs are exploited to damp the stack's normal modes while providing rapid roll-off of stack transmission above these modal frequencies. The stack's transmission of base motion to top motion is measured in vacuum and compared with 3-D finite-element models. In one tested configuration, at 100 Hz, horizontal transmission is 10^{-7}, vertical transmission is 3 times 10^{-6}, and the cross-coupling terms are between these values. A length detection scheme using RF phase modulated light and synchronous detection is developed for Fabry -Perot arm power-recycled Michelson interferometer GW detectors. This scheme uses an external Mach-Zehnder interferometer to measure the GW signal, and a frequency-shifted subcarrier to measure ancillary interferometer degrees of freedom. Use of the Mach-Zehnder allows rejection of laser source amplitude noise from the output, as well as the ability to exploit well-balanced Fabry-Perot arms to reject frequency noise from the output. A long baseline GW detector using these techniques should meet the LIGO initial goal sensitivity to GW strain of h_{rm RMS} = 10^ {-21} at 100 Hz. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-1307. Ph. 617 -253-5668; Fax 617-253-1690.).

  4. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    SciTech Connect

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-06-15

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans.

  5. Test environments for the GRACE follow-on laser ranging interferometer

    NASA Astrophysics Data System (ADS)

    Görth, A.; Sanjuan, J.; Gohlke, M.; Rasch, S.; Abich, K.; Braxmaier, C.; Heinzel, G.

    2016-05-01

    In the year 2017 a follow-on mission to the very successful joint German/US mission GRACE (Gravity Recovery And Climate Experiment) will be launched. As of this day the two GRACE satellites have successfully been mapping the spatial and temporal varitations of the gravitational field of the Earth by satellite-to-satellite tracking for over a decade. The main science instrument on GRACE and its successor mission GRACE Follow-On which is used to measure the inter-satellite distance changes is a microwave link sensor. However, an additional instrument, the laser ranging interferometer (LRI), will be implemented into the architecture of the GRACE Follow-On satellites as a technology demonstrator. In this paper we will give a brief overview of a fiber-based test environment which is currently used during the assembly, integration and test of the LRI flight hardware.

  6. Two-color interferometer for the study of laser filamentation triggered electric discharges in air

    SciTech Connect

    Point, Guillaume Brelet, Yohann; Arantchouk, Leonid; Carbonnel, Jérôme; Prade, Bernard; Mysyrowicz, André; Houard, Aurélien

    2014-12-15

    We present a space and time resolved interferometric plasma diagnostic for use on plasmas where neutral-bound electron contribution to the refractive index cannot be neglected. By recording simultaneously the plasma optical index at 532 and 1064 nm, we are able to extract independently the neutral and free electron density profiles. We report a phase resolution of 30 mrad, corresponding to a maximum resolution on the order of 4×10{sup 22} m{sup −3} for the electron density, and of 10{sup 24} m{sup −3} for the neutral density. The interferometer is demonstrated on centimeter-scale sparks triggered by laser filamentation in air with typical currents of a few tens of A.

  7. Application of a Laser Interferometer Skin-Friction Meter in Complex Flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    A nonintrusive skin-friction meter has been found useful for a variety of complex wind-tunnel flows. This meter measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film. Its accuracy has been proven in a low-speed flat-plate flow. The wind-tunnel flows described here include sub-sonic separated and reattached flow over a rearward-facing step, supersonic flow over a flat plate at high Reynolds numbers, and supersonic three - dimensional vortical flow over the lee of a delta wing at angle of attack. The data-reduction analysis was extended to apply to three-dimensional flows with unknown flow direction, large pressure and shear gradients, and large oil viscosity changes with time. The skin friction measurements were verified, where possible, with results from more conventional techniques and also from theoretical computations.

  8. Monitoring Rotational Components of Seismic Waves with a Ring Laser Interferometer

    NASA Astrophysics Data System (ADS)

    Gakundi, Jackson; Dunn, Robert

    2015-04-01

    It has been known for decades that seismic waves can introduce rotation in the surface of the Earth. There are historic records of tombstones in Japan being rotated after large earthquakes. Until fairly recently, the primary way to detect ground rotation from earthquakes was with an array of several seismographs. The development of large ring laser interferometers has provided a way for a single instrument to make extremely sensitive measurements of ground motion. In this poster, a diagram of a large ring laser will be presented. For comparison, seismograms recorded with a ring laser and a collocated standard seismograph will be presented. A major thrust of this research is the detection and analysis of seismic responses from directional drilling sites in Arkansas and Oklahoma. There are suggestions that the injection of pressurized water used to fracture gas bearing shale may cause small earthquakes. The Arkansas Oil and Gas Commission ordered the closing of certain waste water disposal wells in North Central Arkansas. Apparently, these wells injected waste water into a previously unknown fault causing it to slip. An attempt is being made to determine if the seismic wave patterns from earthquakes generated near directional drilling sites differ from those generated miles away.

  9. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C. Jerald

    1984-01-01

    The quadrature phase angle .phi.(t) of a pair of quadrature signals S.sub.1 (t) and S.sub.2 (t) is digitally encoded on a real time basis by a quadrature digitizer for fractional .phi.(t) rotational excursions and by a quadrature up/down counter for full .phi.(t) rotations. The pair of quadrature signals are of the form S.sub.1 (t)=k(t) sin .phi.(t) and S.sub.2 (t)=k(t) cos .phi.(t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle .phi.(t).

  10. Analog quadrature signal to phase angle data conversion by a quadrature digitizer and quadrature counter

    DOEpatents

    Buchenauer, C.J.

    1981-09-23

    The quadrature phase angle phi (t) of a pair of quadrature signals S/sub 1/(t) and S/sub 2/(t) is digitally encoded on a real time basis by a quadrature digitizer for fractional phi (t) rotational excursions and by a quadrature up/down counter for full phi (t) rotations. The pair of quadrature signals are of the form S/sub 1/(t) = k(t) sin phi (t) and S/sub 2/(t) = k(t) cos phi (t) where k(t) is a signal common to both. The quadrature digitizer and the quadrature up/down counter may be used together or singularly as desired or required. Optionally, a digital-to-analog converter may follow the outputs of the quadrature digitizer and the quadrature up/down counter to provide an analog signal output of the quadrature phase angle phi (t).

  11. Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Meng, Yichang; Zhang, Shumin; Wang, Xinzhan; Du, Juan; Li, Hongfei; Hao, Yanping; Li, Xingliang

    2012-03-01

    We have demonstrated an adjustable double-clad Yb 3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.

  12. Internal magnetic field measurements by laser-based POlarimeter-INTerferometer (POINT) system on EAST

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Qian, J. P.; Li, W. M.; Yang, Y.; Zeng, L.; Zhang, S. B.; Lan, T.; Wang, S. X.; Hanada, K.; Wei, X. C.; Hu, L. Q.; Wan, B. N.

    2016-01-01

    A multi-channel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for fully diagnosing the internal magnetic field in the EAST tokamak. Double-pass, horizontal, radially-viewing chords access the plasma via an equatorial port. The laser source consists of three CW formic acid (HCOOH) FIR lasers at nominal wavelength 432.5 μm which are optically pumped by independent infrared CO2 lasers. Output power is more than 30 mW of per cavity. Novel molybdenum retro-reflectors, can with withstand baking temperature up to 350°C and discharge duration more than 1000 s, are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which provide real-time Faraday rotation angle and density phase shift output for plasma control, have been developed for the POINT system. Reliability of both polarimetric and interferometric measurement are obtained in 22 s long pulse H mode discharge and 8 s NBI H mode discharge, indicating the POINT system works for any heating scheme on EAST so far. The electron line-integrated density resolution of POINT is less than 1 × 1016 m-2 (< 1°), and the Faraday rotation angle rms phase noise is < 0.1°. With the high temporal (~ 1 μsec) and phase resolution (< 0.1°), perturbations associated with the sawtooth cycle and MHD activity have been observed. The current profile, density profile and safety factor (q) profile are reconstructed by using EFIT code from the external magnetic and the validation POINT data. Realtime EFIT with Faraday angle and density phase shift constraints will be implemented in the plasma control system in the future.

  13. High precision frequency calibration of tunable diode lasers stabilized on an internally coupled Fabry-Perot interferometer.

    PubMed

    Clar, H J; Schieder, R; Reich, M; Winnewisser, G

    1989-05-01

    For very high precision molecular spectroscopy we use a tunable diode laser which is frequency locked to an internally coupled Fabry-Perot interferometer (icFPI). The spectra are calibrated by means of the interference pattern of an iodine stabilized He-Ne reference laser which is simultaneously coupled into the icFPI. In this paper the exact relation between the diode laser frequency and the He-Ne fringe number is derived and a convenient calibration procedure yielding a frequency accuracy of 5 x 10(-5) cm(-1) at 10 microm is described.

  14. Quadrature wavelength scanning interferometry.

    PubMed

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel

    2016-07-10

    A novel method to double the measurement range of wavelength scanning interferometery (WSI) is described. In WSI the measured optical path difference (OPD) is affected by a sign ambiguity, that is, from an interference signal it is not possible to distinguish whether the OPD is positive or negative. The sign ambiguity can be resolved by measuring an interference signal in quadrature. A method to obtain a quadrature interference signal for WSI is described, and a theoretical analysis of the advantages is reported. Simulations of the advantages of the technique and of signal errors due to nonideal quadrature are discussed. The analysis and simulation are supported by experimental measurements to show the improved performances. PMID:27409307

  15. Skin Friction Measurements by a Dual-Laser-Beam Interferometer Technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1981-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a "law-of-the-well" coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. (This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.)

  16. System simulation method for fiber-based homodyne multiple target interferometers using short coherence length laser sources

    NASA Astrophysics Data System (ADS)

    Fox, Maik; Beuth, Thorsten; Streck, Andreas; Stork, Wilhelm

    2015-09-01

    Homodyne laser interferometers for velocimetry are well-known optical systems used in many applications. While the detector power output signal of such a system, using a long coherence length laser and a single target, is easily modelled using the Doppler shift, scenarios with a short coherence length source, e.g. an unstabilized semiconductor laser, and multiple weak targets demand a more elaborated approach for simulation. Especially when using fiber components, the actual setup is an important factor for system performance as effects like return losses and multiple way propagation have to be taken into account. If the power received from the targets is in the same region as stray light created in the fiber setup, a complete system simulation becomes a necessity. In previous work, a phasor based signal simulation approach for interferometers based on short coherence length laser sources has been evaluated. To facilitate the use of the signal simulation, a fiber component ray tracer has since been developed that allows the creation of input files for the signal simulation environment. The software uses object oriented MATLAB code, simplifying the entry of different fiber setups and the extension of the ray tracer. Thus, a seamless way from a system description based on arbitrarily interconnected fiber components to a signal simulation for different target scenarios has been established. The ray tracer and signal simulation are being used for the evaluation of interferometer concepts incorporating delay lines to compensate for short coherence length.

  17. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  18. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  19. Study of the second-order relativistic light deflection of the Sun using long-baseline fibre-linked interferometers: Laser-Interferometric Solar Relativity (LISOR) test

    NASA Technical Reports Server (NTRS)

    Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael

    1992-01-01

    A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.

  20. COMPONENTS OF LASER SYSTEMS AND STABILITY PROBLEMS: Integrated optical analogs of classical interferometers

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    1988-08-01

    An analysis is made of the modulation and filtering properties of planar analogs of multistage Mach-Zehnder and Fabry-Perot interferometers. It is shown that the best parameters are exhibited by a modulator or a filter in the form of a series of planar Mach-Zehner interferometers with a nonlinear dependence of the phase of the control signal on the stage number. A planar Fabry-Perot interferometer is characterized by the smallest capacitance of the control plates.

  1. MIRI: A multichannel far-infrared laser interferometer for electron density measurements on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mansfield, D.K.; Park, H.K.; Johnson, L.C.; Anderson, H.M.; Chouinard, R.; Foote, V.S.; Ma, C.H.; Clifton, B.J.

    1987-07-01

    A ten-channel far-infrared laser interferometer which is routinely used to measure the spatial and temporal behavior of the electron density profile on the TFTR tokamak is described and representative results are presented. This system has been designed for remote operation in the very hostile environment of a fusion reactor. The possible expansion of the system to include polarimetric measurements is briefly outlined. 13 refs., 8 figs.

  2. Quadrature, Interpolation and Observability

    NASA Technical Reports Server (NTRS)

    Hodges, Lucille McDaniel

    1997-01-01

    Methods of interpolation and quadrature have been used for over 300 years. Improvements in the techniques have been made by many, most notably by Gauss, whose technique applied to polynomials is referred to as Gaussian Quadrature. Stieltjes extended Gauss's method to certain non-polynomial functions as early as 1884. Conditions that guarantee the existence of quadrature formulas for certain collections of functions were studied by Tchebycheff, and his work was extended by others. Today, a class of functions which satisfies these conditions is called a Tchebycheff System. This thesis contains the definition of a Tchebycheff System, along with the theorems, proofs, and definitions necessary to guarantee the existence of quadrature formulas for such systems. Solutions of discretely observable linear control systems are of particular interest, and observability with respect to a given output function is defined. The output function is written as a linear combination of a collection of orthonormal functions. Orthonormal functions are defined, and their properties are discussed. The technique for evaluating the coefficients in the output function involves evaluating the definite integral of functions which can be shown to form a Tchebycheff system. Therefore, quadrature formulas for these integrals exist, and in many cases are known. The technique given is useful in cases where the method of direct calculation is unstable. The condition number of a matrix is defined and shown to be an indication of the the degree to which perturbations in data affect the accuracy of the solution. In special cases, the number of data points required for direct calculation is the same as the number required by the method presented in this thesis. But the method is shown to require more data points in other cases. A lower bound for the number of data points required is given.

  3. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  4. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak.

    PubMed

    Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  5. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    SciTech Connect

    Xiong, C. Y.; Chen, J. Li, Q.; Liu, Y.; Gao, L.

    2014-12-15

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100–∼500 kHz/10 min) and decay of laser power (∼10%–∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  6. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  7. DFB laser diode interferometer with image capture timing control for surface profile reconstruction

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Fan, Feng; Chang-rong, Lv; Xiao, Fu; Ting-ting, Huang

    2015-02-01

    A DFB laser diode interferometer with sinusoidal phase modulation (SPM) and image capture timing control was proposed for the reconstruction of surface profile. Sinusoidal phase modulation was achieved by controlling the injection current of light diode. The surface profile was reconstructed on four consecutive fringe images. Random phase error and low-frequency phase shift would be superposed on the interference fringes due to external disturbances such as mechanical vibration and temperature fluctuation. A simple peak detection circuit that would take less time consumption than phase generated carrier (PGC) was built for eliminating external disturbances, and the phase of fringe image could be stabilized in about one millisecond, which is conducive to real-time surface profile reconstruction. A novel method to capture four consecutive fringe images in adjacent modulation period was presented by controlling pulse sequence to trigger camera exposure and image readout operation. The whole system was tested on an optical table without vibration isolation and being kept in thermostatic chamber. The repeatability was about 0.018 wave (approximately 14 nm for 760 nm wavelength). The feasibility for high-resolution surface profile reconstruction had been verified.

  8. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer

    SciTech Connect

    Mandula, Gábor Kis, Zsolt; Lengyel, Krisztián

    2015-12-15

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  9. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer.

    PubMed

    Mandula, Gábor; Kis, Zsolt; Lengyel, Krisztián

    2015-12-01

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions. PMID:26724003

  10. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer

    NASA Astrophysics Data System (ADS)

    Mandula, Gábor; Kis, Zsolt; Lengyel, Krisztián

    2015-12-01

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  11. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer.

    PubMed

    Mandula, Gábor; Kis, Zsolt; Lengyel, Krisztián

    2015-12-01

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  12. Self-referencing Mach-Zehnder interferometer as a laser system diagnostic: Active and adaptive optical systems

    SciTech Connect

    Feldman, M.; Mockler, D.J.; English, R.E. Jr.; Byrd, J.L.; Salmon, J.T.

    1991-02-01

    We are incorporating a novel self-referencing Mach-Zehnder interferometer into a large scale laser system as a real time, interactive diagnostic tool for wavefront measurement. The instrument is capable of absolute wavefront measurements accurate to better than {lambda}/10 pv over a wavelength range > 300 nm without readjustment of the optical components. This performance is achieved through the design of both refractive optics and catadioptric collimator to achromatize the Mach-Zehnder reference arm. Other features include polarization insensitivity through the use of low angles of incidence on all beamsplitters as well as an equal path length configuration that allows measurement of either broad-band or closely spaced laser-line sources. Instrument accuracy is periodically monitored in place by means of a thermally and mechanically stable wavefront reference source that is calibrated off-line with a phase conjugate interferometer. Video interferograms are analyzed using Fourier transform techniques on a computer that includes dedicated array processor. Computer and video networks maintain distributed interferometers under the control of a single analysis computer with multiple user access. 7 refs., 11 figs.

  13. On the direct detection of gravitational waves, and some of the problems of improving laser interferometers

    NASA Astrophysics Data System (ADS)

    Pustovoyt, V. I.

    2016-07-01

    In this paper we describe an observational method for determining black holes masses. The study shows that the knowledge of the recorded low-frequency gravitational waves and the period from the beginning of registration till the moment of black holes collapse is sufficient and even preferable in determining the possible values of collapsing black holes masses. The reason for this is that the proportion of the period in the measured interval containing relativistic corrections (i.e. those ones in which the black hole speed is comparable to the speed of light), is smaller if the observed and measured time interval is longer. The values of black holes masses and the measured time interval, obtained as a result of the first observations, according to this model are in a very good agreement.We examine the problem of mirror heating in Fabry-Perot cavity of Michelson interferometer, by incident laser radiation, and we conclude that the problem of heat removal can be solved by a different approach, without use of multilayer reflective openings. As an alternative approach to the creation of highly reflective structures, we suggest using a spatially extended structure with a sinusoidal variation of the refractive index. We consider some of the possible technological methods for producing such structures based on heterogeneous media.The article describes the effects of the incident laser radiation exposure on the periodic structure, and it shows that the volume ponderomotive force may lead to a mirror polarization due to the radiation, and consequently, to appearance of an additional mechanical connection of the mirror with the surrounding mirror suspension design. The article examines the impact of the surface ponderomotive forces on the media boundary with different dielectric permeability and it shows that pressure spatial variables arising at the same time lead to deformation of the media layers, and the deformation and pressure values depend on the difference in the

  14. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?

    NASA Astrophysics Data System (ADS)

    Flechtner, Frank; Neumayer, Karl-Hans; Dahle, Christoph; Dobslaw, Henryk; Fagiolini, Elisa; Raimondo, Jean-Claude; Güntner, Andreas

    2016-03-01

    The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.

  15. Combining optical quadrature and differential interference contrast to facilitate embryonic cell counting with fluorescence imaging for confirmation

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Chang, ChihChing; Brooks, Dana H.; Warner, Carol M.; DiMarzio, Charles A.

    2005-03-01

    The Multifunctional Staring Mode Microscope was developed to permit three modes of imaging for cell counting in mouse embryos: Optical Quadrature, Differential Interference Contrast (DIC), and Fluorescence Imaging. The Optical Quadrature Microscope, consisting of a modified Mach-Zender Interferometer, uses a 632.8 nm laser to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras, preceded by multiple beamsplitters, are used to read the four interferograms, which are then combined to produce an image of the complex electric field amplitude. The phase of the complex amplitude is then unwrapped using a 2-D phase unwrap algorithm and images of optical path length are produced. To combine the additional modes of DIC and Fluorescence Imaging with the Optical Quadrature Microscope, a 632.8 nm narrow bandpass beamsplitter was placed at the output of the microscope. This allows the laser light to continue through the Mach-Zender while all other wavelengths are reflected at 90 degrees to another camera. This was effective in combining the three modes as the fluorescence wavelength for the Hoechst stain is well below the bandpass window of the beamsplitter. Both live and fixed samples have been successfully imaged in all three modes. Accuracy in cell counting was achieved by using the DIC image for detecting cell boundaries and the Optical Quadrature image for phase mapping to determine where cells overlap. The final results were verified by Hoechst fluorescence imaging to count the individual nuclei. Algorithms are currently being refined so larger cell counts can be done more efficiently.

  16. The matter-wave laser interferometer gravitation antenna : a new tool for underground geophysical studies

    NASA Astrophysics Data System (ADS)

    Bouyer, P.

    2015-12-01

    Since its first demonstration in 1991, Atomic Interferometry (AI) has shown to be an extremely performing probe of inertial forces. More recently, AI has revealed sensitivities to acceleration or rotation competing with or even beating state-of-the art sensors based on other technologies. The high stability and accuracy of AI sensors relying on cold atoms is at the basis of several applications ranging from fundamental physics (e.g. tests of general relativity and measurements of fundamental constants), geophysics (gravimetry, gradiometry) and inertial navigation. We are currently building a large scale matter-wave detector which will open new applications in geoscience and fundamental physics. In contrast to standard AI based sensors, our matter-wave laser interferometer gravitation antenna (MIGA) exploits the superb seismic environment of a low noise underground laboratory. This new infrastructure is embedded into the LSBB underground laboratory, in France, ideally located away from major anthropogenic disturbances and benefitting from very low background noise. MIGA combines atom and laser interferometry techniques, manipulating an array of atomic ensembles distributed along the antenna to simultanously read out seismic effects, inertial effects and eventually the passage of a gravity wave. The first version uses a set of three atomic sensors placed along an optical cavity. The spatial resolution obtained with this configuration will enable the separation of the seismic, inertial and GW contributions. This technique will bring unprecedented sensitivities to gravity gradients variations and open new perspectives for sub Hertz gravity wave and geodesic detection. MIGA will provide measurements of gravity gradients variations limited only by the AI shot noise, which will allow sensitivities of about 10-13 s-2Hz-1/2@ 2Hz. This instrument will then be capable to spatially resolve 1 m3 of water a distances of about 100 m, which opens important potential applications

  17. VISAR (Velocity Interferometer System for Any Reflector): Line-imaging interferometer

    SciTech Connect

    Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; Whittemore, G.R.

    1990-01-01

    This paper describes a Velocity Interferometer System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface that was proportional to the velocity at each point. The Doppler-shifted image of the illuminated line was focused from the surface through a push-pull VISAR interferometer where the light was split into four quadrature-coded images. When the surface accelerated, the Doppler-shift caused the interference for each point on each line image to oscillate sinusoidally. Coherent fiber optic bundles transmitted images from the interferometer to an electronic streak camera for sweeping in time and recording on film. Data reduction combined the images to yield a continuous velocity and displacement history for all points on the surface that reflected sufficient light. The technique was demonstrated in an experiment where most of the surface was rapidly driven to a saddle shape by an exploding foil. Computer graphics were used to display the measured velocity history and to aid visualization of the surface motion. 6 refs., 8 figs.

  18. Ring cavity fiber laser based on Fabry-Pérot interferometer for high-sensitive micro-displacement sensing

    NASA Astrophysics Data System (ADS)

    Bai, Yan; Yan, Feng-ping; Liu, Shuo; Tan, Si-yu; Wen, Xiao-dong

    2015-11-01

    A ring cavity fiber laser based on Fabry-Pérot interferometer (FPI) is proposed and demonstrated experimentally for micro-displacement sensing. Simulation results show that the dips of the FPI transmission spectrum are sensitive to the cavity length of the FPI. With this characteristic, the relationship between wavelength shift and cavity length change can be established by means of the FPI with two aligned fiber end tips. The maximum sensitivity of 39.6 nm/μm is achieved experimentally, which is approximately 25 times higher than those in previous reports. The corresponding ring cavity fiber laser with the sensitivity for displacement measurement of about 6 nm/μm is implemented by applying the FPI as the filter. The proposed fiber laser has the advantages of simple structure, low cost and high sensitivity.

  19. Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach-Zehnder interferometer.

    PubMed

    Ahmad, H; Salim, M A M; Azzuhri, Saaidal R; Jaddoa, M F; Harun, S W

    2016-02-01

    In this paper, stable dual-wavelength generation using a strain technique for a ytterbium-doped fiber laser is successfully demonstrated. A microfiber-based Mach-Zehnder interferometer is inserted into the laser ring cavity and stretched using the xyz translation stage. Four sets of dual-wavelength output lasing are obtained when the strain is applied onto a microfiber. The dual-wavelength output possesses spacing between 7.12 and 11.59 nm, with displacement from 2 to 190 μm from the central wavelength. The obtained side-mode suppression ratio is ∼48  dBm, while the maximum power fluctuation and wavelength shift are less than 0.6 dB and 0.01 nm, respectively. The results demonstrate that this setup generates a stable dual-wavelength laser in the 1 μm region. PMID:26836079

  20. CO{sub 2} laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements

    SciTech Connect

    Bamford, D. J.; Cummings, E. A.; Panasenko, D.; Fenner, D. B.; Hensley, J. M.; Boivin, R. L.; Carlstrom, T. N.; Van Zeeland, M. A.

    2013-09-15

    A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 10{sup 17} m{sup −2} in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.

