Sample records for quadrifilar wire electrodes

  1. Quadrifilar Helix Antenna for Enhanced Air-to-Ground Communications

    DTIC Science & Technology

    2016-05-01

    ARL-TR-7679 ● MAY 2016 US Army Research Laboratory Quadrifilar Helix Antenna for Enhanced Air-to- Ground Communications by...Research Laboratory Quadrifilar Helix Antenna for Enhanced Air-to- Ground Communications by Steven D Keller, William O Coburn, Theodore K Anthony...

  2. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  3. Ultra-flexible biomedical electrodes and wires

    NASA Technical Reports Server (NTRS)

    Rositano, S. A.

    1970-01-01

    Soft, flexible electrode conforms to body contour during body motion. It is fabricated from an elastomer impregnated with a conductive powder which can be configured into any required shape, including a wire shape to connect the electrode directly to an electrical instrument or to a conventional metallic wire.

  4. Evolutionary Optimization of Quadrifilar Helical and Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Stoica, Adrian; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present optimization results obtained for two type of antennas using evolutionary algorithms. A quadrifilar helical UHF antenna is currently flying aboard NASA's Mars Odyssey spacecraft and is due to reach final Martian orbit insertion in January, 2002. Using this antenna as a benchmark, we ran experiments employing a coevolutionary genetic algorithm to evolve a quadrifilar helical design in-situ - i.e., in the presence of a surrounding structure. Results show a 93% improvement at 400 MHz and a 48% improvement at 438 MHz in the average gain. The evolved antenna is also one-fourth the size. Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain and the inclusion of numerous parasitic elements. Our fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain.

  5. Evolutionary Optimization of a Quadrifilar Helical Antenna

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.

  6. Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.

    PubMed

    Jaffe, D M; Solomon, N P; Robinson, R A; Hoffman, H T; Luschei, E S

    1998-05-01

    The use of a specific electrode type in laryngeal electromyography has not been standardized. Laryngeal electromyography is usually performed with hooked-wire electrodes or concentric needle electrodes. Hooked-wire electrodes have the advantage of allowing laryngeal movement with ease and comfort, whereas the concentric needle electrodes have benefits from a technical aspect and may be advanced, withdrawn, or redirected during attempts to appropriately place the electrode. This study examines whether hooked-wire electrodes permit more stable recordings than standard concentric needle electrodes at rest and after large-scale movements of the larynx and surrounding structures. A histologic comparison of tissue injury resulting from placement and removal of the two electrode types is also made by evaluation of the vocal folds. Electrodes were percutaneously placed into the thyroarytenoid muscles of 10 adult canines. Amplitude of electromyographic activity was measured and compared during vagal stimulation before and after large-scale laryngeal movements. Signal consistency over time was examined. Animals were killed and vocal fold injury was graded and compared histologically. Waveform morphology did not consistently differ between electrode types. The variability of electromyographic amplitude was greater for the hooked-wire electrode (p < 0.05), whereas the mean amplitude measures before and after large-scale laryngeal movements did not differ (p > 0.05). Inflammatory responses and hematoma formation were also similar. Waveform morphology of electromyographic signals registered from both electrode types show similar complex action potentials. There is no difference between the hooked-wire electrode and the concentric needle electrode in terms of electrode stability or vocal fold injury in the thyroarytenoid muscle after large-scale laryngeal movements.

  7. Low-noise two-wired buffer electrodes for bioelectric amplifiers.

    PubMed

    Degen, Thomas; Torrent, Simon; Jäckel, Heinz

    2007-07-01

    Active buffer electrodes are known to improve the immunity of bioelectric recordings against power line interferences. A survey of published work reveals that buffer electrodes are almost exclusively designed using operational amplifiers (opamps). In this paper, we discuss the advantage of utilizing a single transistor instead. This allows for a simple electrode, which is small and requires only two wires. In addition, a single transistor adds considerably less noise when compared to an opamp with the same power consumption. We then discuss output resistance and gain as well as their respective effect on the common mode rejection ratio (CMRR). Finally, we demonstrate the use of two-wired buffer electrodes for a bioelectric amplifier.

  8. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.

    PubMed

    Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan

    2011-08-10

    Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation.

  9. Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Minglei; Liu, Yuhao; Zhang, Min; Wei, Helin; Gao, Yihua

    2016-12-01

    Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm-1 (73.2 mF cm-2, 9.8 F cm-3). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 μWh cm-1 (0.88 mWh cm-3). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes.

  10. Coated-Wire Ion Selective Electrodes and Their Application to the Teaching Laboratory.

    ERIC Educational Resources Information Center

    Martin, Charles R.; Freiser, Henry

    1980-01-01

    Describes the procedures for construction of a nitrate coated-wire ion selective electrode and suggests experiments for evaluation of electrode response and illustration of typical analytical applications of ion selective electrodes. (CS)

  11. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    NASA Technical Reports Server (NTRS)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  12. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  13. An EEG (electroencephalogram) recording system with carbon wire electrodes for simultaneous EEG-fMRI (functional magnetic resonance imaging) recording

    PubMed Central

    Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd

    2008-01-01

    Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913

  14. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  16. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  17. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.

    PubMed

    Inoue, Junji; Kaneta, Takashi; Imasaka, Totaro

    2012-09-01

    Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes.

    PubMed

    Amor-Gutiérrez, O; Costa Rama, E; Costa-García, A; Fernández-Abedul, M T

    2017-07-15

    In this work we have developed an amperometric enzymatic biosensor in a paper-based platform with a mixed electrode configuration: carbon ink for the working electrode (WE) and metal wires (from a low-cost standard electronic connection) for reference (RE) and auxiliary electrodes (AE). A hydrophobic wax-defined paper area was impregnated with diluted carbon ink. Three gold-plated pins of the standard connection are employed, one for connecting the WE and the other two acting as RE and AE. The standard connection works as a clip in order to support the paper in between. As a proof-of-concept, glucose sensing was evaluated. The enzyme cocktail (glucose oxidase, horseradish peroxidase and potassium ferrocyanide as mediator of the electron transfer) was adsorbed on the surface. After drying, glucose solution was added to the paper, on the opposite side of the carbon ink. It wets RE and AE, and flows by capillarity through the paper contacting the carbon WE surface. The reduction current of ferricyanide, product of the enzymatic reaction, is measured chronoamperometrically and correlates to the concentration of glucose. Different parameters related to the bioassay were optimized, adhering the piece of paper onto a conventional screen-printed carbon electrode (SPCE). In this way, the RE and the AE of the commercial card were employed for optimizing the paper-WE. After evaluating the assay system in the hybrid paper-SPCE cell, the three-electrode system consisting of paper-WE, wire-RE and wire-AE, was employed for glucose determination, achieving a linear range between 0.3 and 15mM with good analytical features and being able of quantifying glucose in real food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    PubMed

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  20. Implementing the FDA performance standard on electrode lead wires and patient cables in hospitals.

    PubMed

    Tsitlik, J E; Rose, D C; Baumann, R C

    2000-01-01

    The U.S. Food and Drug Administration (FDA) Performance Standard on Electrode Lead Wires and Patient Cables became mandatory for all relevant devices on May 9, 2000. The standard requires that any lead wire or patient cable that has contact, temporary or permanent, with a patient, should not allow the connection of the patient to the earth or possibly hazardous voltages. This article advises those hospitals and other healthcare facilities that have not completed the upgrades of wires and cables on how to complete this task.

  1. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    PubMed

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  2. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    PubMed Central

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  3. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    PubMed

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  4. Validation of a technique for accurate fine-wire electrode placement into posterior gluteus medius using real-time ultrasound guidance.

    PubMed

    Hodges, P W; Kippers, V; Richardson, C A

    1997-01-01

    Fine-wire electromyography is primarily utilised for the recording of activity of the deep musculature, however, due to the location of these muscles, accurate electrode placement is difficult. Real-time ultrasound imaging (RTUI) of muscle tissue has been used for the guidance of the needle insertion for the placement of electrodes into the muscles of the abdominal wall. The validity of RTUI guidance of needle insertion into the deep muscles has not been determined. A cadaveric study was conducted to evaluate the accuracy with which RTUI can be used to guide fine-wire electrode placement using the posterior fibres of gluteus medius (PGM) as an example. Pilot studies revealed that the ultrasound resolution of cadaveric tissue is markedly reduced making it impossible to directly evaluate the technique, therefore, three studies were conducted. An initial study involved the demarcation of the anatomical boundaries of PGM using RTUI to define a technique based on an anatomical landmark that was consisent with the in vivo RTUI guided needle placement technique. This anatomical landmark was then used as the guide for the cadaveric needle insertion. Once the needle was positioned 0.05 ml of dye was introduced and the specimen dissected. The dye was accurately placed in PGM in 100% of the specimens. Finally, fine-wire electrodes were inserted into the PGM of five volunteers and manoeuvres performed indicating the accuracy of placement. This study supports the use of ultrasound imaging for the accurate guidance of needle insertion for fine-wire and needle EMG electrodes.

  5. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  6. Electrodes for solid state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less

  7. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  8. A semi-analytical study of positive corona discharge in wire-plane electrode configuration

    NASA Astrophysics Data System (ADS)

    Yanallah, K.; Pontiga, F.; Chen, J. H.

    2013-08-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.

  9. Virtual electrodes for high-density electrode arrays

    DOEpatents

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  10. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  11. Hazard report. Internal wire breakage in reusable electrosurgical active electrode cables may cause sparking and surgical fires.

    PubMed

    2009-07-01

    Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk.

  12. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  13. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  14. Side wire feed for welding apparatus

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.

    1974-01-01

    Coaxial electrode arrangement has solid central electrode, insulated outer electrode, and transverse channel for feeding wire through tip of electrode assembly. Polymeric insulation is thrust aside by pressure, which is provided by separately operated mechanism acting through central electrode.

  15. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops

  16. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  17. Solar Power Wires Based on Organic Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Lee, Michael R.; Eckert, Robert D.; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J.; Gaudiana, Russell A.

    2009-04-01

    Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.

  18. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    PubMed Central

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents. PMID:28098192

  19. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  20. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents.

    PubMed

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-18

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design-wearable APP (WAPP)-that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  1. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Li, Mingji; Guo, Wenlong; Li, Hongji; Xu, Sheng; Qu, Changqing; Yang, Baohe

    2014-10-01

    This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3-3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na2SO4 aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g-1 at current density of 0.5 A g-1. The capacitance remains at about 84% after 1000 cycles at 10 A g-1. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  2. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  3. Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Schram, A.; Müller, T.; Treutler, K.

    2016-03-01

    Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes

  4. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part inmore » cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.« less

  5. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  6. Ion-Selective Electrodes for Basic Drugs.

    DTIC Science & Technology

    1981-01-01

    coated wire ion selective electrodes for methadone , methylamphetamine, J cocaine, protriptyline i 20. ABSTRACT (Continue on reverse side If neeeeary...end Identify by block number) Coated-wire ion-selective electrodes based on dinonylnaphthalene u-i sulfonic acid (DNNS) are prepared for methadone ...range from 10- 5.5M for cocaine and methylamphetamine electrodes to 10Ś.0M for methadone , and 10-6.5M for DD I 󈨍 1473 EDITION OF I NOV 5 IS OBSOLETE

  7. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  8. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  9. Subcutaneous electrode structure

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A subcutaneous electrode structure suitable for a chronic implant and for taking a low noise electrocardiogram of an active animal, comprises a thin inflexible, smooth disc of stainless steel having a diameter as of 5 to 30 mm, which is sutured in place to the animal being monitored. The disc electrode includes a radially directed slot extending in from the periphery of the disc for approximately 1/3 of the diameter. Electrical connection is made to the disc by means of a flexible lead wire that extends longitudinally of the slot and is woven through apertures in the disc and held at the terminal end by means of a spot welded tab. Within the slot, an electrically insulative sleeve, such as silicone rubber, is placed over the wire. The wire with the sleeve mounted thereon is captured in the plane of the disc and within the slot by means of crimping tabs extending laterally of the slot and over the insulative wire. The marginal lip of the slot area is apertured and an electrically insulative potting material such as silicone rubber, is potted in place overlaying the wire slot region and through the apertures.

  10. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  11. Low Cost Electrode Assembly for EEG Recordings in Mice

    PubMed Central

    Vogler, Emily C.; Flynn, Daniel T.; Busciglio, Federico; Bohannan, Ryan C.; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A.

    2017-01-01

    Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories. PMID:29184480

  12. Low Cost Electrode Assembly for EEG Recordings in Mice.

    PubMed

    Vogler, Emily C; Flynn, Daniel T; Busciglio, Federico; Bohannan, Ryan C; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A

    2017-01-01

    Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.

  13. Metallic Glass Wire Based Localization of Kinesin/Microtubule Bio-molecular Motility System

    NASA Astrophysics Data System (ADS)

    Kim, K.; Sikora, A.; Yaginuma, S.; Nakayama, K. S.; Nakazawa, H.; Umetsu, M.; Hwang, W.; Teizer, W.

    2014-03-01

    We report electrophoretic accumulation of microtubules along metallic glass (Pd42.5Cu30Ni7.5P20) wires free-standing in solution. Microtubules are dynamic cytoskeletal filaments. Kinesin is a cytoskeletal motor protein. Functions of these bio-molecules are central to various dynamic cellular processes. Functional artificial organization of bio-molecules is a prerequisite for transferring their native functions into device applications. Fluorescence microscopy at the individual-microtubule level reveals microtubules aligning along the wire axis during the electrophoretic migration. Casein-treated electrodes are effective for releasing trapped microtubules upon removal of the external field. Furthermore, we demonstrate gliding motion of microtubules on kinesin-treated metallic glass wires. The reversible manner in the local adsorption of microtubules, the flexibility of wire electrodes, and the compatibility between the wire electrode and the bio-molecules are beneficial for spatio-temporal manipulation of the motility machinery in 3 dimensions.

  14. A clamp fixture with interdigital capacitive sensor for in situ evaluation of wire insulation

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.; Bowler, Nicola

    2014-02-01

    An interdigital capacitive sensor has been designed and optimized for testing aircraft wires by applying a quasinumerical model developed and reported previously. The sensor consists of two patches of interdigitated electrodes, connected by a long signal bus strip, that are intended to conform to two sides of an insulated wire. The electrodes are deposited using photolithography upon a 25.4-μm-thick Kapton® polyimide film. The two electrode patches are attached to the two jaws of a plastic spring-loaded clamp, with each jaw having a milled groove designed such that the electrodes conform to the curved surface of the insulated wire. An SMA connector and cable connect between the electrodes on the clamp and an LCR meter. Segments of pristine M5086/2 aircraft wire, each 10 cm long, were immersed in fluids commonly found in aircraft environments, to cause accelerated chemical degradation. The effects of Jet A fuel, deicing fluid, hydraulic fluid, aircraft cleaner, isopropyl alcohol and distilled water were studied. The frequency-dependent capacitance and dissipation factor of one pristine wire segment and of those degraded in the six fluid environments were measured within the frequency range 100 Hz to 1 MHz. Significant changes in capacitance and dissipation factor were observed for all degraded wires, compared with results for the pristine sample, suggesting the feasibility of detecting insulation degradation in the field. The results were also consistent with those of a similar experiment performed on sheets of Nylon 6, the material that comprises the outermost layer of M5086/2 wire.

  15. Spinal cord electrophysiology II: extracellular suction electrode fabrication.

    PubMed

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-02-20

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.

  16. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  17. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  18. Beam Position and Phase Monitor - Wire Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less

  19. Spinal Cord Electrophysiology II: Extracellular Suction Electrode Fabrication

    PubMed Central

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-01-01

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively. PMID:21372792

  20. A Full-Visible-Spectrum Invisibility Cloak for Mesoscopic Metal Wires.

    PubMed

    Kim, Sang-Woo; An, Byeong Wan; Cho, Eunjin; Hyun, Byung Gwan; Moon, Yoon-Jong; Kim, Sun-Kyung; Park, Jang-Ung

    2018-06-13

    Structured metals can sustain a very large scattering cross-section that is induced by localized surface plasmons, which often has an adverse effect on their use as transparent electrodes in displays, touch screens, and smart windows due to an issue of low clarity. Here, we report a broadband optical cloaking strategy for the network of mesoscopic metal wires with submicrometer to micrometer diameters, which is exploited for manufacturing and application of high-clarity metal-wires-based transparent electrodes. We prepare electrospun Ag wires with 300-1800 nm in diameter and perform a facile surface oxidation process to form Ag/Ag 2 O core/shell heterogeneous structures. The absorptive Ag 2 O shell, together with the coating of a dielectric cover, leads to the cancellation of electric multipole moments in Ag wires, thereby drastically suppressing plasmon-mediated scattering over the full visible spectrum and rendering Ag wires to be invisible. Simultaneously with the effect of invisibility, the transmittance of Ag/Ag 2 O wires is significantly improved compared to bare Ag wires, despite the formation of an absorptive Ag 2 O shell. As an application example, we demonstrate that these invisible Ag wires serve as a high-clarity, high-transmittance, and high-speed defroster for automotive windshields.

  1. An electrode to record the mouse cornea electroretinogram.

    PubMed

    Goto, Y

    The mouse has become a popular model for the study of retinal degeneration, but an electrode suitable for recording electroretinograms from the mouse cornea is not available commercially. I developed a simple electrode suitable for the relatively small mouse eye by attaching a thin stainless-steel wire through the barrel of a 1-cc syringe. The end of the wire is formed into a coil by wrapping it around a 0.5- or 1.0-mm pin. The syringe barrel serves as a convenient way to hold the electrode in a goose-neck holder. This electrode has been used successfully to obtain electroretinograms from hundreds of mice as young as 14 days.

