Sample records for quadrupole collective states

  1. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    NASA Astrophysics Data System (ADS)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  2. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.

    The nuclear structure of 124Xe has been investigated via measurements of the β +/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2 + → 0 + in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te( 3He,n) 124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  3. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGES

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; ...

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β +/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2 + → 0 + in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te( 3He,n) 124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  4. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    NASA Astrophysics Data System (ADS)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  5. Lifetime Measurements in Neutron-Rich Xe Isotopes — Evolution of Quadrupole Collectivity Beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Bönig, S.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Kröll, Th.; Thürauf, M.; Jolie, J.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G. S.; Soldner, T.; Urban, W.; Mǎrginean, N.; Ur, C. A.; Mach, H.; Fraile, L. M.; Paziy, V.; Regan, P. H.; Bruce, A. M.; Lalkovski, S.; Korten, W.

    Picosecond lifetimes of excited states in neutron-rich Xe isotopes were measured at the Institut Laue-Langevin via γ-ray spectroscopy of fission fragments from neutron-induced fission of 235U and 241Pu targets. The data collected with the recently installed fast timing array FATIMA in combination with the EXOGAM Ge array were analysed using the new generalized centroid difference method. Our aim is to study the quadrupole and octupole collectivity, arising in the mass region beyond the doubly magic 132Sn, by means of transition probabilities. These can be calculated from the directly measured lifetimes.

  6. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  7. Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA

    NASA Astrophysics Data System (ADS)

    Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.

    2018-02-01

    A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.

  8. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  9. Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.

    2010-11-01

    Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.

  10. Quadrupole deformed and octupole collective bands in 228Ra

    NASA Astrophysics Data System (ADS)

    Gulda, K.; Mach, H.; Aas, A. J.; Borge, M. J. G.; Burke, D. G.; Fogelberg, B.; Gietz, H.; Grant, I. S.; Hagebo, E.; Hill, P.; Hoff, P.; Kaffrell, N.; Kurcewicz, W.; Lindroth, A.; Løvhøiden, G.; Martinez, T.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rubio, B.; Sanchez-Vega, M.; Tain, J. L.; Taylor, R. B. E.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration

    1998-06-01

    Spins and parities for collective states in 228Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ( t) method has been used to measure lifetimes of T {1}/{2} = 550(20) ps and 181 (3) ps for the 2 1+ and 4 1+ aembers of the K = 0 + band, and T {1}/{2} ⩽ 7 ps and ⩽6 ps for the 1 1- and 3 1- members of the K = 0 - band, respectively The quadrupole moments, Q0 deduced from the B (E2; 2 1+ → 0 1+) and B (E2; 4 1+ → 2 1+) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ⩾4 × 10 -4 e 2 fm 2, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227Ra and reveal octupole correlations in 228Ra.

  11. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  12. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    NASA Astrophysics Data System (ADS)

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  13. Highly Dynamic Anion-Quadrupole Networks in Proteins.

    PubMed

    Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome

    2016-11-01

    The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.

  14. Weak quadrupole moments

    NASA Astrophysics Data System (ADS)

    Lackenby, B. G. C.; Flambaum, V. V.

    2018-07-01

    We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.

  15. Single-particle states vs. collective modes: friends or enemies ?

    NASA Astrophysics Data System (ADS)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-05-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

  16. Moment of inertia, quadrupole moment, Love number of neutron star and their relations with strange-matter equations of state

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati

    2018-02-01

    We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.

  17. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.

    2018-01-01

    Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.

  18. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  19. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  20. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.

    2015-06-01

    The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

  1. A quantized microwave quadrupole insulator with topologically protected corner states

    NASA Astrophysics Data System (ADS)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  2. Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20

    NASA Astrophysics Data System (ADS)

    Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at T<0.3 K as expected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.

  3. Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    NASA Astrophysics Data System (ADS)

    Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.

    2018-06-01

    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.

  4. Open questions on nuclear collective motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauendorf, S., E-mail: sfrauend@nd.edu

    The status of the macroscopic and microscopic description of the collective quadrupole modes is reviewed, where limits due to non-adiabaticity and decoherence are exposed. The microscopic description of the yrast states in vibrator-like nuclei in the framework of the rotating mean field is presented.

  5. Electric quadrupole moment of the 5d {sup 2}D{sub 3/2} state in {sup 171}Yb{sup +}: A relativistic coupled-cluster analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latha, K. V. P.; Chaudhuri, R. K.; Das, B. P.

    2007-12-15

    The electric quadrupole moment for the 5d {sup 2}D{sub 3/2} state of {sup 171}Yb{sup +}, has been calculated using the relativistic coupled-cluster method. Earlier a similar calculation was performed for the 4d {sup 2}D{sub 5/2} state of {sup 88}Sr{sup +} which is the most accurate determination to date [Sur et al., Phys. Rev. Lett. 96, 193001 (2006)]. The present calculation of the electric quadrupole moment of {sup 171}Yb{sup +} yielded a value 2.157ea{sub 0}{sup 2} where the experimental value is 2.08(11)ea{sub 0}{sup 2}; a{sub 0} is the Bohr radius and e the elementary charge. We discuss in this paper ourmore » results for {sup 171}Yb{sup +} in detail and highlight the dominant correlation effects present. We have presented the effect of inner core excitations and their contribution to the electric quadrupole moment, which is a property sensitive to regions away from the nucleus.« less

  6. Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2014-11-01

    States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.

  7. Shape Phase Transition from Octupole Deformation to Octupole Vibrations: The Analytic Quadrupole Octupole Axially Symmetric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    An analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter ({phi}0), while axial symmetry is obeyed, is developed. The model [to be called the Analytic Quadrupole Octupole Axially symmetric model (AQOA)] involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on {phi}0, draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and in the actinide region describes well 226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to thismore » border. The similarity of the AQOA results with {phi}0 = 45 deg. for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out.« less

  8. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  9. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  10. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  11. Reduced probabilities for E2 transitions between excited collective states of triaxial even–even nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadyrbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A.

    Reduced probabilities for intra- and interband E2 transitions in excited collective states of even–even lanthanide and actinide nuclei are analyzed on the basis of a model that admits an arbitrary triaxiality. They are studied in detail in the energy spectra of {sup 154}Sm, {sup 156}Gd, {sup 158}Dy, {sup 162,164}Er, {sup 230,232}Th, and {sup 232,234,236,238}U even–even nuclei. Theoretical and experimental values of the reduced probabilities for the respective E2 transitions are compared. This comparison shows good agreement for all states, including high-spin ones. The ratios of the reduced probabilities for the E2 transitions in question are compared with results following frommore » the Alaga rules. These comparisons make it possible to assess the sensitivity of the probabilities being considered to the presence of quadrupole deformations.« less

  12. Quantum self-organization and nuclear collectivities

    NASA Astrophysics Data System (ADS)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-02-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The outcome of the collective mode is determined basically by the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger gaps between relevant single particle states. Thus, the single-particle state and the collective mode are “enemies” each other. However, the nuclear forces are demonstrated to be rich enough so as to enhance relevant collective mode by reducing the resistance power by changing singleparticle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, when the quantum self-organization occurs, single-particle energies can be self-organized, being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.

  13. Year-2017 nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Pyykkö, Pekka

    2018-05-01

    A 'year-2017' set of nuclear quadrupole moments, Q, is presented. Compared to the previous, 'year-2008' set, a major revision of the value, or an improvement of the accuracy is reported for 21H, 37, 3918Ar, 39, 40, 4119K, 6730Zn, 48Cd, 49In, 50Sn (Mössbauer state), 51Sb, 87Fr and 90Th. Slight improvements or valuable reconfirmations exist for 4Be, 6C, 16S, 17Cl, 33As, 35Br, 53I, 54Xe, 56Ba, 57La and 72Hf.

  14. Identification of the one-quadrupole phonon 2 1 , m s + state of 204Hg

    DOE PAGES

    Stegmann, R.; Stahl, C.; Rainovski, G.; ...