  1. A dual-pass Mach-Zehnder interferometer filter using a TCF loop mirror for double-wavelength fiber lasers

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Su, Wei; Wang, Xin

    2013-09-01

    A dual-pass Mach-Zehnder interferometer filter using a section of twin-core fiber (TCF) loop mirror is proposed. The filter is theoretically and experimentally studied for various interferometer arm difference when TCF length is constant. Theoretical results are validated by the experimental demonstration and in good agreement with the experimental results. And then, by using the filter in a ring fiber laser, a stable and switchable dual-wavelength lasing is obtained experimentally. The 3-dB bandwidth and the SMSR of the output laser are 0.015 nm and higher than 62.4 dB, respectively. The peak power fluctuation and wavelength shift are also monitored to be less than 0.04 dB and 0.02 nm over an hour at room temperature. Furthermore, the output laser can be switched between single and dual wavelength by carefully adjusting the PCs. The experimental results show that the filter can suppress mode competition effectively, improve the SMSR availably, and enhance the stability of the output lasing.

  2. CO2 laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements.

    PubMed

    Bamford, D J; Cummings, E A; Panasenko, D; Fenner, D B; Hensley, J M; Boivin, R L; Carlstrom, T N; Van Zeeland, M A

    2013-09-01

    A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 10(17) m(-2) in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.

  3. CO2 laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements

    NASA Astrophysics Data System (ADS)

    Bamford, D. J.; Cummings, E. A.; Panasenko, D.; Fenner, D. B.; Hensley, J. M.; Boivin, R. L.; Carlstrom, T. N.; Van Zeeland, M. A.

    2013-09-01

    A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 1017 m-2 in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.

  4. Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser.

    PubMed

    Bravo, Mikel; Fernández-Vallejo, Montserrat; Echapare, Mikel; López-Amo, Manuel; Kobelke, J; Schuster, K

    2013-02-11

    This work experimentally demonstrates a long-range optical fiber sensing network for the multiplexing of fiber sensors based on photonic crystal fibers. Specifically, six photonic crystal fiber sensors which are based on a Sagnac interferometer that includes a suspended-core fiber have been used. These sensors offer a high sensitivity for micro-displacement measurements. The fiber sensor network presents a ladder structure and its operation mode is based on a fiber ring laser which combines Raman and Erbium doped fiber amplification. Thus, we show the first demonstration of photonic crystal fiber sensors for remote measurement applications up to 75 km. PMID:23481755

  5. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    SciTech Connect

    Hilbert, V.; Rödel, C.; Zastrau, U.; Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S.; Döppner, T.; Ma, T.; Fletcher, L.; Förster, E.; Glenzer, S. H.; Lee, H. J.; Hartley, N. J.; Kazak, L.; Komar, D.; Skruszewicz, S.; and others

    2014-09-08

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  6. Optimized quantum nondemolition measurement of a field quadrature

    NASA Astrophysics Data System (ADS)

    Paris, Matteo G.

    2002-01-01

    We suggest an interferometric scheme assisted by squeezing and linear feedback to realize the whole class of field-quadrature quantum nondemolition measurements, from Von Neumann projective measurement to a fully nondestructive noninformative one. In our setup, the signal under investigation is mixed with a squeezed probe in an interferometer and, at the output, one of the two modes is revealed through homodyne detection. The second beam is then amplitude-modulated according to the outcome of the measurement, and finally squeezed according to the transmittivity of the interferometer. Using strongly squeezed or antisqueezed probes respectively, one achieves either a projective measurement, i.e., homodyne statistics arbitrarily close to the intrinsic quadrature distribution of the signal, and conditional outputs approaching the corresponding eigenstates, or a fully nondestructive one, characterized by an almost uniform homodyne statistics, and by an output state arbitrarily close to the input signal. By varying the squeezing between these two extremes, or simply by tuning the internal phase shift of the interferometer, the whole set of intermediate cases may also be obtained. In particular, an optimal quantum nondemolition measurement of quadrature may be achieved, which minimizes the information gain versus state disturbance tradeoff.

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Fabry—Perot interferometer with resonant mirrors

    NASA Astrophysics Data System (ADS)

    Troitskii, Yu V.

    1995-06-01

    An analysis is made of the task of construction of an interferometer with an output signal weakly dependent on the frequency of the incident light and yet highly sensitive to a change in the distance between the mirrors. This can be achieved by the use of resonant dielectric mirrors with the reflection phase and amplitude strongly dependent on the frequency within the width of the response function of the interferometer. The interferometer can be reduced to a four-mirror configuration in the case of the proposed types of mirrors. The relevant expressions are derived for this configuration. It is shown that the distance between the mirrors can be considerably greater than has been assumed earlier. A system of parameters is introduced and specific examples are considered.

  8. Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers.

    PubMed

    Golubovic, B; Austin, R R; Steiner-Shepard, M K; Reed, M K; Diddams, S A; Jones, D J; Van Engen, A G

    2000-02-15

    We report the implementation and operation of novel superhigh-reflectivity negative-dispersion dielectric mirrors for use in tunable ultrafast laser systems. The mirror structure is divided into two distinct regions: an underlying superhigh-reflectivity dielectric quarter-wavelength stack and an overlying negative-dispersion section consisting of only a few layers and forming simple multiple Gires-Tournois interferometers. The example that we present was designed for operation from 800 to 900 nm and has a near-constant group-delay dispersion of -40 fs(2) and a peak reflectivity greater than 99.99%. We show a comparison of the predicted and the measured mirror performance and application of these mirrors in a mode-locked Ti:sapphire laser tunable from 805 to 915 nm.

  9. Digital quadrature phase detection

    DOEpatents

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  10. Digital quadrature phase detection

    DOEpatents

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  11. 432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.

    2014-10-01

    A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  12. Optimized quadrature surface coil designs

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2008-01-01

    Background Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not. Materials and methods The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared. Results The SNR-optimized figure-8 detector has loop radius r8 ∼ 0.6d, so r8/r0 ∼ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ∼ d and crossover angle of ≥ 150° at the center. Conclusions These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors. PMID:18057975

  13. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer.

    PubMed

    Liu, Guigen; Han, Ming

    2015-06-01

    We report a novel fiber-optic sensor for measurement of static gas pressure based on the natural convection of a heated silicon pillar attached to a fiber tip functioning as a Fabry-Perot interferometer (FPI). A visible laser beam is guided by the fiber to efficiently heat the silicon pillar, while an infrared whitelight source, also guided by the fiber, is used to measure the temperature of the FPI, which is influenced both by the laser power and the pressure through natural convection. We theoretically and experimentally show that, by monitoring the fringe shift caused by the laser heating, air pressure sensing with little temperature cross-sensitivity can be achieved. The pressure sensitivity can be easily tuned by adjusting the heating laser power. In our experiment, the sensor performance within the temperature range from 20°C to 50°C and the pressure range from 0 to 1400 psi has been characterized, showing an average sensitivity of -0.52  pm/psi. Compared to the passive version of the sensor, the pressure sensitivity was ∼15 times larger, and the temperature cross-sensitivity was ∼100 times smaller. PMID:26030532

  14. A Low-Cost 16 Quadrature Amplitude Modulation Direct-Detection-Orthogonal Frequency-Division Multiplexing Radio-over-Fiber System Using Low-Cost Direct-Modulation Laser to Generate Optical mm-Wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-07-01

    This article demonstrates a novel scheme to generate 16 quadrature amplitude modulation orthogonal frequency-division multiplexing signals for radio-over-fiber systems using a low-cost direct-modulation laser to generate an optical millimeter-wave. Mathematical analysis of that system is also investigated. The fiber Bragg grating is employed because the repetitive frequency of the radio frequency source and the bandwidth of the optical modulator are largely reduced, and the architecture of the radio-over-fiber system is simpler. Because no expensive broadband external modulator is used, the overall system is considered a low-cost solution. The simple structure and low cost of the radio-over-fiber system is attractive for the future cost-effective systems.

  15. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    NASA Astrophysics Data System (ADS)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  16. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  17. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  18. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  19. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  20. A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    PubMed Central

    Zhao, Longjiang; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung

    2011-01-01

    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ∼ 875 °C with a step of 25 °C. PMID:22346567

  1. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  2. Demonstration of photon-photon resonance peak enhancement by waveguide configuration modification on active multimode interferometer laser diode

    NASA Astrophysics Data System (ADS)

    Kitano, Takuya; Nasir Uddin, Mohammad; Hong, Bingzhou; Tajima, Akio; Jiang, Haisong; Hamamoto, Kiichi

    2016-08-01

    The recent rapid growth of data traffic is leading to high-speed communication for local areas, such as the fiber-to-the-home service. A semiconductor laser is used for such a purpose; however, there is the difficulty that an even higher frequency response occurs in only carrier-photon resonance. For this reason, it is effective to use a second resonance, such as a photon-photon resonance (PPR), for enhancing the frequency response, and the active multimode interferometer laser diode (active-MMI LD) is one of the candidates for achieving a high PPR frequency. In order to obtain an even higher PPR frequency, we have investigated the control scheme of enhancing PPR. In this work, we compared two types of active-MMI waveguide structures to confirm the scheme. As a result, a 3.8 GHz enhancement of the PPR peak, resulting in a 3 dB lower frequency response of 17 GHz, has been successfully achieved by waveguide geometry modification.

  3. Demonstration of photon–photon resonance peak enhancement by waveguide configuration modification on active multimode interferometer laser diode

    NASA Astrophysics Data System (ADS)

    Kitano, Takuya; Nasir Uddin, Mohammad; Hong, Bingzhou; Tajima, Akio; Jiang, Haisong; Hamamoto, Kiichi

    2016-08-01

    The recent rapid growth of data traffic is leading to high-speed communication for local areas, such as the fiber-to-the-home service. A semiconductor laser is used for such a purpose; however, there is the difficulty that an even higher frequency response occurs in only carrier-photon resonance. For this reason, it is effective to use a second resonance, such as a photon–photon resonance (PPR), for enhancing the frequency response, and the active multimode interferometer laser diode (active-MMI LD) is one of the candidates for achieving a high PPR frequency. In order to obtain an even higher PPR frequency, we have investigated the control scheme of enhancing PPR. In this work, we compared two types of active-MMI waveguide structures to confirm the scheme. As a result, a 3.8 GHz enhancement of the PPR peak, resulting in a 3 dB lower frequency response of 17 GHz, has been successfully achieved by waveguide geometry modification.

  4. Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; La, Jongpil; Park, Kyihwan

    2006-10-15

    A Zeeman-type He-Ne laser is frequently used as a heterodyne laser due to the simple construction and the small loss of a light. However, the low beat frequency of the Zeeman-type laser limits the maximum measurable velocity. In this article, an electronic frequency modulation algorithm is proposed to overcome the drawback of the low velocity measurement capability by increasing the beat frequency electronically. The brief analysis, the measurement scheme of the proposed algorithm, and the experimental results are presented. It is demonstrated that the proposed algorithm is proven to enhance the maximum measurable velocity.

  5. The improved pyroelectric detectors for far-infrared laser interferometer measuring

    NASA Astrophysics Data System (ADS)

    Xiang, Gao

    1990-05-01

    In this paper, the application of the pyroelectric detectors for Far-Infrared laser diagnostics on TOKAMAK plasma is described. We discovered experimentally that the Fabry-Perot interference could affect the performance of the pyroelectric detectors (PED). The improved pyroelectric detector (IPD) was developed for FIR laser coheront measuring. Some designing considerations about the pyroelectric detectors used in high temperature plasma conditions are mentioned.

  6. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  7. Improved straightness interferometer for nanometrology

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Ming

    2005-02-01

    The interferometers which measure the displacement parallel to the measurement axis are called linear interferometers, while those measure the displacement orthogonal to the measurement axis are called straightness interferometers. Theoretically, the orthogonal characteristic between the displacement and the measurement axis does not introduce optical path difference (OPD) and thus, makes null signal. These lead to the straightness interferometer difficult to be implemented. A generalized laser interferometer system based on three design principles, the heterodyne frequency, the avoiding mixing, and the perfect symmetry, is described. These design principles give rise to the interferometer a highly stable system with no periodic nonlinearity. A novel straightness sensor, consisting of a straightness prism and a straightness reflector, is incorporated into the generalized system to form a straightness interferometer. With the help of a Hewlett-Packard commercial linear interferometer, the validity of the developed straightness interferometer has verified. Based on the present design, the interferometer has a gain of 0.348, a periodic nonlinearity of less than 40 picometers, and a displacement noise of 4 pm/√Hz at bandwidth 7.8 kHz. This system is useful in precision straightness measurement.

  8. Optically Recording Velocity Interferometer System: Applications and Challenges

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia

    2015-06-01

    The Optically Recording Velocity Interferometer System (ORVIS) is a useful variant of the single point Velocity Interferometer System Any Reflector (VISAR) for the measurement of spatially dependent surface motion. Despite being similar in name, the two systems fundamentally differ in terms of the light recombination afforded by the interferometer geometry and subsequent recording method of the fringe phase variations. While both techniques have long been established as useful measurement technologies in shock physics studies of homogeneous and heterogeneous materials, the number of researchers employing spatially resolved ORVIS remains small. The first part of this presentation will discuss the baseline system including data examples only possible with the diagnostic's ability for continuous spatial recording. Recent adaptations of the baseline system have extended capabilities to incorporate multiple interferometers and laser illumination sources for observations in multiple spatial dimensions and non-planar geometries. The second part of this presentation will discuss efforts to overcome noted practical challenges when fielding the diagnostic and post-processing of image data. Application to non-planar geometries and highly heterogeneous materials motivates an appreciation of the coupling between the target surface reflectance properties and the light collection optics which can be quantitatively assessed through the bidirectional reflectance distribution function (BRDF) of the reflector. Challenges of practically locating fringe jumps in post-processing are discussed in the context of appreciating the underlying quadrature relationships of the fringe records. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  10. Analog-to-digital converters nonlinear errors correction in thermal diagnostics for the laser interferometer space antenna mission.

    PubMed

    Sanjuán, J; Lobo, A; Ramos-Castro, J

    2009-11-01

    Low-noise temperature measurements at frequencies in the millihertz range are required in the laser interferometer space antenna (LISA) and LISA PathFinder missions. The required temperature stability for LISA is around 10 microK Hz(-1/2) at frequencies down to 0.1 mHz. In this paper we focus on the identification and reduction in a source of excess noise detected when measuring time-varying temperature signals. This is shown to be due to nonidealities in the analog-to-digital converter (ADC) transfer curve, and degrades the measurement by about one order of magnitude in the measurement bandwidth when the measured temperature drifts by a few approximately microK s(-1). In a suitable measuring system for the LISA mission, this noise needs to be reduced. Two different methods based on the same technique have been implemented, both consisting in the addition of dither signals out of band to mitigate the ADC nonideality errors. Excess noise of this nature has been satisfactorily reduced by using these methods when measuring temperature ramps up to 10 microK s(-1). PMID:19947750

  11. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    SciTech Connect

    Zheng, Mei C. Gmachl, Claire F.; Liu, Peter Q.; Wang, Xiaojun; Fan, Jen-Yu; Troccoli, Mariano

    2013-11-18

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.

  12. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    NASA Astrophysics Data System (ADS)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  13. Fiber laser strain sensor based in the measurement of a Sagnac interferometer optical power spectrum

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez Tamayo, R. I.; Pottiez, O.; Kuzin, E. A.; Ibarra-Escamilla, B.; Barcelata Pinzón, A.

    2014-06-01

    In this paper a linear cavity Erbium doped fiber (EDF) laser based in a fiber Bragg grating (FBG) and a fiber optical loop mirror with a high birefringence fiber in the loop (Hi-Bi FOLM) is used as a strain sensor. The Fabry-Perot cavity is formed by the FBG and the Hi-Bi FOLM, used as a measurement system of strain variations produced on the FBG, used as a strain sensor device. Usually, fiber laser sensor experimental setups determine the measured variable magnitude by using of an optical spectrum analyzer (OSA). Hi-Bi FOLM transmission spectrum wavelength displacement by fiber loop temperature variations measurement can be an attractive application exploiting the characteristics of FOLM transmission spectrum behavior due to Hi-Bi fiber loop temperature variations to determine the FBG strain applied through the maximal optical power monitoring by simple use of a photodetector and a temperature meter.

  14. Length Scales in Bayesian Automatic Adaptive Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.

    2016-02-01

    Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  15. Frequency stabilization of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer

    SciTech Connect

    Hitachi, K. Ishizawa, A.; Mashiko, H.; Sogawa, T.; Gotoh, H.; Tadanaga, O.; Nishikawa, T.

    2015-06-08

    We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.

  16. Messages about the Messengers: Reception and Review of ``Astronomy's New Messengers,'' The Laser Interferometer Gravitational-wave Observatory's Interactive Public Exhibition

    NASA Astrophysics Data System (ADS)

    Rankins, Brooke; Cavagliá, Marco

    2010-10-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) is an endeavor to directly confirm the existence of gravitational waves, funded by the National Science Foundation. As a publicly funded research project, it is both within its directive and within its best interest to educate and inform the public at large of its efforts. The Education and Public Outreach (EPO) group within LIGO, under the direction of Marco Cavaglià, has developed an interactive exhibit to educate, explain and showcase LIGO to the general public. The exhibit, entitled ``Astronomy's New Messengers,'' debuted at the World Science Festival in New York City, and includes features to explain gravitational waves and their possible sources, an interferometer, the space-time fabric model, and the difficulties in identifying a gravitational wave. The exhibit visitors were asked to complete a survey about their experience at ``Astronomy's New Messengers,'' and the presentation will report the survey results, and explore the full exhibit's reception by the general public.

  17. Keck Interferometer

    NASA Technical Reports Server (NTRS)

    2003-01-01

    At the summit of Mauna Kea, Hawaii, NASA astronomers have linked the two 10-meter (33-foot) telescopes at the W. M. Keck Observatory. The linked telescopes, which together are called the Keck Interferometer, make up the world's most powerful optical telescope system. The Keck Interferometer will search for planets around nearby stars and study dust clouds around those stars that may hamper future space-based searches for habitable, Earthlike planets. The Keck Interferometer is part of NASA's Origins program, which seeks to answer two fundamental questions: How did we get here? Are we alone?

  18. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  19. Security of the differential-quadrature-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2016-08-01

    One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer. Using essentially the same setup and by regarding a train of many pulses as a single block, one can carry out the so-called differential-quadrature-phase-shift (DQPS) protocol, which is a variant of differential-phase-shift (DPS) protocols. Here we prove the security of the DQPS protocol based on an adaptation of proof techniques for the BB84 protocol, which inherits the advantages arising from the simplicity of the protocol, such as accommodating the use of threshold detectors and simple off-line calibration methods for the light source. We show that the secure key rate of the DQPS protocol in the proof is eight-thirds as high as the rate of the PE-BB84 protocol.

  20. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach-Zehnder interferometer.

    PubMed

    Corral, V; Guzmán, R; Gordón, C; Leijtens, X J M; Carpintero, G

    2016-05-01

    We report the demonstration of an optical-frequency comb generator based on a monolithically integrated ring laser fabricated in a multiproject wafer run in an active/passive integration process in a generic foundry using standardized building blocks. The device is based on a passive mode-locked ring laser architecture, which includes a Mach-Zehnder interferometer to flatten the spectral shape of the comb output. This structure allows monolithic integration with other optical components, such as optical filters for wavelength selection, or dual wavelength lasers for their stabilization. The results show a -10  dB span of the optical comb of 8.7 nm (1.08 THz), with comb spacing of 10.16 GHz. We also obtain a flatness of 44 lines within a 1.8 dB power variation.

  1. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach-Zehnder interferometer.

    PubMed

    Corral, V; Guzmán, R; Gordón, C; Leijtens, X J M; Carpintero, G

    2016-05-01

    We report the demonstration of an optical-frequency comb generator based on a monolithically integrated ring laser fabricated in a multiproject wafer run in an active/passive integration process in a generic foundry using standardized building blocks. The device is based on a passive mode-locked ring laser architecture, which includes a Mach-Zehnder interferometer to flatten the spectral shape of the comb output. This structure allows monolithic integration with other optical components, such as optical filters for wavelength selection, or dual wavelength lasers for their stabilization. The results show a -10  dB span of the optical comb of 8.7 nm (1.08 THz), with comb spacing of 10.16 GHz. We also obtain a flatness of 44 lines within a 1.8 dB power variation. PMID:27128043

  2. Laser anemometer using a Fabry-Perot interferometer for measuring mean velocity and turbulence intensity along the optical axis in turbomachinery

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Goldman, L. J.

    1982-01-01

    A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer.

  3. Earth Strain Measurements with a Laser Interferometer: An 800-meter Michelson interferometer monitors the earth's strain field on the surface of the ground.

    PubMed

    Berger, J; Lovberg, R H

    1970-10-16

    The development of the laser as a source of coherent optical radiation has permitted the application of interferometric techniques to the problem of earth strain measurement. By use of this technology, an 800-meter laser strain meter has been developed which operates above the surface of the ground. The instrument has a strain least count of 10(-10), requires no calibration, and has a flat and linear response from zero frequency to 1 megahertz. The linearity and large dynamic range of the laser strain meter offer unprecedented versatility in the recording of seismic strains associated with earthquakes and nuclear blasts. The extremely wide bandwidth opens new areas of the strain spectrum to investigation. A key to the understanding of the state of stress of the earth and the association phenomona of tectonic activity and earthquakes is a knowledge of the spatial distribution of the earth strain. Measurements of secular strain and earth tides indicate that, even at these long periods, surface strain measurements are valid representations of earth strain at depth. The LSM thus provides a means of making crustal strain measurements at points selected for maximum geophysical interest and ultimately allow the mapping of strain field distributions.

  4. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  5. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  6. Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2016-06-01

    A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.

  7. A Thermal-beam Calcium Interferometer

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher; van Zjill, Marshall; Washburn, Matthew; Archibald, James; Christensen, Dan; Birrell, Jeremiah; Burdett, Adam; Durfee, Dallin

    2007-06-01

    We report on the construction of a next-generation atom interferometer. Our research includes developing passive stabilization techniques, low-noise laser current drivers, high-speed scan-balancing lock circuits, and high-speed low-noise photo-detecting units. Our efforts have lead to developing an extremely stable laser locked to an ultra-high finesse optical cavity for use in a Ramsey-Bord'e interferometer scheme. The interferometer itself is based on a thermal calcium beam and will be upgraded in the future to a dual species Ca/Sr interferometer sensitive enough to improve measurements of possible time variance of the fine structure constant.

  8. Generalized analysis of quantum noise and dynamic backaction in signal-recycled Michelson-type laser interferometers

    NASA Astrophysics Data System (ADS)

    Khalili, Farid Ya.; Tarabrin, Sergey P.; Hammerer, Klemens; Schnabel, Roman

    2016-07-01

    We analyze the radiation-pressure-induced interaction of mirror motion and light fields in Michelson-type interferometers used for the detection of gravitational waves and for fundamental research in tabletop quantum optomechanical experiments, focusing on the asymmetric regime with a (slightly) unbalanced beam splitter and a (small) offset from the dark port. This regime, as it was shown recently, provides new interesting features, in particular a stable optical spring and optical cooling on cavity resonance. We show that, generally, the nature of optomechanical coupling in Michelson-type interferometers does not fit into the standard dispersive-dissipative dichotomy. In particular, a symmetric Michelson interferometer with signal-recycling but without power-recycling cavity is characterized by a purely dissipative optomechanical coupling; only in the presence of asymmetry, additional dispersive coupling arises. In gravitational waves detectors possessing signal- and power-recycling cavities, yet another coherent type of optomechanical coupling takes place. We develop here a generalized framework for the analysis of asymmetric Michelson-type interferometers, which also covers the possibility of the injection of carrier light into both ports of the interferometer. Using this framework, we analyze in depth the anomalous features of the Michelson-Sagnac interferometer, which have been discussed and observed experimentally previously [A. Xuereb et al., Phys. Rev. Lett. 107, 213604 (2011), 10.1103/PhysRevLett.107.213604; S. P. Tarabrin et al., Phys. Rev. A 88, 023809 (2013);, 10.1103/PhysRevA.88.023809 A. Sawadsky et al., Phys. Rev. Lett. 114, 043601 (2015), 10.1103/PhysRevLett.114.043601].

  9. Error Analysis of Quadrature Rules. Classroom Notes

    ERIC Educational Resources Information Center

    Glaister, P.