  2. Voltammetric analysis of ordnance materials. Part 2: A portable digital voltammeter for use with a silver wire working electrode

    NASA Astrophysics Data System (ADS)

    Fine, D. A.; Reeve, D. A.; Dickus, R. A.

    1984-12-01

    An inexpensive, portable, digital voltammeter has been designed and built at NWC. The instrument is intended for use with a silver wire working electrode. The voltammeter was built in response to a need on the part of Navy facilities for the monitoring of effluent water from the carbon column cleanup process used to remove propyleneglycoldinitrate from Otto fuel waste water. The instrument may also be used for the monitoring of contaminants such as nitroglycerin, dinitrotoluene, trinitrotoluene and nitroguanidine. This report describes in detail the construction, circuitry, software and operational features of the instrument.

  3. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  4. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    PubMed

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Prognostic monitoring of aircraft wiring using electrical capacitive tomography

    NASA Astrophysics Data System (ADS)

    McKenzie, G.; Record, P.

    2011-12-01

    Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.

  6. Prognostic monitoring of aircraft wiring using electrical capacitive tomography.

    PubMed

    McKenzie, G; Record, P

    2011-12-01

    Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.

  7. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    PubMed

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. © 2013.

  8. High-performance, stretchable, wire-shaped supercapacitors.

    PubMed

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-01-01

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373

  10. A 100 electrode intracortical array: structural variability.

    PubMed

    Campbell, P K; Jones, K E; Normann, R A

    1990-01-01

    A technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities.

  11. Self-healable electrically conducting wires for wearable microelectronics.

    PubMed

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    PubMed

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  13. 200-m optical fiber with an integrated electrode and its poling.

    PubMed

    Lee, Kenneth; Hu, Peifang; Blows, Justin L; Thorncraft, David; Baxter, John

    2004-09-15

    More than 200 m of germanosilica optical fiber is manufactured with an internal wire electrode running parallel to the core. In this new fabrication method the wire is integrated into the fiber during the draw process. This length of fiber is an order of magnitude longer than other previously reported fibers with internal electrodes. The optical loss is less than our measurement floor of 0.5 dB/m at 1550 nm. A 0.9-m section of the fiber is thermally poled, inducing a permanent second-order nonlinearity of 0.0125 pm/V. Methods to increase the induced nonlinearity are discussed. Integrating the wire into the fiber during the draw allows lengths of fiber with internal electrodes greater than 1 km to be manufactured and subsequently poled.

  14. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    NASA Astrophysics Data System (ADS)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  15. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    PubMed Central

    Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling

    2009-01-01

    An electrochemical technique has been developed for ultra trace (ngL−1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 μm) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of −0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0–1000 ngL−1 range (2 min deposition), with a detection limit of 0.88 ngL−1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL−1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059

  16. Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment.

    PubMed

    Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2012-10-24

    A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.

  17. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.

    PubMed

    Ren, Jing; Bai, Wenyu; Guan, Guozhen; Zhang, Ye; Peng, Huisheng

    2013-11-06

    A flexible and weaveable electric double-layer capacitor wire is developed by twisting two aligned carbon nanotube/ordered mesoporous carbon composite fibers with remarkable mechanical and electronic properties as electrodes. This capacitor wire exhibits high specific capacitance and long life stability. Compared with the conventional planar structure, the capacitor wire is also lightweight and can be integrated into various textile structures that are particularly promising for portable and wearable electronic devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems.

    PubMed

    Mahadevan, Aishwarya; Fernando, Teshan; Fernando, Sandun

    2016-04-15

    When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Influence of aluminum oxide film on thermocompression bonding of gold wire to evaporated aluminum film

    NASA Technical Reports Server (NTRS)

    Iwata, S.; Ishizaka, A.; Yamamoto, H.

    1984-01-01

    The influence of Al surface condition on the thermocompression bonding of Au wires to Al electrodes for integrated electric circuits was studied. Au wires were connected to Al electrodes by nail-head bonding after various Al surface treatments. Bonding was evaluated by measuring the wire pull strength and fraction of the number of failures at Au-Al bonds to the total number of failures. Dependence of the fraction on applied load was derived theoretically with a parameter named critical load to take into consideration the differences in Al surface condition. The relation also held explicately for various surface treatments. Characterization of the Al surface was carried out by electron microscopy for chemical analysis.

  20. Determination of glucose in human urine by cyclic voltammetry method using gold electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Supwatul Hakim, Muh.

    2018-01-01

    This study has been the determination of glucose in human urine by cyclic voltammetry method using gold electrode. The gold electrode was prepared using gold wire with purity 99.99%, size 1.0 mm by length and wide respectively, connected with silver wire using silver conductive paint. The effect of electrolyte, pH and glucose concentration has been determined to produce the optimum method. The research showed the KNO3 is a good electrolyte for determination of glucose in human urine using gold electrode. The effect of glucose concentration have the coefficient correlation is R2 = 0.994. The results of the recovery using addition method showed at range95-105%. As a conclusion isa gold electrode is a good electrode for electrochemical sensors to the determination of glucose in human urine.

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  2. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  3. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE PAGES

    Horwood, Corie; Stadermann, Michael

    2018-02-08

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  4. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  5. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  6. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or

  7. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  8. Control of electrochemical reactions at the capillary electrophoresis outlet/electrospray emitter electrode under CE/ESI-MS through the application of redox buffers.

    PubMed

    Smith, A D; Moini, M

    2001-01-15

    It was found that combining capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS) overlays two controlled current techniques to form a three-electrode system (CE inlet, CE outlet/ES emitter, and MS inlet electrodes) in which the CE outlet electrode and the ES emitter electrode were shared between the CE and the ESI-MS circuits. Depending on the polarities and magnitudes of the voltages at the CE inlet, CE outlet/ES emitter, and MS inlet electrodes, the nature of the two redox reactions at the shared electrode was the same or different (both reduction, both oxidation, or one oxidation and the other reduction). Several redox buffers were introduced for controlling electrochemical reactions at the shared electrode. By reacting at this electrode, redox buffers were able to maintain electrode potentials below the onset of water electrolysis, thereby eliminating gas bubble formation and/or pH drift. The volume of the gas generated due to water electrolysis was used to quantitate water oxidation or reduction at this electrode. Two types of redox buffers were used. A reactive electrode with an oxidation potential below that of water was used as the electrode under anodic conditions. Also, a reactive compound with a redox potential below that of water was added to the CE and/or ESI running buffer. When the shared electrode was the anode of both CE and ESI-MS circuits, the use of iron or etched and sanded stainless steel (ss) wire, instead of platinum wire, suppressed bubble formation at the shared electrode. Under these conditions, corrosion of the Fe wire and formation of Fe2+ replaced oxidation of water, eliminating O2 gas bubble and H+ formation. When mixtures of peptides were analyzed, iron adducts of peptides were observed. For a fresh wire, however, the intensities of adduct ions were less than 3% of the protonated molecules. After a few days of operation, the intensities of the adduct ions increased to approximately 50%, due to rust

  9. Factors affecting energy deposition and expansion in single wire low current experiments

    NASA Astrophysics Data System (ADS)

    Duselis, Peter U.; Vaughan, Jeffrey A.; Kusse, Bruce R.

    2004-08-01

    Single wire experiments were performed on a low current pulse generator at Cornell University. A 220 nF capacitor charged to 15-25 kV was used to drive single wire experiments. The capacitor and wire holder were connected in series through an external variable inductor to control the current rise rate. This external series inductance was adjustable from 0.2 to 2 μH. When coupled with the range of charging voltages this results in current rise rates from 5 to 50 A/ns. The current heated the wire through liquid and vapor phases until plasma formed around the wire. Energy deposition and expansion rates were measured as functions of the current rise rate. These results indicated better energy deposition and higher expansion rates with faster current rise rates. Effects of the wire-electrode connection method and wire polarity were also studied.

  10. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  11. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    PubMed

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  12. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    NASA Astrophysics Data System (ADS)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  13. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    NASA Astrophysics Data System (ADS)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  14. Contractile Skeletal Muscle Cells Cultured with a Conducting Soft Wire for Effective, Selective Stimulation.

    PubMed

    Nagamine, Kuniaki; Sato, Hirotaka; Kai, Hiroyuki; Kaji, Hirokazu; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2018-02-02

    Contractile skeletal muscle cells were cultured so as to wrap around an electrode wire to enable their selective stimulation even when they were co-cultured with other electrically-excitable cells. Since the electrode wire was composed of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), which is soft and highly capacitive (~10 mF cm -2 ), non-faradaic electrical stimulation with charge/discharge currents could be applied to the surrounding cells without causing significant damage even for longer periods (more than a week). The advantage of this new culture system was demonstrated in the study of chemotactic interaction of monocytes and skeletal muscle cells via myokines.

  15. Magnetohydrodynamic generator electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  16. Transvenous pacemaker electrodes placed unintentionally in the left ventricle: three cases.

    PubMed Central

    Winner, S. J.; Boon, N. A.

    1989-01-01

    Three patients are described in whom pacemaker electrodes were unintentionally placed within the left ventricle, followed by considerable delay before the error was recognized. In two cases temporary pacemaker wires were inserted into the subclavian artery and passed along a retrograde course. One patient required urgent surgery for acute arterial obstruction on removal of the wire. In the third case, a permanent wire was inserted correctly into a vein but traversed the atrial septum, probably via a patent foramen ovale, to enter the left ventricle. Twelve lead electrocardiograms in all three patients showed paced complexes with right bundle branch block configuration. This appearance should raise suspicion that the pacemaker electrode might be in the left ventricle, in which case its position should be defined by chest radiographs (including a lateral view) and echocardiography. Images Figure 1 Figure 3 Figure 4 PMID:2780472

  17. Current shunting and formation of stationary shock waves during electric explosions of metal wires in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenkov, G. V.; Gus'kov, S. Yu.; Barishpol'tsev, D. V.

    2010-01-15

    Results of experiments on the generation of shock waves during electric explosions of fine copper and tungsten wires in air are analyzed. The generation mechanism of stationary shock wave by a plasma piston formed during the shunting breakdown of the electrode gap in the course of a wire explosion is investigated. The role of structural elements of such discharges, such as the core, corona, and wire environment, is analyzed.

  18. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    PubMed

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  19. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications

  20. Wire electric-discharge machining and other fabrication techniques

    NASA Technical Reports Server (NTRS)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  1. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    PubMed Central

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj

    2013-01-01

    Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128

  2. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  3. Electrochemical properties of Sn-based nanopowders synthesized by a pulsed wire evaporation method and effect of binder coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Jong-Keun; Song, Ju-Seok; Cho, Gyu-Bong

    Highlights: • Sn-based nanoparticles are fabricated by using the pulsed wire evaporation method. • The electrodes are prepared by mixing the graphene and coating the surface. • Coating the surface of electrode is used with brushing of simple and facile method. • The electrochemical measurements are performed with galvanostatic experiments. • The coating electrode maintains capacity nearly of 501 mAh g{sup −1} up to 100 cycles. - Abstract: Sn-based nanoparticles are prepared with the O{sub 2} concentrations in chamber of Ar atmosphere (by v/v) by using the pulsed wire evaporation (PWE) method. The prepared electrodes are only Sn-based powder electrode,more » its binder coating electrode and Sn-based powder/graphene nanocomposite electrode. Morphology and structure of the synthesized powders and electrodes are investigated with a field emission scanning electron microscope (FE-SEM) and an X-ray diffraction (XRD) analysis. The electrochemical measurements were performed with galvanostatic cycling experiments using a coin type cell of CR2032 (Ø20, T3.2 mm). The binder coating electrode is superior to others and maintains delithiation capacity nearly of 501 mAh g{sup −1} as 58.3% of first delithiation capacity at 0.2 C-rate up to 100 cycles.« less

  4. Evaluating conducting network based transparent electrodes from geometrical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ankush; Kulkarni, G. U., E-mail: guk@cens.res.in

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained frommore » conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  5. Evaluating conducting network based transparent electrodes from geometrical considerations

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting

  6. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  7. Wired enzyme electrodes--a retroperspective story about an exciting time at University of Texas at Austin and its impact on my scientific career.

    PubMed

    Lindquist, Sten-Eric

    2013-07-22

    The present paper features an exciting time in the late 1980s when I, as a visiting scientist, had the privilege to participate in the early and very exciting development of the in vivo redox-polymer-wired glucose sensor in Professor Adam Heller's laboratory at the Department of Chemical Engineering at University of Texas at Austin. This story is followed by an overview of the research my visit initiated at Uppsala University. In collaboration with Swedish colleagues, we explored a few of the many possibilities to form new biosensors by utilizing Prof. Heller's concept of cross-linked redox-polymer/redox-enzyme electrodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of water conductivity on shock waves generated by underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Liu, Ben; Wang, Deguo; Guo, Yanbao

    2018-01-01

    The new application of electrical explosion of wire (EEW) used in petroleum industry is to enhance oil recovery (EOR). Because of the complex environment underground, the effect of underground water conductivity on EEW should be considered. This work describes the effect of water conductivities on discharge current, voltage and shock waves. It was found that the effect of water conductivity contains two parts. One is the shunt effect of saline water, which can be considered as a parallel load with the copper wire between the electrodes connected to the discharge circuit. The peak pressure of shock waves are gradually decrease with the increase of water conductivity. The other is the current loss through saline water directly to the ground ends without flowing through the electrodes. The shunt effect is the main factor affecting the wire discharge process. As the charging voltage increased, the energy loss caused by these two parts are all reduced. These indicate that increasing the charging voltage to a certain value will increase the energy efficiency to generate a more powerful shock waves in conductive water.

  9. THE EFFECTS OF POLARIZATION UPON THE STEEL WIRE-NITRIC ACID MODEL OF NERVE ACTIVITY

    PubMed Central

    Bishop, George H.

    1927-01-01

    The active process in a short length of steel wire passivated by 65 per cent nitric acid has been observed under the influence of a polarizing current, and the form of the potential recorded by the cathode ray oscillograph. In the passive wire, 80 per cent of the total potential drop takes place at the anode, 20 per cent at the cathode. The change from active to passive states, as measured by the potential change, is very abrupt compared to the duration of activity and the potential curve at a point on the wire is probably almost rectangular. The duration of the refractory state is decreased at the anode and increased at the cathode, as in nerve. This fact is against the idea that reactivity after passivation results from a partial reduction of an oxide layer. Soft iron wire passivated by anodal polarization repassivates after activation in acid of a dilution that fails to passivate it initially. It soon becomes rhythmic with a very short refractory phase, and then reacts continuously. Such a wire exhibits a very sharp alternation between a dark brown oxide coat during activity, and a bright clean surface during passivation. A passive steel wire in nitric acid shows many of the characteristics of an inert electrode such as platinum, and it may be inferred that, superposed upon the primary passivation potential, there exists an electrode or oxidation-reduction potential equilibrium between the effects of the various constituents of the solution. It is suggested that the phenomena of nerve-like reactivity in this system may involve an alternation between two protective coatings of the steel wire. During activity, the surface becomes mechanically coated with a brown oxide. If this coating does not adhere, due to gas convection or to rapid solution of the oxide, passivation does not result. Under sufficiently intense oxidizing conditions, a second oxide coat may form in the interstices of the first, and cover the surface as the first coating dissolves off. This

  10. THE EFFECTS OF POLARIZATION UPON THE STEEL WIRE-NITRIC ACID MODEL OF NERVE ACTIVITY.

    PubMed

    Bishop, G H

    1927-11-20

    The active process in a short length of steel wire passivated by 65 per cent nitric acid has been observed under the influence of a polarizing current, and the form of the potential recorded by the cathode ray oscillograph. In the passive wire, 80 per cent of the total potential drop takes place at the anode, 20 per cent at the cathode. The change from active to passive states, as measured by the potential change, is very abrupt compared to the duration of activity and the potential curve at a point on the wire is probably almost rectangular. The duration of the refractory state is decreased at the anode and increased at the cathode, as in nerve. This fact is against the idea that reactivity after passivation results from a partial reduction of an oxide layer. Soft iron wire passivated by anodal polarization repassivates after activation in acid of a dilution that fails to passivate it initially. It soon becomes rhythmic with a very short refractory phase, and then reacts continuously. Such a wire exhibits a very sharp alternation between a dark brown oxide coat during activity, and a bright clean surface during passivation. A passive steel wire in nitric acid shows many of the characteristics of an inert electrode such as platinum, and it may be inferred that, superposed upon the primary passivation potential, there exists an electrode or oxidation-reduction potential equilibrium between the effects of the various constituents of the solution. It is suggested that the phenomena of nerve-like reactivity in this system may involve an alternation between two protective coatings of the steel wire. During activity, the surface becomes mechanically coated with a brown oxide. If this coating does not adhere, due to gas convection or to rapid solution of the oxide, passivation does not result. Under sufficiently intense oxidizing conditions, a second oxide coat may form in the interstices of the first, and cover the surface as the first coating dissolves off. This

  11. Carbon Nanospikes Grown on Metal Wires as Microelectrode Sensors for Dopamine

    PubMed Central

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In this study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. The CNS growth was characterized on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 μM dopamine while carbon nanospike coated wires could. The highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 ± 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller ΔEp for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection. PMID:26389138

  12. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    DOE PAGES

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; ...

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coatedmore » wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

  13. Trapping of ultracold polar molecules with a thin-wire electrostatic trap.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-10-05

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  14. Ag paste-based nanomesh electrodes for large-area touch screen panels

    NASA Astrophysics Data System (ADS)

    Chung, Sung-il; Kyeom Kim, Pan; Ha, Tae-gyu

    2017-10-01

    This study reports a novel method for fabricating a nickel nanomesh mold using phase shift lithography, suitable for use in large-area touch screen panel applications. Generally, the values of light transmittance and sheet resistance of metal mesh transparent conducting electrode (TCE) films are determined by the ratio of the aperture to metal areas. In this study, taking into consideration the optimal light transmittance, sheet resistance, and pattern visibility issues, the line width of the metal mesh pattern was ~1 µm, and the pitch of the pattern was ~100 µm. In addition, a novel method of manufacturing wiring electrodes using a phase shift lithography process was also developed and evaluated. A TCE film with a size of 370 mm  ×  470 mm was prepared and evaluated for its light transmittance and sheet resistance. In addition, wiring electrodes with a length of 70 mm were fabricated and their line resistances evaluated by varying their line width.