    2017-04-19

    One-phonon states of vibrational nuclei with mixed proton–neutron symmetry have been observed throughout the nuclear chart besides the mass A ≈ 200 region. Very recently, it has been proposed that the 2 + 2 state of 212Po is of isovector nature. This nucleus has two valence protons and two valence neutrons outside the doubly-magic 208Pb nucleus. The stable isotope 204Hg, featuring two valence-proton and valence-neutron holes, with respect to 208Pb, is the particle-hole mirror of 212Po. In order to compare the properties of low-lying isovector excitations in these particle-hole mirror nuclei, we have studied 204Hg by using the projectile Coulomb-excitationmore » technique. The measured absolute B( M1;2 + 2 → 2 + 1) strength of 0.20 (2) μ 2 N indicates that the 2 + 2 level of 204Hg is at least the main fragment of the 2 + 1,ms state. For the first time in this mass region, both lowest-lying, one-quadrupole phonon excitations are established together with the complete set of their decay strengths. In conclusion, this allows for a microscopic description of their structures, achieved in the framework of the Quasi-particle Phonon Model.« less

  15. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  16. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  17. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  18. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  19. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  20. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodesmore » were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.« less

  1. Observation of a quadrupole interaction for cubic imperfections exhibiting a dynamic Jahn-Teller effect.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  4. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  5. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  6. Induced CMB quadrupole from pointing offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris, E-mail: adammoss@phas.ubc.ca, E-mail: dscott@phas.ubc.ca, E-mail: krs@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between themore » pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.« less

  7. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-28

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  8. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  9. Shape coexistence and collective low-spin states in Sn,114112 studied with the (p ,p'γ ) Doppler-shift attenuation coincidence technique

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Petkov, P.; Litvinova, E.; Müller-Gatermann, C.; Pickstone, S. G.; Prill, S.; Scholz, P.; Zilges, A.

    2018-05-01

    Background: The semimagic Sn (Z =50 ) isotopes have been subject to many nuclear-structure studies. Signatures of shape coexistence have been observed and attributed to two-proton-two-hole (2p-2h) excitations across the Z =50 shell closure. In addition, many low-lying nuclear-structure features have been observed which have effectively constrained theoretical models in the past. One example are so-called quadrupole-octupole coupled states (QOC) caused by the coupling of the collective quadrupole and octupole phonons. Purpose: Proton-scattering experiments followed by the coincident spectroscopy of γ rays have been performed at the Institute for Nuclear Physics of the University of Cologne to excite low-spin states in 112Sn and 114Sn to determine their lifetimes and extract reduced transition strengths B (Π L ) . Methods: The combined spectroscopy setup SONIC@HORUS has been used to detect the scattered protons and the emitted γ rays of excited states in coincidence. The novel (p ,p'γ ) Doppler-shift attenuation (DSA) coincidence technique was employed to measure sub-ps nuclear level lifetimes. Results: Seventy-four (74) level lifetimes τ of states with J =0 -6 were determined. In addition, branching ratios were deduced which allowed the investigation of the intruder configuration in both nuclei. Here, s d IBM-2 mixing calculations were added which support the coexistence of the two configurations. Furthermore, members of the expected QOC quintuplet are proposed in 114Sn for the first time. The 1- candidate in 114Sn fits perfectly into the systematics observed for the other stable Sn isotopes. Conclusions: The E 2 transition strengths observed for the low-spin members of the so-called intruder band support the existence of shape coexistence in Sn,114112. The collectivity in this configuration is comparable to the one observed in the Pd nuclei, i.e., the 0p-4h nuclei. Strong mixing between the 0+ states of the normal and intruder configuration might be observed

  10. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  11. Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Wood, J. L.; Yates, S. W.

    2018-06-01

    Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.

  12. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  13. Variable Permanent Magnet Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.; Iwashita, Y.; /Kyoto U.

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four partsmore » and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.« less

  14. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  15. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  16. Microfluidic quadrupole and floating concentration gradient.

    PubMed

    Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David

    2011-09-06

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.

  17. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  18. Skyrme random-phase-approximation description of lowest Kπ=2γ+ states in axially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.

    2016-03-01

    The lowest quadrupole γ -vibrational Kπ=2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B (E 2 ) of 2γ+ states are calculated with the Skyrme forces SV-bas and SkM*. The energies of two-quasiparticle configurations forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift of Eγ by 0.3-0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2γ+ states still persist. It is shown that domains of nuclei with low and high 2γ+ collectivity are related to the structure of the lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2γ+ states with SV-bas and SkM* is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the self-consistent calculation schemes is needed for a systematic satisfactory description of the 2γ+ states.

  19. Depletion of the excited state population in negative ions using laser photodetachment in a gas filled RF quadrupole ion guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindahl, A. O.; Hanstorp, D.; Forstner, Dr. Oliver

    2010-01-01

    The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio-frequency quadrupole ion guide filled with helium. The high-lying, loosely bound {sup 2}D excited state in C{sup -} was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si{sup -} the combined signal from the population in the {sup 2}P and {sup 2}D excited states was only partly depleted through collisions in the cooler. The loosely bound {sup 2}P state was likely to be completely depopulated, and the more tightly bound {supmore » 2}D state was partly depopulated through collisions. 98(2)% of the remaining {sup 2}D population was removed by photodetachment in the cooler using less than 2 W laser power. The total reduction of the excited population in Si{sup -}, including collisional detachment and photodetachment, was estimated to be 99(1)%. Employing this novel technique to produce a pure ground state negative ion beam offers possibilities of enhancing selectivity, as well as accuracy, in high-precision experiments on atomic as well as molecular negative ions.« less

  20. Electric Quadrupole E2- Transitions of 170-174 Yb Isotopes

    NASA Astrophysics Data System (ADS)

    Abu El Sheikh, Mohd Kh. M.; Okhunov, Abdurahim A.; Usmanov, Ph. N.; Hassan, Torla HJ

    2017-12-01

    The non-adiabatic effects which is manifested in the electric properties of low-lying states of even-even deformed nuclei are studied. A simple phenomenological model which takes into account the Coriolis mixing of {K}π ={0}n+,{2}n+ and {K}π ={1}ν + state bands. The Calculations for isotopes 170-174 Yb, are carried out. The reduced probability of electric quadrupole transitions from the states {0}ν + and {2}ν + - bands to the ground (gr) state band is calculated and non adiabatic effect is discussed. The ratio of E2- transitions RIK from {0}2+, {0}3+, {2}1+, and {2}2+ bands are calculated and compared with the experimental data.

  1. Are the low-lying isovector 1 + states scissors vibrations?

    NASA Astrophysics Data System (ADS)

    Faessler, A.

    At the Technische Hochschule in Darmstadt the group of Richter and coworkers found in 1983/84 in deformed rare earth nuclei low-lying isovector 1 + states. Such states have been predicted in the generalized Bohr-Mottelson model and in the interacting boson model no. 2 (IBA2). In the generalized Bohr-Mottelson model one allows for proton and neutron quadrupole deformations separately. If one includes only static proton and neutron deformations the generalized Bohr-Mottelson model reduces to the two rotor model. It describes the excitation energy of these states in good agreement with the data but overestimates the magnetic dipole transition probabilities by a factor 5. In the interacting boson model (IBA2) where only the outermost nucleons participate in the excitation the magnetic dipole transition probability is only overestimated by a factor 2. The too large collectivity in both models results from the fact that they concentrate the whole strength of the scissors vibrations into one state. A microscopic description is needed to describe the spreading of the scissors strength over several states. For a microscopic determination of these scissors states one uses the Quasi-particle Random Phase Approximation (QRPA). But this approach has a serious difficulty. Since one rotates for the calculation the nucleus into the intrinsic system the state corresponding to the rotation of the whole nucleus is a spurious state. The usual procedure to remove this spuriosity is to use the Thouless theorem which says that a spurious state created by an operator which commutes with the total hamiltonian (here the total angular momentum, corresponding to a rotation of the whole system) produces the spurious state if applied to the ground state. It says further the energy of this spurious state lies at zero excitation energy (it is degenerate with the ground state) and is orthogonal to all physical states. Thus the usual approach is to vary the quadrupole-quadrupole force strength so

  2. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  3. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  4. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  5. Use of a Designed Peptide Array To Infer Dissociation Trends for Nontryptic Peptides in Quadrupole Ion Trap and Quadrupole Time-of-Flight Mass Spectrometry

    DOE PAGES

    Gaucher, Sara P.; Morrow, Jeffrey A.; Faulon, Jean-Loup M.

    2007-09-14

    Observed peptide gas-phase fragmentation patterns are a complex function of many variables. In order to systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends weremore » observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. In conclusion, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot.« less

  6. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  7. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor); Brennen, Reid A. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  8. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Chutjian, Ara (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  9. The quadrupole ionosphere

    NASA Technical Reports Server (NTRS)

    Rishbeth, H.

    1986-01-01

    The principal features that might exist in the terrestrial paleoionosphere, if the geomagnetic field were to assume a quadrupole form during a polarity reversal are discussed. Complicated phenomena would be expected to occur at magnetic equators and magnetospherically-driven plasma convection might occur at latitudes where the magnetic field is steeply inclined. The influence of magnetic field strength on ionospheric structure is considered in general terms.