    2004-01-01

    Approaches to the determination of the error in numerical quadrature rules are discussed and compared. This article considers the problem of the determination of errors in numerical quadrature rules, taking Simpson's rule as the principal example. It suggests an approach based on truncation error analysis of numerical schemes for differential…

  10. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    SciTech Connect

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-04-15

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10{sup 18} cm{sup -3}, the maximal one is 2 x 10{sup 20} cm{sup -3}. Furthermore, it provides a resolution of the electron density in space of 50 {mu}m and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  11. A multiwavelength Er-doped fiber laser using a nonlinear optical loop mirror and a twin-core fiber-based Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Zou, Hui

    2013-04-01

    A multiwavelength Er-doped fiber (EDF) laser was proposed and experimentally demonstrated using a nonlinear optical loop mirror (NOLM) and a twin-core fiber-based Mach-Zehnder interferometer (TCF MZI). A total of 40 lasing wavelengths around the wavelength of 1560 nm with an average signal-to-noise ratio (SNR) of 28 dB and 30 lasing wavelengths around the wavelength of 1530 nm with an average SNR of 20 dB were achieved when the EDF length was 6 and 2 m, respectively. To the best of our knowledge, this is the first time that multiwavelength oscillations have been obtained in the wavelength range of 1530 nm by using a NOLM. The wavelength spacing is ˜0.19 nm which is determined by the TCF MZI. In addition, the effects of the pump power and the state of polarization on the performance of the multiwavelength EDF laser were investigated.

  12. Multi-component and residual strain field characterization using a quadrature phase shifted EFPI

    SciTech Connect

    Jones, M.E.; Bhatia, V.; Murphy, K.A.; Claus, R.O.; Grace, J.L.; Poland, S.; Tran, T.A.; Greene, J.A.

    1994-12-31

    Fabry-Perot interferometers have been used in fiber optic sensor applications to measure various relative strain and environmental effects in materials and structures. Industrial, commercial, and military applications have all been demonstrated. In this paper the authors present the ability to make absolute measurements using an absolute extrinsic Fabry-Perot interferometer (AEFPI). Performance is demonstrated with a measurement rate of 2 {micro}m/sec. A modified EFPI sensor that is able to distinguish between axial strain and the other strain states is also presented. The quadrature phase shifted extrinsic Fabry-Perot interferometer (QPS/EFPI) takes advantage of two input fibers whose transfer function curves are displaced by one quarter of a complete fringe, thus allowing determination of strain magnitude and direction. A variety of applications are described demonstrating the diverse scope and effectiveness of the EFPI sensors. These applications could benefit from the additional measurement capabilities of the aforementioned sensor designs.

  13. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  14. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    NASA Astrophysics Data System (ADS)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  15. A low-noise transimpedance amplifier for the detection of “Violin-Mode” resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    SciTech Connect

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-15

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level “Violin-Mode” (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent “noise-gain peaking” arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes’ two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m{sup −1}(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  16. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m-1(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  17. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm. PMID:25430131

  18. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  19. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  20. Calculates Angular Quadrature Weights and Cosines.

    1988-02-18

    DSNQUAD calculates the angular quadrature weights and cosines for use in CCC-254/ANISN-ORNL. The subroutines in DSNQUAD were lifted from the XSDRN-PM code, which is supplied with the CCC-475/ SCALIAS-77 package.

  1. Angular quadratures for improved transport computations

    SciTech Connect

    Abu-Shumays, I.K.

    1999-07-22

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

  2. A theoretical performance study of an external cavity fiber Fabry-Perot interferometer for displacement measurement

    NASA Astrophysics Data System (ADS)

    Arumugam, Kumar

    The objective of this research is to explore a mathematical model developed by Wilkinson and Pratt for the external cavity fiber-based Fabry-Perot interferometer (EFPI) and to create a Michelson interferometer setup to validate a frequency modulation component of this model. A laser diode with nominal wavelength 635 nm is modulated by oscillating the diode current of maximum amplitude 22.62 mA to create correspondingly varying wavelength. Experiments are included to evaluate a rotating vector representation of the modulation harmonics in the signal received at the photodetector as of a cube corner translated by a piezo-electric actuator is displaced. Wavelength modulation as a function of diode current, the coherence length of the laser, and characteristics of the modulation harmonics are evaluated. A real time DAQ system and two lock-in amplifiers are utilized for detecting three side-band harmonics of the signal. For short range displacements this interferometer setup is monitored using a capacitance displacement sensor. The capacitance displacement measurement differed from the Michelson interferometer by 160 nm. The piezoelectric stage actuated with a 15 V Ramp signal produced 2.54 mum displacement of the cube corner. The setup is tested with Ramp signals of 75 V to 1.5 V and with the Ramp periods of 1 to 20 seconds to find the resolution of the interferometer, modulation of the wavelength sensitivity and the coherence length of the laser as 10.53 nm, 1.786 nm·A-1 and >1 m respectively. The best quadrature signal achieved corresponded to modulating the laser at amplitude of 18.86 mA at 1 kHz frequency with a path length difference of 6.35 mm. The amplitude comparison of side-band harmonics with Bessel function curves is consistent with a modulation amplitude of 1.28 rad corresponding to amplitude ratios of 0.5 (second and first) , 0.15 (third and second) and 0.06 (third and first) in the first through third Bessel function values.

  3. Increased sensitivity of femtosecond laser micro-machined in-fiber Mach-Zehnder interferometer for small-scale refractive index sensing

    NASA Astrophysics Data System (ADS)

    Debowska, Anna K.; Koba, Marcin; Janik, Monika; Bock, Wojtek J.; Śmietana, Mateusz

    2016-05-01

    In this paper we focus on refractive index (RI) sensing properties of a micro-size In-fiber Mach-Zehnder Interferometer (μIMZI). The μIMZI structure was fabricated as a precisely controlled side opening of a single-mode fiber using a femtosecond laser. The sensitivity to RI change in the micro-cavity has been measured and two RI sensitivity regions have been found for RI 1.33-1.36 and 1.37-1.40 RIU. The sensitivity in the first region is over 12,000 nm/RIU, and in the higher RI region is close to 50% higher. The obtained structures are an excellent solution for RI sensing with negligible temperature cross-sensitivity, especially where small amounts of liquid are available, e.g. in lab-on-chip, microfluidics.

  4. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  5. Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry-Perot interferometer and improvements

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Dou, Xiankang; Sun, Dongsong; Shu, Zhifeng; Xia, Haiyun; Gao, Yuanyuan; Hu, Dongdong; Shangguan, Mingjia

    2014-12-01

    Direct detection Doppler wind lidar (DWL) has been demonstrated for its capability of atmospheric wind detection ranging from the troposphere to stratosphere with high temporal and spatial resolution. We design and describe a fiber-based optical receiver for direct detection DWL. Then the locking error of the relative laser frequency is analyzed and the dependent variables turn out to be the relative error of the calibrated constant and the slope of the transmission function. For high accuracy measurement of the calibrated constant for a fiber-based system, an integrating sphere is employed for its uniform scattering. What is more, the feature of temporally widening the pulse laser allows more samples be acquired for the analog-to-digital card of the same sampling rate. The result shows a relative error of 0.7% for a calibrated constant. For the latter, a new improved locking filter for a Fabry-Perot Interferometer was considered and designed with a larger slope. With these two strategies, the locking error for the relative laser frequency is calculated to be about 3 MHz, which is equivalent to a radial velocity of about 0.53 m/s and demonstrates the effective improvements of frequency locking for a robust DWL.

  6. Improved Skin Friction Interferometer

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Bachalo, W. D.; Houser, M. H.

    1986-01-01

    An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film interferometer was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.

  7. Michelson Interferometer

    NASA Technical Reports Server (NTRS)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  8. Unequal-Arms Michelson Interferometers

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo; Armstrong, J. W.

    1999-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time-shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detectors of gravitational radiation is discussed.

  9. Unequal-Arms Michelson Interferometers

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  10. Past and Future SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, Steven; Poletto, G.

    2006-01-01

    With the launch of SOHO, it again became possible to carry out quadrature observations. In comparison with earlier observations, the new capabilities of coronal spectroscopy with UVCS and in situ ionization state and composition with Ulysses/SWICS enabled new types of studies. Results from two studies serve as examples: (i) The acceleration profile of wind from small coronal holes. (ii) A high-coronal reconnecting current sheet as the source of high ionization state Fe in a CME at Ulysses. Generally quadrature observations last only for a few days, when Ulysses is within ca. 5 degrees of the limb. This means luck is required for the phenomenon of interest to lie along the radial direction to Ulysses. However, when Ulysses is at high southern latitude in winter 2007 and high northern latitude in winter 2008, there will be unusually favorable configurations for quadrature observations with SOHO and corresponding bracketing limb observations from STEREO A/B. Specifically, Ulysses will be within 5 degrees of the limb from December 2006 to May 2007 and within 10 degrees of the limb from December 2007 to May 2008. These long-lasting quadratures and bracketing STEREO A/B observations overcome the limitations inherent in the short observation intervals of typical quadratures. Furthermore, ionization and charge state measurements like those on Ulysses will also be made on STEREO and these will be essential for identification of CME ejecta - one of the prime objectives for STEREO.

  11. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy.

    PubMed

    Ando, M; Arai, K; Takahashi, R; Heinzel, G; Kawamura, S; Tatsumi, D; Kanda, N; Tagoshi, H; Araya, A; Asada, H; Aso, Y; Barton, M A; Fujimoto, M K; Fukushima, M; Futamase, T; Hayama, K; Horikoshi, G; Ishizuka, H; Kamikubota, N; Kawabe, K; Kawashima, N; Kobayashi, Y; Kojima, Y; Kondo, K; Kozai, Y; Kuroda, K; Matsuda, N; Mio, N; Miura, K; Miyakawa, O; Miyama, S M; Miyoki, S; Moriwaki, S; Musha, M; Nagano, S; Nakagawa, K; Nakamura, T; Nakao, K; Numata, K; Ogawa, Y; Ohashi, M; Ohishi, N; Okutomi, S; Oohara, K; Otsuka, S; Saito, Y; Sasaki, M; Sato, S; Sekiya, A; Shibata, M; Somiya, K; Suzuki, T; Takamori, A; Tanaka, T; Taniguchi, S; Telada, S; Tochikubo, K; Tomaru, T; Tsubono, K; Tsuda, N; Uchiyama, T; Ueda, A; Ueda, K; Waseda, K; Watanabe, Y; Yakura, H; Yamamoto, K; Yamazaki, T

    2001-04-30

    TAMA300, an interferometric gravitational-wave detector with 300-m baseline length, has been developed and operated with sufficient sensitivity to detect gravitational-wave events within our galaxy and sufficient stability for observations; the interferometer was operated for over 10 hours stably and continuously. With a strain-equivalent noise level of h approximately 5x10(-21)/sqrt[Hz], a signal-to-noise ratio of 30 is expected for gravitational waves generated by a coalescence of 1.4M-1.4M binary neutron stars at 10 kpc distance. We evaluated the stability of the detector sensitivity with a 2-week data-taking run, collecting 160 hours of data to be analyzed in the search for gravitational waves.

  12. Tunable multi-wavelength erbium-doped fiber laser by cascading a standard Mach-Zehnder interferometer and a twin-core fiber-based filter

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Wang, Xin; Han, Bolin

    2013-12-01

    A tunable multi-wavelength erbium-doped fiber laser (MEDFL) based on a nonlinear optical loop mirror (NOLM) was proposed and experimentally demonstrated by cascading a standard Mach-Zehnder interferometer (MZI) and a twin-core fiber (TCF)-based filter. Due to the ‘blue shift’ of the transmission band of the TCF-based filter when the TCF was bent, a tunable lasing waveband was realized by moving the transmission band of the TCF-based filter to cover different channels provided by the standard MZI. Experimental results showed that the lasing waveband can be linearly tuned over a range of 24 nm from 1542 to 1566 nm with a channel spacing of 0.4 nm, a maximum lasing line amount of 19, and an optical signal to noise ratio (OSNR) of 39 dB. The stability of the laser spectra was verified with a wavelength drift of 0.04 nm and a power fluctuation of ±0.3 dB.

  13. Quadrature formulae for problems in mechanics

    NASA Astrophysics Data System (ADS)

    Milovanović, Gradimir V.; Igić, Tomislav; Tončev, Novica

    2012-09-01

    The fast progress in recent years in symbolic computation and variable-precision arithmetic provide a possibility for generating the recursion coefficients in the three-term recurrence relation for orthogonal polynomials with respect to several nonclassical weight functions, as well as the construction of the corresponding quadrature rules of Gaussian type. Such quadratures are very important in many applications in engineering (fracture mechanics, damage mechanics, etc.), as well as in other computational and applied sciences. The boundary element method (BEM), finite element method (FEM), methods for solving integral equations, etc. very often require the numerical evaluation of one dimensional or multiple integrals with singular or near singular integrands with a high precision. In this paper we give some improvements of quadrature rules of Gaussian type with logarithmic and/or algebraic singularities. A numerical examples is included.

  14. Summation Paths in Clenshaw-Curtis Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, S.; Adam, Gh.

    2016-02-01

    Two topics concerning the use of Clenshaw-Curtis quadrature within the Bayesian automatic adaptive quadrature approach to the numerical solution of Riemann integrals are considered. First, it is found that the efficient floating point computation of the coefficients of the Chebyshev series expansion of the integrand is to be done within a mathematical structure consisting of the union of coefficient families ordered into complete binary trees. Second, the scrutiny of the decay rates of the involved even and odd rank Chebyshev expansion coefficients with the increase of their rank labels enables the definition of Bayesian decision paths for the advancement to the numerical output.

  15. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  16. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  17. Heterodyne Interferometer with Angstrom-level Periodic Nonlinearity

    SciTech Connect

    Schmitz, Tony L.; Beckwith, John F.

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acoustooptic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  18. Error Bounds for Quadrature Methods Involving Lower Order Derivatives

    ERIC Educational Resources Information Center

    Engelbrecht, Johann; Fedotov, Igor; Fedotova, Tanya; Harding, Ansie

    2003-01-01

    Quadrature methods for approximating the definite integral of a function f(t) over an interval [a,b] are in common use. Examples of such methods are the Newton-Cotes formulas (midpoint, trapezoidal and Simpson methods etc.) and the Gauss-Legendre quadrature rules, to name two types of quadrature. Error bounds for these approximations involve…

  19. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy. PMID:27250373

  20. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  1. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  2. A Strontium87 Ion Interferometer

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Archibald, James L., II; Jackson, Jarom; Anderson, Dean; Hermansen, Michael; Cunningham, Mark; Durfee, Dallin S.

    2011-05-01

    We describe a matter-wave interferometer based on Sr87+. The ions are generated from a laser-cooled strontium beam that is photo-ionized using a two-photon transition to an auto- ionizing state in the continuum. The ionization occurs between two electrodes, allowing us to accelerate the ions to any desired energy from a few meV to 20 keV. Each ion's quantum wave is split and recombined using stimulated Raman transitions between the hyperfine ground states of Sr87+. The two required optical frequencies for this transition are created by frequency-shifting a master laser in opposite directions by half of the 5 GHz ground-state hyperfine splitting. We can then determine the interferometer phase from the fluorescence of one of the ground states. We will discuss the theory of operation, experimental methods, and potential applications of the device. NSF, NIST

  3. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  4. Simple optical system for manufacturing point diffraction interferometer plates in titanium films using a low intensity CW laser beam

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan C.; Aguilar, J. Félix; Berriel-Valdos, L. R.

    2014-11-01

    We propose an optical system for making pinholes in titanium films for applications in point diffraction interferometry. The optical system for fabrication is easy to implement and to align and, as a result of this, it is possible to obtain pinholes in the range of 1 to 8 μm of diameter. The technique is based on laser ablation and, since we use a green laser, the spot produced by the focus of the optical system can be observed. Also, the damage over the titanium film can be monitored with the aid of a microscope objective lens in real time. The new technique is described and the resulting plates with the pinholes are shown. A successful application of the plates in interferometry is presented as well.

  5. Special relativity and interferometers

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  6. The POLIS interferometer for ponderomotive squeezed light generation

    NASA Astrophysics Data System (ADS)

    Calloni, Enrico; Conte, Andrea; De Laurentis, Martina; Naticchioni, Luca; Puppo, Paola; Ricci, Fulvio

    2016-07-01

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  7. Uniform positive-weight quadratures for discrete ordinate transport calculations

    SciTech Connect

    Carew, J.F.; Zamonsky, G.

    1999-02-01

    Mechanical quadratures that allow systematic improvement and solution convergence are derived for application of the discrete ordinates method to the Boltzmann transport equation. the quadrature directions are arranged on n latitudinal levels, are uniformly distributed over the unit sphere, and have positive weights. Both a uniform and equal-weight quadrature set UE{sub n} and a uniform and Gauss-weight quadrature set UG{sub n} are derived. These quadratures have the advantage over the standard level-symmetric LQ{sub n} quadrature sets in that the weights are positive for all orders, and the solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased the points approach a uniform continuous distribution on the unit sphere and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased. Numerical calculations were performed to evaluate the application of the UE{sub n} quadrature set. Comparisons of the exact moments and those calculated using the UE{sub n} quadrature set demonstrate that the moment integrals are performed accurately except for distributions that are very sharply peaked along the direction of the polar axis. A series of DORT transport calculations of the >1-Mev neutron flux for a typical reactor core/pressure vessel geometry were also carried out. These calculations employed the UE{sub n} (n = 6, 10, 12, 18, and 24) quadratures and indicate that the UE{sub n} solutions have converged to within {approximately}0.5%. The UE{sub 24} solutions were also found to be more accurate than the calculations performed with the S{sub 16} level-symmetric quadratures.

  8. Multisite EPR Oximetry from Multiple Quadrature Harmonics

    PubMed Central

    Ahmad, R.; Som, S.; Johnson, D.H.; Zweier, J.L.; Kuppusamy, P.; Potter, L.C.

    2011-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3 fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. PMID:22154283

  9. Optically controlled quadrature coupler on silicon substrate

    NASA Astrophysics Data System (ADS)

    Bhadauria, Avanish; Sharma, Sonia; Sonania, Shikha; Akhtar, Jamil

    2016-03-01

    In this paper, we have proposed and studied an optically controlled quadrature coupler fabricated on silicon substrate. The optically controlled quadrature coupler can be realized by terminating its coupled or through ports by optically induced load. Simulation and experimental results show that by varying optical intensity, we can control the phase and amplitude of output RF signal and can realize optically controlled reflection type attenuator, reflection type phase-shifter and ultrafast switches. The new kind of proposed device can be useful for ultra-fast signal processing and modulation schemes in high speed communication especially in QPSK modulation. The optical control has several advantages over conventional techniques such as MEMS and other semiconductor switching, which have several inherent disadvantages and limitations like low response time, low power handling capacity, device parasitic and non-linearity.

  10. Comparison of two Galerkin quadrature methods

    SciTech Connect

    Morel, J. E.; Warsa, J. S.; Franke, B. C.; Prinja, A. K.

    2013-07-01

    We compare two methods for generating Galerkin quadrature for problems with highly forward-peaked scattering. In Method 1, the standard Sn method is used to generate the moment-to-discrete matrix and the discrete-to-moment is generated by inverting the moment-to-discrete matrix. In Method 2, which we introduce here, the standard Sn method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. Method 1 has the advantage that it preserves both N eigenvalues and N eigenvectors (in a pointwise sense) of the scattering operator with an N-point quadrature. Method 2 has the advantage that it generates consistent angular moment equations from the corresponding S{sub N} equations while preserving N eigenvalues of the scattering operator with an N-point quadrature. Our computational results indicate that these two methods are quite comparable for the test problem considered. (authors)

  11. Two-color terahertz interferometer based on the frequency-splitted orthogonal polarization modes of the water vapor laser and designed for measuring the electron density profile in the L-2M stellarator

    SciTech Connect

    Letunov, A. A.; Logvinenko, V. P.; Zav'yalov, V. V.

    2008-03-15

    An upgraded diagnostics for measuring the electron density profile in the L-2M stellarator is proposed. The existing diagnostics employs an interferometer based on an HCN laser with a mechanical frequency shifter and unmagnetized InSb detectors cooled with liquid helium. It is proposed to replace the HCN laser with a water vapor laser operating simultaneously at two wavelengths (220 and 118 {mu}m). Being equipped with an anisotropic exit mirror, the water vapor laser allows the generation of orthogonally polarized, frequency-splitted modes at each of these wavelengths with a frequency difference of several tens of kilohertzs. Such a scheme makes it possible to get rid of the mechanical frequency shifter. Moreover, simultaneous measurements at two wavelengths allow one to reliably separate the phase increments introduced by the plasma electron component and by variations in the lengths of the interferometer arms. To take full advantage of this scheme, specially developed cryogenic receivers consisting of Ge and InSb photodetectors placed one after another will be used. To increase the response of the system near {lambda} = 220 {mu}m, the InSb detector is placed in a Almost-Equal-To 0.55-T magnetic field.

  12. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    PubMed

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. PMID:23003235

  13. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  14. Injection-locked semiconductor laser-based frequency comb for modulation applications in RF analog photonics.

    PubMed

    Sarailou, Edris; Delfyett, Peter

    2016-07-01

    A linearized intensity modulator for periodic and pulsed light is proposed and demonstrated. The free carrier plasma effect has been used to modulate the refractive index of the phase section of a three-section mode-locked laser. If injection locked, the modulation induces an arcsine phase response on the three-section mode-locked laser. By introducing this mode-locked laser into a Mach-Zehnder interferometer biased at quadrature, one can realize a true linear intensity modulation. This novel laser suppresses any unwanted amplitude modulation and increases the performance of the linearized intensity modulator. Experimental results have provided a record low static Iπ of 0.39 mA and a spur-free dynamic range of 75  dB.Hz2/3. PMID:27367083

  15. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  16. A Slow Ion Strontium Interferometer

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher; Durfee, Dallin

    2009-10-01

    I will discuss an interferometer centered around a laser-cooled source of ^87Sr^+ ions, which will be split and recombined using stimulated Raman transitions. This will take place inside a conducting cylinder allowing the interferometer to measure electric and magnetic fields with unprecedented precision. Practical applications for the device include the precision measurement of the evolution of fields near solids to reveal their electronic structure. It will also be used for fundamental tests of the basic laws of electromagnetism and the search for a non-zero photon rest mass. The device should detect possible photon rest mass more than 100 times smaller than previous laboratory experiments. Both the details of the device and the theory connecting deviations from Coulomb's inverse-square law to a theory of massive photons will be discussed.

  17. Fiber optic synthetic aperture interferometer

    NASA Astrophysics Data System (ADS)

    Hercher, Michael

    1990-08-01

    This report describes a Fiber Optic Stellar Interferometer built by Optra, Inc. for the purposes of (1) measuring stellar diameters using a pair of small portable telescopes (rather than a large observatory telescope), and (2) measuring atmospheric turbulence. The key element of this concept is the use of singlemode optical fibers to link the separate small telescopes with the interferometer module. We have shown that the proposed turbulence measurements are entirely feasible using a distant light source (preferably a laser). The demonstration of the ability to obtain white light fringes through the fibers was not successful. We believe that this is due to a mismatch in the lengths of the fibers, and we have proposed a simple and flexible solution to this problem.

  18. A brief survey of extrapolation quadrature.

    SciTech Connect

    Lyness, J. N.; Mathematics and Computer Science

    2000-07-01

    This is a short precis of a presentation on some of the recent advances in the area of extrapolation quadrature given at David Elliott's 65th birthday conference in Hobart in February 1997. Since the dawn of mathematics, historians and others have found many isolated instances of extrapolation being used in numerical calculation. However, the first serious proponent seems to have been Richardson (1923). His technique, also known as the 'deferred approach to the limit,' can be applied to the numerical evaluation of any quantity L, which can be defined as a limit as h approaches zero of an approximation L(h) when this L(h) has an expansion of the form L(h) = L + a{sub 1}h + a{sub 2}h{sup 2} + {hor_ellipsis} + a{sub r}h{sup r} + O(h{sup r+1}). In other words, the discretization error L(h) - L has a power series expansion in the parameter (usually a step length) h. Richardson suggested his technique particularly for large calculations. Richardson's technique comprised evaluating several relatively poor approximations based on different moderate values of h, and then extrapolating these values to obtain an approximately for L(0). This was proposed as an alternative to using a single, much smaller, value of h. During the subsequent 25 years, Richardson's approach was consistently ignored or misunderstood in environments where the analysis was available and, where in retrospect, the method would have been powerful, But, in the second half of the twentieth century, Richardson's idea has been widely exploited in several numerical areas. Many expansions that can be used for extrapolation have been discovered, some of which are displayed here. In the discipline of numerical quadrature, this body of theory is sometimes referred to as extrapolation quadrature. This theory has several aspects. The first, dealt with in this talk, is the establishment of the expansion. But also of significant importance are equations relating to is use: in particular, selecting which values of h

  19. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  20. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  1. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    NASA Astrophysics Data System (ADS)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  2. Prism-pair interferometry by homodyne interferometers with a common light source for high-accuracy measurement of the absolute refractive index of glasses

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru

    2011-03-10

    A prism-pair interferometer comprising two homodyne interferometers with a common light source was developed for high-precision measurements of the refractive index of optical glasses with an uncertainty of the order of 10{sup -6}. The two interferometers measure changes in the optical path length in the glass sample and in air, respectively. Uncertainties in the absolute wavelength of the common light source are cancelled out by calculating a ratio between the results from the interferometers. Uncertainties in phase measurement are suppressed by a quadrature detection system. The combined standard uncertainty of the developed system is evaluated as 1.1x10{sup -6}.