  15. Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.

    2012-01-01

    In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.

  16. Measurements of stretch lengths of gold mono-atomic wires covered with 1,6-hexanedithiol in 0.1 M NaClO4 with an electrochemical scanning tunneling microscope.

    PubMed

    Sun, Jian; Akiba, Uichi; Fujihira, Masamichi

    2008-09-01

    Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.

  17. Electron transport in gated InGaAs and InAsP quantum well wires in selectively grown InP ridge structures

    NASA Astrophysics Data System (ADS)

    Granger, G.; Kam, A.; Studenikin, S. A.; Sachrajda, A. S.; Aers, G. C.; Williams, R. L.; Poole, P. J.

    2010-09-01

    The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.

  18. Electromagnetic characteristic of twin-wire indirect arc welding

    NASA Astrophysics Data System (ADS)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  19. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo.

    PubMed

    Viventi, Jonathan; Kim, Dae-Hyeong; Vigeland, Leif; Frechette, Eric S; Blanco, Justin A; Kim, Yun-Soung; Avrin, Andrew E; Tiruvadi, Vineet R; Hwang, Suk-Won; Vanleer, Ann C; Wulsin, Drausin F; Davis, Kathryn; Gelber, Casey E; Palmer, Larry; Van der Spiegel, Jan; Wu, Jian; Xiao, Jianliang; Huang, Yonggang; Contreras, Diego; Rogers, John A; Litt, Brian

    2011-11-13

    Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.

  20. Predicting efficiency of solar cells based on transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush

    2017-01-01

    Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.

  1. Methods for implantation of micro-wire bundles and optimization of single/multiunit recordings from human mesial temporal lobe

    PubMed Central

    Misra, A; Burke, JF; Ramayya, A; Jacobs, J; Sperling, MR; Moxon, KA; Kahana, MJ; Evans, JJ; Sharan, AD

    2014-01-01

    Objective The authors report methods developed for the implantation of micro-wire bundles into mesial temporal lobe structures and subsequent single neuron recording in epileptic patients undergoing in-patient diagnostic monitoring. This is done with the intention of lowering the perceived barriers to routine single neuron recording from deep brain structures in the clinical setting. Approach Over a 15 month period, 11 patients were implanted with platinum micro-wire bundles into mesial temporal structures. Protocols were developed for A) monitoring electrode integrity through impedance testing, B) ensuring continuous 24-7 recording, C) localizing micro-wire position and “splay” pattern and D) monitoring grounding and referencing to maintain the quality of recordings. Main Result Five common modes of failure were identified: 1) broken micro-wires from acute tensile force, 2) broken micro-wires from cyclic fatigue at stress points, 3) poor in-vivo micro-electrode separation, 4) motion artifact and 5) deteriorating ground connection and subsequent drop in common mode noise rejection. Single neurons have been observed up to 14 days post implantation and on 40% of micro-wires. Significance Long-term success requires detailed review of each implant by both the clinical and research teams to identify failure modes, and appropriate refinement of techniques while moving forward. This approach leads to reliable unit recordings without prolonging operative times, which will help increase the availability and clinical viability of human single neuron data. PMID:24608589

  2. Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

    PubMed Central

    Min, Kyou Sik; Lim, Yoon Seob; Park, Se-Ik; Kim, Sung June

    2013-01-01

    In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA-) embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications. PMID:23762181

  3. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  4. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  5. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  6. Human interface design using Button-type PEDOT electrode array in EIT

    NASA Astrophysics Data System (ADS)

    Wi, Hun; In Oh, Tong; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je

    2010-04-01

    Animal and human experiments using a multi-channel EIT system requires a cumbersome procedure to attach multiple electrodes. We have to ensure good contact of all electrodes and manage many lead wires during experiments. The problem becomes more severe as we increase the number of electrodes. These may limit the applicability of the imaging method in practice. Noting this technical difficulty, there have been a few trials to design human interface means such as electrode belts, helmets or rings. In this study, we developed an electrode belt for long-term monitoring of human lung ventilation. The belt includes 16 embossed electrodes which make good contact with the skin. The electrode is made by conductive polymer and metallic thread. Soft cushion and wide contact area minimize uncomfortable sensation and reduce contact impedances. The electrodes are attached to an elastic fabric belt at equal spacing. We describe details of its design and fabrication. Using the electrode belt and recently developed multi-frequency EIT system KHU Mark2, we show time-difference chest images of three human subjects during normal breathing cycles.

  7. The importance of the orientation of the electrode plates in recording the external anal sphincter EMG by non-invasive anal plug electrodes.

    PubMed

    Binnie, N R; Kawimbe, B M; Papachrysostomou, M; Clare, N; Smith, A N

    1991-02-01

    Two non-invasive anal plug electrodes of similar size have been compared, one with the electrode plates orientated circularly in the anal canal and the other with the plates in the long axis of the anal canal. There was a significant increase in the amplitude in the EMG signals recorded at rest and during squeeze from the external anal sphincter with a longitudinally placed electrode in 117 patients. Inappropriate contraction of the external anal sphincter when straining at stool was more readily detected using the longitudinal electrode in 52 patients investigated for intractable constipation. The longitudinal electrode detected the amplitude of the response to the elicitation of a pudeno-anal reflex more readily than the circular electrode. When in 12 of the 117 the pudeno-anal reflex EMG signal was either absent or not detected with the circumferential plug electrode, the longitudinal electrode detected the presence of a low amplitude response in 11 of these. When the non-invasive longitudinal electrode was compared to invasive fine wire stainless steel electrodes, a correlation was found for external anal sphincter resting EMG (r = 0.99, p less than 0.01), voluntary squeeze EMG (r = 0.99, p less than 0.001) and strain EMG (r = 0.91, p less than 0.01). The longitudinal anal plug electrode thus facilitates surface acquisition of EMG activity.

  8. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  9. Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.

    2006-01-01

    In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.

  10. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  11. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  12. Optimalization of Poly(neutral red) Coated-wire Electrode for Determination of Citrate in Soft Drinks

    PubMed Central

    Broncová, Gabriela; Shishkanova, Tatiana V.; Krondak, Martin; Volf, Radko; Král, Vladimír

    2008-01-01

    This report presents an optimization of potentiometric measurements with citrate-selective electropolymerized poly(neutral red) electrodes. The optimal background electrolyte for these measurements is a TRIS buffer with nitrate at pH 8.5. The electrodes described here exhibit stable and reproducible near-Nernstian response to citrates with a low detection limit of 6 × 10-6 M. Electrodes polymerized from sulfuric acid and acetonitrile are compared in detail. Simple and sensitive method for quantification of citrate in real-life samples by potentiometry with poly(neutral red) electrodes are presented. Data from potentiometric measurements of citrate are compared with capillary electrophoresis. PMID:27879724

  13. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  14. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  15. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  16. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  17. Fabrication and characterization of microsieve electrode array (µSEA) enabling cell positioning on 3D electrodes

    NASA Astrophysics Data System (ADS)

    Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.

    2017-01-01

    Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was  >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of  <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.

  18. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-09-23

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.

  19. Miniaturized, on-head, invasive electrode connector integrated EEG data acquisition system.

    PubMed

    Ives, John R; Mirsattari, Seyed M; Jones, D

    2007-07-01

    Intracranial electroencephalogram (EEG) monitoring involves recording multi-contact electrodes. The current systems require separate wires from each recording contact to the data acquisition unit resulting in many connectors and cables. To overcome limitations of such systems such as noise, restrictions in patient mobility and compliance, we developed a miniaturized EEG monitoring system with the amplifiers and multiplexers integrated into the electrode connectors and mounted on the head. Small, surface-mounted instrumentation amplifiers, coupled with 8:1 analog multiplexers, were assembled into 8-channel modular units to connect to 16:1 analog multiplexer manifold to create a small (55 cm(3)) head-mounted 128-channel system. A 6-conductor, 30 m long cable was used to transmit the EEG signals from the patient to the remote data acquisition system. Miniaturized EEG amplifiers and analog multiplexers were integrated directly into the electrode connectors. Up to 128-channels of EEG were amplified and analog multiplexed directly on the patient's head. The amplified EEG data were obtained over one long wire. A miniaturized system of invasive EEG recording has the potential to reduce artefact, simplify trouble-shooting, lower nursing care and increase patient compliance. Miniaturization technology improves intracranial EEG monitoring and leads to >128-channel capacity.

  20. Junction-Free Electrospun Ag Fiber Electrodes for Flexible Organic Light-Emitting Diodes.

    PubMed

    Choi, Junhee; Shim, Yong Sub; Park, Cheol Hwee; Hwang, Ha; Kwack, Jin Ho; Lee, Dong Jun; Park, Young Wook; Ju, Byeong-Kwon

    2018-02-01

    Fabrication of junction-free Ag fiber electrodes for flexible organic light-emitting diodes (OLEDs) is demonstrated. The junction-free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □ -1 , leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires.

    PubMed

    El Kacimi, Amine; Pauliac-Vaujour, Emmanuelle; Delléa, Olivier; Eymery, Joël

    2018-06-12

    We report an example of the realization of a flexible capacitive piezoelectric sensor based on the assembly of horizontal c¯-polar long Gallium nitride (GaN) wires grown by metal organic vapour phase epitaxy (MOVPE) with the Boostream ® technique spreading wires on a moving liquid before their transfer on large areas. The measured signal (<0.6 V) obtained by a punctual compression/release of the device shows a large variability attributed to the dimensions of the wires and their in-plane orientations. The cause of this variability and the general operating mechanisms of this flexible capacitive device are explained by finite element modelling simulations. This method allows considering the full device composed of a metal/dielectric/wires/dielectric/metal stacking. We first clarify the mechanisms involved in the piezo-potential generation by mapping the charge and piezo-potential in a single wire and studying the time-dependent evolution of this phenomenon. GaN wires have equivalent dipoles that generate a tension between metallic electrodes only when they have a non-zero in-plane projection. This is obtained in practice by the conical shape occurring spontaneously during the MOVPE growth. The optimal aspect ratio in terms of length and conicity (for the usual MOVPE wire diameter) is determined for a bending mechanical loading. It is suggested to use 60⁻120 µm long wires (i.e., growth time less than 1 h). To study further the role of these dipoles, we consider model systems with in-plane 1D and 2D regular arrays of horizontal wires. It is shown that a strong electrostatic coupling and screening occur between neighbouring horizontal wires depending on polarity and shape. This effect, highlighted here only from calculations, should be taken into account to improve device performance.

  2. Utility of CT-compatible EEG electrodes in critically ill children.

    PubMed

    Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S

    2015-04-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.

  3. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  4. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GWmore » for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.« less

  5. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, K.G.; Steen, W.M.; Manna, I.

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire.more » A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.« less

  6. Dependence of streamer density on electric field strength on positive electrode

    NASA Astrophysics Data System (ADS)

    Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration

    2015-09-01

    Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.

  7. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  8. Wire stripper

    NASA Technical Reports Server (NTRS)

    Economu, M. A. (Inventor)

    1978-01-01

    An insulation stripper is described which is especially useful for shielded wire, the stripper including a first pair of jaws with blades extending substantially perpendicular to the axis of the wire, and a second pair of jaws with blades extending substantially parallel to the axis of the wire. The first pair of jaws is pressed against the wire so the blades cut into the insulation, and the device is turned to form circumferential cuts in the insulation. Then the second pair of jaws is pressed against the wire so the blades cut into the insulation, and the wire is moved through the device to form longitudinal cuts that permit easy removal of the insulation. Each of the blades is located within the concave face of a V-block, to center the blades on the wire and to limit the depth of blade penetration.

  9. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  10. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  11. Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode

    PubMed Central

    Li, Joy; Cho, Michael

    2018-01-01

    Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells in a crater (<100 μm from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision. PMID:29744357

  12. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  13. Studies of reaction geometry in oxidation and reduction of the alkaline silver electrode

    NASA Technical Reports Server (NTRS)

    Butler, E. A.; Blackham, A. U.

    1971-01-01

    Two methods of surface area estimations of sintered silver electrodes have given roughness factors of 58 and 81. One method is based on constant current oxidation, the other is based on potentiostatic oxidation. Examination of both wire and sintered silver electrodes via scanning electron microscopy at various stages of oxidation have shown that important structural features are mounds of oxide. In potentiostatic oxidations these appear to form on sites instantaneously nucleated while in constant current oxidations progressive nucleation is indicated.

  14. DEVELOPMENT OF A CHARGING/COLLECTING DEVICE FOR HIGH RESISTIVITY DUST USING COOLED ELECTRODES

    EPA Science Inventory

    The paper discusses a charging/collecting device for high-resistivity fly ash, developed to control back-ionization by cooling the collector electrode internally with water. The device consists of parallel 6.0 cm pipes with corona wires suspended between them. The pipes provide a...

  15. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  16. Measuring the dynamic polarizability of tungsten atom via electrical wire explosion in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2018-02-01

    Electrical explosion of wire provides a practical approach to the experimental measurement of dynamic polarizability of metal atoms with high melting and boiling temperatures. With the help of insulation coating, a section of tungsten wire was transformed to the plasma state while the near electrode region was partially vaporized, which enabled us to locate the "neutral-region" (consisting of gaseous atoms) in the Mach-Zehnder interferogram. In this paper, the polarizability of the tungsten atom at 532 nm was reconstructed based on a technique previously used for the same purpose, and the basic preconditions of the measurement were verified in detail, including the existence of the neutral region, conservation of linear density of tungsten during wire expansion, and neglect of the vaporized insulation coating. The typical imaging time varied from 80 ns to as late as 200 ns and the reconstructed polarizability of the tungsten atom was 16 ± 1 Å3, which showed good statistical consistency and was also in good agreement with the previous results.

  17. Studies on metal hydride electrodes containing no binder additives

    NASA Astrophysics Data System (ADS)

    Rogulski, Z.; Dłubak, J.; Karwowska, M.; Krebs, M.; Pytlik, E.; Schmalz, M.; Gumkowska, A.; Czerwiński, A.

    Electrochemical properties of hydrogen storage alloys (AB 5 type: LaMm-Ni 4.1Al 0.3Mn 0.4Co 0.45) were studied in 6 M KOHaq using Limited Volume Electrode (LVE) method. Working electrodes were prepared by pressing alloy powder (without binding and conducting additives) into a metal net wire serving as a support and as a current collector. Cyclic voltammetry curves reveal well defined hydrogen sorption and desorption peaks which are separated from other faradic processes, such as surface oxidation. Voltammograms of LVE resemble the curves obtained by various authors for single particle metal alloy electrodes. Hydrogen diffusion coefficient calculated at room temperature for LV electrodes and for 100% state of charge reaches a constant value of ca. 3.3 × 10 -9 and 2.1 × 10 -10 cm 2 s -1, for chronoamperometric and chronopotentiometric measurements, respectively. A comparison of the electrodes with average alloy particle sizes of ca. 50 and 4 μm allows us to conclude that at room temperature hydrogen storage capability of AB 5 alloy studied is independent on the alloy particle size. On the other hand, reduction of the particle size increases alloy capacity at temperatures below -10 °C and reduces time of electrochemical activation of the electrode.

  18. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire.

    PubMed

    Fei, Peng; Yeh, Ping-Hung; Zhou, Jun; Xu, Sheng; Gao, Yifan; Song, Jinhui; Gu, Yudong; Huang, Yanyi; Wang, Zhong Lin

    2009-10-01

    We report an external force triggered field-effect transistor based on a free-standing piezoelectric fine wire (PFW). The device consists of an Ag source electrode and an Au drain electrode at two ends of a ZnO PFW, which were separated by an insulating polydimethylsiloxane (PDMS) thin layer. The working principle of the sensor is proposed based on the piezoelectric potential gating effect. Once subjected to a mechanical impact, the bent ZnO PFW cantilever creates a piezoelectric potential distribution across it width at its root and simultaneously produces a local reverse depletion layer with much higher donor concentration than normal, which can dramatically change the current flowing from the source electrode to drain electrode when the device is under a fixed voltage bias. Due to the free-standing structure of the sensor device, it has a prompt response time less than 20 ms and quite high and stable sensitivity of 2%/microN. The effect from contact resistance has been ruled out.

  19. Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring.