  10. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N 3LO.« less

  11. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  12. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  15. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  16. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  17. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    PubMed

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  18. Continuum Excitation and Pseudospin Wave in Quantum Spin-Liquid and Quadrupole Ordered States of Tb2+xTi2-xO7+y

    NASA Astrophysics Data System (ADS)

    Kadowaki, Hiroaki; Wakita, Mika; Fåk, Björn; Ollivier, Jacques; Ohira-Kawamura, Seiko; Nakajima, Kenji; Takatsu, Hiroshi; Tamai, Mototake

    2018-06-01

    The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition (x = -0.007 < xc ˜ -0.0025), being a putative quantum spin-liquid (QSL), and the other two (x = 0.000,0.003) show electric quadrupole ordering (QO) below Tc ˜ 0.5 K. The QSL sample shows continuum excitation spectra with an energy scale 0.1 meV as well as energy-resolution-limited (nominally) elastic scattering. As x is increased, pseudospin wave of the QO state emerges from this continuum excitation, which agrees with that of powder samples and consequently verifies good x control for the present single crystal samples.

  19. Study of a micro chamber quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jinchan; Zhang Xiaobing; Mao Fuming

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less

  20. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  1. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    NASA Astrophysics Data System (ADS)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  2. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  3. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, D. J.; Block, B. P.; Rubin, M.

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less

  4. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less

  5. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  6. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  7. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  8. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  9. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  10. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    PubMed Central

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  11. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  12. Apparatus using the FARADAY effect to locate the magnetic axis of quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Le Bars, Josette

    1994-07-01

    A development using magneto-optic sensors is underway for the location of the magnetic center of long, small aperture, superconducting quadrupole magnets. The paper will describe the measuring methods and the preliminary results which have been obtained with gradients from 2.5 T/m to 10 T/m. The sensors are made of magneto-optic garnets using the Faraday effect which changes an incident beam of linearly polarized light into a transmitted beam of elliptically polarized light. An optical fiber bundle (phi less than 20 micron) carries the incident light to a polarized film, put above the magneto optic sensor. An analyzer film collects the transmitted light. A second optic fiber bundle carries this light toward a visual (microscope, video camera) or analogic data acquisition system. Furthermore, a level is associated with these crystals to determine the gravity direction. The 'mole' is moving along the axis of a warm bore tube when the magnet is superconducting. The present results are promising for measuring quadrupoles of much higher gradients, up to 100 T/m.

  13. Errors and optics study of a permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Rifuggiato, D.; Cirrone, G. A. P.; Cuttone, G.; Giove, D.

    2015-05-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.

  14. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  15. The quadrupole moments of Cd and Zn isotopes - an apology

    NASA Astrophysics Data System (ADS)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  16. Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I.C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arisemore » from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.« less

  17. Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR.

    PubMed

    Kiyama, Takashi; Itoh, Masayuki

    2003-10-17

    47,49Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/square root of 3(d(xy)+d(yz)+d(zx)) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.

  18. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  19. Collectivity in the light radon nuclei measured directly via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.

    2015-06-01

    Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.

  20. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2017-12-09

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  1. Enhanced collectivity in 12Be

    NASA Astrophysics Data System (ADS)

    Morse, C.; McCutchan, E. A.; Iwasaki, H.; Lister, C. J.; Bader, V. M.; Bazin, D.; Beceiro Novo, S.; Chowdhury, P.; Gade, A.; Johnson, T. D.; Loelius, C.; Lunderberg, E.; Merchan, E.; Prasher, V. S.; Recchia, F.; Sonzogni, A. A.; Weisshaar, D.; Whitmore, K.

    2018-05-01

    Electromagnetic quadrupole transition strength is a sensitive probe of the evolution of the structure of nuclei, particularly the competition between collectivity and magicity. We have performed a new lifetime measurement of the 21+ state of 12Be to study the interplay of these phenomena. The lifetime was measured with the Doppler Shift Attenuation Method using the γ-ray detector GRETINA. Excited states of 12Be were produced via inelastic scattering at 55 MeV/nucleon, using several different targets to control for systematic uncertainties in the stopping powers. The lifetime is determined to be τ = 1.38 ± 0.10(stat) ± 0.19(sys) ps, which is about half the previously reported value at twice the precision. The reduced transition strength deduced from this result is B (E 2 ;21+ → 01+) = 14.2 ± 1.0(stat) ± 2.0(sys) e2fm4, which supports the quenching of the N = 8 shell gap in 12Be.

  2. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  3. Solid-state (127)I NMR and GIPAW DFT study of metal iodides and their hydrates: structure, symmetry, and higher-order quadrupole-induced effects.

    PubMed

    Widdifield, Cory M; Bryce, David L

    2010-10-14

    Central-transition (127)I solid-state nuclear magnetic resonance (SSNMR) spectra are presented for several anhydrous group 2 metal iodides (MgI(2), CaI(2), SrI(2), and BaI(2)), hydrates (BaI(2)·2H(2)O and SrI(2)·6H(2)O), and CdI(2) (4H polytype). Variable offset cumulative spectrum data acquisition coupled with echo pulse sequences and an 'ultrahigh' applied field of 21.1 T were usually suitable to acquire high-quality spectra. Spectral analysis revealed iodine-127 nuclear quadrupole coupling constants (C(Q)((127)I)) ranging in magnitude from 43.5 (CaI(2)) to 214 MHz (one site in SrI(2)). For very large C(Q), analytical second-order perturbation theory could not be used to reliably extract chemical shifts and a treatment which includes quadrupolar effects exactly was required (Bain, A. D. Mol. Phys. 2003, 101, 3163). Differences between second-order and exact modeling allowed us to observe 'higher-order' quadrupole-induced effects for the first time. This finding will have implications for the interpretation of SSNMR spectra of quadrupolar nuclei with large quadrupole moments. In favorable situations (i.e., C(Q)((127)I) < 120 MHz), measurements were also performed at 11.75 T which when combined with the 21.1 T data allowed us to measure iodine chemical shift (CS) tensor spans in the range from 60 (BaI(2)·2H(2)O) to 300 ppm (one site in BaI(2)). These measurements represent the first complete characterizations (i.e., electric field gradient and CS tensors as well as their relative orientation) of noncubic iodide sites using (127)I SSNMR. In select cases, the SSNMR data are supported with (127)I NQR measurements. We also summarize a variety of trends in the halogen SSNMR parameters for group 2 metal halides. Gauge-including projector-augmented wave DFT computations are employed to complement the experimental observations, to predict potential structures for the two hydrates, and to highlight the sensitivity of C(Q)((127)I) to minute structural changes, which has

  4. 34 CFR 300.601 - State performance plans and data collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Monitoring, Technical Assistance, and Enforcement § 300.601 State performance plans and data collection. (a... 34 Education 2 2010-07-01 2010-07-01 false State performance plans and data collection. 300.601... described in § 300.600(d). (b) Data collection. (1) Each State must collect valid and reliable information...

  5. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  6. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  7. 76 FR 19310 - Information Collection; Certified State Mediation Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... DEPARTMENT OF AGRICULTURE Farm Service Agency Information Collection; Certified State Mediation... supports the Certified State Mediation Program. The information collection is necessary to ensure the grant... submit comments by any of the following methods: Mail: Carol Wagner, Certified State Mediation Program...

  8. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  9. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  10. 76 FR 44904 - Agency Information Collection Activities; Proposed Collection; Comment Request; State Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0424; FRL-9443-7] Agency Information Collection Activities; Proposed Collection; Comment Request; State Water Quality Program Management Resource Analysis... is planning to submit a request for a new Information Collection Request (ICR) to the Office of...

  11. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Lloyd A.

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu +/ 65Cu + is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurementsmore » for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr +/ 53Cr + (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr + signal to 0.12% for the ratio of 51V + to 52Cr +. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li + signal becomes apparent. Space charge effects are consistent with the disturbances seen.« less

  12. Quadrupole, octopole, and hexadecapole electric moments of Σ, Π, Δ, and Φ electronic states: Cylindrically asymmetric charge density distributions in linear molecules with nonzero electronic angular momentum

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    2007-08-01

    The number of independent components, n, of traceless electric 2l-multipole moments is determined for C∞v molecules in Σ ±, Π, Δ, and Φ electronic states (Λ=0,1,2,3). Each 2l pole is defined by a rank-l irreducible tensor with (2l+1) components Pm(l) proportional to the solid spherical harmonic rlYml(θ,φ). Here we focus our attention on 2l poles with l =2,3,4 (quadrupole Θ, octopole Ω, and hexadecapole Φ). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Λ. For Σ±(Λ=0) states, all 2l poles have one independent parameter (n=1). For spatially degenerate states—Π, Δ, and Φ (Λ=1,2,3)—the general rule reads n =1 for l <2∣Λ∣ (when the 2l-pole rank lies below 2∣Λ∣) but n =2 for higher 2l poles with l ⩾2∣Λ∣. The second nonzero term is the off-diagonal matrix element ⟨ψ+Λ∣P∣m∣=2Λ(l)∣ψ-Λ⟩. Thus, a Π(Λ =1) state has one dipole (μz) but two independent 2l poles for l ⩾2—starting with the quadrupole [Θzz,(Θxx-Θyy)]. A Δ(Λ =2) state has n =1 for 2(1,2,3) poles (μz,Θzz,Ωzzz) but n =2 for higher 2(l⩾4) poles—from the hexadecapole Φ up. For Φ(Λ =3) states, it holds that n =1 for 21 to 25 poles but n =2 for all 2(l⩾6) poles. In short, what is usually stated in the literature—that n =1 for all possible 2l poles of linear molecules—only applies to Σ± states. For degenerate states with n =2, all Cartesian 2l-pole components (l⩾2∣Λ∣) can be expressed as linear combinations of two irreducible multipoles, Pm=0(l ) and P∣m∣=2Λ(l) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Θ, Ω, and Φ moments calculated for Λ =0-3 states of selected diatomics (in parentheses): XΣ+2(CN ), XΠ2(NO ), aΠu3(C2), XΔ2(NiH ), XΔ3(TiO ), XΦ3(CoF ), and XΦ4(TiF ). States of Π symmetry are most affected by the deviation from axial symmetry.