  3. Modulator-free quadrature amplitude modulation signal synthesis

    PubMed Central

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O’Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-01-01

    The ability to generate high-speed on–off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s−1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on–off-keyed 10 Gbit s−1 systems and is absolutely prohibitive for today’s (>)100 Gbit s−1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions. PMID:25523757

  4. Modulator-free quadrature amplitude modulation signal synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  5. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator

    SciTech Connect

    Acedo, Pablo; Pedreira, P.; Criado, A. R.; Lamela, Horacio; Sanchez, Miguel; Sanchez, Joaquin

    2008-10-15

    A high spatial resolution two-color (CO{sub 2}, {lambda}=10.6 {mu}m, He-Ne, {lambda}=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in {approx}2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  6. Coupled-Cavity Interferometer for the Optics Laboratory

    ERIC Educational Resources Information Center

    Peterson, R. W.

    1975-01-01

    Describes the construction of a flexible coupled-cavity interferometer for student use. A helium-neon laser and phonograph turntable are the main components. Lists activities which may be performed with the apparatus. (Author/CP)

  7. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  8. Surface profiling interferometer

    DOEpatents

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  9. Dispersion interferometer using modulation amplitudes on LHD (invited)

    SciTech Connect

    Akiyama, T. Yasuhara, R.; Kawahata, K.; Okajima, S.; Nakayama, K.

    2014-11-15

    Since a dispersion interferometer is insensitive to mechanical vibrations, a vibration compensation system is not necessary. The CO{sub 2} laser dispersion interferometer with phase modulations on the Large Helical Device utilizes the new phase extraction method which uses modulation amplitudes and can improve a disadvantage of the original dispersion interferometer: measurement errors caused by variations of detected intensities. The phase variation within ±2 × 10{sup 17} m{sup −3} is obtained without vibration compensation system. The measured line averaged electron density with the dispersion interferometer shows good agreement with that with the existing far infrared laser interferometer. Fringe jump errors in high density ranging up to 1.5 × 10{sup 20} m{sup −3} can be overcome by a sufficient sampling rate of about 100 kHz.

  10. The AEI 10 m prototype interferometer

    NASA Astrophysics Data System (ADS)

    Goßler, S.; Bertolini, A.; Born, M.; Chen, Y.; Dahl, K.; Gering, D.; Gräf, C.; Heinzel, G.; Hild, S.; Kawazoe, F.; Kranz, O.; Kühn, G.; Lück, H.; Mossavi, K.; Schnabel, R.; Somiya, K.; Strain, K. A.; Taylor, J. R.; Wanner, A.; Westphal, T.; Willke, B.; Danzmann, K.

    2010-04-01

    A 10 m prototype interferometer facility is currently being set up at the AEI in Hannover, Germany. The prototype interferometer will be housed inside a 100 m3 ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform interferometer. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an interferometer with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype Interferometer project.

  11. The May 1997 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, G.; Romoli, M.; Neugebauer, M.; Goldstein, B. E.; Simnett, G.

    2000-01-01

    We present results from the May 1997 SOHO-Ulysses quadrature, near sunspot minimum. Ulysses was at 5.1 AU, 100 north of the solar equator, and off the east limb. It was, by chance, also at the very northern edge of the streamer belt. Nevertheless, SWOOPS detected only slow, relatively smooth wind and there was no direct evidence of fast wind from the northern polar coronal hole or of mixing with fast wind. LASCO images show that the streamer belt at 10 N was narrow and sharp at the beginning and end of the two week observation interval, but broadened in the middle. A corresponding change in density, but not flow speed, occurred at Ulysses. Coronal densities derived from UVCS show that physical parameters in the lower corona are closely related to those in the solar wind, both over quiet intervals and in transient events on the limb. One small transient observed by both LASCO and UVCS is analyzed in detail.

  12. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  13. Progress Toward a Cold Ion Interferometer

    NASA Astrophysics Data System (ADS)

    Archibald, James; Christopher, Erickson; Jackson, Jarom; Durfee, Dallin

    2012-06-01

    We describe progress on a cold ion matter-wave interferometer. The ions are generated by laser-cooling strontium and then photo-ionizing the atoms with a two-photon transition to an auto- ionizing state in the continuum. Each ion's quantum wave will be split and recombined using stimulated Raman transitions between the hyperfine ground states of Sr^87+. The interferometer phase will be determined by measuring the fraction of ions exiting in each hyperfine state. We will discuss the theory of operation, experimental methods, and potential applications of the device.

  14. Simultaneous quadrature detection of suppressed-carrier weak-coherent-states using a homodyne optical Costas loop receiver

    NASA Astrophysics Data System (ADS)

    López, J. A.; García, E.; Mendieta, F. J.; Arvizu, A.; Gallion, Phillipe

    2011-08-01

    Weak coherent states (WCS) are being extensively employed in quantum communications and cryptography at telecommunications wavelengths. For these low-photon-number applications, simultaneous field quadrature measurements are frequently required, such as in the detection of multilevel modulations in the communications scenario or in cryptographic applications employing continuous variables. For this task multiport balanced homodyne detection (BHD) structures are employed, based on the splitting of the received field into its (non-commutating) in-phase (I) and quadrature (Q) components and their separate beating with a local oscillator (LO) in two BHD. This allows the simultaneous measurements of the 2 quadratures at the price of an additional noise due to the vacuum fields that leak via the unused ports. These schemes require the proper optical phase synchronization between the LO and the incoming field, which constitutes a challenge for WCS reception, especially for suppressed carrier modulations that are required for power economy. For this task, a Costas loop is implemented for low photon number WCS, with the design of an optimum feedback scheme considering the phase diffusion of WCS generated by semiconductor lasers. We implemented an optical Costas loop at 1550 nm based on polarization splitting of the laser field to detect I and Q quadratures simultaneously. We present results on the performance in phase error and bit error rate and compare with corresponding quantum limit.

  15. Monitoring the resonant properties of the magmatic structures of Elbrus volcano based on observation of lithospheric deformations by the Baksan laser interferometer - strainmeter

    NASA Astrophysics Data System (ADS)

    Milyukov, V.; Myasnikov, A.

    2012-04-01

    The Elbrus volcanic center is located on the northern slope of the main ridge of the Greater Caucasus. It includes Mount Elbrus, a double-top stratovolcano, and a number of small volcanic centers concentrated on its western flank. According to present understandings, the Elbrus volcano falls into the category of the so-called dormant volcanoes that become reactivated. It is a typical volcano of a continental type. During a number of years to study magmatic structures of the Elbrus volcano, their resonant properties and dynamics the new resonant method has been used. The idea of method is simple enough. Magmatic structures, being a resonator, upon incidence of a broadband powerful seismic signal generate the secondary seismic waves, having a set of resonant modes and containing information about physical and mechanical properties of structure inhomogeneities. These resonant modes are determined by geometrical parameters and elastic properties of the magma chamber as well as by magma properties. Estimation of the resonant parameters is based on the analysis of lithosphere deformations recorded by the wide-band Baksan laser interferometer-strainmeter with a 75-m armlength which is installed in the underground tunnel of the Baksan Neutrino Observatory, 20 km apart from Mt. Elbrus. Here we report the analysis of the teleseismic signals excited by seven mean-power earthquakes (the magnitude, as a rule, didn't exceed 6), that occurred within 2005-2010 in so-called "a near zone» of the volcano Elbrus (<1500 km). The relative proximity of the earthquake focuses to the volcanic edifice creates the possibility to excite the eigen oscillations of the Elbrus resonant structures (magma chambers), at the same time, the energies of these moderate-power earthquakes are not enough to excite the free oscillations of the Earth. Spectral analysis revealed quite confidently 10 groups of resonance modes in the range of periods of 30 -150 s. In this group of the resonant modes, three

  16. Ray tracing through the liquid crystal point diffraction interferometer. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Turner, A.

    1999-03-01

    The Omega laser is a system with many different parts that may cause imperfections. There are a multitude of lenses and mirrors, for example, that may not be polished correctly and can cause the laser wave front to have aberrations. The Liquid Crystal Point Diffraction Interferometer (L.C.P.D.I.) is a device whose main purpose is to read the wave front of the laser and measure any aberrations that may be on it. The way the L.C.P.D.I. reads the laser wave front and measures these aberrations is very complicated and has yet to be perfected. A ray-tracing model of the L.C.P.D.I. has been built, which calculates and models the ray trajectories, the optical paths of the rays, the O.P.D. between the object and reference beams, the absorption of the rays in the liquid crystal, and the intensities of each beam. It can predict an actual experiment by manipulating the different parameters of the program. It will be useful in optimization and further development of the L.C.P.D.I. Evidently, it is necessary to develop a liquid crystal solution with an O.D. greater than 0.3, and possibly as high as 2.0. This new solution would be able to reduce the intensity of the object beam sufficiently to make it comparable with the reference beam intensity. If this were achieved, the contrast, or visibility of the fringes would be better, and the interferogram could be used to diagnose the aberrations in the laser beam front. Then the cause of the aberrations could be fixed. This would result in a near-perfect laser front. If this were achieved, then it is possible that laser fusion could be made more efficient and possibly used as an energy source.

  17. Sub-Aperture Interferometers

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2010-01-01

    Sub-aperture interferometers -- also called wavefront-split interferometers -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an interferometer is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below

  18. A Comparison of three high-precision quadrature schemes

    SciTech Connect

    Bailey, David H.; Li, Xiaoye S.

    2003-07-01

    The authors have implemented three numerical quadrature schemes, using the new Arbitrary Precision (ARPREC) software package, with the objective of seeking a completely ''automatic'' arbitrary precision quadrature facility, namely one that does not rely on a priori information of the function to be integrated. Such a facility is required, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals to functions with vertical derivatives and integrable singularities at endpoints, as well as several integrals on an infinite interval.

  19. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  20. Process control system using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  1. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  2. Process control system using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  3. Michelson and His Interferometer

    ERIC Educational Resources Information Center

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  4. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  5. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  6. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  7. Heterodyne interferometer with angstrom-level periodic nonlinearity

    DOEpatents

    Schmitz, Tony L.; Beckwith, John F.

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  8. Lens testing with a simple wavefront shearing interferometer.

    PubMed

    Nyyssonen, D; Jerke, J M

    1973-09-01

    A lens-testing system using a simple wavefront shearing interferometer is described. This simple cube interferometer has all the interferometric adjustments built in at manufacture. In contrast to most interferometric test systems, the wavefront shearing interferometer is inexpensive, portable, relatively insensitive to vibration, does not need laser illumination, and requires only a minimum of experimental time and operational expertise. Reading of the interferograms and subsequent data reduction require the major effort in testing with the wavefront shearing interferometer. However, with automatic scanning of the interferograms and a high-speed electronic computer to perform the analysis, the data reduction may be completely automated. Operation of the wavefront shearing interferometer is described together with the method of data reduction. Experimental results are also presented.

  9. Two integrator loop quadrature oscillators: A review

    PubMed Central

    Soliman, Ahmed M.

    2012-01-01

    A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper. PMID:25685396

  10. Algorithm 699 - A new representation of Patterson's quadrature formulae

    NASA Technical Reports Server (NTRS)

    Krogh, Fred T.; Van Snyder, W.

    1991-01-01

    A method is presented to reduce the number of coefficients necessary to represent Patterson's quadrature formulae. It also reduces the amount of storage necessary for storing function values, and produces slightly smaller error in evaluating the formulae.

  11. Experimental study of quadrature spring rate at tuned dry gyro

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yoshiaki; Murayama, Naoshi

    A survey result on the mechanism of quadrature spring rate occurring at the tuned dry gyro is given. It is noted that the quadrature spring rate is a damping torque. This damping torque is similar to the spring reaction torque generated by the flexure displacement angles and drives the gyro rotor back to a balanced position. In order to investigate the mechanism of damping occurring at the gyro rotor, the relation between surrounding gas pressure and damping factor under gyro nonoperating was measured. Furthermore, the drag torque acting on the gyro rotor was measured by the back EMF method at different surrounding gas pressure. As a result of these testings, it was found out that the quadrature spring rate was generated by gas movement of the flexure around and drag forces due to bearing loss and windage loss, and the mechanism and magnitude of each damping torque which are contributor to the quadrature spring rate were extracted separately.

  12. Hybrid photonic chip interferometer for embedded metrology

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.

    2014-03-01

    Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip interferometer metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip interferometer is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip interferometer, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.

  13. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer and its application in microwave generation

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, En-Ming; Dong, Jian-Ji; Zhang, Xin-Liang

    2011-05-01

    A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.

  14. Quadrature mixture LO suppression via DSW DAC noise dither

    DOEpatents

    Dubbert, Dale F.; Dudley, Peter A.

    2007-08-21

    A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.

  15. On open electromagnetic resonators: relation between interferometers and resonators

    SciTech Connect

    Manenkov, Aleksandr A; Bykov, Vladimir P; Kuleshov, N V

    2010-05-26

    The physical difference between the concepts 'Fabry-Perot interferometer' and 'open resonator' is discussed. It is shown that the use of the term 'Fabry-Perot resonator' for open laser resonators is incorrect both from the historical viewpoint and from the viewpoint of the physical meaning of the processes occurring in these resonators. (laser beams and resonators)

  16. Integrated heterodyne interferometer with on-chip modulators and detectors.

    PubMed

    Cole, David B; Sorace-Agaskar, Cheryl; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2015-07-01

    We demonstrate, to our knowledge, the first on-chip heterodyne interferometer fabricated on a 300-mm CMOS compatible process that exhibits root-mean-square (RMS) position noise on the order of 2 nm. Measuring 1 mm by 6 mm, the interferometer is also, to our knowledge, the smallest heterodyne interferometer demonstrated to date and will surely impact numerous interferometric and metrology applications, including displacement measurement, laser Doppler velocimetry and vibrometry, Fourier transform spectroscopy, imaging, and light detection and ranging (LIDAR). Here we present preliminary results that demonstrate the displacement mode. PMID:26125376

  17. Bose-Einstein-condensate interferometer with macroscopic arm separation

    SciTech Connect

    Garcia, O.; Deissler, B.; Hughes, K. J.; Reeves, J. M.; Sackett, C. A.

    2006-09-15

    A Michelson interferometer using Bose-Einstein condensates is demonstrated with coherence times of up to 44 ms and arm separations up to 180 {mu}m. This arm separation is larger than that observed for any previous atom interferometer. The device uses atoms weakly confined in a magnetic guide and the atomic motion is controlled using Bragg interactions with an off-resonant standing-wave laser beam.

  18. Three-beam atom interferometer

    NASA Astrophysics Data System (ADS)

    Hinderthür, H.; Pautz, A.; Rieger, V.; Ruschewitz, F.; Peng, J. L.; Sengstock, K.; Ertmer, W.

    1997-09-01

    We present an atom interferometer based on the interference of three partial matter waves in three different internal and external states. Coherent laser excitation acts as a beamsplitter to create a superposition state of the ground state and two Zeeman sublevels of the metastable state of magnesium atoms. The interference pattern of the output ports shows high contrast and the characteristics of three-beam interferences as known from optical interferometry. In comparison to two-beam interferometry a reduction of the fringe width of (32+/-8)% is observed. This offers various possibilities for improved measurements of quantum-mechanical phases due to the internal atomic-state sensitive coupling of external potentials. This is demonstrated for the interaction of magnesium atoms with an external magnetic field.

  19. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    PubMed

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer. PMID:27607974

  20. A novel heterodyne displacement interferometer with no detectable periodic nonlinearity and optical resolution doubling

    SciTech Connect

    Joo, K; Ellis, J D; Buice, E S; Spronck, J W; Munnig Schmidt, R H

    2010-02-05

    This paper describes a novel heterodyne laser interferometer with no significant periodic nonlinearity for linear displacement measurements. Moreover, the optical configurations have the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Experimental results show no discernable periodic nonlinearity for a retro-reflector interferometer and plane mirror interferometer configurations with a noise level below 20 pm. The incoming laser beams of the interferometers are achieved by utilizing two single mode optical fibers. To determine the stability of the optical fiber couplers a fiber delivery prototype was also built and tested.

  1. PDX multichannel interferometer

    SciTech Connect

    Bitzer, R.; Ernst, W.; Cutsogeorge, G.

    1980-10-01

    A 10 channel, 140 GHz homodyne interferometer is described for use on PDX. One feature of this interferometer is the separation of the signal source and electronics from the power splitters, delay line, and receiving systems. The latter is situated near the upper and lower vacuum ports between the toroidal field magnets. A second feature is the signal stabilization of the EIO source by means of an AFC system. The complete interferometer is described including block diagrams, circuit diagrams, test data, and magnetic field test conducted on the preamplifiers, microwave diodes, isolators, etc., to determine the extent of magnetic shielding required. The description of the tracking filters and digital phase display circuit is referenced to accompanying reports.

  2. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  3. The Fall 2000 and Fall 2001 SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2000-01-01

    SOHO-Ulysses quadrature occurs when the SOHO-Sun-Ulysses included angle is 90 degrees. It is only at such times that the same plasma leaving the Sun in the direction of Ulysses can first be remotely analyzed with SOHO instruments and then later be sampled in situ by Ulysses instruments. The quadratures in December 2000 and 2001 are of special significance because Ulysses will be near the south and north heliographic poles, respectively, and the solar cycle will be near sunspot maximum. Quadrature geometry is sometimes confusing and observations are influenced by solar rotation. The Fall 2000 and 2001 quadratures are more complex than usual because Ulysses is not in a true polar orbit and the orbital speed of Ulysses about the Sun is becoming comparable to the speed of SOHO about the Sun. In 2000 Ulysses will always be slightly behind the pole but will appear to hang over the pole for over two months because it is moving around the Sun in the same direction as SOHO. In 20001, Ulysses will be slightly in front of the pole so that its footpoint will be directly observable. Detailed plots will be shown of the relative positions of SOHO and Ulysses will their relative positions. In neither case is true quadrature actually achieved, but this works to the observers advantage in 2001.

  4. The Fall 2000 and Fall 2001 SOHO-Ulysses Quadratures

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    SOHO-Ulysses quadrature occurs when the SOHO-Sun-Ulysses included angle is 90 degrees. It is only at such times that the same plasma leaving the Sun in the direction of Ulysses can first be remotely analyzed with SOHO instruments and then later be sampled in situ by Ulysses instruments. The quadratures in December 2000 and 2001 are of special significance because Ulysses will be near the south and north heliographic poles, respectively, and the solar cycle will be near sunspot maximum. Quadrature geometry is sometimes confusing and observations are influenced by solar rotation. The Fall 2000 and 2001 quadratures are more complex than usual because Ulysses is not in a true polar orbit and the orbital speed of Ulysses about the Sun is becoming comparable to the speed of SOHO about the Sun. In 2000 Ulysses will always be slightly behind the pole but will appear to hang over the pole for over two months because it is moving around the Sun in the same direction as SOHO. In 2001 Ulysses will be slightly in front of the pole so that its footpoint will be directly observable. Detailed plots will be shown of the relative positions of SOHO and Ulysses will their relative positions. In neither case is true quadrature actually achieved, but this works to the observers advantage in 2001.

  5. Orbiting stellar interferometer for astrometry and imaging.

    PubMed

    Colavita, M M; Shao, M; Rayman, M D

    1993-04-01

    The orbiting stellar interferometer (OSI) is a concept for a first-generation space interferometer with astrometric and imaging goals and is responsive to the recommendations of the Astronomy and Astrophysics Survey Committee for an astrometric interferometer mission. The OSI, as developed at the Jet Propulsion Laboratory over the past several years, is a triple Michelson interferometer with articulating siderostats and optical delay lines. Two point designs for the instrument are described.

    The 18-m design uses an 18-m maximum baseline and aperture diameters of 40 cm; the targeted astrometric performance is a wide-field accuracy of 10 microarsec for 16-mag objects in 100 s of integration time and for 20-mag objects in 1 h. The instrument would also be capable of synthesis imaging with a resolution of 5 marcsec, which corresponds to the diffraction limit of the 18-m base line. The design uses a deployed structure, which would fold to fit into an Atlas HAS shroud, for insertion into a 900-km sun-synchronous orbit In addition to the 18-m point design a 7-m point design that uses a shorter base line in order to simplify deployment is also discussed. OSI's high performance is made possible by utilizing laser metrology and controlled-optics technology.

  6. Mesoscopic Interferometers for Electron Waves

    SciTech Connect

    Rohrlich, D.

    2005-09-15

    Mesoscopic interferometers are electronic analogues of optical interferometers, with 'quantum point contacts' playing the role of optical beam splitters. Mesoscopic analogues of two-slit, Mach-Zehnder and Fabry-Perot interferometers have been built. A fundamental difference between electron and photon interferometry is that electron interferometry is nonlocal.

  7. Dual beam optical interferometer

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2003-01-01

    A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.

  8. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  9. Holographic lateral shear interferometer.

    PubMed

    Malacara, D; Mallick, S

    1976-11-01

    A new type of lateral shear holographic interferometer is described. It can be used to test lenses as well as spherical and aspherical surfaces. A null pattern with straight fringes can be obtained for an aspherical surface, provided one has a prototype that can be used for making the hologram.

  10. Kinetic Plasma Simulation Using a Quadrature-based Moment Method

    NASA Astrophysics Data System (ADS)

    Larson, David J.

    2008-11-01

    The recently developed quadrature-based moment method [Desjardins, Fox, and Villedieu, J. Comp. Phys. 227 (2008)] is an interesting alternative to standard Lagrangian particle simulations. The two-node quadrature formulation allows multiple flow velocities within a cell, thus correctly representing crossing particle trajectories and lower-order velocity moments without resorting to Lagrangian methods. Instead of following many particles per cell, the Eulerian transport equations are solved for selected moments of the kinetic equation. The moments are then inverted to obtain a discrete representation of the velocity distribution function. Potential advantages include reduced computational cost, elimination of statistical noise, and a simpler treatment of collisional effects. We present results obtained using the quadrature-based moment method applied to the Vlasov equation in simple one-dimensional electrostatic plasma simulations. In addition we explore the use of the moment inversion process in modeling collisional processes within the Complex Particle Kinetics framework.

  11. Discrete Ordinate Quadrature Selection for Reactor-based Eigenvalue Problems

    SciTech Connect

    Jarrell, Joshua J; Evans, Thomas M; Davidson, Gregory G

    2013-01-01

    In this paper we analyze the effect of various quadrature sets on the eigenvalues of several reactor-based problems, including a two-dimensional (2D) fuel pin, a 2D lattice of fuel pins, and a three-dimensional (3D) reactor core problem. While many quadrature sets have been applied to neutral particle discrete ordinate transport calculations, the Level Symmetric (LS) and the Gauss-Chebyshev product (GC) sets are the most widely used in production-level reactor simulations. Other quadrature sets, such as Quadruple Range (QR) sets, have been shown to be more accurate in shielding applications. In this paper, we compare the LS, GC, QR, and the recently developed linear-discontinuous finite element (LDFE) sets, as well as give a brief overview of other proposed quadrature sets. We show that, for a given number of angles, the QR sets are more accurate than the LS and GC in all types of reactor problems analyzed (2D and 3D). We also show that the LDFE sets are more accurate than the LS and GC sets for these problems. We conclude that, for problems where tens to hundreds of quadrature points (directions) per octant are appropriate, QR sets should regularly be used because they have similar integration properties as the LS and GC sets, have no noticeable impact on the speed of convergence of the solution when compared with other quadrature sets, and yield more accurate results. We note that, for very high-order scattering problems, the QR sets exactly integrate fewer angular flux moments over the unit sphere than the GC sets. The effects of those inexact integrations have yet to be analyzed. We also note that the LDFE sets only exactly integrate the zeroth and first angular flux moments. Pin power comparisons and analyses are not included in this paper and are left for future work.

  12. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  13. Vibration analysis of structural elements using differential quadrature method.

    PubMed

    Nassar, Mohamed; Matbuly, Mohamed S; Ragb, Ola

    2013-01-01

    The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler-Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.

  14. Nd:YAG holographic interferometer for aerodynamic research

    NASA Technical Reports Server (NTRS)

    Craig, J. E.; Lee, G.; Bachalo, W. D.

    1983-01-01

    A holographic interferometer system has been installed in the NASA Ames 2- by 2-Foot Transonic Wind Tunnel. The system incorporates a modern 10 pps, Nd:YAG pulsed laser which provides reliable operation and is easy to align. The spatial filtering requirements of the unstable resonator beam are described, as well as the integration of the system into the existing schlieren system. A two-plate holographic interferometer is used to reconstruct flow field data. For static wind tunnel models, the single exposure holograms are recorded in the usual manner; however, for dynamic models such as oscillating airfoils, synchronous laser hologram recording is used.

  15. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  16. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  17. Design of a phase-shifting interferometer in the extreme ultraviolet for high-precision metrology.