    PubMed

    Rapin, M; Proença, M; Braun, F; Meier, C; Solà, J; Ferrario, D; Grossenbacher, O; Porchet, J-A; Chételat, O

    2015-04-01

    Cooperative sensors is a novel measurement architecture that allows the acquiring of biopotential signals on patients in a comfortable and easy-to-integrate manner. The novel sensors are defined as cooperative in the sense that at least two of them work in concert to measure a target physiological signal, such as a multi-lead electrocardiogram or a thoracic bioimpedance.This paper starts by analysing the state-of-the-art methods to simultaneously measure biopotential and bioimpedance signals, and justifies why currently (1) passive electrodes require the use of shielded or double-shielded cables, and (2) active electrodes require the use of multi-wired cabled technologies, when aiming at high quality physiological measurements.In order to overcome the limitations of the state-of-the-art, a new method for biopotential and bioimpedance measurement using the cooperative sensor is then presented. The novel architecture allows the acquisition of the aforementioned biosignals without the need of shielded or multi-wire cables by splitting the electronics into separate electronic sensors comprising each of two electrodes, one for voltage measurement and one for current injection. The sensors are directly in contact with the skin and connected together by only one unshielded wire. This new configuration requires one power supply per sensor and all sensors need to be synchronized together to allow them to work in concert.After presenting the working principle of the cooperative sensor architecture, this paper reports first experimental results on the use of the technology when applied to measuring multi-lead ECG signals on patients. Measurements performed on a healthy patient demonstrate the feasibility of using this novel cooperative sensor architecture to measure biopotential signals and compliance with common mode rejection specification accordingly to international standard (IEC 60601-2-47) has also been assessed.By reducing the need of using complex wiring setups, and

  20. An improved method of crafting a multi-electrode spiral cuff for the selective.

    PubMed

    Rozman, Janez; Pečlin, Polona; Ribarič, Samo; Godec, Matjaž; Burja, Jaka

    2018-01-17

    This article reviews an improved methodology and technology for crafting a multi-electrode spiral cuff for the selective activation of nerve fibres in particular superficial regions of a peripheral nerve. The analysis, structural and mechanical properties of the spot welds used for the interconnections between the stimulating electrodes and stainless-steel lead wires are presented. The cuff consisted of 33 platinum electrodes embedded within a self-curling 17-mm-long silicone spiral sheet with a nominal internal diameter of 2.5 mm. The weld was analyzed using scanning electron microscopy and nanohardness tests, while the interconnection was investigated using destructive load tests. The functionality of the cuff was tested in an isolated porcine vagus nerve. The results of the scanning electron microscopy show good alloying and none of the typical welding defects that occur between the wire and the platinum foil. The results of the destructive load tests show that the breaking loads were between 3.22 and 5 N. The results of the nanohardness testing show that the hardness of the weld was different for the particular sites on the weld sample. Finally, the results of the functional testing show that for different stimulation intensities both the compound action potential deflection and the shape are modulated.

  1. Intravascular Neural Interface with Nanowire Electrode

    PubMed Central

    Watanabe, Hirobumi; Takahashi, Hirokazu; Nakao, Masayuki; Walton, Kerry; Llinás, Rodolfo R.

    2010-01-01

    Summary A minimally invasive electrical recording and stimulating technique capable of simultaneously monitoring the activity of a significant number (e.g., 103 to 104) of neurons is an absolute prerequisite in developing an effective brain–machine interface. Although there are many excellent methodologies for recording single or multiple neurons, there has been no methodology for accessing large numbers of cells in a behaving experimental animal or human individual. Brain vascular parenchyma is a promising candidate for addressing this problem. It has been proposed [1, 2] that a multitude of nanowire electrodes introduced into the central nervous system through the vascular system to address any brain area may be a possible solution. In this study we implement a design for such microcatheter for ex vivo experiments. Using Wollaston platinum wire, we design a submicron-scale electrode and develop a fabrication method. We then evaluate the mechanical properties of the electrode in a flow when passing through the intricacies of the capillary bed in ex vivo Xenopus laevis experiments. Furthermore, we demonstrate the feasibility of intravascular recording in the spinal cord of Xenopus laevis. PMID:21572940

  2. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    PubMed

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  3. Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates

    NASA Astrophysics Data System (ADS)

    Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.

    2012-05-01

    This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.

  4. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    PubMed

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  5. Molecular Spintronics: Theory of Spin-Dependent Electron Transport in Fe/BDT/Fe Molecular Wire Systems

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hugh; Kirczenow, George

    2004-03-01

    Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).

  6. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  7. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  8. Nanoscale Decoration of Electrode Surfaces with an STM

    DTIC Science & Technology

    1999-05-30

    covered gold electrode surfaces at predetermined positions. First, metal is deposited electrochemically onto the STM tip, then the clusters are formed by a...onto the tip, the jump-to-contact occurs in the opposite direction leaving holes in the gold surface. The stability of the metal clusters against anodic...deposition, clusters, a surprisingly high stability of the small Ag Hg/HgSO4 for Ag deposition and a Pt wire for Ni clusters on gold against anodic

  9. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  10. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D.; Shafer, D.; Efimov, S.

    2012-10-15

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  11. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    PubMed

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  12. Recording electrocardiograms using 3-limb lead cables instead of the standard 4: a modification to minimize incorrect electrode placements.

    PubMed

    Soliman, Elsayed Z

    2008-01-01

    The similarity between and the number of limb lead cables play an important role in the frequency of incorrect connection of limb electrodes. Hence, a modified electrocardiogram (ECG) acquisition procedure is proposed in this brief communication, whereby the left-leg (LL) and right-leg (RL) electrode cables are combined into 1 cable, referred to as combined LL/RL cable. The electrode wires in the combined LL/RL cable are connected to 2 electrodes placed on both sides of the LL. The combined LL/RL cable is unique enough (being thicker) not to be mistaken with the upper limb electrode cables. The proposed modification will not in any way influence the ECG waveforms or amplitudes, and it can be expected to substantially reduce incorrect limb electrode placements.

  13. Complaint liquid metal electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Finkenauer, Lauren R.; Majidi, Carmel

    2014-03-01

    This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.

  14. Hyperthermia with implanted electrodes: in vitro and in vivo correlations.

    PubMed

    Lilly, M B; Brezovich, I A; Atkinson, W; Chakraborty, D; Durant, J R; Ingram, J; McElvein, R B

    1983-03-01

    Hyperthermia as a treatment for cancer has elicited much recent interest. However, major difficulties persist both in the technology for heating deep-seated tumors, and in thermal dosimetry. We have investigated a heating technique for deep-seated neoplasms that employs an internal implanted electrode and an external electrode to apply radiofrequency current to a tumor mass. The internal electrode consists of an array of stainless steel needles or wires which define a Faraday cage within the tumor, while the external electrode consists of a variety of electrical conductors at the skin surface. Phantom measurements have closely reproduced calculated temperature distributions. The temperature profiles within the volume enclosed by the internal electrode show relatively homogenous heating. Temperature measurements in a rat tumor model have demonstrated that significant heating within such an internal electrode array is easily obtained. The heating may extend some centimeters outside the electrode. Using a dog model we have shown that with such a treatment technique the temperature profiles obtained are reproducible both spatially and temporally. A case report of a clinical application is presented. A 5 cm bronchogenic carcinoma was easily heated without significant heating of the surrounding normal lung, and without apparent toxicity. Such a technique may be applicable to a variety of operable but unresectable neoplasms. The reproducibility and relative homogeneity of heating suggest possible usefulness in combined modality trials.

  15. In-situ synthesis of 3D GA on titanium wire as a binder- free electrode for electro-Fenton removing of EDTA-Ni.

    PubMed

    Wen, Shulong; Niu, Zhuyu; Zhang, Zhen; Li, Lianghao; Chen, Yuancai

    2018-01-05

    Ethylenediaminetetraacetic acid (EDTA) could form stable complexes with toxic metals such as nickel due to its strong chelation. The three-dimensional (3D) macroporous graphene aerogels (GA), which was in-situ assembled by reduced graphene oxide (rGO) sheets on titanium wire as binder-free electrode, was presented as cathode for the degradation of EDTA-Ni in Electro-Fenton process. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and Brunauer-Emmett-Teller (BET) results indicated 3D GA formed three dimensional architecture with large and homogenous macropore structure and surface area. Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Rotating Ring-disk Electrode (RRDE) results showed that the 3D GA cathode at pH 3 displayed the highest current density and electrochemical active surface area (ECSA), and better two-electron selectivity for ORR than other pH value, confirming the 3D-GA cathode at pH 3 has the highest electrocatalytic activity and generates more H 2 O 2 . The factors such as pH, applied current density, concentration of Fe 2+ , Na 2 SO 4, and aeration rates of air were also investigated. Under the optimum conditions, 73.5% of EDTA-Ni was degraded after reaction for 2h. Mechanism analysis indicated that the production of OH on the 3D GA cathode played an important role in the removal of EDTA-Ni in the 3D GA-EF process, where the direct regeneration of Fe 2+ on the cathode would greatly reduce the consumption of H 2 O 2 . Therefore, it is of great promise for 3D-GA catalyst to be developed as highly efficient, cost-effective and durable cathode for the removal of EDTA-Ni. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electric-field-induced magnetic domain writing in a Co wire

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  17. Strategies to improve electrode positioning and safety in cochlear implants.

    PubMed

    Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M

    1999-03-01

    An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.

  18. Determination of the position of nucleus cochlear implant electrodes in the inner ear.

    PubMed

    Skinner, M W; Ketten, D R; Vannier, M W; Gates, G A; Yoffie, R L; Kalender, W A

    1994-09-01

    Accurate determination of intracochlear electrode position in patients with cochlear implants could provide a basis for detecting migration of the implant and could aid in the selection of stimulation parameters for sound processor programming. New computer algorithms for submillimeter resolution and 3-D reconstruction from spiral computed tomographic (CT) scans now make it possible to accurately determine the position of implanted electrodes within the cochlear canal. The accuracy of these algorithms was tested using an electrode array placed in a phantom model. Measurements of electrode length and interelectrode distance from spiral CT scan reconstructions were in close agreement with those from stereo microscopy. Although apparent electrode width was increased on CT scans due to partial volume averaging, a correction factor was developed for measurements from conventional radiographs and an expanded CT absorption value scale added to detect the presence of platinum electrodes and wires. The length of the cochlear canal was calculated from preoperative spiral CT scans for one patient, and the length of insertion of the electrode array was calculated from her postoperative spiral CT scans. The cross-sectional position of electrodes in relation to the outer bony wall and modiolus was measured and plotted as a function of distance with the electrode width correction applied.

  19. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less

  20. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  1. Neuro-Prosthetic Implants With Adjustable Electrode Arrays

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; DelCastillo, Linda Y.; Mojarradi, Mohammad; Johnson, Travis; West, William; Andersen, Richard

    2006-01-01

    Brushlike arrays of electrodes packaged with application-specific integrated circuits (ASICs) are undergoing development for use as electronic implants especially as neuro-prosthetic devices that might be implanted in brains to detect weak electrical signals generated by neurons. These implants partly resemble the ones reported in Integrated Electrode Arrays for Neuro-Prosthetic Implants (NPO-21198), NASA Tech Briefs, Vol. 27, No. 2 (February 2003), page 48. The basic idea underlying both the present and previously reported implants is that the electrodes would pick up signals from neurons and the ASICs would amplify and otherwise preprocess the signals for monitoring by external equipment. The figure presents a simplified and partly schematic view of an implant according to the present concept. Whereas the electrodes in an implant according to the previously reported concept would be microscopic wires, the electrodes according to the present concept are in the form of microscopic needles. An even more important difference would be that, unlike the previously reported concept, the present concept calls for the inclusion of microelectromechanical actuators for adjusting the depth of penetration of the electrodes into brain tissue. The prototype implant now under construction includes an array of 100 electrodes and corresponding array of electrode contact pads formed on opposite faces of a plate fabricated by techniques that are established in the art of microelectromechanical systems (MEMS). A mixed-signal ASIC under construction at the time of reporting the information for this article will include 100 analog amplifier channels (one amplifier per electrode). On one face of the mixed-signal ASIC there will be a solder-bump/micro-pad array that will have the same pitch as that of the electrode array, and that will be used to make the electrical and mechanical connections between the electrode array and the ASIC. Once the electrode array and the ASIC are soldered

  2. Neurotrophic Electrode: Method of assembly and implantation into human motor speech cortex

    PubMed Central

    Bartels, Jess; Andreasen, Dinal; Ehirim, Princewill; Mao, Hui; Seibert, Steven; Wright, E Joe; Kennedy, Philip

    2008-01-01

    The Neurotrophic Electrode (NE) is designed for longevity and stability of recorded signals. To achieve this aim it induces neurites to grow through its glass tip, thus anchoring it in neuropil. The glass tip contains insulated gold wires for recording the activity of the myelinated neurites that grow into the tip. Neural signals inside the tip are electrically insulated from surrounding neural activity by the glass. The most recent version of the electrode has four wires inside its tip to maximize the number of discriminable signals recorded from ingrown neurites, and has a miniature connector. Flexible coiled, insulated gold wires connect to electronics on the skull that remain subcutaneous. The implanted electronics consist of differential amplifiers, FM transmitters, and a sine wave at power up for tuning and calibration. Inclusion criteria for selecting locked-in subjects include medical stability, normal cognition, and strong caregiver support. The implant target is localized via an fMRI-naming task. Final localization at surgery is achieved by 3D stereotaxic localization. During recording, implanted electronics are powered by magnetic induction across an air gap. Coiled antennas placed on the scalp over the implanted transmitters receive the amplified FM transmitter outputs. Data is processed as described elsewhere where stability and longevity issues are addressed. Five subjects have been successfully implanted with the NE. Recorded signals persisted for over four years in two subjects who died from underlying illnesses, and continue for over three years in our present subject. PMID:18672003

  3. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    PubMed

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  4. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    PubMed Central

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them. PMID:26697148

  5. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  6. Synthesis of a fine neurological electrode by plasma polymerization processing.

    PubMed

    Cannon, J G; Dillon, R O; Bunshah, R F; Crandall, P H; Dymond, A M

    1980-05-01

    This research is part of a continuing program for the development of a coaxial depth electrode for research and diagnostic studies of neurological diseases. The requirements for this electrode include (1) strength and resistance to buckling sufficient to ensure self-forced penetration of brain tissue to a depth of 6 cm; (2) biocompatibility of the materials employed; (3) resistance to brittle fracture; and (4) a total diameter of less than 200 micrometer to minimize tissue damage. Earlier synthesis efforts using chemical vapor deposition techniques have been successful, although the process yield was 40% and an outer insulating layer had yet to be deposited. Plasma polymerization processes have been employed to realize an increase in the yield and provide an outer insulating layer. The starting material is W-26 at.% Re wire, nominally 125 micrometer in diameter. Hexamethyldisilazane(CH3)3SiNHSi(CH3)3 is used to deposit the insulating layers. The paper describes factors influencing the choice of materials, deposition techniques, and properties of electrodes.

  7. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.

    PubMed

    Ma, Yanwen; Li, Pan; Sedloff, Jennifer W; Zhang, Xiao; Zhang, Hongbo; Liu, Jie

    2015-02-24

    Graphene fibers are a promising electrode material for wire-shaped supercapacitors (WSSs) that can be woven into textiles for future wearable electronics. However, the main concern is their high linear resistance, which could be effectively decreased by the addition of highly conductive carbon nanotubes (CNTs). During the incorporation process, CNTs are typically preoxidized by acids or dispersed by surfactants, which deteriorates their electrical and mechanical properties. Herein, unfunctionalized few-walled carbon nanotubes (FWNTs) were directly dispersed in graphene oxide (GO) without preoxidation or surfactants, allowing them to maintain their high conductivity and perfect structure, and then used to prepare CNT-reduced GO (RGO) composite fibers by wet-spinning followed by reduction. The pristine FWNTs increased the stress strength of the parent RGO fibers from 193.3 to 385.7 MPa and conductivity from 53.3 to 210.7 S cm(-1). The wire-shaped supercapacitors (WSSs) assembled based on these CNT-RGO fibers presented a high volumetric capacitance of 38.8 F cm(-3) and energy density of 3.4 mWh cm(-3). More importantly, the performance of WSSs was revealed to decrease with increasing length due to increased resistance, revealing a key issue for graphene-based electrodes in WSSs.

  8. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  9. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  10. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  11. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. pH-triggered conduction of amine-functionalized single ZnO wire integrated on a customized nanogap electronic platform

    PubMed Central

    2014-01-01

    The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615

  14. Application of polymer sensitive MRI sequence to localization of EEG electrodes.

    PubMed

    Butler, Russell; Gilbert, Guillaume; Descoteaux, Maxime; Bernier, Pierre-Michel; Whittingstall, Kevin

    2017-02-15

    The growing popularity of simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) opens up the possibility of imaging EEG electrodes while the subject is in the scanner. Such information could be useful for improving the fusion of EEG-fMRI datasets. Here, we report for the first time how an ultra-short echo time (UTE) MR sequence can image the materials of an MR-compatible EEG cap, finding that electrodes and some parts of the wiring are visible in a high resolution UTE. Using these images, we developed a segmentation procedure to obtain electrode coordinates based on voxel intensity from the raw UTE, using hand labeled coordinates as the starting point. We were able to visualize and segment 95% of EEG electrodes using a short (3.5min) UTE sequence. We provide scripts and template images so this approach can now be easily implemented to obtain precise, subject-specific EEG electrode positions while adding minimal acquisition time to the simultaneous EEG-fMRI protocol. T1 gel artifacts are not robust enough to localize all electrodes across subjects, the polymers composing Brainvision cap electrodes are not visible on a T1, and adding T1 visible materials to the EEG cap is not always possible. We therefore consider our method superior to existing methods for obtaining electrode positions in the scanner, as it is hardware free and should work on a wide range of materials (caps). EEG electrode positions are obtained with high precision and no additional hardware. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  16. Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-12-01

    Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.

  17. GPS antenna designs

    NASA Technical Reports Server (NTRS)

    Laube, Samuel J. P.

    1987-01-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  18. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  19. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  20. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  1. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  2. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  3. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes.

    PubMed

    Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa

    2011-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.

  5. Wire-guided sphincterotomy.

    PubMed

    Sherman, S; Uzer, M F; Lehman, G A

    1994-12-01

    Guidewire-assisted techniques have acquired an important role in endoscopic interventions in the pancreaticobiliary tree. The wire-guided sphincterotome allows the endoscopist to maintain direct access to the biliary tree before or after the sphincterotomy. It has the additional advantages of allowing for more expeditious placement of accessories and being useful in combined percutaneous-endoscopic procedures. There are two basic designs of wire-guided sphincterotomes. The single-channel model has a single lumen for both the cutting wire and guidewire and requires guidewire removal before the application of power. The double-channel model has two separate lumens for the guidewire and stainless steel cutting wire. In vitro data suggest that significant capacitive coupling currents (or short circuits) may occur on the standard Teflon-coated guidewire when used with a double lumen sphincterotome, resulting in electrosurgical burns. Thus, the manufacturers of the double-lumen models recommend removing the Teflon-coated wire before performing sphincterotomy. Although limited data in humans have been published, it appears that wire-guided sphincterotomy and standard sphincterotomy have similar complication rates. More safety information in humans is awaited.