  13. 42 CFR 457.720 - State plan requirement: State assurance regarding data collection, records, and reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... data collection, records, and reports. 457.720 Section 457.720 Public Health CENTERS FOR MEDICARE... PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES Strategic Planning, Reporting, and Evaluation § 457.720 State plan requirement: State assurance regarding data collection, records, and reports. A State plan...

  14. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  15. Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a

    DOE PAGES

    DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...

    2016-03-09

    The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less

  16. 16 CFR 18.6 - Plants collected from the wild state.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Plants collected from the wild state. 18.6... NURSERY INDUSTRY § 18.6 Plants collected from the wild state. It is an unfair or deceptive act or practice to sell, offer for sale, or distribute industry products collected from the wild state without...

  17. 16 CFR 18.6 - Plants collected from the wild state.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Plants collected from the wild state. 18.6... NURSERY INDUSTRY § 18.6 Plants collected from the wild state. It is an unfair or deceptive act or practice to sell, offer for sale, or distribute industry products collected from the wild state without...

  18. 16 CFR 18.6 - Plants collected from the wild state.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Plants collected from the wild state. 18.6... NURSERY INDUSTRY § 18.6 Plants collected from the wild state. It is an unfair or deceptive act or practice to sell, offer for sale, or distribute industry products collected from the wild state without...

  19. 16 CFR 18.6 - Plants collected from the wild state.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Plants collected from the wild state. 18.6... NURSERY INDUSTRY § 18.6 Plants collected from the wild state. It is an unfair or deceptive act or practice to sell, offer for sale, or distribute industry products collected from the wild state without...

  20. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  1. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  2. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  3. The nuclear quadrupole coupling constants and the structure of the para-para ammonia dimer

    NASA Astrophysics Data System (ADS)

    Heineking, N.; Stahl, W.; Olthof, E. H. T.; Wormer, P. E. S.; van der Avoird, A.; Havenith, M.

    1995-06-01

    Expressions are derived for the nuclear quadrupole splittings in the E3 and E4 (para-para) states of (NH3)2 and it is shown that these can be matched with the standard expressions for rigid rotors with two identical quadrupolar nuclei. The matching is exact only when the off-diagonal Coriolis coupling is neglected. However, the selection rules for rotational transitions are just opposite to those for the rigid rotor. Hyperfine splittings are measured for the J=2←1 transitions in the E3 and E4 states with ‖K‖=1; the quadrupole coupling constants χaa=0.1509(83) MHz and χbb-χcc=2.8365(83) MHz are extracted from these measurements by the use of the above mentioned correspondence with the rigid rotor expressions. The corresponding results are also calculated, with and without the Coriolis coupling, from the six-dimensional vibration-rotation-tunneling (VRT) wave functions of (NH3)2, which were previously obtained by Olthof et al. [E.H.T. Olthof, A. van der Avoird, and P.E.S. Wormer, J. Chem. Phys. 101, 8430 (1994)]. From the comparison of χaa with the measured value it follows that the semiempirical potential and the resulting VRT states of Olthof et al. are very accurate along the interchange (ϑA,ϑB) coordinate. From χbb-χcc it follows that this potential is probably too soft in the dihedral angle γ¯=γA-γB, which causes the torsional amplitude to be larger than derived from the experiment.

  4. 40Ar/36Ar geochronology on a quadrupole mass spectrometer: Where are we going?

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Wijbrans, J. R.; Kuiper, K. F.; Fenton, C. R.; Williams, A. J.

    2009-04-01

    40Ar/39Ar analysis has passed many milestones since its first application (Wänke & König, 1959). From the early all-glass Reynolds-type vacuum system to today's high quality, bakeable all-metal piping and valve systems, the evolution of ultra high vacuum systems has been considerable. Extraction systems have faced similar changes over time. Early furnaces made partially of glass were later replaced by full metal constructs containing a high temperature resistant molybdenum alloy tube and heating mechanism, sometimes contained within an insulating secondary vacuum chamber. Laser extraction techniques further refined the approach allowing very small samples or sample parts to be analyzed. The principal type of mass spectrometer used for 40Ar/36Ar geochronology is the magnetic sector instrument, which has the resolution and sensitivity necessary for measuring argon isotopes and achieving high precision over a large age range. We present 40Ar/39Ar data from basalt samples collected from a number of different locations, all obtained using the Hiden HAL Series 1000 quadrupole mass spectrometer at Vrije University, Amsterdam. We show that quadrupole technology is not only a viable option in K-Ar geochronology (Rouchon et al., 2008) but also in 40Ar/39Ar geochronology. The data was obtained from groundmass hand-picked from 200-500 um size fractions. Sample amounts of 200 to 500 mg were used for incremental heating experiments. The quality of the data is demonstrated by convergence of plateau and isochron ages, replicate analyses and by comparison to results of independent studies. Sample ages range from 40 ka to 400 ka, demonstrating the potential of quadrupole instruments for dating even very young rocks using the 40Ar/39Ar incremental heating technique. Rouchon, V., Lefevre, J.-C., Quidelleur, X., Guerin, G., Gillot, P.-Y. (2008): Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: A potential for K-Ar geochronology. International Journal of

  5. 76 FR 58496 - Agency Information Collection Activities; Proposed Collection; Comment Request; State Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Activities; Proposed Collection; Comment Request; State Program Adequacy Determination: Municipal Solid Waste... States. Title: State Program Adequacy Determination: Municipal Solid Waste Landfills (MSWLFs) and Non... 4004(a) and Section 1008(a)(3). Section 4005(c) of RCRA, as amended by the Hazardous Solid Waste...

  6. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such asmore » lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.« less

  7. States' Budgets Reflect Rising Tax Collections

    ERIC Educational Resources Information Center

    Hoff, David J.

    2005-01-01

    Many state budgets are reaping the benefits of tax revenues that are rising faster than at any time since the economic slowdown ended. Overall tax collections by states rose by 11.7 percent in the first quarter of 2005, giving the legislatures extra cash to shore up school aid, increase teacher pay, and finance new initiatives such as full-day…

  8. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  9. The MQXA quadrupoles for the LHC low-beta insertions

    NASA Astrophysics Data System (ADS)

    Ajima, Y.; Higashi, N.; Iida, M.; Kimura, N.; Nakamoto, T.; Ogitsu, T.; Ohhata, H.; Ohuchi, N.; Shintomi, T.; Sugawara, S.; Sugita, K.; Tanaka, K.; Taylor, T.; Terashima, A.; Tsuchiya, K.; Yamamoto, A.

    2005-09-01

    High-performance superconducting quadrupole magnets, MQXA, for the LHC low-beta insertions have been designed, manufactured in series and tested. The design field gradient of the quadrupole, which has a coil aperture of diameter 70 mm, was 240 T/m at 1.9 K; its effective length is 6.37 m, and it is required to operate reliably at up to 215 T/m when subjected to radiation heat deposit in the coils of up to 5 W/m. The series of 20 magnets has been produced in industry, and tested at KEK. The magnet design is explained, and the construction and performance of the series units, in terms of training, field quality and geometry, are presented.

  10. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  11. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  12. Magnetic quench antenna for MQXF quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  13. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  14. Transverse-rapidity yt dependence of the nonjet azimuth quadrupole from 62- and 200-GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David T.; Prindle, Duncan J.; Trainor, Thomas A.