    PubMed

    Capeluto, María Gabriela; Marconi, Mario Carlos; Iemmi, Claudio Cesar

    2014-03-01

    The design of a phase-shift interferometer in the extreme ultraviolet (EUV) is described. The interferometer is expected to achieve a significantly higher precision as compared with similar instruments that utilize lasers in the visible range. The interferometer's design is specifically adapted for its utilization with a table top pulsed capillary discharge EUV laser. The numerical model evaluates the errors in the interferograms and in the retrieved wavefront induced by the shot-to-shot fluctuations and pointing instabilities of the laser. PMID:24663354

  18. Analysis of a free oscillation atom interferometer

    SciTech Connect

    Kafle, Rudra P.; Zozulya, Alex A.; Anderson, Dana Z.

    2011-09-15

    We analyze a Bose-Einstein condensate (BEC)-based free oscillation atom Michelson interferometer in a weakly confining harmonic magnetic trap. A BEC at the center of the trap is split into two harmonics by a laser standing wave. The harmonics move in opposite directions with equal speeds and turn back under the influence of the trapping potential at their classical turning points. The harmonics are allowed to pass through each other and a recombination pulse is applied when they overlap at the end of a cycle after they return for the second time. We derive an expression for the contrast of the interferometric fringes and obtain the fundamental limit of performance of the interferometer in the parameter space.

  19. Thermal-noise-limited underground interferometer CLIO

    NASA Astrophysics Data System (ADS)

    Agatsuma, Kazuhiro; Arai, Koji; Fujimoto, Masa-Katsu; Kawamura, Seiji; Kuroda, Kazuaki; Miyakawa, Osamu; Miyoki, Shinji; Ohashi, Masatake; Suzuki, Toshikazu; Takahashi, Ryutaro; Tatsumi, Daisuke; Telada, Souichi; Uchiyama, Takashi; Yamamoto, Kazuhiro; collaborators, CLIO

    2010-04-01

    We report on the current status of CLIO (Cryogenic Laser Interferometer Observatory), which is a prototype interferometer for LCGT (large scale cryogenic gravitational-wave telescope). LCGT is a Japanese next-generation interferometric gravitational-wave detector featuring the use of cryogenic mirrors and a quiet underground site. The main purpose of CLIO is to demonstrate a reduction of the mirror thermal noise by cooling the sapphire mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m deep from the mountain top, to verify its advantages. After a few years of commissioning work, we have achieved a thermal-noise-limited sensitivity at room temperature. One of the main results of noise hunting was the elimination of thermal noise caused by a conductive coil holder coupled with a pendulum through magnets.

  20. A continuous cold atomic beam interferometer

    SciTech Connect

    Xue, Hongbo; Feng, Yanying Yan, Xueshu; Jiang, Zhikun; Chen, Shu; Wang, Xiaojia; Zhou, Zhaoying

    2015-03-07

    We demonstrate an atom interferometer that uses a laser-cooled continuous beam of {sup 87}Rb atoms having velocities of 10–20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach–Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm{sup 2} at a bandwidth of 190 Hz with a deduced sensitivity of 7.8×10{sup −5} rad/s/√(Hz) for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.

  1. The Antarctic Planet Interferometer

    NASA Technical Reports Server (NTRS)

    Swain, Mark R.; Walker, Christopher K.; Traub, Wesley A.; Storey, John W.; CoudeduForesto, Vincent; Fossat, Eric; Vakili, Farrok; Stark, Anthony A.; Lloyd, James P.; Lawson, Peter R.; Burrows, Adam S.; Ireland, Michael; Millan-Gabet, Rafael; vanBelle, Gerard T.; Lane, Benjamin; Vasisht, Gautam; Travouillon, Tony

    2004-01-01

    The Antarctic Planet Interferometer is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an interferometer with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.

  2. Multipulsed dynamic moire interferometer

    DOEpatents

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  3. Optical and Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    ten Brummelaar, Theo A.; McAlister, Harold A.

    Stellar interferometers achieve limiting angular resolution inaccessible to evennext-generation single-aperture telescopes. Arrays of small or modest apertureshave achieved baselines exceeding 300 m producing submilliarcsecond resolutionsat visible and near-infrared wavelengths. The technical cost and challenge inbuilding interferometric arrays is substantial due to the very high toleranceimposed by optical physics on the precision of beam combination and optical pathlength matching for two or more telescopes. This chapter presents the basic theoryand overall design considerations for an interferometer with an emphasis on thepractical aspects of constructing a working instrument that overcomes obstaclesimposed by the atmosphere, submicron path length matching requirements,limitations on number of telescopes and their layout, light losses throughmultiple reflections and transmissions necessary to superimpose telescopebeams in the beam-combining laboratory, and other realities of the art ofinterferometry. The basic design considerations for an interferometer arelaid out starting with site selection and telescope placement and thenfollowed through to beam combination and measurement of interferometricvisibility and closure phase after the encountering of numerous subsystems byincoming wavefronts. These subsystems include active wavefront sensing fortip/tilt correction or even full-up adaptive optics, telescope design fordirecting collimated beams over large distances, diffraction losses, polarizationmatching, optical path length insertion and active compensation, correctionfor atmospheric refraction and differential dispersion in glass and air,separation of light into visible and near-infrared channels, alignment over longoptical paths, high-precision definition of the three-dimensional layout of aninterferometric array, and, finally, a variety of beam-combining schemes fromsimple two-way combiners to multitelescope imaging combiners in thepupil and image planes. Much

  4. The Keck Interferometer

    NASA Astrophysics Data System (ADS)

    Colavita, M. M.; Wizinowich, P. L.; Akeson, R. L.; Ragland, S.; Woillez, J. M.; Millan-Gabet, R.; Serabyn, E.; Abajian, M.; Acton, D. S.; Appleby, E.; Beletic, J. W.; Beichman, C. A.; Bell, J.; Berkey, B. C.; Berlin, J.; Boden, A. F.; Booth, A. J.; Boutell, R.; Chaffee, F. H.; Chan, D.; Chin, J.; Chock, J.; Cohen, R.; Cooper, A.; Crawford, S. L.; Creech-Eakman, M. J.; Dahl, W.; Eychaner, G.; Fanson, J. L.; Felizardo, C.; Garcia-Gathright, J. I.; Gathright, J. T.; Hardy, G.; Henderson, H.; Herstein, J. S.; Hess, M.; Hovland, E. E.; Hrynevych, M. A.; Johansson, E.; Johnson, R. L.; Kelley, J.; Kendrick, R.; Koresko, C. D.; Kurpis, P.; Le Mignant, D.; Lewis, H. A.; Ligon, E. R.; Lupton, W.; McBride, D.; Medeiros, D. W.; Mennesson, B. P.; Moore, J. D.; Morrison, D.; Nance, C.; Neyman, C.; Niessner, A.; Paine, C. G.; Palmer, D. L.; Panteleeva, T.; Papin, M.; Parvin, B.; Reder, L.; Rudeen, A.; Saloga, T.; Sargent, A.; Shao, M.; Smith, B.; Smythe, R. F.; Stomski, P.; Summers, K. R.; Swain, M. R.; Swanson, P.; Thompson, R.; Tsubota, K.; Tumminello, A.; Tyau, C.; van Belle, G. T.; Vasisht, G.; Vause, J.; Vescelus, F.; Walker, J.; Wallace, J. K.; Wehmeier, U.; Wetherell, E.

    2013-10-01

    The Keck Interferometer (KI) combined the two 10 m W. M. Keck Observatory telescopes on Mauna Kea, Hawaii, as a long-baseline near- and mid-infrared interferometer. Funded by NASA, it operated from 2001 until 2012. KI used adaptive optics on the two Keck telescopes to correct the individual wavefronts, as well as active fringe tracking in all modes for path-length control, including the implementation of cophasing to provide long coherent integration times. KI implemented high sensitivity fringe-visibility measurements at H (1.6 μm), K (2.2 μm), and L (3.8 μm) bands, and nulling measurements at N band (10 μm), which were used to address a broad range of science topics. Supporting these capabilities was an extensive interferometer infrastructure and unique instrumentation, including some additional functionality added as part of the NSF-funded ASTRA program. This paper provides an overview of the instrument architecture and some of the key design and implementation decisions, as well as a description of all of the key elements and their configuration at the end of the project. The objective is to provide a view of KI as an integrated system, and to provide adequate technical detail to assess the implementation. Included is a discussion of the operational aspects of the system, as well as of the achieved system performance. Finally, details on V2 calibration in the presence of detector nonlinearities as applied in the data pipeline are provided.

  5. Applying Quadrature Rules with Multiple Nodes to Solving Integral Equations

    SciTech Connect

    Hashemiparast, S. M.; Avazpour, L.

    2008-09-01

    There are many procedures for the numerical solution of Fredholm integral equations. The main idea in these procedures is accuracy of the solution. In this paper, we use Gaussian quadrature with multiple nodes to improve the solution of these integral equations. The application of this method is illustrated via some examples, the related tables are given at the end.

  6. Archimedes Quadrature of the Parabola: A Mechanical View

    ERIC Educational Resources Information Center

    Oster, Thomas J.

    2006-01-01

    In his famous quadrature of the parabola, Archimedes found the area of the region bounded by a parabola and a chord. His method was to fill the region with infinitely many triangles each of whose area he could calculate. In his solution, he stated, without proof, three preliminary propositions about parabolas that were known in his time, but are…

  7. Trapezoidal rule quadrature algorithms for MIMD distributed memory computers

    SciTech Connect

    Lyness, J.N.; Plowman, S.E.

    1994-08-01

    An approach to multi-dimensional quadrature, designed to exploit parallel architectures, is described. This involves transforming the integral in such a way that an accurate result is given by the trapezoidal rule; and by evaluating the resulting sum in a manner which may be efficiently implemented on parallel architectures. This approach is to be implemented in the Liverpool NAG transputer library.

  8. Wave-Based Inversion & Imaging for the Optical Quadrature Microscope

    SciTech Connect

    Lehman, S K

    2005-10-27

    The Center for Subsurface Sensing & Imaging System's (CenSSIS) Optical Quadrature Microscope (OQM) is a narrow band visible light microscope capable of measuring both amplitude and phase of a scattered field. We develop a diffraction tomography, that is, wave-based, scattered field inversion and imaging algorithm, for reconstructing the refractive index of the scattering object.

  9. From Lobatto Quadrature to the Euler Constant "e"

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2010-01-01

    Based on the Lobatto quadrature, we develop several new closed form approximations to the mathematical constant "e." For validating effectiveness of our approximations, a comparison of our results to the existing approximations is also presented. Another objective of our work is to inspire students to formulate other better approximations by using…

  10. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    SciTech Connect

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M; Moiseev, A A; Terpelov, D A

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phase shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)

  11. Giant violations of classical inequalities through conditional homodyne detection of the quadrature amplitudes of light

    PubMed

    Carmichael; Castro-Beltran; Foster; Orozco

    2000-08-28

    Conditional homodyne detection is proposed as an extension of the intensity correlation technique introduced by Hanbury-Brown and Twiss [Nature (London) 177, 27 (1956)]. It detects giant quadrature amplitude fluctuations for weakly squeezed light, violating a classical bound by orders of magnitude. Fluctuations of both quadrature amplitudes are anomalously large. The squeezed quadrature also exhibits an anomalous phase. PMID:10970631

  12. A Robust Ramsey Interferometer for Atomic Timekeeping in Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Brown, Justin; Butts, David; Choy, Jennifer; Galfond, Marissa; Johnson, David M.; Kinast, Joseph; Timmons, Brian; Stoner, Richard

    2014-05-01

    We present a laser-based approach to atomic timekeeping, in which atomic phase information is extracted using modified Raman pulses in a Ramsey sequence. We overcome systematic effects associated with differential AC Stark shifts by employing atom optics derived from Raman adiabatic rapid passage (ARP). ARP drives coherent transfer between two hyperfine ground states by sweeping the frequency difference of two optical fields and maintaining a large single-photon detuning. Compared to resonant, pulsed Raman transitions, ARP atom optics afford a >150x reduction in sensitivity to differential AC Stark shifts in a Ramsey interferometer. We also demonstrate that ARP preserves fringe contrast in Ramsey interferometers for cloud displacements reaching the 1/e2 intensity radius of the laser beam. ARP can thus be expected to improve the robustness of clock interferometers operating in dynamic environments. Copyright ©2014 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  13. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  14. White light interferometer: applications in research and industry

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sujit

    2015-06-01

    Applications of interferometer are countless both in the research and commercial world. Laser sources offer precise measurements of relative path difference between two interfering beams. An exciting example is LIGO (laser Interferometer for Gravitational Observatory), which is aiming to resolve length change as small as 10-19 m over a 4 km length for detection of gravitational waves. However, laser is a disadvantage for microscopic imaging and surface topography applications usually required in semiconductor industry. A different approach for microscopy is to use white light in place of laser. White light due to its limited temporal coherence offers a multitude of benefits for imaging applications. An immediate benefit from white light is the sharp localisation of interference fringe that makes the 3D topography construction or OCT (Optical Coherence Topography) realisable using a Scanning White Light Interferometer (SWLI) imager. In Mirau Mode, SWLI performs high resolution imaging; whereas in Michelson mode Fourier Transform Spectroscopy (FTS) is realised. SWLI can easily be modified into PUPS (Pupil Plane SWLI) for Ellipsometry. Superimposing Michelson Interferometer known as VISAR (Velocity Interferometer System for Any reflector) can form interference fringes even in presence of wide angle light scattered from a moving illuminated object. This paper describes work undertaken at Nanometrics (UK) on simulation of SWLI fringes including high Numerical Aperture (NA) applications, thin film characterisation, OCT generation and Zemax modelling of compact dispersion-free vibration-immune Fourier-Transformed spectrometer. VISAR as a modified Mach-Zehnder Interferometer is also discussed based on the work at Rutherford-Appleton laboratory (UK).

  15. The Design and Operation of Ultra-Sensitive and Tunable Radio-Frequency Interferometers

    PubMed Central

    Cui, Yan; Wang, Pingshan

    2015-01-01

    Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and operation considerations of radio-frequency (RF) interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs). Such interferometers are proposed to address the sensitivity and frequency tuning challenges of current DS techniques. Verified algorithms together with mathematical models are presented to quantify material properties from scattering parameters for three common transmission line sensing structures, i.e., coplanar waveguides (CPWs), conductor-backed CPWs, and microstrip lines. A high-sensitivity and stable QH-based interferometer is demonstrated by measuring glucose–water solution at a concentration level that is ten times lower than some recent RF sensors while our sample volume is ~1 nL. Composition analysis of ternary mixture solutions are also demonstrated with a PD-based interferometer. Further work is needed to address issues like system automation, model improvement at high frequencies, and interferometer scaling. PMID:26549891

  16. Long-baseline optical fiber interferometer instruments and science

    NASA Astrophysics Data System (ADS)

    Kotani, Takayuki; Nishikawa, Jun; Sato, Koichi; Yoshizawa, Masanori; Ohishi, Naoko; Fukushima, Toshio; Torii, Yasuo; Matsuda, Ko; Kubo, Koichi; Iwashita, Hikaru; Suzuki, Shunsaku

    2003-02-01

    Developments of fiber linked optical interferometer are reported. This interferometer is a part of MIRA-I.2 interferometer (Mitaka InfraRed and optical Array). MIRA-I.2 is an optical interferometer with a 30 meters long baseline. It consists of two 30cm siderostats, tip-tilt mirrors, vacuum pipes delay lines and detectors. We plan to use two 60 meters long polarization-maintaining fibers for arms of the interferometer, instead of vacuum pipes. The developments include dispersion and polarization compensation of fiber and fiber injection module. In laboratory experiments, dispersion compensation succeeded. The fringe visibility was 0.93 for wide-band, where the central wavelength of light was 700nm, and bandwidth was 200nm, while 0.95 with a He-Ne laser. We used BK7 glass wedge for dispersion compensation. About fiber injection module, basic optical design has completed. The results of our fiber interferometer could contribute to OHANA (Optical Hawaiian Array for Nanoradian Astronomy) project. We present new science targets, white dwarves and T Tauri stars, and an 800 m delayline concept in CFHT for the project.

  17. Numerical Study of Two-Dimensional Reaction-Diffusion Brusselator System by Differential Quadrature Method

    NASA Astrophysics Data System (ADS)

    Mittal, R. C.; Jiwari, Ram

    2011-01-01

    In this paper, a rapid, convergent and accurate differential quadrature method (DQM) is employed for numerical study of a two-dimensional reaction-diffusion Brusselator system. In the Brusselator system the reaction terms arise from the mathematical modeling of chemical systems such as in enzymatic reactions, and in plasma and laser physics in multiple coupling between modes. By employing DQM, accurate results can be obtained using fewer grid points in spatial domain for a large value of T = 50. We also found that Chebyshev-Gauss-Lobatto grid points give excellent results in comparison to other grid points such as uniform grid points. Three examples are solved to illustrate the accuracy and efficiency of the DQM. Convergence and stability of the method is also examined.

  18. Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and increased sensitivity

    NASA Astrophysics Data System (ADS)

    Joenathan, Charles; Bernal, Ashley; Woonghee, Youn; Bunch, Robert M.; Hakoda, Christopher

    2016-02-01

    Michelson interferometer is one of the most popular optical interferometric systems used in optical metrology. Typically, Michelson interferometers are used to measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and device sizes reduce to micro and nano size, a sensitivity of half the wavelength of light cannot be used to measure several hundred picometer displacement. Multiple-reflection interferometers have been proposed and are used to increase the sensitivity in a Michelson interferometer; however, when altering the number of reflections, the system alignment becomes cumbersome. We describe some of the problems associated with the current multiple-reflection interferometer and introduce a setup for matching path lengths to increase the resolution and allow for the reduction of the stringent requirement on the coherence length of the lasers used. Theoretically, we show that more than 1000 reflections can be achieved. Experimental results of up to 100 reflections are presented in this paper.

  19. High-resolution coherence domain reflectometry using 1.55 μm supercontinuum source and quadrature spectral detection

    NASA Astrophysics Data System (ADS)

    Smith, Elwyn; Wada, Naoya; Chujo, Wataru; Sampson, David D.

    2002-06-01

    High-power ultra-broadband sources such as a supercontinuum are very attractive in optical coherence tomography (OCT) and optical coherence-domain reflectometry (OCDR) due to their very high resolution potential. However, the large and extensive coherence-function sidelobes typical of such sources preclude their use in conventional OCDR and OCT systems. In addition, device or sample dispersion over such broad bandwidths may also significantly limit the achievable performance. Here we describe a novel experiment using a supercontinuum source with a static Michelson interferometer to perform OCDR at 1.55micrometers . Quadrature spectral detection is used to maximize the scanning range and to allow direct compensation for both the undesirable spectral shape of the source and for the dispersion in the system. Such a non-scanning-interferometer approach is an interesting possible alternative for very broadband, ultra-high resolution OCT systems. We demonstrate that an otherwise obscured small reflection next to a large reflection can be revealed by appropriately weighting the data to reshape the supercontinuum spectrum and compensate for dispersion. Significant reduction of the supercontinuum coherence function sidelobes is achieved, and a resolution in air of 7micrometers (FWHM) is obtained, or less than 5micrometers in media of refractive index 1.45.

  20. Extraction of quadrature phase information from multiple pulse NMR signals

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Burum, D. P.; Vaughan, R. W.

    1976-01-01

    A multiple pulse sequence (8-pulse sequence) used for high-resolution solid state NMR is analyzed with regard to the information available from each of the four wide sampling windows. It is demonstrated that full quadrature phase information can be obtained using only a single phase detector and that, for the commonly encountered situation where the spectral width is much less than the folding frequency, the signals from the various windows can be combined easily using standard complex Fourier transform software. An improvement in the signal-to-noise ratio equal to the square root of 3 is obtained over either standard single or quadrature phase detection schemes. Procedures for correcting spectral distortions are presented.

  1. MQD--multiplex-quadrature detection in multi-dimensional NMR.

    PubMed

    Schlagnitweit, Judith; Horničáková, Michaela; Zuckerstätter, Gerhard; Müller, Norbert

    2012-01-16

    With multiplex-quadrature detection (MQD) the tasks of coherence selection and quadrature separation in N-dimensional heteronuclear NMR experiments are merged. Thus the number of acquisitions required to achieve a desired resolution in the indirect dimensions is significantly reduced. The minimum number of transients per indirect data point, which have to be combined to give pure-phase spectra, is thus decreased by a factor (3/4)(N-1). This reduction is achieved without adjustable parameters. We demonstrate the advantage by MQD 3D HNCO and HCCH-TOCSY spectra affording the same resolution and the same per-scan sensitivity as standard phase-cycled ones, but obtained in only 56 % of the usual time and by resolution improvements achieved in the same amount of time. PMID:22095747

  2. Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.

  3. Discrete ordinates with new quadrature sets and modified source conditions

    SciTech Connect

    Ganguly, K.; Allen, E.J., Victory, H.D. Jr. )

    1989-01-01

    A major shortcoming of the discrete ordinates method with the Gauss-Legendre quadrature set is that when the number of secondaries per primary c and the order of approximation N are not too large, all the (N + 1)v (the flux being of the form exp({minus}x/v)) lie in ({minus}1,1). It is known, however, that the largest v{sub j} corresponding to the asymptotic flux is greater than unity. The Legendre polynomial used for obtaining the quadrature set is orthogonal with respect to weight unity in the range ({minus}1,1). However, the Case and Zweifel eigenfunctions derived from the exact solution of one-speed transport theory are orthogonal with respect to a complicated weight function w({mu}) and {mu} in the half-range and full-range cases, respectively. In this paper, the authors have used a set of orthogonal polynomials with respect to w ({mu}) to develop quadrature sets to be used in the discrete ordinates calculation.

  4. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  5. Quadrature two-dimensional correlation spectroscopy (Q-2DCOS)

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2016-11-01

    Quadrature 2D correlation spectroscopy (Q-2DCOS) is introduced. The technique incorporates the effect of the perturbation into the traditional 2DCOS analysis by building a multivariate model, merging the information of the perturbation variable and spectral responses. By employing factors which are 90° out of phase with each other, pertinent coincidental and sequential spectral intensity variations are adequately captured for the subsequent 2D correlation analysis. Almost complete replication of the original 2DCOS results based on such a simple rank 2 model of experimental spectra suggests that only the dominant spectral intensity variation patterns in combination with its quadrature counterpart seems to be utilized in 2DCOS analysis. Using the linear perturbation variable itself as the basis for generating the primary score vector is equivalent to the least squares fitting of a quadratic polynomial with spectral intensity variations. Q-2DCOS analysis may be displayed in terms of a graphical plot on a phase plane in the vector space, so that coincidental and sequential matching of the patterns of spectral intensity variations is represented simply by the phase angle difference between two vectors. Q-2DCOS analysis is closely related to other established ideas and practices in the 2D correlation spectroscopy field, such as dynamic 2D IR dichroism, PCA 2D, quadrature orthogonal signal correction (Q-OSC), and perturbation correlation moving window (PCMW) analyses.

  6. Testing the Empirical Shock Arrival Model Using Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.; Yashiro, S.

    2013-01-01

    The empirical shock arrival (ESA) model was developed based on quadrature data from Helios (in situ) and P-78 (remote sensing) to predict the Sun-Earth travel time of coronal mass ejections (CMEs). The ESA model requires earthward CME speed as input, which is not directly measurable from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in quadrature during 20102012, so the speeds of Earth-directed CMEs were observed with minimal projection effects. We identified a set of 20 full halo CMEs in the field of view of SOHO that were also observed in quadrature by STEREO. We used the earthward speed from STEREO measurements as input to the ESA model and compared the resulting travel times with the observed ones from L1 monitors. We find that the model predicts the CME travel time within about 7.3 h, which is similar to the predictions by the ENLIL model. We also find that CME-CME and CME-coronal hole interaction can lead to large deviations from model predictions.

  7. The high accuracy data processing system of laser interferometry signals based on MSP430

    NASA Astrophysics Data System (ADS)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  8. Dual differential interferometer for measurements of broadband surface acoustic waves

    NASA Technical Reports Server (NTRS)

    Turner, T. M.; Claus, R. O.

    1981-01-01

    A simple duel interferometer which uses two pairs of orthogonally polarized optical beams to measure both the amplitude and direction of propagation of broadband ultrasonic surface waves is described. Each pair of focused laser probe beams is used in a separate wideband differential interferometer to independently detect the component of surface wave motion along one direction on the surface. By combining the two output signals corresponding to both components, the two dimensional surface profile and its variation as a function of time is determined.

  9. A new multichannel interferometer system on HL-2A

    SciTech Connect

    Zhou, Y.; Deng, Z. C.; Liu, Z. T.; Yi, J.; Tang, Y. W.; Gao, B. Y.; Tian, C. L.; Li, Y. G.; Ding, X. T.

    2007-11-15

    A new multichannel HCN interferometer has been developed on HL-2A tokamak, which is characterized by two techniques: (1) the wave-guide HCN laser with cavity length of 6 m to increase the optical resource power and (2) high response room temperature waveguide Schottky diode detectors to obtain good beat signal. The space resolution is 7 cm by the use of focusing metal mirrors mounted on the vacuum chamber and a compensated optical system. In the 2006 experiment campaign, this new interferometer has been applied for plasma density profile and density sawtooth measurement.

  10. Optimization of the HCN interferometer on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Shi, P.; Gao, L.; Xiong, C. Y.; Liu, Y.; Chen, J.; Zhuang, G.