  6. U.S. Navy Wire-Rope Handbook. Volume 2. Wire-Rope Analysis and Design Data

    DTIC Science & Technology

    1976-01-01

    beneficial from the standpoint of wire - bending stress. How- ever, there is a design trade-off here in that the smaller L/d becomes, the lower are the...wires of a rope, it is first necessary to determine the radii of curvature of the wires prior to and after bending the rope. The wire - bending stress can... wire bending stress. 4.3. CONTACT STRESSES Contact stresses in a wire rope are one of the most important determinants of its fatigue life and are, by far

  7. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  8. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  9. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    PubMed

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kirschner wire bending.

    PubMed

    Firoozabadi, Reza; Kramer, Patricia A; Benirschke, Stephen K

    2013-11-01

    Although Kirschner wires are useful implants in many situations, migration of the wire and irritation of the surrounding soft tissues are common complications. Seven steps are described herein, which result in a Kirschner wire that is bent 180° angle, providing a smooth anchor into bone. Use of this technique produces implants that provide stable fixation with few soft tissue complications.

  11. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  12. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  13. Reliability Criteria for Thick Bonding Wire.

    PubMed

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  14. Reliability Criteria for Thick Bonding Wire

    PubMed Central

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  15. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  16. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  17. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher, J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. An Multi-Channel Micro-Electrode Analyzer' (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position

  18. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher and J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. A Multi-Channel Micro-Electrode Analyzer (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position

  19. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  20. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  1. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  2. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    PubMed

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  3. Impact tensile testing of wires

    NASA Technical Reports Server (NTRS)

    Dawson, T. H.

    1976-01-01

    The test consists of fixing one end of a wire specimen and allowing a threaded falling weight to strike the other. Assuming the dynamic stress in the wire to be a function only of its strain, energy considerations show for negligible wire inertia effects that the governing dynamic stress-strain law can be determined directly from impact energy vs. wire elongation data. Theoretical calculations are presented which show negligible wire inertia effects for ratios of wire mass to striking mass of the order of .01 or less. The test method is applied to soft copper wires and the dynamic stress-strain curve so determined is found to be about 30 percent higher than the corresponding static curve.

  4. Integration of gold-sputtered electrofluidic paper on wire-included analytical platforms for glucose biosensing.

    PubMed

    Núnez-Bajo, Estefanía; Carmen Blanco-López, M; Costa-García, Agustín; Teresa Fernández-Abedul, M

    2017-05-15

    This work describes the fabrication and evaluation of an electroanalytical paper-based platform based on the combination of both, reusable and disposable materials in order to generate simple, versatile and low-cost microfluidic devices. With this aim, a holder containing metal wires that act as reusable reference and counter electrodes has been developed. The gold-sputtered paper electrode is disposable and easily interchangeable, meanwhile the platform that includes reference and counter electrodes can be reused. The detection zone in the paper is delimited by drawing a hydrophobic line with an inexpensive permanent marker. The effect of experimental variables such as adding solutions through the face where the gold was sputtered (upwards) or through the opposite one (downwards) as well as of other working parameters were studied by cyclic and differential pulse voltammetry with potassium ferrocyanide as a common redox probe and indicator species for enzymatic, immune and DNA biosensing. Enzymatic determination of glucose in real food samples prove the feasibility of the developed system for the construction of electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparative range of orthodontic wires.

    PubMed

    Ingram, S B; Gipe, D P; Smith, R J

    1986-10-01

    ADA specification No. 32 for determining the range (elastic limit) of orthodontic wires uses the bending of a wire section treated as a cantilever beam. An alternative method for defining the range of orthodontic wires proposed by Waters (1981) is to wrap wire sections around mandrels of varying diameters and measure the deformation imparted after unwrapping. Four brass mandrels with a total of 46 test diameters ranging from 3.5 to 60.0 mm were used in this study. Wire sections 9 cm in length were rolled on the mandrel with a hand lathe. The mandrel cross section required to produce a predetermined amount of deformation (2 mm arc height for a 5 cm chord) was defined as the yield diameter for that particular wire. No individual wire was tested twice so as to avoid introduction of strain history. Test samples of 488 different orthodontic wires supplied by nine commercial distributors were evaluated (a total of 4,747 samples). Stainless steel wires of identical dimensions had a large variation in range, depending on the state of strain hardening and heat treatment. For example, 0.020 inch round wire had yield diameters ranging from 22.8 mm for Australian special plus orange (TP Laboratories) to 42.9 mm for Nubryte gold (G.A.C. International). Chromium cobalt wires had less range than stainless steel before heat treatment, but increased greatly in range after heat treatment. Nitinol (Unitek) had the greatest range of all wires tested (yield diameter of 8.7 mm for 0.016 inch Nitinol). Multistranded stainless steel wires had yield diameters between 9.0 and 14.0 mm.

  6. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  7. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  8. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  9. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  10. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  11. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  12. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  13. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    PubMed Central

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  14. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  15. Ultrasoft microwire neural electrodes improve chronic tissue integration

    PubMed Central

    Du, Zhanhong Jeff; Kolarcik, Christi L.; Kozai, Takashi D.Y.; Luebben, Silvia D.; Sapp, Shawn A.; Zheng, Xin Sally; Nabity, James A.; Cui, X. Tracy

    2017-01-01

    Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8 weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. PMID:28185910

  16. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  17. Weld Wire Investigation Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  18. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  19. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  20. Superconducting wire manufactured

    NASA Astrophysics Data System (ADS)

    Fu, Yuexian; Sun, Yue; Xu, Shiming; Peng, Ying

    1985-10-01

    The MF Nb/Cu Extrusion Tube Method was used to manufacture 3 kg of stable practical MF Nb2Sn composite superconducting wire containing pure Cu(RRR approx. 200)/Ta. The draw state composite wire diameter was 0.56 mm, it contained 11,448 x 2.6 micron Nb core, and the twist distance was 1.5 cm. The composite wire cross-section was pure Cu/Ta/11,448 Nb core/Cu/ 91Sn-Cu; containing 22.8 v. % pure Cu, 13.3 v. % Ta; within the Ta layer to prevent Sn diffusion. The wire was sheathed in nonalkaline glass fiber as an insulating layer. A section of wire weighing 160 g was cut off and coiled it into a small solenoid. After reaction diffusion processing at 675 C/30 and curing by vacuum dipping in paraffin, it was measured in a Nb-Ti backfield of 7.2 T intensity, a current of 129 A was passed through the Nb3Sn solenoid and produced a strength of 2.5 T, the overall magnetic field intensity of the composite magnet reached 9.7 T. At this time, the wire full current density J sub c.w. = 5.2 x 10 to the 4th power A/sq cm; the effective current density J sub c (Nb + Sn - Cu) = 8.2 x 10 to the 4th power A/sq cm.

  1. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications.

    PubMed

    Nithiyanantham, U; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-07-21

    A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.

  2. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet.

    PubMed

    Yoshiki, Hiroyuki

    2007-04-01

    Atmospheric-pressure microplasma jets (APmicroPJs) of Ar and ArO(2) gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APmicroPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 microm) of a copper winding wire of 90 microm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APmicroPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of ArO(2) APmicroPJ irradiation with an O(2) concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.

  3. Automated detection and labeling of high-density EEG electrodes from structural MR images.

    PubMed

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high

  4. Automated detection and labeling of high-density EEG electrodes from structural MR images

    NASA Astrophysics Data System (ADS)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work

  5. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines

    NASA Astrophysics Data System (ADS)

    Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun

    2017-04-01

    Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus <100 MPa, yield strain ˜9%, and can retain conductivity up to 300% strain. In addition, under stress controlled cyclic loading/unloading conditions, the resistance of these wires is only about 1.3 times the initial value after the 100th repeat cycle (7.6% maximum strain in the first cycle). Silver wires cured at 120 °C for 10-20 min are more sensitive to strain and have a yield strain of around 6%. These properties indicate that the silver ink can be used to fabricate stretchable electrodes and flex sensors. Using the DIW fabrication method, we printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.

  6. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  7. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  8. Preparation of etched tantalum semimicro capacitor stimulation electrodes.

    PubMed

    Robblee, L S; Kelliher, E M; Langmuir, M E; Vartanian, H; McHardy, J

    1983-03-01

    The ideal electrode for stimulation of the nervous system is one that will inject charge by purely capacitive processes. One approach is to exploit the type of metal-oxide combination used in electrolytic capacitors, e.g., Ta/Ta2O5. For this purpose, fine tantalum wire (0.25 mm diam) was etched electrolytically at constant current in a methanol solution of NH4Br containing 1.5 wt % H2O. Electrolytic etching produced a conical tip with a length of ca. 0.5 mm and shaft diameters ranging from 0.10 to 0.16 mm. The etched electrodes were anodized to 10 V (vs. SCE) in 0.1 vol % H3PO4. The capacitance values normalized to geometric area of etched electrodes ranged from 0.13 to 0.33 micro F mm-2. Comparison of these values to the capacitance of "smooth" tantalum anodized to 10 V (0.011 micro F mm-2) indicated that the degree of surface enhancement, or etch ratio, was 12-30. The surface roughness was confirmed by scanning electron microscopy studies which revealed an intricate array of irregularly shaped surface projections about 1-2 micrometers wide. The etched electrodes were capable of delivering 0.06-0.1 micro C of charge with 0.1 ms pulses at a pulse repetition rate of 400 Hz when operated at 50% of the anodization voltage. This quantity of charge corresponded to volumetric charge densities of 20-30 micro C mm-3 and area charge densities of 0.55-0.88 micro C mm-2. Charge storage was proportionately higher at higher fractional values of the formation voltage. Leakage currents at 5 V were ca. 2 nA. Neither long-term passive storage (1500 h) nor extended pulsing time (18 h) had a deleterious effect on electrode performance. The trend in electrical stimulation work is toward smaller electrodes. The procedures developed in this study should be particularly well-suited to the fabrication of even smaller electrodes because of the favorable electrical and geometric characteristics of the etched surface.

  9. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    PubMed

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  10. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    PubMed Central

    Higginson, R. L.; Tyrer, J. R.

    2016-01-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550

  11. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    NASA Astrophysics Data System (ADS)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  12. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    PubMed

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hydrogen in Mono-Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu

    2004-03-01

    Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.

  14. 1 mil gold bond wire study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, themore » gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.« less

  15. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Treesearch

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  16. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  17. Influence of bolt tightening torque, wire size, and component reuse on wire fixation in circular external fixation.

    PubMed

    Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C

    2002-01-01

    To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons

  18. Electric field-induced reversible trapping of microtubules along metallic glass microwire electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Kyongwan; Sikora, Aurélien; Nakayama, Koji S.; Umetsu, Mitsuo; Hwang, Wonmuk; Teizer, Winfried

    2015-04-01

    Microtubules are among bio-polymers providing vital functions in dynamic cellular processes. Artificial organization of these bio-polymers is a requirement for transferring their native functions into device applications. Using electrophoresis, we achieve an accumulation of microtubules along a metallic glass (Pd42.5Cu30Ni7.5P20) microwire in solution. According to an estimate based on migration velocities of microtubules approaching the wire, the electrophoretic mobility of microtubules is around 10-12 m2/Vs. This value is four orders of magnitude smaller than the typical mobility reported previously. Fluorescence microscopy at the individual-microtubule level shows microtubules aligning along the wire axis during the electric field-induced migration. Casein-treated electrodes are effective to reversibly release trapped microtubules upon removal of the external field. An additional result is the condensation of secondary filamentous structures from oriented microtubules.

  19. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  20. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  1. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  2. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  3. Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes

    NASA Astrophysics Data System (ADS)

    Efrati, Ariel; Lu, Chun-Hua; Michaeli, Dorit; Nechushtai, Rachel; Alsaoub, Sabine; Schuhmann, Wolfgang; Willner, Itamar

    2016-02-01

    The design of photo-bioelectrochemical cells based on native photosynthetic reaction centres is attracting substantial recent interest as a means for the conversion of solar light energy into electrical power. In the natural photosynthetic apparatus, the photosynthetic reaction centres are coupled to biocatalytic transformations leading to CO2 fixation and O2 evolution. Although significant progress in the integration of native photosystems with electrodes for light-to-electrical energy conversion has been achieved, the conjugation of the photosystems to enzymes to yield photo-bioelectrocatalytic solar cells remains a challenge. Here we demonstrate the assembly of integrated photosystem I/glucose oxidase or glucose dehydrogenase photo-bioelectrochemical electrodes. We highlight the photonic wiring of the biocatalysts by means of photosystem I using glucose as fuel. Our results provide a general approach to assemble photo-bioelectrochemical solar cells with wide implications for solar energy conversion, bioelectrocatalysis and sensing.

  4. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  5. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  6. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  7. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    PubMed

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  8. Cavitation during wire brushing

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zou, Jun; Ji, Chen

    2016-11-01

    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  9. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  10. [Separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella].

    PubMed

    Zhang, J; Jiang, X Y; Huang, X W

    2016-06-18

    To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and

  11. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  12. Self-Catalyzed CdTe Wires.

    PubMed

    Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D

    2018-04-25

    CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  13. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  14. Moving Large Wiring-Harness Boards

    NASA Technical Reports Server (NTRS)

    Shepherd, Samuel D.; Gurman, Isaac

    1990-01-01

    Carrier for wiring-harness fabrication boards enables lone operator to move board easily and safely. Holds harness while operator fabricating, while being stored, and being transported to equipment frame for mounting. When positioned for assembly of wiring harness, board and carrier give operator easy and convenient access to wires and cables, when positioned for transfer of wiring harness to or from storage area, carrier holds board securely while moved by one person.

  15. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  16. First-principles study of the variation of electron transport in a single molecular junction with the length of the molecular wire

    NASA Astrophysics Data System (ADS)

    Pal, Partha Pratim; Pati, Ranjit

    2010-07-01

    We report a first-principles study of quantum transport in a prototype two-terminal device consisting of a molecular nanowire acting as an inter-connect between two gold electrodes. The wire is composed of a series of bicyclo[1.1.1]pentane (BCP) cage-units. The length of the wire (L) is increased by sequentially increasing the number of BCP cage units in the wire from 1 to 3. A two terminal model device is made out of each of the three wires. A parameter free, nonequilibrium Green’s function approach, in which the bias effect is explicitly included within a many body framework, is used to calculate the current-voltage characteristics of each of the devices. In the low bias regime that is considered in our study, the molecular devices are found to exhibit Ohmic behavior with resistances of 0.12, 1.4, and 6.5μΩ for the wires containing one, two, and three cages respectively. Thus the conductance value, Gc , which is the reciprocal of resistance, decreases as e-βL with a decay constant (β) of 0.59Å-1 . This observed variation of conductance with the length of the wire is in excellent agreement with the earlier reported exponential decay feature of the electron transfer rate predicted from the electron transfer coupling matrix values obtained using the two-state Marcus-Hush model and the Koopman’s theorem approximation. The downright suppression of the computed electrical current for a bias up to 0.4 V in the longest wire can be exploited in designing a three terminal molecular transistor; this molecular wire could potentially be used as a throttle to avoid leakage gate current.

  17. High strength, wire-reinforced electroformed structures

    NASA Technical Reports Server (NTRS)

    Kazaroff, J. M.; Duscha, R. A.; Mccandless, L. C.

    1974-01-01

    Using half-round reinforcing wires, electrodeposited matrix metal readily fills spaces between wires in intimate contact with wires and without voids. Procedure combines advantages of electroforming with high-strength of commonly available wire to produce non-welded shell structures for high pressure uses.

  18. Control of occupational exposure to hexavalent chromium and ozone in tubular wire arc-welding processes by replacement of potassium by lithium or by addition of zinc.

    PubMed

    Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J

    2002-01-01

    Hexavalent chromium [Cr(VI)] and ozone are produced in many arc-welding processes. Cr(VI) is formed when welding with chromium-containing alloys and is a suspected carcinogen. Ozone is formed by the action of ultraviolet light from the arc on oxygen and can cause severe irritation to the eyes and mucous membranes. Previous work has demonstrated that reduction of sodium and potassium in manual metal arc-welding electrodes leads to substantial reductions in Cr(VI) concentrations in the fume as well as a reduction in the fume formation rate. In this paper replacement of potassium by lithium in a tubular wire welding electrode (self-shielding flux-cored) is shown to give reductions in Cr(VI) concentrations and fume formation rates. Previous work has also demonstrated that use of a tubular wire (metal cored) containing 1% zinc can, under certain conditions, result in a reduction in Cr(VI) formation rate and in ozone concentration near the arc but with a rise in the total fume formation rate. The effects of different shield gases and different levels of zinc are examined. An experimental chromium-containing tubular wire with 1% zinc was used with the following shield gases: argon, Argoshield 5, Argoshield 20, Helishield 101, Ar + 2% CO2, Ar + 5% CO2, Ar + 1% O2 and Ar + 2% O2. The wire gave > 98% reduction in Cr(VI) formation rate compared to the control wire provided the shield gas contained no oxygen. When the shield gas did contain oxygen, 1% zinc enhanced Cr(VI) formation rate, resulting in more than double the rates measured when welding with the control wire. Experiments with zinc concentrations, from 0.018 to 0.9% using Helishield 101, gave results indicating that there is an optimum zinc concentration from the point of view of Cr(VI) reduction. Implications of the use of lithium or zinc on the overall exposure risk are discussed.