    2015-06-01

    Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a "perfect liquid" is formed in heavy-ion collisions at the Relativistic Heavy Ion Collider. However, conventional v2 methods based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution. In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted by v2{2D} . We establish systematic variations of the NJ quadrupole on yt, centrality, and collision energy. We adopt transverse-rapidity yt as both a velocity measure and a logarithmic alternative to transverse momentum pt. Based on NJ-quadrupole trends, we derive a completely factorized universal parametrization of quantity v2{2D} (yt,b ,√{sN N}) which describes the centrality, yt, and energy dependence. From yt-differential v2(yt) data we isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appears to be uncorrelated with a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole trends have interesting implications for hydro interpretations.

  15. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  16. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    DOE PAGES

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick; ...

    2015-06-19

    The mission of the United States Culture Collection Network (USCCN;http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Here, representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  17. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    PubMed Central

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R.; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.

    2015-01-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. PMID:26092453

  18. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick

    The mission of the United States Culture Collection Network (USCCN;http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Here, representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  19. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boundy-Mills, K.; Hess, Matthias; Bennett, A. R.

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  20. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  1. 34 CFR 300.601 - State performance plans and data collection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true State performance plans and data collection. 300.601... Monitoring, Technical Assistance, and Enforcement § 300.601 State performance plans and data collection. (a) General. Not later than December 3, 2005, each State must have in place a performance plan that evaluates...

  2. Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO

    NASA Astrophysics Data System (ADS)

    Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.

    2002-03-01

    The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.

  3. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  4. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  5. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J., E-mail: Jieliu@aps.anl.gov; Jaski, M., E-mail: jaski@aps.anl.gov; Borland, M., E-mail: borland@aps.anl.gov

    2016-07-27

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based onmore » the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.« less

  6. Simulation of Thermographic Responses of Delaminations in Composites with Quadrupole Method

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.; Cramer, K. Elliott

    2016-01-01

    The application of the quadrupole method for simulating thermal responses of delaminations in carbon fiber reinforced epoxy composites materials is presented. The method solves for the flux at the interface containing the delamination. From the interface flux, the temperature at the surface is calculated. While the results presented are for single sided measurements, with ash heating, expansion of the technique to arbitrary temporal flux heating or through transmission measurements is simple. The quadrupole method is shown to have two distinct advantages relative to finite element or finite difference techniques. First, it is straight forward to incorporate arbitrary shaped delaminations into the simulation. Second, the quadrupole method enables calculation of the thermal response at only the times of interest. This, combined with a significant reduction in the number of degrees of freedom for the same simulation quality, results in a reduction of the computation time by at least an order of magnitude. Therefore, it is a more viable technique for model based inversion of thermographic data. Results for simulations of delaminations in composites are presented and compared to measurements and finite element method results.

  7. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  8. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections.

    PubMed

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A; Inderbitzin, Patrik; Sitepu, Irnayuli R; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E; Mukherjee, Supratim; Cady, Sherry L; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. 16 CFR 18.6 - Plants collected from the wild state.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NURSERY INDUSTRY § 18.6 Plants collected from the wild state. It is an unfair or deceptive act or practice... nurseries from plants lawfully collected from the wild state may be designated as “nursery-propagated...

  10. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  11. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    NASA Astrophysics Data System (ADS)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  12. MQXFS1 Quadrupole Fabrication Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Anerella, M.; Bossert, R.

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  13. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  14. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  15. Search for Quadrupole Strength in the Electroexcitation of the Delta+ (1232)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Mertz; C. Vellidis; Ricardo Alarcon

    2001-04-01

    High precision 1H(e, e'p)pi0 measurements at Q2 = 0.126. (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N --> Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole (I = 3/2) amplitude ratios, RSM = (-6.5 +/- 0.2stat+sys+/-2.5mod)% and REM = 9-2.1 +/-0.2stat+sys +/-2.0mod)%, are dominated by model error. Previous RSM and REM results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

  16. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  17. GRID and Multiphonon States

    PubMed Central

    Robinson, S. J.

    2000-01-01

    The development of the GRID technique for determining nuclear level lifetimes of excited low-spin states populated in thermal neutron capture reactions has resulted in the ability to perform detailed studies of proposed multiphonon excitations for the first time. This paper discusses the experimental evidence for multiphonon excitations determined using the GRID technique. In deformed nuclei several good examples of γγKπ = 4+ excitations have been established, whereas the experimental evidence gathered on Kπ= 0+ bands is contradictory, and any interpretations will likely involve the mixing of several different configurations. In vibrational nuclei the GRID technique has helped to establish the existence of multiple quadrupole phonon excitations in 114Cd, and an almost complete set of quadrupole-octupole coupled states in 144Nd. PMID:27551594

  18. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization

    PubMed Central

    2015-01-01

    Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins. PMID:25208235

  19. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa 5

    DOE PAGES

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; ...

    2016-10-10

    PuCoGa 5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (T c ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa 5, concentrating on the system's normal state properties near to T c and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographicallymore » inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn 5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  20. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Bianco, L.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Triambak, S.; Wong, J.; Wood, J. L.; Yates, S. W.

    2011-10-01

    The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam γ spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics β decay using the 8π spectrometer at the TRIUMF radioactive beam facility. The decays of 112In and 112Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0+ or 2+ three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0+ and 2+ states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.

  1. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  2. Reexamining the nuclear structure of 154Gd in the dynamic pairing plus quadrupole model

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.; Hamilton, J. H.

    2017-05-01

    In a previous study of the collective multiphonon bands in 154Gd, using the microscopic dynamic pairing plus quadrupole model, data for eight K bands were analyzed. In the last four decades, its decay scheme is significantly revised and the nuclear theory has undergone a significant change. Special focus is on new weak intensity transitions in several bands and on the reassigned levels in its decay scheme. The present study represents a detailed revised analysis of the collective even parity bands below 2.1 MeV. Also, a discussion is given on the nature of the Kπ=0+ excited bands, validity of band mixing approach, and of the assumption of shape coexistence of β band with ground band. Comparison is made with the X (5) analytical symmetry and the algebraic interacting boson model predictions. Discussion of the 2 n transfer reactions is given. The validity of the multiphonon view of the Kπ=4+ and 22+ bands is also studied.

  3. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  4. How State Departments of Education Influence Collective Bargaining and Employee Strike Actions.

    ERIC Educational Resources Information Center

    Stevens, Dwight M.

    There is little question that state agencies can have a great deal of influence on collective bargaining. In many states, state departments of education have been actively involved in supporting, proposing, amending, or resisting collective bargaining legislation. State departments ought to come up with answers for streamlining laws and advancing…

  5. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classicalmore » electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.« less

  6. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  7. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  8. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less

  9. Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzdensky, Dmitri A.; Kulsrud, Russell M.

    2006-06-15

    A quadrupole pattern of the out-of-plane component of the magnetic field inside a reconnection region is seen as an important signature of the Hall-magnetohydrodynamic regime of reconnection. It has been first observed in numerical simulations and just recently confirmed in the Magnetic Reconnection Experiment [Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsin, Phys. Rev. Lett. 95, 055003 (2005)] and also seen in spacecraft observations of Earth's magnetosphere. In this study, the physical origin of the quadrupole field is analyzed and traced to a current of electrons that flows along the lines in and out ofmore » the inner reconnection region to maintain charge neutrality. The role of the quadrupole magnetic field in the overall dynamics of the reconnection process is discussed. In addition, the bipolar poloidal electric field is estimated and its effect on ion motions is emphasized.« less

  10. Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-10-01

    A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni x (NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2-4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.

  11. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  12. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  13. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  14. Monitoring protein glycation by electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) mass spectrometer.

    PubMed

    Akıllıoğlu, H Gül; Çelikbıçak, Ömür; Salih, Bekir; Gökmen, Vural

    2017-02-15

    In this study electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometry was used to investigate protein glycation. The glycated species of cytochrome C, lysozyme, and β-casein formed during glycation with d-glucose were identified and monitored in binary systems heated at 70°C under dry and aqueous conditions. Cytochrome C had multiple charges in non-glycated state, primarily changing from +13 to +17 positive charges, whereas β-casein had charge states up to +30. Upon heating with glucose at 70°C in aqueous state, attachment of one glucose molecule onto proteins was observed in each charge state. However, heating in dry state caused much more glucose attachment, leading to the formation of multiple glycoforms of proteins. By using ESI-QTOF-MS technique, formation of glycated cytochrome C containing up to 12 glucose moieties were observed, while glycated species containing 6 and 8 glucose moieties were observed for lysozyme and β-casein, respectively in various heating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  16. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  17. AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.

    1986-01-01

    In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.

  18. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  20. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  1. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  2. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  3. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, J. G.; Cremaldi, L. M.; Hart, T. L.