    2015-12-01

    Recently, the HCN interferometer on J-TEXT has been optimized in many aspects. Firstly, the output power of laser source is more stable after using a new designed movable mirror frame and upgrading the oil thermostatic system. Secondly, the electromagnetic interferences have been eliminated by designing a shielding system. Additionally, the signal-to-noise ratio of intermediate frequency (IF) signal has been increased more than five times by improving the detector circuit. The density resolution has been increased from 1×1018 m-3 to 2×1017 m-3 and the sawtooth oscillation has also been measured by the HCN interferometer on J- TEXT after optimizations.

  11. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    SciTech Connect

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-05-28

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  12. The Fizeau Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  13. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  14. The Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.

    2012-01-01

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it 10 the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive itellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positivedefinite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-tenns combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (approx. order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  15. MIT's interferometer CST testbed

    NASA Technical Reports Server (NTRS)

    Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-01-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  16. The Keck Interferometer Nuller

    NASA Astrophysics Data System (ADS)

    Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.

    2012-03-01

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline—a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (~order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  17. MIT's interferometer CST testbed

    NASA Astrophysics Data System (ADS)

    Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-12-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  18. A thermal beam calcium matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremiah; Christensen, Dan; Erickson, Christopher; Paul, Justin; Tang, Rebecca; Durfee, Dallin

    2006-10-01

    We report on progress toward a calcium-beam atom interferometer. The design uses a novel alignment scheme using precision prisms which will cause first-order Doppler shifts to cancel out to high accuracy. The device will utilize a thermal beam of atoms for simplicity and high signals. The atom waves will be split and recombined using a single-photon transition at a wavelength of 657 nm. We are currently working to improve the linewidth of the 657 nm laser and constructing a 423 nm blue laser to transversely cool the atoms and to detect the output of the interferometer. We are also characterizing a thermal Ca beam using laser absorption and working on precise control of the temperature and flux of the beam.

  19. Interferometer assessment of potential visual acuity before YAG capsulotomy: relative performance of three instruments.

    PubMed

    Strong, N

    1992-01-01

    The accuracy of white light and laser interferometers in predicting visual acuity after YAG laser capsulotomy was compared. 42 eyes of 41 patients were tested with both a Haag-Streit (Lotmar) white light interferometer and a Rodenstock laser interferometer, and 14 were also tested with a Site white light machine. The laser interferometer predicted a final visual acuity to within one line of that actually achieved in 93%, and to within two lines in 98%, whereas for the Haag-Streit these figures were 64% and 81%, and for the Site 77% and 92%. In patients with poor initial visual acuity, the difference in the relative performance of the two instruments was increased further. When interferometry was repeated after capsulotomy, the values obtained with all instruments agreed closely with Snellen acuity. This difference in predictive accuracy shows that capsular thickening causes a greater degree of optical degradation of the image produced by a white light interferometer than occurs when a laser interferometer is employed.

  20. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  1. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  2. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  3. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  4. Interferometer Studies Of Grain Burning Behavior In HMX Explosive

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Baer, M. R.

    1984-01-01

    A laser interferometer is used in experiments which probe the thermal initiation and burning of explosives on a microsecond time scale prior to detonation. In this work, small charges of HMX are confined by a piston in a steel chamber bore and thermally initiated with a foil on one surface of the chamber which is suddenly heated by a capacitor discharge. The burn process is observed through the motion of a piston which is driven by the gaseous combustion products. An air-delay leg VISAR velocity interferometer system is used to monitor the piston motion. This velocity data is directly processed to determine the chamber gas pressure as a function of volume during the piston expansion. High-pressure burn rates during deflagration can be deduced from these tests. Parasitic effects in small charge experiments due to thermal conduction from the walls, piston leakage, friction, as well as the interferometer resolution itself are discussed.

  5. Monolithically integrated nonlinear interferometers for all-optical switching

    SciTech Connect

    Jahn, E.; Agrawal, N.; Ehrke, H.J.; Pieper, W.; Franke, D.; Fuerst, W.; Weinert, C.M.

    1996-12-31

    All-optical switching devices are expected to play an important role in future optical communication networks. For example, nonlinear interferometer (NLI) arrangements consisting of one or two semiconductor laser amplifiers (SLA) are very attractive. Here, the cross-phase modulation due to the gain-saturation nonlinearity of SLAs could be used for switching in time, space, and wavelength domains. The first of such devices was configured as a nonlinear Sagnac interferometer (NSI) by using an SLA in a fiber loop mirror (SLALOM) for time domain switching. So far, these devices have been assembled using discrete SLA components. Other arrangements like Mach-Zehnder interferometer (MZI) with SLAs provide additional flexibility but require their realization as integrated devices for stable operation. In this paper the authors report on the development of monolithically integrated NLIs for all-optical signal processing in high bit-rate optical time division multiplexing systems. Both NSI and MZI configurations are considered.

  6. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  7. Two-chord interferometry using 3.39 μm He-Ne laser on a flux-coil-generated FRC.

    PubMed

    Gota, H; Bolte, N; Deng, B H; Gupta, D; Kiyashko, V; Knapp, K; Mendoza, R; Morehouse, M; Roche, T; Wessel, F

    2010-10-01

    A two-chord λ(IR)∼3.39 μm He-Ne laser interferometer system was developed for a flux-coil-generated field-reversed configuration to estimate the electron density and the total temperature of the field-reversed configuration (FRC) plasma. This two-chord heterodyne interferometer system consists of a single ∼2 mW infrared He-Ne laser, a visible (λ(vis)∼632.8 nm) He-Ne laser for the alignment, a 40 MHz acousto-optic modulator, photodetectors, and quadrature phase detectors. Initial measurement was performed and the measured average electron densities were 2-10×10(19) m(-3) at two different radial positions in the midplane. A time shift in density was observed as the FRC expands radially. The time evolution of the line-averaged density agrees with the density estimated from the in situ internal magnetic probes, based on a rigid-rotor profile model.

  8. Two-chord interferometry using 3.39 {mu}m He-Ne laser on a flux-coil-generated FRC

    SciTech Connect

    Gota, H.; Deng, B. H.; Gupta, D.; Kiyashko, V.; Knapp, K.; Mendoza, R.; Morehouse, M.; Bolte, N.; Roche, T.; Wessel, F.

    2010-10-15

    A two-chord {lambda}{sub IR}{approx}3.39 {mu}m He-Ne laser interferometer system was developed for a flux-coil-generated field-reversed configuration to estimate the electron density and the total temperature of the field-reversed configuration (FRC) plasma. This two-chord heterodyne interferometer system consists of a single {approx}2 mW infrared He-Ne laser, a visible ({lambda}{sub vis}{approx}632.8 nm) He-Ne laser for the alignment, a 40 MHz acousto-optic modulator, photodetectors, and quadrature phase detectors. Initial measurement was performed and the measured average electron densities were 2-10x10{sup 19} m{sup -3} at two different radial positions in the midplane. A time shift in density was observed as the FRC expands radially. The time evolution of the line-averaged density agrees with the density estimated from the in situ internal magnetic probes, based on a rigid-rotor profile model.

  9. Dual interferometer system for measuring index of refraction

    NASA Astrophysics Data System (ADS)

    Goodwin, Eric Peter

    The optical power of a lens is determined by the surface curvature and the refractive index, n. Knowledge of the index is required for accurate lens design models and for examining material variations from sample to sample. The refractive index of glass can be accurately measured using a prism spectrometer, but measuring the index of soft contact lens materials presents many challenges. These materials are non-rigid, thin, and must remain hydrated in a saline solution during testing. Clearly an alternative to a prism spectrometer must be used to accurately measure index. A Dual Interferometer System has been designed, built and characterized as a novel method for measuring the refractive index of transparent optical materials, including soft contact lens materials. The first interferometer is a Low Coherence Interferometer in a Twyman-Green configuration with a scanning reference mirror. The contact lens material sample is placed in a measurement cuvette, where it remains hydrated. By measuring the locations of the multiple optical interfaces, the physical thickness t of the material is measured. A new algorithm has been developed for processing the low coherence signals obtained from the reflection at each optical interface. The second interferometer is a Mach-Zehnder interferometer with a tunable HeNe laser light source. This interferometer measures the optical path length (OPL) of the test sample in the cuvette in transmission as a function of five wavelengths in the visible spectrum. This is done using phase-shifting interferometry. Multiple thickness regions are used to solve 2pi phase ambiguities in the OPL. The outputs of the two interferometers are combined to determine the refractive index as a function of wavelength: n(lambda) = OPL(lambda)/t. Since both t and OPL are measured using a detector array, n is measured at hundreds of thousands of data points. A measurement accuracy of 0.0001 in refractive index is achieved with this new instrument, which is

  10. Investigating the frequency-dependent amplification of a tapered amplifier in atom interferometers.

    PubMed

    Zhan, Su; Duan, Xiao-Chun; Zhou, Min-Kang; Yao, Hui-Bin; Xu, Wen-Jie; Hu, Zhong-Kun

    2015-01-01

    We present the investigation on the frequency-dependent amplification (FDA) of a tapered amplifier (TA) and the corresponding influence on Raman-type atom interferometers. In our interferometer, the output of two phase-locked diode lasers is injected into a TA to generate Raman beams. The frequency of one laser is chirped during the interfering process, which induces a variance of the Raman lasers power as a result of the FDA of the TA. The corresponding power ratio variation of the Raman lasers is measured by beat note method, which shows a linear dependence with a slope of -0.087(4)/GHz when the laser frequency changes over 2 GHz at 780 nm. The corresponding error related to AC Stark effect due to this frequency-dependent variation is estimated for our atom interferometer. The investigation presented here may provide hints for other experiments involving TAs. PMID:25531600

  11. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  12. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    PubMed

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators.

  13. Laser system preset unit

    DOEpatents

    Goodwin, William L.

    1977-01-01

    An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

  14. Polarizing optical interferometer having a dual use optical element

    DOEpatents

    Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  15. Polarizing optical interferometer having a dual use optical element

    DOEpatents

    Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-04-04

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  16. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  17. Fiber Sagnac interferometer temperature sensor

    SciTech Connect

    Starodumov, A.N.; Zenteno, L.A.; Monzon, D.; De La Rosa, E.

    1997-01-01

    A modified Sagnac interferometer-based fiber temperature sensor is proposed. Polarization independent operation and high temperature sensitivity of this class of sensors make them cost effective instruments for temperature measurements. A comparison of the proposed sensor with Bragg grating and long-period grating fiber sensors is derived. A temperature-induced spectral displacement of 0.99 nm/K is demonstrated for an internal stress birefringent fiber-based Sagnac interferometer. {copyright} {ital 1997 American Institute of Physics.}

  18. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A.; King, Robert D.

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  19. M-link multiplexing over the quadrature communications channel

    NASA Astrophysics Data System (ADS)

    Gagliardi, R.

    1984-09-01

    The possibility of multiplexing more than two independent, unsynchronized data streams on a quadrature carrier channel is investigated theoretically. It is found that by using linear (or near linear) combinations of basis carriers, no increase in overall bandwidth occurs as more channels are added, increasing the overall system throughput. Symbol decoding with banks of independent bit integrators after phase coherent demodulation was investigated, and degradation and bit error probabilities were computed. The results indicate that significant degradations occur even with relatively few added channels, but bandwidth savings and the simple encoder and decoder circuitry may prove a cost-efficient tradeoff in bandwidth restricted systems.

  20. Michelson Interferometer (MINT)

    NASA Astrophysics Data System (ADS)

    Lacis, Andrew; Carlson, Barbara

    1993-09-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  1. Michelson Interferometer (MINT)

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew; Carlson, Barbara

    1993-01-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  2. 102({h_bar}/2{pi})k Large Area Atom Interferometers

    SciTech Connect

    Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A.

    2011-09-23

    We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102({h_bar}/2{pi})k). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.

  3. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection.

    PubMed

    Eberle, Tobias; Steinlechner, Sebastian; Bauchrowitz, Jöran; Händchen, Vitus; Vahlbruch, Henning; Mehmet, Moritz; Müller-Ebhardt, Helge; Schnabel, Roman

    2010-06-25

    Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our interferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied.

  4. A robust sinusoidal signal processing method for interferometers

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-long; Zhang, Hui; Tseng, Yang-Yu; Fan, Kuang-Chao

    2013-10-01

    Laser interferometers are widely used as a reference for length measurement. Reliable bidirectional optical fringe counting is normally obtained by using two orthogonally sinusoidal signals derived from the two outputs of an interferometer with path difference. These signals are subject to be disturbed by the geometrical errors of the moving target that causes the separation and shift of two interfering light spots on the detector. It results in typical Heydemann errors, including DC drift, amplitude variation and out-of-orthogonality of two sinusoidal signals that will seriously reduce the accuracy of fringe counting. This paper presents a robust sinusoidal signal processing method to correct the distorted waveforms by hardware. A corresponding circuit board has been designed. A linear stage equipped with a laser displacement interferometer and a height gauge equipped with a linear grating interferometer are used as the test beds. Experimental results show that, even with a seriously disturbed input waveform, the output Lissajous circle can always be stabilized after signal correction. This robust method increases the stability and reliability of the sinusoidal signals for data acquisition device to deal with pulse count and phase subdivision.

  5. Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Han, Ming; Wang, Anbo

    2012-06-01

    A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.

  6. High-resolution adaptive holographic interferometer for biomedical applications

    NASA Astrophysics Data System (ADS)

    Dovgalenko, George; Dagdanova, Ayuna

    2007-07-01

    We realized new adaptive holographic sensor and interferometer, which allows to visualize high-resolution 3D images of diffuse reflected objects in Continue Hologram Registration Regime- CHRR. The coupled laser wave nonlinear theory was applied for optimization of hologram recording in crystals symmetry 23 and optimized experimental set up. Experimentally demonstrated dynamical holographic image sensors on doped 23 symmetry photosensitive crystals, with resolution 7900-lines/mm at 632 nm and 11641 lines/mm at 440 nm for 15 mW CW HeNe and He-Cd lasers. The results are presented for holographic visualization of Cryogenic and Ultrasonic near field images of Surgical Medical Instrument. Application of CHRR interferometer for hologram registration of moving biological object in "vivo" is illustrated.

  7. Differential heterodyne interferometer for measuring thickness of glass panels

    SciTech Connect

    Protopopov, Vladimir; Cho, Sunghoon; Kim, Kwangso; Lee, Sukwon; Kim, Hyuk

    2007-07-15

    Differential heterodyne interferometer is applied for measuring spatial thickness variations across glass panels of liquid-crystal displays. This system uses the Zeeman laser as a source of two-frequency shifted orthogonally linearly polarized probe waves, passing through the glass in two spatially separated points. These waves are then recombined in a single beam to produce the intermediate frequency signal with the phase proportional to the thickness gradient of a glass sample. The phase of the intermediate signal is measured against the laser reference by means of a lock-in amplifier, and finally real-time integration provides the thickness variation. Since spatial separation of the probe beams is only 1.35 mm good approximation for the thickness gradient is achieved. Detailed design of the interferometer and experimental results on real samples are presented.

  8. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  9. Automatic control system design of laser interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Qingjie; Li, Chunjie; Sun, Hao; Ren, Shaohua; Han, Sen

    2015-10-01

    There are a lot of shortcomings with traditional optical adjustment in interferometry, such as low accuracy, time-consuming, labor-intensive, uncontrollability, and bad repetitiveness, so we treat the problem by using wireless remote control system. Comparing to the traditional method, the effect of vibration and air turbulence will be avoided. In addition the system has some peculiarities of low cost, high reliability and easy operation etc. Furthermore, the switching between two charge coupled devices (CCDs) can be easily achieved with this wireless remote control system, which is used to collect different images. The wireless transmission is achieved by using Radio Frequency (RF) module and programming the controller, pulse width modulation (PWM) of direct current (DC) motor, real-time switching of relay and high-accuracy displacement control of FAULHABER motor are available. The results of verification test show that the control system has good stability with less than 5% packet loss rate, high control accuracy and millisecond response speed.

  10. Mach-Zehnder interferometer for movement monitoring

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr

    2012-06-01

    Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and

  11. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    NASA Astrophysics Data System (ADS)

    Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Pérot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e-2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ɛ*=0.01) and using an input laser power Io in units of that required to reach the SQL (the planned LIGO-II power, ISQL), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡(Sh)/(SSQLh) and with the following corresponding increase V=1/μ3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input-μ~=(e-2R)~=0.3 and V~=1/0.33~=30 using Io/ISQL=1. Variational-output-μ~=ɛ1/4*~=0.3 and V~=30 but only if the optics can handle a ten times larger power: Io/ISQL~=1/(ɛ*)=10

  12. A new method for determining the plasma electron density using three-color interferometer

    SciTech Connect

    Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi

    2012-06-15

    A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.

  13. Solvability of a Lie algebra of vector fields implies their integrability by quadratures

    NASA Astrophysics Data System (ADS)

    Cariñena, J. F.; Falceto, F.; Grabowski, J.

    2016-10-01

    We present a substantial generalisation of a classical result by Lie on integrability by quadratures. Namely, we prove that all vector fields in a finite-dimensional transitive and solvable Lie algebra of vector fields on a manifold can be integrated by quadratures.

  14. The Nature of the Nodes, Weights and Degree of Precision in Gaussian Quadrature Rules

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We present a comprehensive proof of the theorem that relates the weights and nodes of a Gaussian quadrature rule to its degree of precision. This level of detail is often absent in modern texts on numerical analysis. We show that the degree of precision is maximal, and that the approximation error in Gaussian quadrature is minimal, in a…

  15. Bidirectional phase-shifting point diffraction interferometer for wavefronts testing

    NASA Astrophysics Data System (ADS)

    Chen, Sanbin; Zhou, Shouhuan; Tang, Xiaojun; Hong, Zhao

    2015-10-01

    The wavefront of the laser beam was tested by a point-diffraction interferometer with bidirectional phase-shifting. The phase-shifting is obtained by the bidirectional modulated of the electro-optic effect lithium niobate crystal combining with a pinhole filter in half-wave film. The wavefront aberration of incoming beam is directly measured by analyzing five frames phase-shifted interferograms captured by a CCD camera.

  16. Measurement of ultrafast optical nonlinearities using a modified Sagnac interferometer.

    PubMed

    Gabriel, M C; Whitaker, N A; Dirk, C W; Kuzyk, M G; Thakur, M

    1991-09-01

    A method for the measurement of fast, intensity-dependent refractive-index changes with the use of a modified Sagnac ring interferometer is presented. The measurement is not degraded by slowly responding background index changes. Nonlinear refractive-index changes in an undoped silicon wafer, and in poly-bis toluene sulfonate polydiacetylene and dye-doped polymethyl methacrylate waveguides, were measured with the use of a cw mode-locked Nd:YAG laser.

  17. A Robust Ramsey Interferometer for Atomic Timekeeping in Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Brown, Justin; Butts, David; Choy, Jennifer; Galfond, Marissa; Johnson, David M.; Kinast, Joseph; Timmons, Brian; Stoner, Richard

    2014-05-01

    We present a laser-based approach to atomic timekeeping, in which atomic phase information is extracted using modified Raman pulses in a Ramsey sequence. We overcome systematic effects associated with differential AC Stark shifts and variations in laser beam intensity by employing atom optics derived from Raman adiabatic rapid passage (ARP). This technique drives coherent transfer between two hyperfine ground states by sweeping the frequency difference of two optical fields and maintaining a large single-photon detuning. Compared to a Raman-pulse Ramsey interferometer, we show a >150x reduction in sensitivity to differential AC Stark shifts. We also demonstrate that ARP preserves fringe contrast in Ramsey interferometers for cloud displacements reaching the 1/e2 intensity radius of the laser beam. Deviations of the phase in response to changes in duration, rate, and range of the ARP frequency sweep are bounded to <7 mrad, implying a per-shot fractional frequency uncertainty of 1e-11 for an interrogation time of 10 ms. These characteristics are expected to improve the robustness of clock interferometers operating in dynamic environments. Copyright ©2014 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  18. Spatial resolution enhancement of fiber-optic scanning white-light interferometer by use of a Vernier principle.

    PubMed

    Sun, Changsen; Zhao, Yang; Tennant, Adam; Ansari, Farhad

    2003-08-01

    A Vernier principle is employed to improve the spatial resolution of a fiber-optic white-light interferometer to the accuracy of 0.2 microm. The Vernier principle is implemented by combination of interference fringes itself and a virtual fringe that is generated by means of software tracing the scanning mirror. Two rulers are read with respect to each other. This design is insensitive to intensity fluctuation of the interference fringe. The applications, submicrometer estimation for the quadrature-locking selection and the tolerance of the relative measurement, demonstrate its effectiveness.

  19. Spatial resolution enhancement of fiber-optic scanning white-light interferometer by use of a Vernier principle.

    PubMed

    Sun, Changsen; Zhao, Yang; Tennant, Adam; Ansari, Farhad

    2003-08-01

    A Vernier principle is employed to improve the spatial resolution of a fiber-optic white-light interferometer to the accuracy of 0.2 microm. The Vernier principle is implemented by combination of interference fringes itself and a virtual fringe that is generated by means of software tracing the scanning mirror. Two rulers are read with respect to each other. This design is insensitive to intensity fluctuation of the interference fringe. The applications, submicrometer estimation for the quadrature-locking selection and the tolerance of the relative measurement, demonstrate its effectiveness. PMID:12916606

  20. The NIST Length Scale Interferometer

    PubMed Central

    Beers, John S.; Penzes, William B.

    1999-01-01

    The National Institute of Standards and Technology (NIST) interferometer for measuring graduated length scales has been in use since 1965. It was developed in response to the redefinition of the meter in 1960 from the prototype platinum-iridium bar to the wavelength of light. The history of the interferometer is recalled, and its design and operation described. A continuous program of modernization by making physical modifications, measurement procedure changes and computational revisions is described, and the effects of these changes are evaluated. Results of a long-term measurement assurance program, the primary control on the measurement process, are presented, and improvements in measurement uncertainty are documented.

  1. Quadrature component analysis of interferograms with random phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Chen, Zhao

    2014-08-01

    Quadrature component analysis (QCA) is an effective method for analyzing the interferograms if the phase shifts are uniformly distributed in the [0, 2π] range. However, it is hard to meet this requirement in practical applications, so a parameter named the non-orthogonal degree (NOD) is proposed to indicate the degree when the phase shifts are not well distributed. We analyze the relation between the parameter of NOD and the accuracy of the QCA algorithm by numerical simulation. By using the parameter of NOD, the relation between the distribution of the phase shift and the accuracy of the QCA algorithm is obtained. The relation is discussed and verified by numerical simulations and experiments.

  2. Terahertz single-shot quadrature phase-shifting interferometry.

    PubMed

    Földesy, Péter

    2012-10-01

    A single-shot quadrature phase-shifting interferometry architecture is presented that is applicable to antenna coupled detector technologies. The method is based on orthogonally polarized object and reference beams and on linear and circular polarization sensitive antennas in space-division multiplexing. The technique can be adapted to two-, three-, and four-step and Gabor holography recordings. It is also demonstrated that the space-division multiplexing does not necessarily cause sparse sampling. A sub-THz detector array is presented containing multiple on-chip antennas and FET plasma wave detectors implemented in a 90 nm complementary metal-oxide semiconductor technology. As an example, two-step phase-shifting reconstruction results are given at 360 GHz. PMID:23027273

  3. Quadrature formula for evaluating left bounded Hadamard type hypersingular integrals

    NASA Astrophysics Data System (ADS)

    Bichi, Sirajo Lawan; Eshkuvatov, Z. K.; Nik Long, N. M. A.; Okhunov, Abdurahim

    2014-12-01

    Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x) = 1/π √{1+x/1-x }∫-1 **1√{1-t/1+t }h(t)/(t-x)2 dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev polynomials of the fourth kind. Numerical results revealed that the proposed AQS is highly accurate when h(t) is choosing to be the polynomial and rational functions. The results are in line with the theoretical findings.

  4. Harmonic Golay coded excitation based on harmonic quadrature demodulation method.

    PubMed

    Kim, Sang-Min; Song, Jae-Hee; Song, Tai-Kyong

    2008-01-01

    Harmonic coded excitation techniques have been used to increase SNR of harmonic imaging with limited peak voltage. Harmonic Golay coded excitation, in particular, generates each scan line using four transmit-receive cycles, unlike conventional Golay coded excitation method, thus resulting in low frame rates. In this paper we propose a method of increasing the frame rate of said method without impacting the image quality. The proposed method performs two transmit-receive cycles using QPSK code to ensure that the harmonic components of incoming signals are Golay coded and uses harmonic quadrature demodulation to extract compressed second harmonic component only. The proposed method has been validated through mathematical analysis and MATLAB simulation, and has been verified to yield a limited error of -52.08dB compared to the ideal case. Therefore, the proposed method doubles the frame rate compared to the existing harmonic Golay coded excitation method without significantly deteriorating the image quality.

  5. Residual Distribution Schemes for Conservation Laws Via Adaptive Quadrature

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Abgrall, Remi; Biegel, Bryan (Technical Monitor)

    2000-01-01

    This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.