  19. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  20. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  1. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  2. Investigation of factors affecting the heater wire method of calibrating fine wire thermocouples

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1972-01-01

    An analytical investigation was made of a transient method of calibrating fine wire thermocouples. The system consisted of a 10 mil diameter standard thermocouple (Pt, Pt-13% Rh) and an 0.8 mil diameter chromel-alumel thermocouple attached to a 20 mil diameter electrically heated platinum wire. The calibration procedure consisted of electrically heating the wire to approximately 2500 F within about a seven-second period in an environment approximating atmospheric conditions at 120,000 feet. Rapid periodic readout of the standard and fine wire thermocouple signals permitted a comparison of the two temperature indications. An analysis was performed which indicated that the temperature distortion at the heater wire produced by the thermocouple junctions appears to be of negligible magnitude. Consequently, the calibration technique appears to be basically sound, although several practical changes which appear desirable are presented and discussed. Additional investigation is warranted to evaluate radiation effects and transient response characteristics.

  3. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    PubMed

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantitative Evaluation of Electrodes for External Urethral Sphincter Electromyography during Bladder-to-Urethral Guarding Reflex

    PubMed Central

    Steward, James E.; Clemons, Jessica D.; Zaszczurynski, Paul J.; Butler, Robert S.; Damaser, Margot S.; Jiang, Hai-Hong

    2009-01-01

    Purpose Accuracy in the recording of external urethral sphincter (EUS) electromyography (EMG) is an important goal in the quantitative evaluation of urethral function. This study aim was to quantitatively compare electrode recordings taken during tonic activity and leak point pressure (LPP) testing. Methods Several electrodes, including the surface electrode (SE), concentric electrode (CE), and wire electrode (WE), were placed on the EUS singly and simultaneously in six female Sprague-Dawley rats under urethane anesthesia. The bladder was filled via a retropubic catheter while LPP testing and EUS EMG recording were done. Quantitative baseline correction of the EUS EMG signal was performed to reduce baseline variation. Amplitude and frequency of one-second samples of the EUS EMG signal were measured before LPP (tonic activity) and during peak LPP activity. Results The SE, CE, and WE signals demonstrated tonic activity before LPP and an increase in activity during LPP, suggesting that the electrodes accurately recorded EUS activity during tonic activity and during the bladder-to-EUS guarding reflex, regardless of the size or location of detection areas. SE recordings required significantly less baseline correction than both CE and WE recordings. The activity in CE-recorded EMG was significantly higher than that of the SE and WE both in single and simultaneous recordings. Conclusions These electrodes may be suitable for testing EUS EMG activity. The SE signal had significantly less baseline variation and the CE detected local activity more sensitively than the other electrodes, which may provide insight into choosing an appropriate electrode for EUS EMG recording. PMID:19680661

  5. Towards plant wires.

    PubMed

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Twin-Axial Wire Antenna

    DTIC Science & Technology

    2015-08-06

    12 and 14 can be of differing gauges and can be either stranded or solid. In a prototype, both conductors were made from #22 solid copper wire ...08-2015 Publication Twin-Axial Wire Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L, Bldg 102T...Approved for Public Release Distribution is unlimited Attorney Docket No. 300030 1 of 10 TWIN-AXIAL WIRE ANTENNA STATEMENT OF GOVERNMENT INTEREST

  7. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions.

    PubMed

    Adam, Alexander; De Luca, Carlo J

    2003-11-01

    Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

  8. Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.

    2013-03-01

    The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.

  9. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  10. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  11. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  12. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  13. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  14. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array.

    PubMed

    Rousche, P J; Normann, R A

    1999-03-01

    In an effort to assess the safety and efficacy of focal intracortical microstimulation (ICMS) of cerebral cortex with an array of penetrating electrodes as might be applied to a neuroprosthetic device to aid the deaf or blind, we have chronically implanted three trained cats in primary auditory cortex with the 100-electrode Utah Intracortical Electrode Array (UIEA). Eleven of the 100 electrodes were hard-wired to a percutaneous connector for chronic access. Prior to implant, cats were trained to "lever-press" in response to pure tone auditory stimulation. After implant, this behavior was transferred to "lever-presses" in response to current injections via single electrodes of the implanted arrays. Psychometric function curves relating injected charge level to the probability of response were obtained for stimulation of 22 separate electrodes in the three implanted cats. The average threshold charge/phase required for electrical stimulus detection in each cat was, 8.5, 8.6, and 11.6 nC/phase respectively, with a maximum charge/phase of 26 nC/phase and a minimum of 1.5 nC/phase thresholds were tracked for varying time intervals, and seven electrodes from two cats were tracked for up to 100 days. Electrodes were stimulated for no more than a few minutes each day. Neural recordings taken from the same electrodes before and after multiple electrical stimulation sessions were very similar in signal/noise ratio and in the number of recordable units, suggesting that the range of electrical stimulation levels used did not damage neurons in the vicinity of the electrodes. Although a few early implants failed, we conclude that ICMS of cerebral cortex to evoke a behavioral response can be achieved with the penetrating UIEA. Further experiments in support of a sensory cortical prosthesis based on ICMS are warranted.

  15. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Nithiyanantham, U.; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-06-01

    A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are

  16. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    PubMed

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  17. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  18. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  19. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  20. On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Alexandre A.; Pinheiro, Mario J.

    In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.

  1. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.

  2. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    PubMed

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  3. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes

    NASA Astrophysics Data System (ADS)

    Pena, A. E.; Kuntaegowdanahalli, S. S.; Abbas, J. J.; Patrick, J.; Horch, K. W.; Jung, R.

    2017-12-01

    Objective. A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Approach. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Main results. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. Significance. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in

  4. Generation of electrochemiluminescence at bipolar electrodes: concepts and applications.

    PubMed

    Bouffier, Laurent; Arbault, Stéphane; Kuhn, Alexander; Sojic, Neso

    2016-10-01

    Bipolar electrochemistry (BPE) is an unconventional technique where a conducting object is addressed electrochemically in an electrolyte without any wire connection with an external power supply. BPE has been known for decades but remained limited to only a couple of niche applications. However, it is now undergoing a true renewal of interest especially in the context of analytical chemistry. The bipolar electrode exhibits two distinct poles of opposite polarization with respect to the solution. This allows one to separate the localization of sensing elements versus reporting ones. Also, arrays of bipolar microelectrodes can be addressed simultaneously to perform parallel analyses. Among several reporting strategies, the combination of BPE with electro-chemiluminescence (ECL) is the most frequent choice owing to the very simple visual readout provided by ECL. This article reviews the field from the initial reports to the most recent ones, revealing numerous opportunities including novel analytical strategies for the detection of small molecular analytes and biorelevant molecules such as DNA, RNA, peptides, or other biomarkers. Graphical Abstract Principle of electrochemiluminescence generation at one extremity of a bipolar electrode.

  5. Nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    NASA Technical Reports Server (NTRS)

    Wang, Zhong L. (Inventor); Zhou, Jun (Inventor); Wang, Xudong (Inventor); He, Jr-Hau (Inventor); Song, Jinhui (Inventor)

    2011-01-01

    A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.

  6. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.

    PubMed

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-02-07

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency.

  7. Electromagnetic scattering by a straight thin wire

    NASA Technical Reports Server (NTRS)

    Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.

    1989-01-01

    The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.

  8. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  9. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  10. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  11. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    PubMed

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  12. Wire metamaterials: physics and applications.

    PubMed

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  14. Magnet-wire wrapping tool for integrated circuits

    NASA Technical Reports Server (NTRS)

    Takahashi, T. H.

    1972-01-01

    Wire-dispensing tool which resembles mechanical pencil is used to wrap magnet wire around integrated circuit terminals uniformly and securely without damaging insulative coating on wire. Tool is hand-held and easily manipulated to execute wire wrapping movements.

  15. Method and apparatus for laying wire arrays

    DOEpatents

    Horowitz, Seymour M.; Nesbitt, Dale D.

    1986-01-01

    Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.

  16. RCS of resonant scatterers with attached wires

    NASA Astrophysics Data System (ADS)

    Trueman, C. W.; Mishra, S. R.; Kubina, S. J.; Larose, C. L.

    1993-03-01

    Some aircraft carry wire antennas for HF communication. This paper investigates the effect of such wires on the radar cross section (RCS) at HF frequencies by comparing the RCS of a strip, a cylinder, and a rod with and without an attached wire. The RCS is found for broadside incidence and for end-on incidence of the plane wave for scatterer lengths from 0.4 to 3.8 wavelengths, typical of aircraft size at HF frequencies. It is shown that the RCS of such fuselage-like targets with a wire 'antenna' is quite different from that of the targets without the wire. For broadside incidence, the wire contributes a sharp peak-and-trough to the RCS at the wire's fundamental resonant frequency. For end-on incidence the wire considerably enhances the RCS at frequencies making its length odd multiples of the quarter-wave.

  17. Lingual straight wire method.

    PubMed

    Takemoto, Kyoto; Scuzzo, Giuseppe; Lombardo, L U C A; Takemoto, Y U I

    2009-12-01

    The mushroom arch-wire is mainly used in lingual orthodontic treatment but the complicated wire bending it requires affects both the treatment results and the time spent at the chair. The author proposes a new lingual straight wire method (LSW) in order to facilitate arch coordination and simplify the mechanics. The attention paid to the set-up model and bracket positioning and bonding plus the use of the new LSW method will also improve patient comfort. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.

  18. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron

  19. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit. ...

  20. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit. ...

  1. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  2. Shape-Memory Wires Switch Rotary Actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J.

    1992-01-01

    Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.

  3. Ultrasoft microwire neural electrodes improve chronic tissue integration.

    PubMed

    Du, Zhanhong Jeff; Kolarcik, Christi L; Kozai, Takashi D Y; Luebben, Silvia D; Sapp, Shawn A; Zheng, Xin Sally; Nabity, James A; Cui, X Tracy

    2017-04-15

    Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Young's modulus lower than 1MPa, closely mimicking the brain

  4. 47 CFR 32.2321 - Customer premises wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  5. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    PubMed

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  6. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    NASA Astrophysics Data System (ADS)

    Ereifej, Evon S.

    grown on PMMA resembled closely to that of cells grown on the control surface, thus confirming the biocompatibility of PMMA. Additionally, the astrocyte GFAP gene expressions of cells grown on PMMA were lower than the control, signifying a lack of astrocyte reactivity. Based on the findings from the biomaterials study, it was decided to optimize PMMA by changing the surface characteristic of the material. Through the process of hot embossing, nanopatterns were placed on the surface in order to test the hypothesis that nanopatterning can improve the cellular response to the material. Results of this study agreed with current literature showing that topography effects protein and cell behavior. It was concluded that for the use in neural electrode fabrication and design, the 3600mm/gratings pattern feature sizes were optimal. The 3600 mm/gratings pattern depicted cell alignment along the nanopattern, less protein adsorption, less cell adhesion, proliferation and viability, inhibition of GFAP and MAP2k1 compared to all other substrates tested. Results from the initial biomaterials study also indicated platinum was negatively affected the cells and may not be a suitable material for neural electrodes. This lead to pursuing studies with iridium oxide and platinum alloy wires for the glial scar assay. Iridium oxide advantages of lower impedance and higher charge injection capacity would appear to make iridium oxide more favorable for neural electrode fabrication. However, results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Astrocytes cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Results from the nanopatterning PMMA study prompted a more thorough investigation of the nanopatterning effects using an organotypic brain slice model. PDMS was utilized as the substrate due to its optimal physical properties

  7. STRS SpaceWire FPGA Module

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.

    2011-01-01

    An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.

  8. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    NASA Astrophysics Data System (ADS)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  9. Means for accommodating large overstrain in lead wires. [by storing extra length of wire in stretchable loop

    NASA Technical Reports Server (NTRS)

    Rumble, C. V.; Driscoll, K. L. (Inventor)

    1974-01-01

    An electrical wire is reported along whose length loops are formed at intervals and retained in a plastic capsule that allows unfolding of the loop when tension is exerted on the opposite ends of the wire. The capsule is formed by encompassing each loop with a sleeve of heat shrinkable synthetic plastic material which overlaps the loop and heat shrinking the overlapping portions. Thus, a length of electrical wire is formed which stores extra lengths of wire in the quantity needed to match the expected stretching of materials or elements such as ropes, cords and the like of high elongation to which the electrical wire may be attached.

  10. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    ERIC Educational Resources Information Center

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  11. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  12. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  13. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  14. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  15. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  16. Californium Recovery from Palladium Wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium- 252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO 3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, whichmore » ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.« less

  17. Failure analysis of explanted sternal wires.

    PubMed

    Shih, Chun-Ming; Su, Yea-Yang; Lin, Shing-Jong; Shih, Chun-Che

    2005-05-01

    To classify and understand the mechanisms of surface damages and fracture mechanisms of sternal wires, explanted stainless steel sternal wires were collected from patients with sternal dehiscence following open-heart surgery. Surface alterations and fractured ends of sternal wires were examined and analyzed. Eighty fractured wires extracted from 25 patients from January 1999 to December 2003, with mean implantation interval of 55+/-149 days (range 5-729 days) after cardiac surgery, were studied by various techniques. The extracted wires were cleaned and the fibrotic tissues were removed. Irregularities and fractured ends were assayed by a scanning electron microscopy. After stereomicroscopy and documentation, the explants were cleaned with 1% sodium hypochlorite to remove the blood and tissues and was followed by cleaned with deionized water and alcohol. The explants were examined by stereomicroscopy, and irregularities on surface and fracture surfaces of sternal wires were assayed by scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and X-ray mapping. The explants with surrounding fibrotic tissue were stained and examined with stereomicroscopy and transmission electronic microscopy. Corrosion pits were found on the surface of explanted sternal wires. EDAX and X-ray mapping examinations revealed diminution of nickel concentration in the severely corroded pits on sternal wires. A feature of transgranular cracking was observed for stress corrosion cracking and striation character for typical corrosion fatigue was also identified. TEM examination of tissue showed the metallic particles in phagolysosomes of macrophages inside the surrounding sternal tissue. The synergic effect of hostile environment and the stress could be the precursors of failures for sternal wires.

  18. Radiation from mixed multi-planar wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.

    2014-03-15

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kineticmore » model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.« less

  19. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  20. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  1. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  2. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  3. 21 CFR 870.1330 - Catheter guide wire.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Catheter guide wire. 870.1330 Section 870.1330...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1330 Catheter guide wire. (a) Identification. A catheter guide wire is a coiled wire that is designed to fit inside a...

  4. 21 CFR 870.1330 - Catheter guide wire.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter guide wire. 870.1330 Section 870.1330...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1330 Catheter guide wire. (a) Identification. A catheter guide wire is a coiled wire that is designed to fit inside a...

  5. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C. T.

    2016-01-01

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself.

  6. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  7. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  8. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  9. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    PubMed

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    PubMed

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  12. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  13. Mapping the droplet transfer modes for an ER100S-1 GMAW electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heald, P.R.; Madigan, R.B.; Siewert, T.A.

    1994-02-01

    Welds were made with a 1.2-mm-diameter AWS ER100S-1 electrode using Ar-2% O[sub 2] shielding gas to map the effects of contact-tube-to-work distance (13, 19 and 25 mm), current, voltage, and wire feed rate on metal transfer. The droplet transfer modes were identified for each map by both the sound of the arc and images from a laser back-lit high-speed video system. The modes were correlated to digital records of the voltage and current fluctuations. The maps contain detailed information on the spray transfer mode, including the boundaries of drop spray, streaming spray and rotating spray modes. The metal transfer modemore » boundaries shifted with an increase in contact-tube-to-work distance. Increasing the contact-tube-to-work distance from 13 to 19 mm resulted in a 15 mm/s increase in the wire feet rate for the globular-to-drop-spray transition.« less

  14. Getting "Wired" for McLuhan's Cyberculture.

    ERIC Educational Resources Information Center

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  15. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  16. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  17. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  18. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  19. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  20. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.

    PubMed

    Gwon, Tae Mok; Min, Kyou Sik; Kim, Jin Ho; Oh, Seung Ha; Lee, Ho Sun; Park, Min-Hyun; Kim, Sung June

    2015-04-01

    An atraumatic cochlear electrode array has become indispensable to high-performance cochlear implants such as electric acoustic stimulation (EAS), wherein the preservation of residual hearing is significant. For an atraumatic implantation, we propose and demonstrate a new improved design of a cochlear electrode array based on liquid crystal polymer (LCP), which can be fabricated by precise batch processes and a thermal lamination process, in contrast to conventional wire-based cochlear electrode arrays. Using a thin-film process of LCP-film-mounted silicon wafer and thermal press lamination, we devise a multi-layered structure with variable layers of LCP films to achieve a sufficient degree of basal rigidity and a flexible tip. A peripheral blind via and self-aligned silicone elastomer molding process can reduce the width of the array. Measuring the insertion and extraction forces in a human scala tympani model, we investigate five human temporal bone insertion trials and record electrically evoked auditory brainstem responses (EABR) acutely in a guinea pig model. The diameters of the finalized electrode arrays are 0.3 mm (tip) and 0.75 mm (base). The insertion force with a displacement of 8 mm from a round window and the maximum extraction force are 2.4 mN and 34.0 mN, respectively. The electrode arrays can be inserted from 360° to 630° without trauma at the basal turn. The EABR data confirm the efficacy of the array. A new design of LCP-based cochlear electrode array for atraumatic implantation is fabricated. Verification indicates that foretells the development of an atraumatic cochlear electrode array and clinical implant.

  1. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  2. A comparison of three electrodes for the measurement of pH in small volumes.