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittancemore » is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.« less

  4. Development of a radio-frequency quadrupole cooler for high beam currents

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  5. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  6. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  7. Manifestation of a strong quadrupole interaction and peculiarities in the SERS and SEHRS spectra of 4,4'-bipyridine

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Polubotko, A. M.

    2017-07-01

    The paper analyzes Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Hyper Raman Scattering (SEHRS) spectra of 4,4'-bypiridine molecule for two possible geometries, which are described by D 2 and D 2 h symmetry groups. It is pointed out on appearance of sufficiently strong lines, caused by vibrations with the unit irreducible representation for both possible configurations. Appearance of these lines in the SEHRS spectrum points out the existence of a strong quadrupole light-molecule interaction. In addition one observes the lines, caused by vibrations both with the unit irreducible representations A or A g and the irreducible representation B 1 or B 1 u . The last ones describe transformational properties of the d z component of the dipole moment, which is perpendicular to the surface. This property of the spectrum is caused by peculiarity of the geometry of the molecule, which consists of two benzene rings, which are weakly connected with each other. The linear combinations of the vibrations of the rings create two nearly degenerated symmetric and anti symmetrical states, which cannot be identified in the experimental spectra. The result is in a full agreement with the dipole-quadrupole theory of SERS and SEHRS.

  8. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  9. 76 FR 5070 - Offset of Tax Refund Payments To Collect Delinquent State Unemployment Compensation Debts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Payments To Collect Delinquent State Unemployment Compensation Debts AGENCY: Financial Management Service... (referred to as ``tax refund offset'') to collect delinquent State unemployment compensation debts. The Department of the Treasury (Treasury) will incorporate the procedures necessary to collect State unemployment...

  10. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  11. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  12. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  13. Detection of Quadrupole Interactions by Muon Level Crossing Resonance

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    1992-02-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and

  14. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of bothmore » tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.« less

  15. The quadrupole model for rigid-body gravity simulations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2013-07-01

    We introduce two new models for gravitational simulations of systems of non-spherical bodies, such as comets and asteroids. In both models, one body (the "primary") may be represented by any convenient means, to arbitrary accuracy. In our first model, all of the other bodies are represented by small gravitational "molecules" consisting of a few point masses, rigidly linked together. In our second model, all of the other bodies are treated as point quadrupoles, with gravitational potentials including spherical harmonic terms up to the third degree (rather than only the first degree, as for ideal spheres or point masses). This quadrupole formulation may be regarded as a generalization of MacCullagh's approximation. Both models permit the efficient calculation of the interaction energy, the force, and the torque acting on a small body in an arbitrary external gravitational potential. We test both models for the cases of a triaxial ellipsoid, a rectangular parallelepiped, and "duplex" combinations of two spheres, all in a point-mass potential. These examples were chosen in order to compare the accuracy of our technique with known analytical results, but the ellipsoid and duplex are also useful models for comets and asteroids. We find that both approaches show significant promise for more efficient gravitational simulations of binary asteroids, for example. An appendix also describes the duplex model in detail.

  16. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    PubMed

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. Octupole deformations in high-K isomeric states of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Walker, P. M.

    2016-01-01

    We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS) pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  18. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  19. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  20. a Fascinating Two-Photon Process: Magnetically Induced Quadrupole Second Harmonic Genaration

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masahiro

    1990-10-01

    After a short prologue, recalling the memory of the first meeting with Professor Bloembergen, the author reviews a topic of a second harmonic generation in centrosymmetric medium, that is, magnetically induced quadrupole SHG. A pictorial description of the process is presented together with a few suggestions for future experiment.

  1. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  2. Preliminary Design of the Vacuum System for FAIR Super FRS Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Akhter, J.; Pal, G.; Datta, A.; Sarma, P. R.; Bhunia, U.; Roy, S.; Bhattacharyya, S.; Nandi, C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The Super-Conducting Fragment Separator (Super FRS) of the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large-acceptance superonducting fragment separator. The separator consists of large dipole, quadrupole and hexapole superconducting magnets. The long quadrupole magnet cryostat houses the helium chamber, which has the magnet iron and NbTi superconducting coil. The magnet weighs about 30 tons. The helium chamber is enclosed in vacuum inside the magnet cryostat. Multilayer Insulation (MLI) will be wrapped around the thermal shield to reduce radiation loss. Polyster of MLI comprises the major component responsible for outgassing. In order to reduce outgassing, pumping at elevated temperatures has to be carried out. In view of the large size and weight of the magnet, a seal off approach might not be operationally feasible. Continuous pumping of the cryostat has also been examined. Pump has been kept at a distance from the magnet considering the effect of stray magnetic fields. Oil free turbo molecular pump and scroll pump combination will be used to pump down the cryostat. The ultimate heat load of the cryostat will be highly dependent on the pressure attained. Radiation and conduction plays an important role in the heat transfer at low temperatures. This paper presents the vacuum design of the long quadrupole magnet cryostat and estimates the heat load of the cryostat.

  3. States Eye Curbs on Collective Bargaining by Teachers

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2011-01-01

    First it was changes to pay, then evaluation systems, and then tenure laws. Now, lawmakers in several states are challenging collective bargaining, the foundation of teacher unionism. Leaders in Idaho, Indiana, and Tennessee are proposing bills that would limit what, if anything, teachers' unions could negotiate. None of the proposals has yet…

  4. Searching for a 4 α linear-chain structure in excited states of 16O with covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Itagaki, N.; Meng, J.

    2014-11-01

    A study of the 4 α linear-chain structure in high-lying collective excitation states of 16O with covariant density functional theory is presented. The low-spin states are obtained by configuration mixing of particle-number and angular-momentum projected quadrupole deformed mean-field states with the generator coordinate method. The high-spin states are determined by cranking calculations. These two calculations are based on the same energy density functional PC-PK1. We have found a rotational band at low spin with the dominant intrinsic configuration considered to be the one whereby 4 α clusters stay along a common axis. The strongly deformed rod shape also appears in the high-spin region with the angular momentum 13 ℏ to18 ℏ ; however, whether the state is a pure 4 α linear chain is less obvious than for the low-spin states.

  5. Collectivity of light Ge and As isotopes

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Delaroche, J.-P.; Obertelli, A.; Baugher, T.; Bazin, D.; Boissinot, S.; Flavigny, F.; Gade, A.; Girod, M.; Glasmacher, T.; Grinyer, G. F.; Korten, W.; Libert, J.; Ljungvall, J.; McDaniel, S.; Ratkiewicz, A.; Signoracci, A.; Stroberg, R.; Sulignano, B.; Weisshaar, D.

    2013-10-01

    Background: The self-conjugate nuclei of the A˜70 mass region display rapid shape evolution over isotopic or isotonic chains. Shape coexistence has been observed in Se and Kr isotopes reflecting the existence of deformed subshell gaps corresponding to different shell configurations. As and Ge isotopes are located halfway between such deformed nuclei and the Z=28 shell closure.Purpose: The present work aims at clarifying the low-lying spectroscopy of 66Ge and 67As, and providing a better insight into the evolution of collectivity in light even-even Ge and even-odd As isotopes.Methods: We investigate the low-lying levels and collectivity of the neutron deficient 67As and 66Ge through intermediate-energy Coulomb excitation, inelastic scattering, and proton knockout measurements. The experiment was performed using a cocktail beam of 68Se, 67As, and 66Ge nuclei at an energy of 70-80 MeV/nucleon. Spectroscopic properties of the low-lying states are compared to those calculated via shell model with the JUN45 interaction and beyond-mean-field calculations with the five-dimensional collective Hamiltonian method implemented using the Gogny D1S interaction. The structure evolution of the lower-mass Ge and As isotopes is discussed.Results: Reduced electric quadrupole transition probabilities B(E2) have been extracted from the Coulomb-excitation cross sections measured in 66Ge and 67As. The value obtained for the B(E2;01+→21+) in 66Ge is in agreement with a recent measurement, ruling out the existence of a minimum at N=34 in the B(E2) systematics as previously observed. New transitions have been found in 67As and were assigned to the decay of low-lying negative-parity states.

  6. Generation of Werner states via collective decay of coherently driven atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Girish S.; Kapale, Kishore T.

    2006-02-15

    We show deterministic generation of Werner states as a steady state of the collective decay dynamics of a pair of neutral atoms coupled to a leaky cavity and strong coherent drive. We also show how the scheme can be extended to generate a 2N-particle analogue of the bipartite Werner states.

  7. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  8. Single-particle and collective excitations in Ni 62

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf 7/2 and νg 9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg( 48Ca,2α4nγ) 62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Asmore » a result, two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f 7/2 protons and g 9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  9. Single-particle and collective excitations in Ni 62

    DOE PAGES

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; ...

    2016-09-01

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf 7/2 and νg 9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg( 48Ca,2α4nγ) 62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Asmore » a result, two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f 7/2 protons and g 9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  10. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  11. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions.