  6. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog

  7. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.

  8. Triangle interferometer and its optimization.

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xu, Jiayan; Xiao, Jinhong; Wang, Zhengming

    1991-12-01

    The optimal configuration of the triangle for determining the ERP is an equilateral triangle or an isosceles right triangle. Analysing the data observed by Connected Element Interferometer at Green Bank shows that the accuracy of the ERP solved from three baselines' observations is much better than that of those solved from only two.

  9. Holographic Twyman-Green interferometer

    NASA Technical Reports Server (NTRS)

    Chen, C. W.; Breckinridge, J. B.

    1982-01-01

    A dichromated gelatin off-axis Fresnel zone plate was designed, fabricated, and used in a new type of interferometer for optical metrology. This single hologram optical element combines the functions of a beam splitter, beam diverger, and aberrated null lens. Data presented show the successful application for an interferometric test of an f/6, 200-mm diam parabolic mirror.

  10. Analyzing algorithms for nonlinear and spatially nonuniform phase shifts in the liquid crystal point diffraction interferometer. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Jain, N.

    1999-03-01

    Phase-shifting interferometry has many advantages, and the phase shifting nature of the Liquid Crystal Point Diffraction Interferometer (LCPDI) promises to provide significant improvement over other current OMEGA wavefront sensors. However, while phase-shifting capabilities improve its accuracy as an interferometer, phase-shifting itself introduces errors. Phase-shifting algorithms are designed to eliminate certain types of phase-shift errors, and it is important to chose an algorithm that is best suited for use with the LCPDI. Using polarization microscopy, the authors have observed a correlation between LC alignment around the microsphere and fringe behavior. After designing a procedure to compare phase-shifting algorithms, they were able to predict the accuracy of two particular algorithms through computer modeling of device-specific phase shift-errors.

  11. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  12. Adaptive quadrature-polybinary detection in super-Nyquist WDM systems.

    PubMed

    Chen, Sai; Xie, Chongjin; Zhang, Jie

    2015-03-23

    We propose an adaptive detection technique in super-Nyquist wavelength-division-multiplexed (WDM) polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems, where a QPSK signal is digitally converted to a quadrature n-level polybinary signal followed by a MLSE detector at the receiver, and study the performance of quadrature-duobinary and quadrature four-level polybinary signals using this detection technique. We change the level of the quadrature-polybinary modulation at the coherent receiver according to the channel spacing of a super-Nyquist system. Numerical studies show that the best performance can be achieved by choosing different modulation levels at the receiver in adaption to the channel spacing. In the experiment, we demonstrate the transmission of 3-channel 112-Gbit/s PDM-QPSK signals at a 20-GHz channel spacing, which is detected as a quadrature four-level polybinary signal, with performance comparable to PDM 16-ary quadrature-amplitude modulation (16QAM) at the same bit rate.

  13. Design of a dual species atom interferometer for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  14. Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Mcreynolds, S. R.

    1975-01-01

    A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.

  15. Programs for computing abscissas and weights for classical and nonclassical Gaussian quadrature formulas

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1975-01-01

    Computer programs for computing Gaussian quadrature abscissas and weights are described. For the classical case the programs use Laguerre iteration to compute abscissas as zeros of orthogonal polynomials. The polynomials are evaluated from known recursion coefficients. The nonclassical case is handled similarly except that the recursion coefficients are computed by numerical integration. A sample problem, with input and output, is presented to illustrate the use of the programs. It computes the quadrature abscissas and weights associated with the weight function over the interval (0,1) for quadrature orders from 16 to 96 in increments of 8.

  16. Quadrature methods for periodic singular and weakly singular Fredholm integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Israeli, Moshe

    1988-01-01

    High-accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are subsequently used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Throughout the development the periodic nature of the problem plays a crucial role. Such periodic equations are used in the solution of planar elliptic boundary value problems such as those that arise in elasticity, potential theory, conformal mapping, and free surface flows. The use of the quadrature methods is demonstrated with numerical examples.

  17. Implementation of a reference interferometer for nanodetection.

    PubMed

    Vincent, Serge; Yu, Wenyan; Lu, Tao

    2014-01-01

    A thermally and mechanically stabilized fiber interferometer suited for examining ultra-high quality factor microcavities is fashioned. After assessing its free spectral range (FSR), the module is put in parallel with a fiber taper-microcavity system and then calibrated through isolating and eliminating random shifts in the laser frequency (i.e. laser jitter noise). To realize the taper-microcavity junction and to maximize the optical power that is transferred to the resonator, a single-mode optical fiber waveguide is pulled. Solutions containing polystyrene nanobeads are then prepared and flown to the microcavity in order to demonstrate the system's ability to sense binding to the surface of the microcavity. Data is post-processed via adaptive curve fitting, which allows for high-resolution measurements of the quality factor as well as the plotting of time-dependent parameters, such as resonant wavelength and split frequency shifts. By carefully inspecting steps in the time-domain response and shifting in the frequency-domain response, this instrument can quantify discrete binding events. PMID:24798706

  18. A Fiber Interferometer for the Magnetized Shock Experiment

    SciTech Connect

    Yoo, Christian

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  19. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  20. Lensless reflective point diffraction interferometer.

    PubMed

    Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Yang, Ying; Han, Zhigang; Li, Jinpeng

    2016-07-01

    A lensless reflective point diffraction interferometer (LRPDI) is proposed for dynamic wavefront measurement. The point diffraction interferometer is integrated on a small substrate with properly designed thin film, which is used for generating the interferogram with high carrier frequency at a CCD target. By lensless imaging, the complex amplitude at the CCD target can be propagated to the conjugated plane of the exit pupil of an incident wavefront, which not only avoids the edge diffraction in the interferogram, but also eliminates systematic error. The accuracy of LRPDI is demonstrated by simulation and experiment, and a precision better than 1/150 wavelength is achieved. The new design with lensless imaging processing is suitable for dynamic wavefront measurement. PMID:27409204

  1. A Quadrature Free Discontinuous Galerkin Conservative Level Set Scheme

    NASA Astrophysics Data System (ADS)

    Czajkowski, Mark; Desjardins, Olivier

    2010-11-01

    In an effort to improve the scalability and accuracy of the Accurate Conservative Level Set (ACLS) scheme [Desjardins et al., J COMPUT PHYS 227 (2008)], a scheme based on the quadrature free discontinuous Galerkin (DG) methodology has been developed. ACLS relies on a hyperbolic tangent level set function that is transported and reinitialized using conservative schemes in order to alleviate mass conservation issues known to plague level set methods. DG allows for an arbitrarily high order representation of the interface by using a basis of high order polynomials while only using data from the faces of neighboring cells. The small stencil allows DG to have excellent parallel scalability. The diffusion term present in the conservative reinitialization equation is handled using local DG method [Cockburn et al., SIAM J NUMER ANAL 39, (2001)] while the normals are computed from a limited form of the level set function in order to avoid spurious oscillations. The resulting scheme is shown to be both robust, accurate, and highly scalable, making it a method of choice for large-scale simulations of multiphase flows with complex interfacial topology.

  2. Radiation transport modeling using extended quadrature method of moments

    SciTech Connect

    Vikas, V.; Hauck, C.D.; Wang, Z.J.; Fox, R.O.

    2013-08-01

    The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions.

  3. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  4. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  5. Polarized-interferometer feasibility study

    NASA Technical Reports Server (NTRS)

    Raab, F. H.

    1983-01-01

    The feasibility of using a polarized-interferometer system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized interferometer is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized interferometer concept are verified by simulation.

  6. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    PubMed

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  7. A fast method of numerical quadrature for p-version finite element matrices

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1993-01-01

    A new technique of numerical quadrature especially suited for p-version finite element matrices is presented. This new technique separates the integrand into two parts, and numerically operates on each part separately. The objective of this scheme is to minimize the computational cost of integrating the entire element matrix as opposed to minimizing the cost of integrating a single function. The efficiency of the new technique is compared with Gaussian quadrature and found to take a small fraction of the computational effort.

  8. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    PubMed

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  9. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    PubMed Central

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  10. Portable Doppler interferometer system for shock diagnostics and high speed motion

    NASA Astrophysics Data System (ADS)

    Fleming, K. J.; Crump, O. B., Jr.

    VISAR (velocity interferometer system for any reflector) is a system that uses the Doppler effect and is widely used for measuring the velocity of projectiles, detonations, flying plates, shock pressures (particle velocity), and other high speed/high acceleration motion. Other methods of measurement such as accelerometers and pressure gauges have disadvantages in that they are sensitive to radiation, electromagnetic pulses, and their mass can drastically alter the velocity of the projectile. VISAR uses single frequency-single mode laser light focused onto a target of interest. Reflected light from the target is collected and sent through a modified, unequal leg Michelson interferometer. In the interferometer the light is split into two components which travel through the legs of the interferometer cavity and are then recombined. When the light recombines, an interference pattern is created which can range from dark (destructive interference) to bright (constructive interference). When the target moves, the reflected laser light experiences a frequency shift (increase) with respect to the frequency from the target in a static condition. Since the Doppler shifted light is split and routed through an unequal leg interferometer cavity, there is a time lag of the light containing the Doppler information at the recombination point in the interferometer. The effect of the time lag is to create a sinusoidally changing interference pattern (commonly called fringes). Since the interferometer time delay, laser wavelength, and the speed of light are known, an accurate measurement of target velocity/acceleration may be measured by analyzing both the number of fringes and the speed of fringe generation (system accuracy is 3-4%).

  11. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  12. Nonlocal polarization interferometer for entanglement detection

    SciTech Connect

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, we present the relevant theory and experimental results.

  13. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  14. Keck Interferometer Science: Present and Future

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel L.

    2004-01-01

    The Keck Interferometer is a NASA funded project developed by the Jet Propulsion Laboratory, the William M. Keck Observatory and the Michelson Science Center at the California Institute of Technology. A technical description of the interferometer is given elsewhere in this volume. This paper will discuss the science topics and goals of the Keck Interferometer project, including a brief description of the Key Science projects, the science projects executed to date and the current availability of the interferometer for new projects. The Keck Interferometer Project consists of the Keck-Keck Interferometer, which combines the two Keck lo-meter telescopes on an 85-meter baseline, and the Outrigger Telescopes Project, a proposal to add four to six 1.8-meter telescopes that would work in conjunction with the two Kecks.

  15. Characterization and use of an optical fiber interferometer for measurement of the electric wind.

    PubMed

    Lamb, D W; Woolsey, G A

    1995-03-20

    An optical fiber interferometer of the Mach-Zehnder type has proved to be a convenient and accurate method for measuring the electric wind in the active region of a corona discharge. The technique relies on the cooling effect of the wind on a small heated region of one arm of the interferometer, which has been remotely heated with an infrared CO(2) laser beam. Wind speeds of up to 5.5 m s(-1) have been measured near the generation region, and by the use of a mesh electrode, the wind has been detected on the axis up to 0.5 m away from the gap. A number of characterization experiments that show the interferometer to be a useful diagnostic tool in the quantitative analysis of the CO(2) laser beam have also been carried out, and good agreement between experimental results and theoretical calculations based on a simple heat-power balance equation for the fiber exists.

  16. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance.

    PubMed

    Rovati, L; Minoni, U; Docchio, F

    1997-06-15

    A nonincremental interferometer for the absolute measurement of distances is presented. The measuring technique is based on both dispersive white-light (DWL) interferometry and frequency-modulated continuous-wave (FMCW) interferometry. The proposed configuration integrates both techniques in the same interferometer by use of a single laser diode. This solution enables the results from the coarse measurements from the FMCW interferometer to be combined with the fine readouts from the DWL interferometer. Preliminary experimental results confirm the capability of the system to combine the advantages of the two techniques. PMID:18185683

  17. Alignment of a two-beam interferometer

    NASA Technical Reports Server (NTRS)

    Tubbs, E. F.

    1980-01-01

    Two beam interferometers have been proposed for space applications such as sensing the shape of a large antenna. Since alignment and adjustment of interferometers have long been considered difficult laboratory tasks, the question of making their operation sufficiently automatic for space applications is a serious one. As a first step in addressing this question certain manual procedures, which may not be well known, have been collected from widely scattered sources. These techniques are illustrated by two examples: (1) the alignment of a Mach-Zehnder interferometer and the adjustment of fringe location. (2) The adjustment of a Michelson interferometer for zero path difference (white light fringes).

  18. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: The role of quantum fluctuations

    SciTech Connect

    Golovashkin, A. I.; Zherikhina, L. N. Tskhovrebov, A. M.; Izmailov, G. N.; Ozolin, V. V.

    2010-08-15

    When comparing the operation of a superfluid helium matter wave quantum interferometer (He SQUID) with that of an ordinary direct-current quantum interferometer (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the interferometer as a unified macroquantum system is considered.

  19. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  20. Observation of the Sagnac effect in a ring resonant interferometer with a low-coherence light source

    SciTech Connect

    Ivanov, V V; Novikov, M A; Gelikonov, V M

    2000-02-28

    A fibre-optic resonant ring interferometer with a low-coherent light source was investigated experimentally. The feasibility of measuring the parameters of ring cavities characterised by very narrow lines (of the order of tens of kilohertz) was demonstrated by using a broad-band light source and a retroreflecting Doppler mirror. The Sagnac effect was first observed in a ring resonant interferometer with a low-coherence light source. Modulation and compensation of the phase nonrecriprocity in a low-coherence resonant interferometer with the aid of an optical frequency shifter located outside a sensing fibre loop were observed experimentally. (laser gyroscopes)

  1. Extended Gaussian quadratures for functions with an end-point singularity of logarithmic type

    NASA Astrophysics Data System (ADS)

    Pachucki, K.; Puchalski, M.; Yerokhin, V. A.

    2014-11-01

    The extended Gaussian quadrature rules are shown to be an efficient tool for numerical integration of wide class of functions with singularities of logarithmic type. The quadratures are exact for the functions pol1n-1(x)+lnx pol2n-1(x), where pol1n-1(x) and pol2n-1(x) are two arbitrary polynomials of degree n-1 and n is the order of the quadrature formula. We present an implementation of numerical algorithm that calculates the nodes and the weights of the quadrature formulas, provide a Fortran code for numerical integration, and test the performance of different kinds of Gaussian quadratures for functions with logarithmic singularities. Catalogue identifier: AETP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2535 No. of bytes in distributed program, including test data, etc.: 39 963 Distribution format: tar.gz Programming language: Mathematica, Fortran. Computer: PCs or higher performance computers. Operating system: Linux, Windows, MacOS. RAM: Kilobytes. Classification: 4.11. Nature of problem: Quadrature formulas for numerical integration, effective for a wide class of functions with end-point singularities of logarithmic type. Solution method: The method of solution is based on the algorithm developed in Ref. [1] with some modifications. Running time: Milliseconds to minutes. J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, Soc. Indust. Appl. Math. J. Numer. Anal. 33 (3) (1996) 971-996.

  2. Measuring the weak value of momentum in a double slit atom interferometer

    NASA Astrophysics Data System (ADS)

    Morley, J.; Edmunds, P. D.; Barker, P. F.

    2016-03-01

    We describe the development of an experiment to measure the weak value of the transverse momentum operator (local momentum [1]) of cold atoms passing through a matter- wave interferometer. The results will be used to reconstruct the atom's average trajectories. We describe our progress towards this goal using laser cooled argon atoms.

  3. Simple Ultra-Low-Cost Undergraduate Holography Using a Modified Michelson Interferometer.

    ERIC Educational Resources Information Center

    Rudmin, J. W.; And Others

    1980-01-01

    A technique is presented for producing holograms using equipment which is already in the possesion of the majority of college physics departments, which includes a slightly modified Michelson interferometer, a helium-neon laser, and a long focal-length lens. Production of high quality holograms has been achieved by inexperienced undergraduates…

  4. Gas puff modulation experiment measured by interferometers in Heliotron J

    NASA Astrophysics Data System (ADS)

    Ohtani, Y.; Tanaka, K.; Minami, T.; Ohshima, S.; Nagasaki, K.; Asavathavornvanit, N.; Akiyama, T.; Nakamura, Y.; Okada, H.; Kado, S.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Weir, G. M.; Kenmochi, N.; Lu, X.; Mizuuchi, T.

    2016-02-01

    An HCN laser (λ = 337 μm) interferometer with a high time resolution has been developed in a helical device, Heliotron J, for the study of plasma confinement and transport. Using the new interferometer in combination with a microwave interferometer, a gas puff modulation experiment has been performed to clarify the particle transport in ECH and ECH + NBI heated plasmas. Based on the particle balance equation, the diffusion coefficient D and the convection velocity V are evaluated on the assumption of profile shapes for D, V and particle source. The result indicates that ECH plasma has better particle transport characteristics, smaller value on D and V, than the case of NBI heated plasmas. The influence of the source profile shape on this analysis is considered, because there is ambiguity on the edge plasma parameters around LCFS, which determines the source profile shape. Although evaluated values of D and V can depend on the source profiles, the difference still remains within the error bars at the present accuracy in this experimental condition, suggesting that more careful treatment of the assumption on particle source is required for the particle transport study with higher accuracy.

  5. Operation results of the KSTAR far infrared interferometer

    NASA Astrophysics Data System (ADS)

    Juhn, June-Woo; Lee, K. C.; Wi, H. M.; Kim, Y. S.; Nam, Y. U.

    2016-11-01

    The 2015 KSTAR experimental campaign was the first year of routine measurement with a far infrared interferometer (FIRI) utilizing 118.87 μm CH3OH lasers at maximum 200 mW CW beam power. By using rtEFIT reconstruction, the path lengths of interferometers can be calculated and so the line-averaged electron densities n ¯ e from the FIRI and a millimeter-wave interferometer were in excellent agreement. In this way, the number of successfully diagnosed discharges is counted: 1003 shots or 83.7% of sustained discharges, defined as shots of plasma current IP ≥ 0.3 MA with pulse lengths tf ≥ 2.0 s, have good-quality FIRI data within a few fringe jump errors. In addition, real-time H-mode density feedback control based on the FIRI was also successfully achieved with supersonic molecular beam injection as an actuator. Both constant density and controlled linear increment with a ramp-up rate of 1.0 × 1019 m-3 s-1 were achieved.

  6. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  7. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    NASA Technical Reports Server (NTRS)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  8. Hand held phase-shifting diffraction Moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1994-09-20

    An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.

  9. Hand held phase-shifting diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1994-01-01

    An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.

  10. Interferometer fiber optic sensor for dc signal measurement

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasuyuki; Sato, Ryotaku; Yoshikawa, T.; Dobashi, Koji

    2001-05-01

    We present a novel interferometer fiber optic sensor (IFOS) system for DC signal measurement based on the PGC (phase generated carrier) demodulation scheme. In addition to the principle of the demodulation, the compensation techniques for improving the measurement precision constrained by the laser nonlinearity in frequency modulation (FM) operation and the experimental results are described. And now, we've made a prototype water level sensor and been trying the field tests, so we show the first results compared with those of the float-typed reference sensor.

  11. Modernization of Koesters interferometer and high accuracy calibration gauge blocks

    NASA Astrophysics Data System (ADS)

    França, R. S.; Silva, I. L. M.; Couceiro, I. B.; Torres, M. A. C.; Bessa, M. S.; Costa, P. A.; Oliveira, W., Jr.; Grieneisen, H. P. H.

    2016-07-01

    The Optical Metrology Division (Diopt) of Inmetro is responsible for maintaining the national reference of the length unit according to International System of Units (SI) definitions. The length unit is realized by interferometric techniques and is disseminated to the dimensional community through calibrations of gauge blocks. Calibration of large gauge blocks from 100 mm to 1000 mm has been performed by Diopt with a Koesters interferometer with reference to spectral lines of a krypton discharge lamp. Replacement of this lamp by frequency stabilized lasers, traceable now to the time and frequency scale, is described and the first results are reported.

  12. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  13. A preliminary discussion of Dulkyn interferometer

    NASA Astrophysics Data System (ADS)

    Tourrenc, Ph.; Balakin, A. B.

    2000-01-01

    The Dulkyn interferometer in Kazan is an active ring laser where the light propagates along two different paths. It has been developed with the idea that it could detect low frequency gravitational waves on Earth. Considering Dulkyn as a detector of periodic strains of order of hsim10^{-22} at low frequencies (10^{-3}{Hz}-10^{-5}{Hz}) we calculate that 30 W is the order of magnitude of the optical power necessary to beat the photon noise in the case of a long observation time (T=4 months) and a reasonable signal to noise ratio (r=3). We estimate that the displacement noise of the mirrors must not exceed 5 × 10^{-19}{m}/sqrt{{Hz}}. Dulkyn is also sensitive to accelerations and rotations. The acceleration noise does not seem to be troublesome (widetilde{g}lesssim 0.1{m} {s}^{-2}/sqrt{{Hz}}), but the angular velocity noise must be less than 5× 10^{-11}{s}^{-1}/sqrt{{Hz}}. The maximum strain (10^{-22}) is obtained with free (pendulous) mirrors. Out of resonance, the strain is many orders of magnitude smaller when the mirrors are fixed on a rigid support. Such a case would rule out the possibility of a detection. As a conclusion we emphasize that the Dulkyn design does not bring any decisive improvement for the detection of low frequency gravitational waves on Earth.

  14. A new method for determining the plasma electron density using optical frequency comb interferometer

    SciTech Connect

    Arakawa, Hiroyuki Tojo, Hiroshi; Sasao, Hajime; Kawano, Yasunori; Itami, Kiyoshi

    2014-04-15

    A new method of plasma electron density measurement using interferometric phases (fractional fringes) of an optical frequency comb interferometer is proposed. Using the characteristics of the optical frequency comb laser, high density measurement can be achieved without fringe counting errors. Simulations show that the short wavelength and wide wavelength range of the laser source and low noise in interferometric phases measurements are effective to reduce ambiguity of measured density.

  15. Atomic multiple-wave interferometer phase-shifted by the scalar Aharonov-Bohm effect

    SciTech Connect

    Aoki, Takatoshi; Yasuhara, Makoto; Morinaga, Atsuo

    2003-05-01

    A time-domain atomic multiple-wave interferometer using laser-cooled and trapped sodium atoms has been developed under pulsed magnetic fields. Each atomic phase was shifted due to the scalar Aharonov-Bohm effect by applying spatially homogeneous pulsed magnetic fields between numerous Raman excitation laser pulses. Interference fringes with a finesse of 11 were demonstrated for 11 successive Raman pulses and ten magnetic-field pulses.

  16. The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications

    SciTech Connect

    Spence, Peter J.

    2015-09-01

    A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent

  17. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  18. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  19. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Otero, Lidia

    2016-06-01

    In this paper, we present the design of a High Spectral Resolution Lidar (HSRL) using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI) with the same free spectral range (FSR) as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  20. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-01-01

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose. PMID:25356646

  1. Design and Application of Quadrature Compensation Patterns in Bulk Silicon Micro-Gyroscopes

    PubMed Central

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-01-01

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose. PMID:25356646

  2. Multimode interferometer for guided matter waves.

    PubMed

    Andersson, Erika; Calarco, Tommaso; Folman, Ron; Andersson, Mauritz; Hessmo, Björn; Schmiedmayer, Jörg

    2002-03-11

    Atoms can be trapped and guided with electromagnetic fields, using nanofabricated structures. We describe the fundamental features of an interferometer for guided matter waves, built of two combined Y-shaped beam splitters. We find that such a device is expected to exhibit high contrast fringes even in a multimode regime, analogous to a white light interferometer.

  3. CIST....CORRTEX interferometer simulation test

    SciTech Connect

    Heinle, R.A.

    1994-12-01

    Testing was performed in order to validate and cross calibrate an RF interferometer and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the interferometer sensor cables which had been placed inside and outside the pipe. Results are described.

  4. Study Of Space-Based Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Laskin, Robert A.; Breckenridge, William G.; Shao, Michael

    1992-01-01

    Report discusses calibration and operation of conceptual Focus Mission Interferometer (FMI), consisting of component instruments mounted at widely separated locations on large truss structure in orbit 1,400 km above Earth. Includes six telescopes in linear array. Outputs combined in pairlike fashion so FMI operates as three distinct two-telescope interferometers. Accurate enough for submilliarcsecond astrometry.

  5. Dual-prism interferometer for collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2009-01-10

    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.

  6. Making an ultrastable diode laser

    NASA Astrophysics Data System (ADS)

    Archibald, James; Washburn, Matt; van Zijll, Marshall; Erickson, Christopher; Neyenhuis, Brian; Doermann, Greg; Durfee, Dallin

    2006-10-01

    We have constructed a 657nm diode laser with excellent stability for use in an atom interferometer. The laser is a grating-stabilized diode laser is locked to a high-finesse cavity using the Pound-Drever-Hall method. We have measured a linewidth of about 1 kHz and are working on several improvements which should further reduce our linewidth.

  7. Engineering reconfigurable laser-written circuits for practical quantum metrology

    NASA Astrophysics Data System (ADS)

    Chaboyer, Zachary; Stokes, Alex; Steel, M. J.; Withford, Michael J.