    PubMed

    Smit, A; Pollard, M; Cleaton-Jones, P; Preston, A

    1997-01-01

    An ion-sensitive field effect transistor (ISFET, Sentron, Sentron, Inc.) electrode was compared with a glass combination micro-electrode (MI-410, Micro-electrodes, Inc.) and a solid-state metal wire oxide pH sensor (Beetrode, World Precision Instruments, Inc.) with a liquid junction reference electrode (MERE1, World Precision Instruments, Inc.). The electrodes were assessed for linearity, reproducibility, accuracy, drift from the initial calibration between pH 4 and pH 7 and the time taken to record a stable reading. The ISFET was used to determine the pH in dental plaque samples (1 mg suspended in 20 microliters). The pH values correlated with the hydrogen ion concentration for all the electrodes (r = 0.98). The MI-410 fractured before this evaluation was completed. Coefficients of variation were 0.65% (pH 4) and 0.08% (pH 7) for the ISFET and 4.69% (pH 4) and 3.46% (pH 7) for the Beetrode. Both electrodes gave readings that differed significantly from the initial calibration, but the drift was greater for the Beetrode (F = 7.93; p = 0.0005) than the ISFET (F = 1.89; p = 0.1519). However, this drift was smaller than the change in pH as measured in dental plaque samples. The Beetrode gave a stable reading after 3.39 +/- 0.83 s and the ISFET after 2.2 +/- 0.76 s, while the MI-410 required at least 20 s. The ISFET type electrode is suitable for use in small volumes such as plaque suspensions, is easier to operate and yields results closer to the initial calibration than the Beetrode and is more robust than the MI-410 and the Beetrode.

  3. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  4. Anisotropic Thermal Response of Packed Copper Wire

    DOE PAGES

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...

    2017-04-19

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  5. Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors.

    PubMed

    Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe

    2018-03-09

    Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.

    PubMed

    Gómez-Navarro, C; Moreno-Herrero, F; de Pablo, P J; Colchero, J; Gómez-Herrero, J; Baró, A M

    2002-06-25

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected.

  7. High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates.

    PubMed

    Cetnar, John S; Vangala, Shivashankar; Zhang, Weidong; Pfeiffer, Carl; Brown, Elliott R; Guo, Junpeng

    2017-03-01

    A terahertz (THz) wire-grid polarizer with metallic bridges on a quartz substrate was simulated, fabricated, and tested. The device functions as a wide-band polarizer to incident THz radiation. In addition, the metallic bridges permit the device to function as a transparent electrode when a DC bias is applied to it. Three design variations of the polarizer with bridges and a polarizer without bridges were studied. Results show the devices with bridges have average s-polarization transmittance of less than -3  dB and average extinction ratios of approximately 40 dB across a frequency range of 220-990 GHz and thus are comparable to a polarizer without bridges.

  8. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet the...

  9. Characterization of copper and nichrome wires for safety fuse

    NASA Astrophysics Data System (ADS)

    Murdani, E.

    2016-11-01

    Fuse is an important component of an electrical circuit to limiting the current through the electrical circuit for electrical equipment safety. Safety fuses are made of a conductor such as copper and nichrome wires. The aim of this research was to determine the maximum current that can flow in the conductor wires (copper and nichrome). In the experiment used copper and nichrome wires by varying the length of wires (0.2 cm to 20 cm) and diameter of wires (0.1, 0.2, 0.3, 0.4 and 0.5) mm until maximum current reached that marked by melted or broken wire. From this experiment, it will be obtained the dependences data of maximum current to the length and diameter of wires. All data are plotted and it's known as a standard curve. The standard curve will provide an alternative choice of replacing fuse wire according to the maximum current requirement, including the wire type (copper and nichrome wires) and wire dimensions (length and diameter of wire).

  10. Length-dependent structural stability of linear monatomic Cu wires

    NASA Astrophysics Data System (ADS)

    Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.

    2018-05-01

    We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.

  11. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  12. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  13. Measuring Inhomogeneities In Thermocouple Wires

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Crum, James R.

    1993-01-01

    Spools rotated to pull thermocouple wires through liquid nitrogen, while output voltage of thermocouple recorded on strip chart. Wires exposed to severe temperature gradients, amounting to overall change of 200 degrees C, where they enter and leave liquid nitrogen. If wires homogeneous, net output voltage zero. If inhomogeneity passes through liquid-nitrogen/air interface, resulting deviation of output voltage from zero seen immediately on strip chart. If inhomogeneity greater than allowable, reels stopped temporarily so inhomogeneity tagged before wound onto takeup reel.

  14. [Mechanics analysis of fracture of orthodontic wires].

    PubMed

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  15. Lunar Module Wiring Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  16. Adaptive composites with embedded NiTiCu wires

    NASA Astrophysics Data System (ADS)

    Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.

    2001-07-01

    Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.

  17. Technology of high-speed combined machining with brush electrode

    NASA Astrophysics Data System (ADS)

    Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.

    2018-03-01

    The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.

  18. 49 CFR 236.723 - Circuit, double wire; line.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...

  19. 49 CFR 236.723 - Circuit, double wire; line.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...

  20. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  1. Requirements for Printed Wiring Boards

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to maintain the high standards of the NASA printed wiring programs, this publication: prescribes NASA's requirements for assuring reliable rigid printed wiring boards; describes and incorporates basic considerations necessary to assure reliable rigid printed wiring boards; establishes the supplier's responsibility to train and certify personnel; provides for supplier documentation of the fabrication and inspection procedures to be used for NASA work, including supplier innovations and changes in technology; and provides visual workmanship standards to aid those responsible for determining quality conformance to the established requirements.

  2. NEMA wire and cable standards development programs

    NASA Astrophysics Data System (ADS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  3. Electrohydrodynamic ionic wind, force field, and ionic mobility in a positive dc wire-to-cylinders corona discharge in air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    Ionic wind refers to the acceleration of partially ionized air between two high-voltage electrodes. We study the momentum transfer from ions to air, resulting from ionic wind created by two asymmetric electrodes and producing a net thrust. This electrohydrodynamic (EHD) thrust, has already been measured in previous studies with digital scales. In this study, we provide more insights into the electrohydrodynamic momentum transfer for a wire-to-cylinder(s) positive dc corona discharge. We provide a simple and general theoretical derivation for EHD thrust, which is proportional to the current/mobility ratio and also to an effective distance integrated on the surface of the electrodes. By considering various electrode configurations, our investigation brings out the physical origin of previously obtained optimal configurations, associated with a better tradeoff between Coulomb forcing, friction occurring at the collector, and wake interactions. By measuring two-dimensional velocity fields using particle image velocimetry (PIV), we are able to evaluate the resulting local net force, including the pressure gradient. It is shown that the contribution of velocity fluctuations in the wake of the collecting electrode(s) must be taken into account to recover the net thrust. We confirm the proportionality between the EHD force and the current/mobility ratio experimentally, and evaluate the ion mobility from PIV measurements. A spectral analysis of the velocity fluctuations indicates a dominant frequency corresponding to a Strouhal number of 0.3 based on the ionic wind velocity and the collector size. Finally, the effective mobility of charge carriers is estimated by a PIV based method inside the drift region.

  4. Wiring harnesses documented by punched-card technique

    NASA Technical Reports Server (NTRS)

    Hicks, W. W.; Kloezeman, W. G.

    1970-01-01

    Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.

  5. Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes.

    PubMed

    Sivapirakasam, S P; Mohan, Sreejith; Santhosh Kumar, M C; Thomas Paul, Ashley; Surianarayanan, M

    2017-04-01

    Background Cr(VI) is a suspected human carcinogen formed as a by-product of stainless steel welding. Nano-alumina and nano-titania coating of electrodes reduced the welding fume levels. Objective To investigate the effect of nano-coating of welding electrodes on Cr(VI) formation rate (Cr(VI) FR) from a shielded metal arc welding process. Methods The core welding wires were coated with nano-alumina and nano-titania using the sol-gel dip coating technique. Bead-on plate welds were deposited on SS 316 LN plates kept inside a fume test chamber. Cr(VI) analysis was done using an atomic absorption spectrometer (AAS). Results A reduction of 40% and 76%, respectively, in the Cr(VI) FR was observed from nano-alumina and nano-titania coated electrodes. Increase in the fume level decreased the Cr(VI) FR. Discussion Increase in fume levels blocked the UV radiation responsible for the formation of ozone thereby preventing the formation of Cr(VI).

  6. Pre-wired systems prove their worth.

    PubMed

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  7. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  8. Three-Wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters are recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(omega(sub 1)), where omega(sub 1) is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  9. Three-wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters arc recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(sub omega1), where omega, is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  10. Electron transport in stretched monoatomic gold wires.

    PubMed

    Grigoriev, A; Skorodumova, N V; Simak, S I; Wendin, G; Johansson, B; Ahuja, R

    2006-12-08

    The conductance of monoatomic gold wires containing 3-7 gold atoms has been obtained from ab initio calculations. The transmission is found to vary significantly depending on the wire stretching and the number of incorporated atoms. Such oscillations are determined by the electronic structure of the one-dimensional (1D) part of the wire between the contacts. Our results indicate that the conductivity of 1D wires can be suppressed without breaking the contact.

  11. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  12. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  13. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  14. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  15. Magnetic properties of permalloy wires in vycor capillaries

    NASA Astrophysics Data System (ADS)

    Lubitz, P.; Ayers, J. D.; Davis, A.

    1991-11-01

    Thin wires of NiFe alloys with compositions near 80% Ni were prepared by melting the alloy in vycor tubes and drawing fibers from the softened glass. The resulting fibers consist of relatively thick-walled vycor capillaries containing permalloy wires filling a few percent of the volume. The wires are continuous over considerable lengths, uniform in circular cross section, nearly free of contact with the walls and can be drawn to have diameters less than 1 μm. Their magnetic properties are generally similar to bulk permalloy, but show a variety of magnetic switching behaviors for fields along the wire axis, depending on composition, wire diameter, and thermal history. As pulled, the wires can show sharp switching, reversible rotation or mixed behavior. This method can produce NiFe alloy wires suitable for use in applications as sensor, memory or inductive elements; other alloys, such as supermalloy and sendust, also can be fabricated as fine wires by this method.

  16. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

    PubMed

    Arreaga-Salas, David E; Avendaño-Bolívar, Adrian; Simon, Dustin; Reit, Radu; Garcia-Sandoval, Aldo; Rennaker, Robert L; Voit, Walter

    2015-12-09

    Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for

  17. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... alternative video programming service provider connects its wiring to the home wiring before the incumbent... alternative video programming service provider shall be responsible for ensuring that the incumbent's wiring...

  18. Monitoring and evaluation of wire mesh forming life

    NASA Astrophysics Data System (ADS)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  19. Wire Detection Algorithms for Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.

    2002-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning

  20. 30 CFR 57.12086 - Location of trolley wire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location of trolley wire. 57.12086 Section 57... Underground Only § 57.12086 Location of trolley wire. Trolley and trolley feeder wire shall be installed... limitations would prevent the safe installation or use of such trolley and trolley feeder wire. ...

  1. 30 CFR 77.701-3 - Grounding wires; capacity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity. 77.701-3 Section 77... MINES Grounding § 77.701-3 Grounding wires; capacity. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames, casings, and other metallic enclosures, such grounding wires will be...

  2. 30 CFR 77.701-3 - Grounding wires; capacity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity. 77.701-3 Section 77... MINES Grounding § 77.701-3 Grounding wires; capacity. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames, casings, and other metallic enclosures, such grounding wires will be...

  3. 30 CFR 57.12086 - Location of trolley wire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of trolley wire. 57.12086 Section 57... Underground Only § 57.12086 Location of trolley wire. Trolley and trolley feeder wire shall be installed... limitations would prevent the safe installation or use of such trolley and trolley feeder wire. ...

  4. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    NASA Astrophysics Data System (ADS)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  5. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  6. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  7. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  8. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  9. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  10. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  11. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  12. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  13. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  14. Adjustable Bracket For Entry Of Welding Wire

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-01-01

    Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.

  15. Computer-assisted design of flux-cored wires

    NASA Astrophysics Data System (ADS)

    Dubtsov, Yu N.; Zorin, I. V.; Sokolov, G. N.; Antonov, A. A.; Artem'ev, A. A.; Lysak, V. I.

    2017-02-01

    The algorithm and description of the AlMe-WireLaB software for the computer-assisted design of flux-cored wires are introduced. The software functionality is illustrated with the selection of the components for the flux-cored wire, ensuring the acquisition of the deposited metal of the Fe-Cr-C-Mo-Ni-Ti-B system. It is demonstrated that the developed software enables the technologically reliable flux-cored wire to be designed for surfacing, resulting in a metal of an ordered composition.

  16. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    PubMed

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.

  17. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode.

    PubMed

    Rawal, Rachna; Chawla, Sheetal; Pundir, Chandra Shekhar

    2012-01-15

    A sulfite oxidase (SO(X)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto carboxylated gold coated magnetic nanoparticles (Fe(3)O(4)@GNPs) electrodeposited onto the surface of a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) chemistry. An amperometric sulfite biosensor was fabricated using SO(X)/Fe(3)O(4)@GNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode. The working electrode was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS) before and after immobilization of SO(X). The biosensor showed optimum response within 2s when operated at 0.2V (vs. Ag/AgCl) in 0.1 M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and detection limit were 0.50-1000 μM and 0.15 μM (S/N=3) respectively. Biosensor was evaluated with 96.46% recovery of added sulfite in red wine and 1.7% and 3.3% within and between batch coefficients of variation respectively. Biosensor measured sulfite level in red and white wines. There was good correlation (r=0.99) between red wines sulfite value by standard DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) method and the present method. Enzyme electrode was used 300 times over a period of 4 months, when stored at 4 °C. Biosensor has advantages over earlier biosensors that it has excellent electrocatalysis towards sulfite, lower detection limit, higher storage stability and no interference by ascorbate, cysteine, fructose and ethanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Superconducting wires and methods of making thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current densitymore » (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.« less

  19. System and method for evaluating a wire conductor

    DOEpatents

    Panozzo, Edward; Parish, Harold

    2013-10-22

    A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.

  20. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  1. Kirschner wire pin tract infection rates between percutaneous and buried wires in treating metacarpal and phalangeal fractures.

    PubMed

    Rafique, Atif; Ghani, Shahab; Sadiq, Moiz; Siddiqui, Intisar Ahmed

    2006-08-01

    To compare pin tract infection rate between percutaneous and buried placement of Kirschner (K-) wiring for hand fractures. Quasi--experimental study. Plastic, Reconstructive, Hand and Burn Surgery Unit, Liaquat National Hospital, Karachi, from September 2005--February 2006. Patients with fractures of metacarpals and phalanges of hand were selected by non-probability purposive method. Assessment of pin tract infection by clinical examination and pin tract scoring was done by modification of Oppenheim classification. Statistical analysis was done using Chi-square test. Ten out of 55 percutaneous and 2 out of 45 buried wires were infected. The difference in infection rates of two groups was statistically significant at p<0.05. Three percutaneous, but not buried Kirschner wires, had to be removed before 4 weeks because of failure to respond to local wound care and oral antibiotics. Percutaneous K- wires had significantly greater infection rate than wires which were buried deep to the skin.

  2. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring. 129.340 Section 129.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than...

  3. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires; support. 75.516 Section 75.516...

  4. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires; support. 75.516 Section 75.516...

  5. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires; support. 75.516 Section 75.516...

  6. 75 FR 4584 - Wire Decking From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-466 and 731-TA-1162 (Final)] Wire... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... subject merchandise as ``welded-wire rack decking, which is also known as, among other things, ``pallet...

  7. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires; support. 75.516 Section 75.516... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables...

  8. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires; support. 75.516 Section 75.516... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables...

  9. Wire and Packing Tape Sandwiches

    ERIC Educational Resources Information Center

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  10. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve.

    PubMed

    Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J

    2009-08-01

    This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 +/- 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.

  11. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve

    PubMed Central

    Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J

    2010-01-01

    This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 Nm. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 Nm in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications. PMID:19602729

  12. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  13. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  14. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  15. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  16. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  17. Detectors Ensure Function, Safety of Aircraft Wiring

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Pedro Medelius waited patiently in his lab at Kennedy Space Center. He had just received word that a colleague was bringing over a cable from a Space Shuttle solid rocket booster to test Medelius new invention. Medelius was calm until his colleague arrived, with about 30 other people. "Talk about testing under pressure," says Medelius. "There were people there from the Navy, the Air Force, and the Federal Aviation Administration." After the group s arrival, Medelius took a deep breath and connected his Standing Wave Reflectometer (SWR) to the cable. He wiggled the cable around, and the display showed a fault (a short or open circuit in wire) about an inch and a half inside the connector on the cable. His colleague questioned the results, because he had already checked that area on the cable. Medelius used the SWR to check again but got the same result. "That is when we took the cable apart and looked inside," Medelius says. "Lo and behold, that was exactly where the fault was." The impetus for Medelius new wire inspection technology came about in 1999 when one of the space shuttles lost power due to a fault somewhere in its more than 200 miles of electrical wiring. "The backup circuit was activated and prevented a major dysfunction, but nevertheless, there was a problem with the wiring," Medelius describes. Even though technicians used a device called a multimeter to measure the electrical current to find which wire had a fault, it could not pinpoint exactly where on the wire the fault was located. For that, technicians had to visually inspect the wire. "Sometimes they would have to remove the whole wire assembly and visually inspect every single wire. It was a very tedious operation because the wires are behind cabinets. They go all over the place in the shuttle," says Medelius. "NASA needed an instrument capable of telling them exactly where the faults were occurring." To meet NASA s needs for a highly precise device to inspect electrical power bundles, wires

  18. NASA wiring for space applications program test results

    NASA Astrophysics Data System (ADS)

    Stavnes, Mark; Hammoud, Ahmad

    1995-11-01

    The electrical power wiring tests results from the NASA Wiring for Space Applications program are presented. The goal of the program was to develop a base for the building of a lightweight, arc track-resistant electrical wiring system for aerospace applications. This new wiring system would be applied to such structures as pressurized modules, trans-atmospheric vehicles, LEO/GEO environments, and lunar and Martian environments. Technological developments from this program include the fabrication of new insulating materials, the production of new wiring constructions, an improved system design, and an advanced circuit protection design.