    PubMed

    Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E

    2007-07-19

    Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.

  12. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  13. Dipole-quadrupole dynamics during magnetic field reversals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gissinger, Christophe

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less

  14. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  15. 77 FR 14854 - 30-Day Notice of Proposed Information Collection: Department of State Acquisition Regulation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... DEPARTMENT OF STATE [Public Notice: 7823] 30-Day Notice of Proposed Information Collection... for public comment and submission to OMB of proposed collection of information. SUMMARY: The Department of State has submitted the following information collection request to the Office of Management...

  16. Three-photon Gaussian-Gaussian-Laguerre-Gaussian excitation of a localized atom to a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  17. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (quadrupole contained not only protonated molecules from mometasone, but also PPG interference. At enhanced resolution only selected mometasone peaks were transmitted, and no interference from PPG was detected. Sensitivity of the instrument was demonstrated with 10 femtograms of descarboethoxyloratadine injected on-column, for which a signal-to-noise (S/N) ratio of 24 was obtained for MRM chromatograms at both unit and enhanced resolution. Absolute signals obtained at enhanced resolution were about one-third those obtained at unit mass resolution. However, S/N was maintained at enhanced resolution due to the proportional decrease in noise level. Finally, the stability of the instrument operating at enhanced resolution was demonstrated during an overnight 17 h period that was used to validate a liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for

  18. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  19. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  20. Characterization of the ELIMED prototype permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  1. High-Power Collective Charging of a Solid-State Quantum Battery

    NASA Astrophysics Data System (ADS)

    Ferraro, Dario; Campisi, Michele; Andolina, Gian Marcello; Pellegrini, Vittorio; Polini, Marco

    2018-03-01

    Quantum information theorems state that it is possible to exploit collective quantum resources to greatly enhance the charging power of quantum batteries (QBs) made of many identical elementary units. We here present and solve a model of a QB that can be engineered in solid-state architectures. It consists of N two-level systems coupled to a single photonic mode in a cavity. We contrast this collective model ("Dicke QB"), whereby entanglement is genuinely created by the common photonic mode, to the one in which each two-level system is coupled to its own separate cavity mode ("Rabi QB"). By employing exact diagonalization, we demonstrate the emergence of a quantum advantage in the charging power of Dicke QBs, which scales like √{N } for N ≫1 .

  2. 77 FR 69650 - Agency Information Collection Activities: Holders or Containers Which Enter the United States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Activities: Holders or Containers Which Enter the United States Duty Free AGENCY: U.S. Customs and Border... information collection requirement concerning the Holders or Containers which Enter the United States Duty... concerning the following information collection: Title: Holders or Containers which Enter the United States...

  3. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  4. In-beam spectroscopy of medium- and high-spin states in Ce 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayangeakaa, A. D.; Garg, U.; Petrache, C. M.

    2016-05-01

    Medium and high-spin states in Ce-133 were investigated using the Cd-116(Ne-22, 5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of similar to 22.8 MeV and spin 93/2 (h) over bar. Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that allmore » observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus.« less

  5. Quadrupole ion traps and trap arrays: geometry, material, scale, performance.

    PubMed

    Ouyang, Z; Gao, L; Fico, M; Chappell, W J; Noll, R J; Cooks, R G

    2007-01-01

    Quadrupole ion traps are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion traps (LITs) and the simplified rectilinear ion trap (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-traps. The performance of instruments containing individual traps as well as arrays of traps of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, trap arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual traps acts collectively as a composite trap to increase trapping capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.

  6. Quench Protection of SC Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  7. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  8. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  10. Deterministic Squeezed States with Collective Measurements and Feedback.

    PubMed

    Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K

    2016-03-04

    We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5}  atoms. This is one of the largest reported entanglement enhancements to date in any system.

  11. Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles

    NASA Astrophysics Data System (ADS)

    Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick

    2017-06-01

    The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.

  12. Local correction of quadrupole errors at LHC interaction regions using action and phase jump analysis on turn-by-turn beam position data

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando; García Bonilla, Alba Carolina; Tomás García, Rogelio

    2017-11-01

    This article shows that the effect of all quadrupole errors present in an interaction region with low β * can be modeled by an equivalent magnetic kick, which can be estimated from action and phase jumps found on beam position data. This equivalent kick is used to find the strengths that certain normal and skew quadrupoles located on the IR must have to make an effective correction in that region. Additionally, averaging techniques to reduce noise on beam position data, which allows precise estimates of equivalent kicks, are presented and mathematically justified. The complete procedure is tested with simulated data obtained from madx and 2015-LHC experimental data. The analyses performed in the experimental data indicate that the strengths of the IR skew quadrupole correctors and normal quadrupole correctors can be estimated within a 10% uncertainty. Finally, the effect of IR corrections in the β* is studied, and a correction scheme that returns this parameter to its designed value is proposed.

  13. Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijnen, R. M. W. van; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1; Parker, N. G.

    We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onsetmore » of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.« less

  14. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulatingmore » hardedge nonlinear fringe effects in quadrupoles.« less

  15. 78 FR 23903 - Proposed Information Collection; Comment Request; Quarterly Summary of State and Local Government...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Quarterly Summary of State and Local Government Tax Revenue, using the F-71 (Quarterly Survey of Property Tax Collections), F-72 (Quarterly Survey of State Tax Collections), and F-73 (Quarterly Survey of Non... data for individual states. The information contained in this survey is the most current information...

  16. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  17. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less

  18. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: I. How much of the data is theoretically interpretable by search engines?

    PubMed

    Chalkley, Robert J; Baker, Peter R; Hansen, Kirk C; Medzihradszky, Katalin F; Allen, Nadia P; Rexach, Michael; Burlingame, Alma L

    2005-08-01

    An in-depth analysis of a multidimensional chromatography-mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight (QqTOF) geometry instrument was carried out. A total of 3269 CID spectra were acquired. Through manual verification of database search results and de novo interpretation of spectra 2368 spectra could be confidently determined as predicted tryptic peptides. A detailed analysis of the non-matching spectra was also carried out, highlighting what the non-matching spectra in a database search typically are composed of. The results of this comprehensive dataset study demonstrate that QqTOF instruments produce information-rich data of which a high percentage of the data is readily interpretable.

  19. 3. Historic American Buildings Survey California State Library Collection Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey California State Library Collection Sacramento Co. History Thompson & West Sketch of 1880 Rephoto 1960 NORTHEAST CORNER - B. F. Hastings Bank Building, 128-132 J Street, Sacramento, Sacramento County, CA

  20. A note on the electric quadrupole and higher electric moments of ozone (O3)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2012-02-01

    We have obtained accurate ab initio and density functional theory values for the quadrupole, octopole and hexadecapole electric moments of the cyclic and open forms of ozone. Our best values have been calculated at the coupled cluster level of theory with molecule-specific basis sets. For the quadrupole moment (Θαβ/ea02) they are Θyy = -1.366 (cyclic), Θxx = -1.202, Θyy = 1.426 and Θxx = -0.223 (open). For the octopole (Ωαβγ/ea03) and hexadecapole (Φαβγδ/ea04) moments our best results are Ωzzz = 2.25, Φyyyy = 19.53 (cyclic), Ωxxz = 3.28, Ωzzz = -2.97, Φxxxx = -6.00, Φyyyy = -3.90 and Φzzzz = -3.54 (open).

  1. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Bird collections in the United States and Canada: Addenda and corrigenda

    USGS Publications Warehouse

    Clench, M.H.; Banks, R.C.; Barlow, J.C.

    1976-01-01

    Since publication of our report on the avian collections in the United States and Canada (Banks, Clench, and Barlow 1973, Auk 90: 136- 170) several changes and additions have come to our attention. In some cases, recent curatorial work has resulted in more accurate counts to replace previous estimates. Other collections have grown markedly in the last few years. Some important private or institutional collections have been transferred to other jurisdictions. Finally, we have received a few completely new reports from collections that were unknown to us or that were unresponsive to our original requests for information.

  3. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  4. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  5. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolicmore » acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.« less

  6. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    PubMed

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  7. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $$Nb_3Sn$$ Quadrupole for the High-Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, S.; et al.

    The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less

  8. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  9. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  10. 77 FR 47501 - Applications for New Awards; Technical Assistance on State Data Collection, Analysis, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Awards; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood Longitudinal Data Systems; Notice #0;#0;Federal Register / Vol. 77 , No... for New Awards; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA...