    2016-02-01

    We fabricate a series of reconfigurable waveguide interferometers using laser machining techniques and charac- terize them classically. The 3D nature of the ultrafast laser writing technique allows for the fabrication of unique multi-arm interferometers not possible in planar platforms. We demonstrate selectivity between multiple phase shifters in a single interferometer by patterning the chip surface using picosecond laser ablation in a separate step. Microfluidic elements for making practical measurements on-chip are incorporated by machining channels within the substrate to interact with waveguide modes. Our results provide a path toward practical implementation of quantum metrology protocols requiring multiple interferometer arms and tunable phases.

  8. Focused-laser interferometric position sensor

    SciTech Connect

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-12-15

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 {mu}m. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 {mu}m used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer.

  9. Orientational atom interferometers sensitive to gravitational waves

    SciTech Connect

    Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas

    2010-02-15

    We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.

  10. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  11. White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection

    NASA Astrophysics Data System (ADS)

    Ullmann, V.; Emam, S.; Manske, E.

    2015-08-01

    For absolute length and form measurements at a large working distance (>150 mm) two special interferometers, a tandem interferometer and a Michelson interferometer with achromatic polarizing optics are constructed. In our experiments, both consist of a combination of one low-coherence interferometer and one laser interferometer. For the low-coherence interferometer part, a simple white-light source with less than 100 µW optical power output is chosen. It bases upon a low-cost fiber-coupled near-infrared LED with a large spectral width (FWHM > 68 nm at 825 nm). The use of achromatic polarizing optics such as broadband polarizing beamsplitters and achromatic quarter-wave plates in the low-coherence interferometer parts increases the contrast level of the white-light signal fringe pattern to nearly 100%. Furthermore, the fringe pattern in a polarized interferometer has no subsignatures and is unique. Hence, different algorithms are tested for signal processing and automated zero-point detection of the white-light signature. The software for an automated measurement is tested in a standard room without thermal control and without damped oscillation. Therefore, in experiments with the tandem interferometer, it was possible to measure the zero-point position of a white-light signature with a peak-to-peak difference of 154 nm under uncontrolled environmental conditions without thermal stabilization. The white-light Michelson interferometer with polarizing achromatic optics allows zero-point detections with a standard deviation (mean value) of less than 15 nm. The drift is proved through measurement results.

  12. Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing

    PubMed Central

    Řeháček, Jaroslav; Teo, Yong Siah; Hradil, Zdeněk; Wallentowitz, Sascha

    2015-01-01

    We reveal that quadrature squeezing can result in significantly better quantum-estimation performance with quantum heterodyne detection (of H. P. Yuen and J. H. Shapiro) as compared to quantum homodyne detection for Gaussian states, which touches an important aspect in the foundational understanding of these two schemes. Taking single-mode Gaussian states as examples, we show analytically that the competition between the errors incurred during tomogram processing in homodyne detection and the Arthurs-Kelly uncertainties arising from simultaneous incompatible quadrature measurements in heterodyne detection can often lead to the latter giving more accurate estimates. This observation is also partly a manifestation of a fundamental relationship between the respective data uncertainties for the two schemes. In this sense, quadrature squeezing can be used to overcome intrinsic quantum-measurement uncertainties in heterodyne detection. PMID:26195198

  13. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, S. T.; Biesecker, D. A.; Esser, R.; Gloeckler, G.; Ko, Y.-K.; Zurbuchen, T. H.

    2002-01-01

    Solar and Heliospheric Observatory (SOH0)-Ulysses quadratures occur when the SOHO-Sun-Ulysses-included angle is 90 deg. These offer the opportunity to directly compare properties of plasma parcels, observed by SOHO [Dorningo et al.] in the low corona, with properties of the same parcels measured, in due time, in situ, by Ulysses [ Wenzel et al]. We refer the reader to Suess et al. for an extended discussion of SOHO-Ulysses quadrature geometry. Here it suffices to recall that there are two quadratures per year, as SOHO makes its one-year revolution around the Sun. This, because SOHO is at the L1 Lagrangian point, in essentially the same place as the Earth, while Ulysses is in a near-polar -5-year solar orbit with a perihelion of 1.34 AU and aphelion of 5.4 AU.

  14. Generation of pure electrical quadrature amplitude modulation with photonic vector modulator.

    PubMed

    Corral, Juan L; Sambaraju, Rakesh; Piqueras, Miguel A; Polo, Valentín

    2008-06-15

    A photonic vector modulator architecture for generating pure quadrature amplitude modulation (QAM) signals is presented. An electrical quadrature-modulated signal at microwave-millimeter-wave frequencies is generated from its corresponding baseband in-phase (I) and quadrature (Q) components. In the proposed scheme, no electrical devices apart from the electrical tone oscillator are needed in the generation process. In addition, the purity of the generated signal is increased, and the hardware requirements are reduced when compared with previously proposed architectures so a highly compact low-cost architecture can be implemented. A pure 1.25 Gbit/s 4-QAM signal has been experimentally generated at a 42 GHz carrier frequency.

  15. Quadrature rules for finite element approximations of 1D nonlocal problems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Gunzburger, Max; Ju, Lili

    2016-04-01

    It is well known that calculations of the entries of the stiffness matrix in the finite element approximations of nonlocal diffusion and mechanics models are often very time-consuming due to the double integration process over the domain and the singularities of the nonlocal kernel functions. In this paper, we propose some effective and accurate quadrature rules for computing these double integrals for one-dimensional nonlocal problems; in particular, for problems with highly singular kernels, the corresponding inner integrals can be first evaluated exactly in our method, and the outer one then will be approximated by some popular quadrature rules. With these quadrature rules, the assembly of the stiffness matrix in the finite element method for the nonlocal problems becomes similar to that for the classical partial differential equations and is thus quite efficient.

  16. Vibration Analysis of Beams Using the Generalized Differential Quadrature Rule and Domain Decomposition

    NASA Astrophysics Data System (ADS)

    LIU, G. R.; WU, T. Y.

    2001-09-01

    This study dealt with domain decomposition in the recently proposed generalized differential quadrature rule. In detail, the authors concentrated on the free vibration of multispan and stepped Euler beams, and beams carrying an intermediate or end concentrated mass. Since compatibility conditions should be implemented in a strong form at the junction of the subdomains concerned, the FEM techniques used for internal moments and shear forces must not be used. Compatibility conditions and their differential quadrature expressions were explicitly formulated. A peculiar phenomenon was found in differential quadrature applications that equal-length subdomains gave more accurate results than unequal-length ones using the same number of subdomain grids. Various examples were presented and very accurate results have been obtained.

  17. Sub-Kilohertz Optical Spectroscopy with a Time Domain Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Ruschewitz, F.; Peng, J. L.; Hinderthür, H.; Schaffrath, N.; Sengstock, K.; Ertmer, W.

    1998-04-01

    We report on the sub-kilohertz optical spectroscopy on the 1S0- 3P1 intercombination transition in magnesium at 457 nm. The spectroscopic signal is probed by a time domain atom interferometer. The realization of this time domain atom interferometer with laser cooled and trapped atoms allows extremely long interaction times and leads to resolutions down to 491 Hz (FWHM). This corresponds to a high line Q factor of 1.3×1012. Because of the high accuracy in the determination of the line center, applications with respect to an optical frequency standard are possible.

  18. Low-level birefringence measurement by cyclic-path polarization interferometer.

    PubMed

    Chakraborty, Sonali; Bhattacharya, K

    2016-07-20

    A modified cyclic-path interferometer is employed for complete measurement of spatially varying birefringence. An expanded and collimated laser beam intercepted by a birefringent specimen is incident on a polarization-masked cube beam splitter, resulting in two mutually orthogonal polarization components propagating along clockwise and counterclockwise directions in the interferometer. These two wavefronts are made to interfere for four specific orientations of an analyzer. Suitable combinations of the interferograms result in determination of the direction of birefringence and its magnitude. Experimental results are presented. PMID:27463918

  19. On the possibility of using the phase characteristic of a ring interferometer in microoptical gyroscopes

    SciTech Connect

    Venediktov, V Yu; Filatov, Yu V; Shalymov, E V

    2014-12-31

    The prototype schemes of a microoptical gyroscope (MOG) developed to date on the basis of passive ring cavities imply the use of the amplitude characteristic only, since they operate using the dip in the transmission coefficient. We have analysed the possibility of creating a MOG, in which the phase characteristic is used as well. The phase characteristic of a ring interferometer has distinctive features in the vicinity of the cavity eigenfrequencies, which may be used to determine the angular velocity. A method for the angular velocity determination using both the phase and the amplitude characteristics of the interferometer is considered. (laser gyroscopes)

  20. Sensing short range forces with a nanosphere matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Goldman, Hart

    2015-09-01

    We describe a method for sensing short range forces using matter-wave interference in dielectric nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in reduced wave-packet expansion, enabling investigations of forces nearer to surfaces in a free-fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing it by turning off the optical trap, acceleration sensing at the 10-8 m /s2 level is possible. The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the 5 μ m length scale by a factor of 104 over current limits.

  1. Impact of anomalous dispersion on the interferometer measurements of plasmas

    SciTech Connect

    Nilsen, J; Johnson, W R; Iglesias, C A; Scofield, J H

    2004-12-16

    For many decades optical interferometers have been used to measure the electron density of plasmas. During the last ten years X-ray lasers in the wavelength range 14 to 47 nm have enabled researchers to use interferometers to probe even higher density plasmas. The data analysis assumes that the index of refraction is due only to the free electrons, which makes the index of refraction less than one and the electron density proportional to the number of fringe shifts. Recent experiments in Al plasmas observed plasmas with an index of refraction greater than one and made us question the validity of the usual formula for calculating the index of refraction. Recent calculations showed how the anomalous dispersion from the bound electrons can dominate the index of refraction in many types of plasma and make the index greater than one or enhance the index such that one would greatly overestimate the electron density of the plasma using interferometers. In this work we calculate the index of refraction of C, Al, Ti, and Pd plasmas for photon energies from 0 to 100 eV (12.4 nm) using a new average-atom code. The results show large variations from the free electron approximation under many different plasma conditions. We validate the average-atom code against the more detailed OPAL code for carbon and aluminum plasmas. During the next decade X-ray free electron lasers and other sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  2. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  3. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2013-05-21

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  4. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2013-05-21

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes. PMID:23697409

  5. Discrete variable representation in electronic structure theory: Quadrature grids for least-squares tensor hypercontraction

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2013-05-01

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  6. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  7. Phasing of independent laser channels under impact SBS excitation

    NASA Astrophysics Data System (ADS)

    Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2015-10-01

    It is shown experimentally that phasing of independent laser channels under impact SBS excitation calls for a stable difference in arm lengths, as in a classical Michelson interferometer. A scheme with automatic compensation for fluctuations of interferometer arm lengths has been proposed and experimentally implemented. This scheme makes it possible to perform stable phasing of two laser channels under standard laboratory conditions.

  8. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  9. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  10. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  11. Angle interferometer cross axis errors

    SciTech Connect

    Bryan, J.B.; Carter, D.L.; Thompson, S.L.

    1994-01-01

    Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them by remachining the reference surfaces.

  12. Thermal Conductance of Andreev Interferometers

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Chandrasekhar, V.

    2005-04-01

    We calculate the thermal conductance GT of diffusive Andreev interferometers, which are hybrid loops with one superconducting arm and one normal-metal arm. The presence of the superconductor suppresses GT; however, unlike a conventional superconductor, GT/GTN does not vanish as the temperature T→0, but saturates at a finite value that depends on the resistance of the normal-superconducting interfaces, and their distance from the path of the temperature gradient. The reduction of GT is determined primarily by the suppression of the density of states in the proximity-coupled normal metal along the path of the temperature gradient. GT is also a strongly nonlinear function of the thermal current, as found in recent experiments.

  13. Performance of staggered quadrature modulations over nonlinear satellite channels with uplink noise and intersymbol interference

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.; Omura, J. K.

    1982-01-01

    In this paper, the performance of staggered quadrature modulations over nonlinear satellite channels is analyzed. The effects of uplink noise and intersymbol interference caused by transmitter filtering are included. The approach taken employs computational techniques based on moments of the interference. The expressions for the system bit error rate are derived for a general transponder model characterized by AM-AM and AM-PM conversion characteristics. Specific numerical results are presented for a hard-limited satellite repeater using staggered quadrature overlapped raised cosine (SQORC) and minimum-shift-keying (MSK) modulations.

  14. High-efficiency interferometer for noncontact detection of ultrasounds

    NASA Astrophysics Data System (ADS)

    Czarnek, Robert; Yu, Chin-Jye; Dax, F. R.

    1995-06-01

    Semi-solid metalworking (SSM) incorporates elements of both casting and forging for the manufacture of near-net shape discrete parts. The SSM process capitalizes on thixotropy, a physical state wherein a partially molten material behaves like a fluid when a shear stress is applied. Effective process control depends on the accurate measurement of the ratio between solid and liquid in the feedstock. Due to the high temperature of the material, only noncontact measurements are practical. Surface temperature measurements are not reliable and do not give accurate readings of the bulk material temperature. Since the speed of sound changes during the transition from the solid to the liquid state, ultrasonics offers the potential to determine when a material becomes semi-solid. This paper summarizes attempts to use this change as the means of measuring the solid fraction of semi-solid feedstock. A real time solid fraction sensor system using noncontact laser ultrasonics was developed to measure the SSM material's solid fraction during heating. The system includes a high power Nd:Yag laser for ultrasound generation and a Fabry-Perot interferometer for receiving. The interferometer was optimized for maximum light efficiency and for immunity to the electro-magnetic noise generated by the induction furnaces used in heating the SSM billets. Tests have demonstrated excellent signal to noise ratio at room temperature and at temperatures up to 579 degrees C. A summary of the test results is presented.

  15. Multichannel interferometer/polarimeter system for the RTP tokamak

    NASA Astrophysics Data System (ADS)

    van Lammeren, A. C. A. P.; Kim, S. K.; Donné, A. J. H.

    1990-10-01

    A nine-channel interferometer/polarimeter system is designed for the RTP tokamak (Rijnhuizen Tokamak Project, a =0.16 m, R =0.72 m, BT =2.5 T, Ip ≤ 200 kA, and plasma pulse duration 200 ms). A CO2-pumped dual-cavity FIR laser system is used to obtain two FIR laser beams of λ =432 μm with a frequency difference of 1 MHz. The FIR beams are expanded by a set of parabolic mirrors. Corner-cube mixers with Schottky diodes are used as detectors. The mixers are mounted on a linear rail system, such that their positions can be easily changed. The interferometer can be operated with a maximum of 19 channels, and will be extended with a polarimeter to measure the poloidal magnetic field distribution. It will be tried to increase the accuracy of the polarimeter by modulating the polarization of the incoming beam. A scheme for polarization modulation which is based on the idea of Dodel and Kunz will be presented in this paper. This scheme has the advantage that only one set of detectors is needed to measure the electron density and current density. The complete system will be presented along with some pilot experiments concerning the polarization modulation.

  16. Bench Test of the Vibration Compensation Interferometer for EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Gongshun; Yang, Yao; Liu, Haiqing; Jie, Yinxian; Zou, Zhiyong; Wang, Zhengxing; Zeng, Long; Wei, Xuechao; Li, Weiming; Lan, Ting; Zhu, Xiang; Liu, Yukai; Gao, Xiang

    2016-02-01

    A visible laser-based vibration compensation interferometer has recently been designed for the EAST tokamak and the bench test has been finished. The system was optimized for its installation on EAST. The value of the final optical power before the detectors without plasma has been calculated from the component bench test result, which is quite close to the measured value. A nanometer level displacement (of the order of the laser's wavelength) has been clearly measured by a modulation of piezoelectric ceramic unit, proving the system's capability. supported by the National Magnetic Confinement Fusion Program of China (Nos. 2014GB106002, 2014GB106003, 2014GB106004) and National Natural Science Foundation of China (Nos. 11105184, 11375237, 11505238)

  17. High data-rate atom interferometers through high recapture efficiency

    DOEpatents

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  18. Miniature interferometer for refractive index measurement in microfluidic chip

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  19. Reduced computational cost, totally symmetric angular quadrature sets for discrete ordinates radiation transport. Master`s thesis

    SciTech Connect

    Oder, J.M.

    1997-12-01

    Several new quadrature sets for use in the discrete ordinates method of solving the Boltzmann neutral particle transport equation are derived. These symmetric quadratures extend the traditional symmetric quadratures by allowing ordinates perpendicular to one or two of the coordinate axes. Comparable accuracy with fewer required ordinates is obtained. Quadratures up to seventh order are presented. The validity and efficiency of the quadratures is then tested and compared with the Sn level symmetric quadratures relative to a Monte Carlo benchmark solution. The criteria for comparison include current through the surface, scalar flux at the surface, volume average scalar flux, and time required for convergence. Appreciable computational cost was saved when used in an unstructured tetrahedral cell code using highly accurate characteristic methods. However, no appreciable savings in computation time was found using the new quadratures compared with traditional Sn methods on a regular Cartesian mesh using the standard diamond difference method. These quadratures are recommended for use in three-dimensional calculations on an unstructured mesh.

  20. Feasibility of heart rate variability measurement from quadrature Doppler radar using arctangent demodulation with DC offset compensation.

    PubMed

    Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga

    2007-01-01

    This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.

  1. The Millimeter-Wave Bolometric Interferometer

    NASA Technical Reports Server (NTRS)

    Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.

    2004-01-01

    The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.

  2. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  3. Bose-Einstein-condensate interferometer with macroscopic arm separation

    NASA Astrophysics Data System (ADS)

    Garcia-Salazar, Ofir

    The basis of our study was to implement an atom interferometer using 87Rb Bose Einstein condensates which has advantages in sensitivity over current interferometers that use cold atoms and light. Interferometers are devices which can accurately measure phase differences between waves that interfere and originate from a coherent source (or sources). We developed a weakly confining waveguide having o x ≈ 3 Hz, oz ≈ 3 Hz, o y ≈ 1 Hz as characteristic oscillation frequencies. Weak confinement, specially along the "y" direction, means the condensate can displace along this axis and interaction energies of the atoms in the condensate are reduced [43]. We have been able to successfully demonstrate condensate interference in our waveguide using a Mach Zehnder configuration. Coherence times of up to 40 ms have been observed, and the maximum center to center separation of the condensates recorded was of 240 mum. At this separation length, the two clouds corresponding to each of the interferometer's arms are completely separated. To our knowledge, this is the first time a picture has been taken of two groups of atoms separated by a macroscopic distance while in a quantum superposition of being in either cloud. The coherence time and length measurements presented in our work have been among the longest ones achieved so far for interferometry using condensed atoms. Interference visibility of 60% was observed up to 40 ms. We believe technical limitations in the techniques used to manipulate the atoms are responsible for the sudden drop in visibility at 44 ms. For example, unwanted laser reflections and interference patterns in our chamber affect the techniques used to split and reflect the atoms. However, we see coherence up to 80 ms from shot to shot, suggesting we could dramatically improve coherence times. Because of the weak confinement of our trap, we expect to improve coherence times up to an order of magnitude before running into phase diffusion effects [27]. It is

  4. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  5. Portable, solid state, fiber optic coupled doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1993-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensor was developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy-to-use instrument that is capable of field test use and rapid data reduction employing only a personal computer (PC).

  6. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.

    1994-08-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors was developed for fiber optic coupling (1 kilometer long) to the VISCAR. The system has proven itself as reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  7. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1994-03-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  8. In-line interferometer for direction-sensitive displacement measurements by optical feedback detection

    SciTech Connect

    Tarun, Alvarado; Jecong, Julius; Saloma, Caesar

    2005-12-01

    We demonstrate a compact in-line interferometer for direction-sensitive displacement measurement by optical feedback detection with a semiconductor laser (SL) light source. Two reflected beams from a semitransparent reference mirror and a reflecting test object interfere in the SL medium, causing a variation in its output power. The reference mirror is located between the SL output facet and the test object. The performance of the interferometer is investigated numerically and experimentally to determine its optimal operating conditions. We have verified the operating conditions where the behavior of the SL output power profile could indicate accurately the displacement magnitude and direction of the moving test object. The profile behavior is robust against variations in optical feedback and scale of the interferometer configuration.

  9. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme. PMID:27607936

  10. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  11. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe

    2016-04-01

    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  12. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range.

    PubMed

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  13. Method and apparatus for measuring surface movement of an object using a polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-05-09

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  14. Composite low-coherence interferometer for imaging of immersed tissue with high accuracy

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Wei; Hsu, I.-Jen

    2012-09-01

    Imaging and measurement of the surface profile of an object with high resolution has become essential in both of biological research and industry application. Many samples under investigation such as cultured cells are usually immersed in liquid. Although the techniques such as scanning electron microscope and atomic force microscope can provide imaging or measurement of the surface profile with nanometer resolution, it is difficult for them to image an immersed object with their typical types. Recently, we have proposed and demonstrated a new technique based on composite interferometer which can perform imaging and measurement of the surface profile of an object with accuracy in the axial direction within 5 nm through a self-phase-compensation mechanism. In this research, an optical system based on the concept of combination of optical coherence microscopy (OCM) and composite interferometer was built for imaging of biological tissue immersed in water with axial accuracy at nanometer scale. In the system, a Ti:sapphire laser with center wavelength at 800 nm and spectral width of 140 nm was used as the light source. The composite interferometer comprises two Michelson interferometers sharing common light source, reference arm and photodetector. One of the two interferometers served as a typical OCM system and the other was used to measure the phase shift in the reference arm in each axial scan with the sample being a fixed reflection mirror. The system was used to image the surface profiles of various immersed biological samples with accuracy at nanometer scale through the self-phasecompensation mechanism.

  15. Saturation dependence of the quadrature conductivity of oil-bearing sands

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Blondel, A.; Revil, A.

    2012-02-01

    We have investigated the complex conductivity of oil-bearing sands with six distinct oil types including sunflower oil, silicone oil, gum rosin, paraffin, engine oil, and an industrial oil of complex composition. In all these experiments, the oil was the non-wetting phase. The in-phase (real) conductivity follows a power law relationship with the saturation (also known as the second Archie's law) but with a saturation exponent n raging from 1.1 to 3.1. In most experiments, the quadrature conductivity follows also a power law relationship with the water saturation but with a power law exponent p can be either positive or negative. For some samples, the quadrature conductivity first increases with saturation and then decreases indicating that two processes compete in controlling the quadrature conductivity. One is related to the insulating nature of the oil phase and a second could be associated with the surface area of the oil / water interface. The quadrature conductivity seems to be influenced not only by the value of the saturation exponent n (according to the Vinegar and Waxman model, p = n - 1), but also by the surface area between the oil phase and the water phase especially for very water-repellent oil having a fractal oil-water interface.

  16. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  17. Numerical Quadrature and Operator Splitting in Finite Element Methods for Cardiac Electrophysiology

    PubMed Central

    Krishnamoorthi, Shankarjee; Sarkar, Mainak; Klug, William S.

    2015-01-01

    SUMMARY We examine carefully the numerical accuracy and computational efficiency of alternative formulations of the finite-element solution procedure for the mono-domain equations of cardiac electrophysiology (EP), focusing on the interaction of spatial quadrature implementations with operator splitting, examining both nodal and Gauss quadrature methods, and implementations that mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all possible combinations of “lumped” approximations of consistent capacitance and mass matrices. Most generally we find that quadrature schemes and lumped approximations that produce decoupled nodal ionic equations allow for the greatest computational efficiency, this being afforded through the use of asynchronous adaptive time-stepping of the ionic state-variable ODEs. We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the most expensive variationally consistent implementations. Finally we illustrate some of the physiological consequences of discretization error in EP simulation relevant to cardiac arrhythmia and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral and hexahedral meshing algorithms available in most commercially available meshing software, which produce non-uniform meshes having a large distribution of element sizes. PMID:23873868

  18. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  19. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer

    SciTech Connect

    Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J. ); Borde, C.J. Laboratoire de Physique des Lasers, Universite Paris, Villetaneuse, France )

    1991-07-08

    A calcium atomic beam excited in an optical Ramsey geometry was rotated about an axis perpendicular to the plane defined by the laser beams and the atomic beam. A frequency shift of the Ramsey fringes of several kHz has been measured which is proportional to the rotation frequency of the apparatus and to the distance between the laser beams. The results can be interpreted in three equivalent ways as the Sagnac effect in a calcium-atomic-beam interferometer: in the rotating frame of the laser beams either along straight paths or along the curved trajectories of the atoms, or in the inertial atomic frame.

  20. Mathematical interpretation of radial shearing interferometers.

    PubMed

    Malacara, D

    1974-08-01

    The procedure for computing a radial shearing interferometric pattern is given. The interferometric pattern is analyzed to obtain the wavefront shape. Restricting the discussion to wavefronts having rotational symmetry, we give two different methods of finding the wavefront. One approach is to scan along a diameter of the interferometric pattern and the other is to examine the shape of the fringes. The relative sensitivity of a radial shearing interferometer with respect to that of a Twyman-Green interferometer is also analyzed.