  19. 30 CFR 57.12012 - Bare signal wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bare signal wires. 57.12012 Section 57.12012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... and Underground § 57.12012 Bare signal wires. The potential on bare signal wires accessible to contact...

  20. 30 CFR 77.705 - Guy wires; grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires; grounding. 77.705 Section 77.705 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.705 Guy wires; grounding. Guy wires from poles supporting high-voltage transmission lines shall be...

  1. 30 CFR 57.12012 - Bare signal wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare signal wires. 57.12012 Section 57.12012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... and Underground § 57.12012 Bare signal wires. The potential on bare signal wires accessible to contact...

  2. 7 CFR 1755.506 - Aerial wire services

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Aerial wire services 1755.506 Section 1755.506... § 1755.506 Aerial wire services (a) Aerial services of one through six pairs shall consist of Service...), Specifications and Drawings for Service Installations at Customer Access Locations. The wire used for aerial...

  3. 30 CFR 77.705 - Guy wires; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires; grounding. 77.705 Section 77.705 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.705 Guy wires; grounding. Guy wires from poles supporting high-voltage transmission lines shall be...

  4. Home and School Technology: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  5. 30 CFR 57.12012 - Bare signal wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bare signal wires. 57.12012 Section 57.12012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... and Underground § 57.12012 Bare signal wires. The potential on bare signal wires accessible to contact...

  6. 30 CFR 57.12012 - Bare signal wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bare signal wires. 57.12012 Section 57.12012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... and Underground § 57.12012 Bare signal wires. The potential on bare signal wires accessible to contact...

  7. Wire Stripper Holds Insulation Debris

    NASA Technical Reports Server (NTRS)

    Cook, Allen D.; Morris, Henry S.; Bauer, Laverne

    1994-01-01

    Attachment to standard wire-stripping tool catches bits of insulation as they are removed from electrical wire and retains them for proper disposal. Prevents insulation particles from falling at random, contaminating electronic equipment and soiling workspace. Commercial tool modified by attaching small collection box to one of the jaws.

  8. A deployable .015 inch diameter wire antenna

    NASA Technical Reports Server (NTRS)

    Dibiasi, L.

    1979-01-01

    This mechanism was developed to dispense a small diameter wire which serves as a receiving antenna for electric field measurements on an Earth orbiting satellite. The antenna is deployed radially from a spinning satellite. A brushless dc motor drives a storage spool to dispense the wire at a controlled rate. Centrifugal force, acting on a mass attached to the end of the wire, keeps the wire in the radial position. The mechanism design, testing, and performance characteristics are discussed. Finally, operational data of the mechanism while in orbit are presented.

  9. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  10. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  11. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables for mobile equipment, ground... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.906 Trailing cables for mobile equipment, ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  12. Power and energy of exploding wires

    DOE PAGES

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    2017-01-01

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  13. Power and energy of exploding wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  14. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Wire rope-inspection. 1926.1413 Section 1926.1413 Labor... Wire rope—inspection. (a) Shift inspection. (1) A competent person must begin a visual inspection prior... inspection must consist of observation of wire ropes (running and standing) that are likely to be in use...

  15. Toward self-assembled ferroelectric random access memories: hard-wired switching capacitor arrays with almost Tb/in.(2) densities.

    PubMed

    Evans, Paul R; Zhu, Xinhau; Baxter, Paul; McMillen, Mark; McPhillips, John; Morrison, Finlay D; Scott, James F; Pollard, Robert J; Bowman, Robert M; Gregg, J Marty

    2007-05-01

    We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.

  16. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  17. In vitro corrosion characteristics of commercially available orthodontic wires.

    PubMed

    Yonekura, Yasuyuki; Endo, Kazuhiko; Iijima, Masahiro; Ohno, Hiroki; Mizoguchi, Itaru

    2004-06-01

    The corrosion characteristics of orthodontic alloy wires were investigated both in as-received and grinded conditions in 0.9% NaCl solution by atomic absorption spectrophotometry and potentiodynamic polarization measurements. The amount of each metal ion released from most alloys was larger for the grinded wires than for the as-received wires (p<0.01). The fact that the beta-Ti alloy wire (Ti-Mo-Zr) does not contain allergenic metals such as Ni, Co, and Cr, and the finding that resistance to both general and localized corrosion is the highest among the six wires investigated suggest that this wire is the most biocompatible orthodontic wire. Since a small amount of Ni, Cr or Co ions were released from Ni-Ti, Co-Cr and stainless steel wires, special attention should be paid during their clinical use for patients with allergic tendencies.

  18. Needleless electrospinning with twisted wire spinneret

    NASA Astrophysics Data System (ADS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h-1 and 1.40 g h-1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  19. Reversible on-surface wiring of resistive circuits.

    PubMed

    Inkpen, Michael S; Leroux, Yann R; Hapiot, Philippe; Campos, Luis M; Venkataraman, Latha

    2017-06-01

    Whilst most studies in single-molecule electronics involve components first synthesized ex situ , there is also great potential in exploiting chemical transformations to prepare devices in situ . Here, as a first step towards this goal, we conduct reversible reactions on monolayers to make and break covalent bonds between alkanes of different lengths, then measure the conductance of these molecules connected between electrodes using the scanning tunneling microscopy-based break junction (STM-BJ) method. In doing so, we develop the critical methodology required for assembling and disassembling surface-bound single-molecule circuits. We identify effective reaction conditions for surface-bound reagents, and importantly demonstrate that the electronic characteristics of wires created in situ agree with those created ex situ . Finally, we show that the STM-BJ technique is unique in its ability to definitively probe surface reaction yields both on a local (∼50 nm 2 ) and pseudo-global (≥10 mm 2 ) level. This investigation thus highlights a route to the construction and integration of more complex, and ultimately functional, surface-based single-molecule circuitry, as well as advancing a methodology that facilitates studies beyond the reach of traditional ex situ synthetic approaches.

  20. Metallurgical investigation of wire breakage of tyre bead grade.

    PubMed

    Palit, Piyas; Das, Souvik; Mathur, Jitendra

    2015-10-01

    Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).

  1. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  2. Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.

  3. External wire-frame fixation of digital skin grafts: a non-invasive alternative to the K-wire insertion method.

    PubMed

    Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko

    2014-08-01

    The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in <5% of the total area. There were no other complications such as pressure ulcer or hypoxia of fingers. External wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  4. High-Density Terminal Box for Testing Wire Harness

    NASA Technical Reports Server (NTRS)

    Pierce, W. B.; Collins, W. G.

    1982-01-01

    Compact terminal box provides access to complex wiring harnesses for testing. Box accommodates more than twice as many wires as previous boxes. Box takes in wires via cable connectors and distributes them to contacts on box face. Instead of separate insulated jacks in metal face panel, box uses pairs of small military-standard metal sockets in precision-drilled plastic panel. Shorting plug provides continuity for wires when not being tested.

  5. Progressive migration of broken Kirschner wire into the proximal tibia following tension-band wiring technique of a patellar fracture--case report.

    PubMed

    Konda, Sanjit R; Dayan, Alan; Egol, Kenneth A

    2012-01-01

    Wire breakage and migration is a known complication of using a wire tension band construct to treat displaced patella fractures. We report a case of a broken K-wire that migrated from the patella completely into the proximal tibia without complication 9 years after the index surgery. This report highlights the fact that wire migration can occur long after fracture healing and be relatively asymptomatic. But because the complications of wire migration can be deadly, it requires diligence on the part of the physician to educate the patient that new knee pain after operative fixation requires formal evaluation by the treating surgeon.

  6. Implosion dynamics and radiative properties of W planar wire arrays influenced by Al wires on University of Michigan's LTD generator

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Shrestha, I. K.; Butcher, C. J.; Stafford, A.; Campbell, P. C.; Miller, S.; Yager-Elorriaga, D. A.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.

    2017-10-01

    The results of new experiments with W Double Planar Wire Arrays (DPWA) at the University of Michigan's Linear Transformer Driver (LTD) generator are presented that are of particular importance for future work with wire arrays on 40-60 MA LTDs at SNL. A diagnostic set similar to the previous campaigns comprised filtered x-ray diodes, a Faraday cup, x-ray spectrometers and pinhole cameras, but had an ultra-fast 12-frame self-emission imaging system. Implosion and radiative characteristics of two DPWAs of the same mass (60 μg/cm) and geometry (two planes with 8 wires each at the distance of 6 mm and an inter-wire gap of 0.7 mm) with one plane of W wires and another either of W wires (1) or of Al wires (2) were compared in detail. The substantial differences between two cases are observed: 1) precursor formation and intense hard x-ray characteristic emission of W (``cold'' L lines) caused by electron beams; 2) no precursor, standing shocks at the W plane side that lasted up to a hundred of ns, fast ablation and implosion of Al wires, and suppression of hard x-ray ``cold'' L lines of W. In addition, the evolution of self-emission in a broad period of time up to 400 ns is analyzed for the first time. Research supported by NNSA under DOE Grant DE-NA0003047.

  7. Wiring Damage Analyses for STS OV-103

    NASA Technical Reports Server (NTRS)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  8. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    NASA Astrophysics Data System (ADS)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  9. Pretinning Nickel-Plated Wire Shields

    NASA Technical Reports Server (NTRS)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  10. Supplemental Analysis Survey of C&P Telephone Inside Wiring.

    DTIC Science & Technology

    1986-10-01

    telephone company facilities in 1984. In 1985, among other actions favorable to deregulation and detariffing of inside wiring, the FCC proposed to detariff ...installation of inside wiring, detariff the maintenance of all inside wiring, treat all inside wiring as customer premise equipment and pass ownership...85-148, 50 Fed. let. 13991 (April 9, 1985), pToposing to detariff the installation of simple inside wiring and also to detariff the maintenance of all

  11. Inorganic and Organometallic Molecular Wires for Single-Molecule Devices.

    PubMed

    Tanaka, Yuya; Kiguchi, Manabu; Akita, Munetaka

    2017-04-06

    Recent developments of single-molecule conductance measurements allow us to understand fundamental conducting properties of molecular wires. While a wide variety of organic molecular wires have been studied so far, inorganic and organometallic molecular wires have received much less attention. However, molecular wires with transition-metal atoms show interesting features and functions distinct from those of organic wires. These properties originate mainly from metal-ligand dπ-pπ interactions and metal-metal d-d interactions. Thanks to the rich combination of metal atoms and supporting ligands, frontier orbital energies of the molecular wires can be finely tuned to lead to highly conducting molecular wires. Moreover, the unique electronic structures of metal complexes are susceptible to subtle environmental changes, leading to potential functional molecular devices. This article reviews recent advances in the single-molecule conductance study of inorganic and organometallic molecular wires. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  13. Most Wired 2006: measuring value.

    PubMed

    Solovy, Alden

    2006-07-01

    As the Most Wired hospitals incorporate information technology into their strategic plans, they combine a"balanced scorecard"approach with classic business analytics to measure how well IT delivers on their goals. To find out which organizations made this year's 100 Most Wired list, as well as those named in other survey categories, go to the foldout section.

  14. The Current in a Wire

    ERIC Educational Resources Information Center

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  15. Composite wire microelectrode and method of making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Hugh S.; Aldykiewicz, Jr., Antonio J.

    1996-12-03

    A composite wire microelectrode for making electro-chemical measurements, and method of making same. The microelectrode includes an inner conductive sensing wire and an outer tube that is oxidized to form a dielectric, self-healing oxide layer around the sensing wire.

  16. Problems with aging wiring in Naval aircraft

    NASA Technical Reports Server (NTRS)

    Campbell, Frank J.

    1994-01-01

    The Navy is experiencing a severe aircraft electrical wiring maintenance problem as a result of the extensive use of an aromatic polyimide insulation that is deteriorating at a rate that was unexpected when this wire was initially selected. This problem has significantly affected readiness, reliability, and safety and has greatly increased the cost of ownership of Naval aircraft. Failures in wire harnesses have exhibited arcing and burning that will propagate drastically, to the interruption of many electrical circuits from a fault initiated by the failure of deteriorating wires. There is an urgent need for a capability to schedule aircraft rewiring in an orderly manner with a logically derived determination of which aircraft have aged to the point of absolute necessity. Excessive maintenance was demonstrated to result from the accelerated aging due to the parameters of moisture, temperature, and strain that exist in the Naval Aircraft environment. Laboratory studies have demonstrated that MIL-W-81381 wire insulation when aged at high humidities followed the classical Arrhenius thermal aging relationship. In an extension of the project a multifactor formula was developed that is now capable of predicting life under varying conditions of these service parameters. An automated test system has also been developed to analyze the degree of deterioration that has occurred in wires taken from an aircraft in order to obtain an assessment of remaining life. Since it is both physically and financially impossible to replace the wiring in all the Navy's aircraft at once, this system will permit expedient scheduling so that those aircraft that are most probable to have wiring failure problems can be overhauled first.

  17. Induced Voltage in an Open Wire

    NASA Astrophysics Data System (ADS)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  18. Integrated Electrical Wire Insulation Repair System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  19. Single-molecule conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections.

    PubMed

    Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald

    2011-02-23

    Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.

  20. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    PubMed

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  1. Improved method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

    1979-10-17

    An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  2. What's in the Walls: Copper, Fiber, or Coaxial Wiring?

    ERIC Educational Resources Information Center

    Weiss, Andrew M.

    1995-01-01

    Presents planning guidelines for wiring specifications for K-12 schools by reviewing advantages and disadvantages of using copper, fiber-optic, and coaxial wire. Addresses the future of network wiring and educational technology, and makes recommendations. A sidebar describes the physical appearance of different types of wire and a table compares…

  3. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...

  4. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...

  5. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...

  6. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...

  7. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  8. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  9. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  10. A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation.

    PubMed

    Ward, W Kenneth; House, Jody L; Birck, Jonathan; Anderson, Ellen M; Jansen, Lawrence B

    2004-06-01

    Continuous measurement of lactate is potentially useful for detecting physical exhaustion and for monitoring critical care conditions characterized by hypoperfusion, such as heart failure. In some conditions, it may be desirable to monitor more than one metabolic parameter concurrently. For this reason, we designed and fabricated twisted wire-based microelectrodes that can measure both lactate and glucose. These dual-analyte sensors were characterized in vitro by measuring their response to the analyte of interest and to assess whether they were susceptible to interference from the other analyte. When measured in stirred aqueous buffer, lactate sensors detected a very small amount of crosstalk from glucose in vitro, although this signal was less than 3% of the response to lactate. Glucose sensors did not detect crosstalk from lactate. Sensors were implanted subcutaneously in rats and tested during infusions of lactate and glucose. Each sensing electrode responded rapidly to changes in its analyte concentration, and there was no evidence of in vivo crosstalk. This study constitutes proof of the concept that oxidase-based, amperometric wire microsensors can detect changes in glucose and lactate during subcutaneous implantation in rats.

  11. Measuring the elastic properties of fine wire.

    PubMed

    Fallen, C T; Costello, J; Crawford, G; Schmidt, J A

    2001-01-01

    The elastic moduli of fine wires made from MP35N and 304SS used in implantable biomedical devices are assumed to be the same as those published in the literature. However, the cold working required to manufacture the wire significantly alters the elastic moduli of the material. We describe three experiments performed on fine wire made from MP35N and 304SS. The experimentally determined Young's and shear modulus of both wire types were significantly less than the moduli reported in the literature. Young's modulus differed by as much as 26%, and the shear modulus differed by as much as 14% from reported values.

  12. Filter line wiring designs in aircraft

    NASA Astrophysics Data System (ADS)

    Rowe, Richard M.

    1990-10-01

    The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.

  13. Dynamics of vapor emissions at wire explosion thresholda)

    NASA Astrophysics Data System (ADS)

    Belony, Paul A.; Kim, Yong W.

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  14. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  15. [Spectroscopic Diagnosis of Two-Dimensional Distribution of OH Radicals in Wire-Plate Pulsed Corona Discharge Reactor].

    PubMed

    Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang

    2015-10-01

    Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.

  16. Composite wire microelectrode and method of making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Aldykiewicz, A.J. Jr.

    1996-12-03

    A composite wire microelectrode for making electro-chemical measurements, and method of making same, are disclosed. The microelectrode includes an inner conductive sensing wire and an outer tube that is oxidized to form a dielectric, self-healing oxide layer around the sensing wire. 4 figs.

  17. Frequency response of a thermocouple wire: Effects of axial conduction

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1990-01-01

    Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties.

  18. Transparent and Flexible Supercapacitors with Networked Electrodes.

    PubMed

    Kiruthika, S; Sow, Chaitali; Kulkarni, G U

    2017-10-01

    Transparent and flexible energy storage devices have received immense attention due to their suitability for innovative electronics and displays. However, it remains a great challenge to fabricate devices with high storage capacity and high degree of transmittance. This study describes a simple process for fabrication of supercapacitors with ≈75% of visible transparency and areal capacitance of ≈3 mF cm -2 with high stability tested over 5000 cycles of charging and discharging. The electrodes consist of Au wire networks obtained by a simple crackle template method which are coated with MnO 2 nanostructures by electrodeposition process. Importantly, the membrane separator itself is employed as substrate to bring in the desired transparency and light weight while additionally exploiting its porous nature in enhancing the interaction of electrolyte with the active material from both sides of the substrate, thereby enhancing the storage capacity. The method opens up new ways for fabricating transparent devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  20. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...