  11. Design of an rf quadrupole for Landau damping

    NASA Astrophysics Data System (ADS)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  12. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  13. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  14. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  15. 78 FR 22253 - Agency Information Collection Activities; Comment Request; IDEA Part C State Performance Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... DEPARTMENT OF EDUCATION [Docket No. ED-2013-ICCD-0048] Agency Information Collection Activities; Comment Request; IDEA Part C State Performance Plan (SPP) and Annual Performance Report (APR) AGENCY... to this notice will be considered public records. Title of Collection: IDEA Part C State Performance...

  16. 78 FR 22251 - Agency Information Collection Activities; Comment Request; IDEA Part B State Performance Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... DEPARTMENT OF EDUCATION [Docket No.: ED-2013-ICCD-0047] Agency Information Collection Activities; Comment Request; IDEA Part B State Performance Plan (SPP) and Annual Performance Report (APR) AGENCY... in response to this notice will be considered public records. Title of Collection: IDEA Part B State...

  17. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    DTIC Science & Technology

    2015-08-11

    location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling

  18. 78 FR 53478 - Proposed Information Collection; United States Park Police Personal History Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ...] Proposed Information Collection; United States Park Police Personal History Statement AGENCY: National Park... Police Personal History Statement) to collect detailed personal history information from applicants... information, including financial data and residence history. Selective Service information and military data...

  19. Collective Narcissism: Americans Exaggerate the Role of Their Home State in Appraising U.S. History.

    PubMed

    Putnam, Adam L; Ross, Morgan Q; Soter, Laura K; Roediger, Henry L

    2018-06-01

    Collective narcissism-a phenomenon in which individuals show excessively high regard for their own group-is ubiquitous in studies of small groups. We examined how Americans from the 50 U.S. states ( N = 2,898) remembered U.S. history by asking them, "In terms of percentage, what do you think was your home state's contribution to the history of the United States?" The mean state estimates ranged from 9% (Iowa) to 41% (Virginia), with the total contribution for all states equaling 907%, indicating strong collective narcissism. In comparison, ratings provided by nonresidents for states were much lower (but still high). Surprisingly, asking people questions about U.S. history before they made their judgment did not lower estimates. We argue that this ethnocentric bias is due to ego protection, selective memory retrieval processes involving the availability heuristic, and poor statistical reasoning. This study shows that biases that influence individual remembering also influence collective remembering.

  20. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  1. What Data Do States Collect Related to School Nurses, School Health, and the Health Care Provided?

    ERIC Educational Resources Information Center

    Selekman, Janice; Wolfe, Linda C.; Cole, Marjorie

    2016-01-01

    School nurses collect data to report to their school district and state agencies. However, there is no national requirement or standard to collect specific data, and each state determines its own set of questions. This study resulted from a joint resolution between the National Association of State School Nurse Consultants and the National…

  2. Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    NASA Astrophysics Data System (ADS)

    Xia, S. Y.; Tao, H.; Lu, Y.; Li, Z. P.; Nikšić, T.; Vretenar, D.

    2017-11-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and transition rates in 14 isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ -interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and nonrelativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.

  3. Medical collections in public libraries of the United States: a brief historical study.

    PubMed Central

    Wannarka, M

    1968-01-01

    During the late nineteenth and early twentieth centuries, it was not unusual for a public library in the United States to include a collection of medical books among its resources. The origin and development of these collections, the growth of the movement, and the factors which contributed to the eventual withdrawal of these collections from the public library are recounted here. PMID:4951139

  4. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  5. 31 CFR 598.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Administrative collection; referral to United States Department of Justice. 598.705 Section 598.705 Money and Finance: Treasury... TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS Penalties § 598.705 Administrative collection...

  6. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies.

    PubMed

    Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L

    2018-05-28

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.

  7. [Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry].

    PubMed

    Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi

    2014-06-01

    A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.

  8. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effectsmore » of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.« less

  9. 31 CFR 598.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Administrative collection; referral to United States Department of Justice. 598.705 Section 598.705 Money and Finance: Treasury Regulations... FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS Penalties § 598.705 Administrative collection; referral to...

  10. 31 CFR 598.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Administrative collection; referral to United States Department of Justice. 598.705 Section 598.705 Money and Finance: Treasury Regulations... FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS Penalties § 598.705 Administrative collection; referral to...

  11. 31 CFR 598.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Administrative collection; referral to United States Department of Justice. 598.705 Section 598.705 Money and Finance: Treasury Regulations... FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS Penalties § 598.705 Administrative collection; referral to...

  12. 31 CFR 598.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Administrative collection; referral to United States Department of Justice. 598.705 Section 598.705 Money and Finance: Treasury Regulations... FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS Penalties § 598.705 Administrative collection; referral to...

  13. Ion-mobility study of two functionalized pentacene structural isomers using a modified electrospray/triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.

    2007-03-01

    We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.

  14. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  15. 77 FR 15759 - Information Collection; Federal Management Regulation; GSA Form 3040, State Agency Monthly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ...] Information Collection; Federal Management Regulation; GSA Form 3040, State Agency Monthly Donation Report of... regarding GSA Form 3040, State Agency Monthly Donation Report of Surplus Property. Public comments are..., State Agency Monthly Donation Report of Surplus Personal Property by any of the following methods...

  16. 78 FR 5793 - Agency Information Collection Activities; Comment Request; Evaluation of State Expanded Learning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...; Comment Request; Evaluation of State Expanded Learning Time AGENCY: Department of Education (ED), IES... State Expanded Learning Time. OMB Control Number: 1850-New. Type of Review: New information collection... conduct semi-structured interviews with 21st Century Community Learning Centers (21st CCLC) state...

  17. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  18. [State of collective immunity against poliomyelitis in some regions of Russia].

    PubMed

    Seĭbil', V B; Malyshkina, L P; Khishtova, S N; Lesnikova, M V; Baryshnikova, A S; Konopleva, T N; Mnozhina, E G; Agafonova, T V; Vladimirova, L A

    2013-01-01

    Study the state of collective immunity against poliomyelitis in 7 regions of Russia in the last 3 years. 2579 sera were studied for antibodies against poliomyelitis virus. Antibodies (AT) against 3 types of viruses were determined in neutralization reaction in RD cell culture, the state of collective immunity in the examined individuals was evaluated by the percent of individuals with AT against a type of poliovirus and geometric mean AT titer. The circulation of wild polioviruses was judged by the presence of strain specific AT against wild and vaccine viruses in the examined children (311 sera were studied). The indicators of collective immunity against poliomyelitis in both select examined regions and select age groups were generally high. The data obtained allow to make a conclusion that the quality of vaccine prophylaxis in the examined regions is good. Introduction of wild poliovirus type 1 from Tajikistan in 2010 caused disease in 7 residents of Russia whereas an epidemic that had affected more than 700 individuals emerged in Tajikistan. The studies carried out confirmed the necessity to continue qualitative poliomyelitis vaccine prophylaxis in the country despite the lack of circulation of wild polioviruses that can be introduced at any time.

  19. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  20. Inferring collective dynamical states from widely unobserved systems.

    PubMed

    Wilting, Jens; Priesemann, Viola

    2018-06-13

    When assessing spatially extended complex systems, one can rarely sample the states of all components. We show that this spatial subsampling typically leads to severe underestimation of the risk of instability in systems with propagating events. We derive a subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain's collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for rat, cat, and monkey a state that combines features of both and allows input to reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel estimator paves the way to novel insight for the study of spatially extended dynamical systems.

  1. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS.

    PubMed

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  2. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magda, Karoly

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less

  3. Rehabilitation of Wastewater Collection and Water Distribution Systems -State of Technology Review Report

    EPA Science Inventory

    This White Paper is intended to provide an overview of the current state-of-the-practice and current state-of-the-art for rehabilitation of pipes and structures within the wastewater collection and water distribution systems. Rehabilitation is defined as repair, renewal, and rep...

  4. 31 CFR 595.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to United States Department of Justice. 595.705 Section 595.705 Money and Finance: Treasury... TREASURY TERRORISM SANCTIONS REGULATIONS Penalties § 595.705 Administrative collection; referral to United States Department of Justice. In the event that the person named does not pay the penalty imposed...

  5. 31 CFR 594.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to United States Department of Justice. 594.705 Section 594.705 Money and Finance: Treasury... TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS Penalties § 594.705 Administrative collection; referral to United States Department of Justice. In the event that the respondent does not pay the penalty imposed...

  6. Theory of electronic structures and nuclear quadrupole interactions in molecular solids and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit

    We have investigated, using the Hartree-Fock Roothaan variational procedure, the electronic structures and associated nuclear quadrupole interactions (NQI) for the molecular solids, RDX (C3H6N6O6),/ /beta- HMX(C4H8N8O8), Cocaine (C17H21NO4), Cocaine Hydrochloride (C17H21NO4HCl) and Heroin (C21H23NO5) and for the (111) surface of silicon with adsorbed radioactive 111In atom and negative cadmium ion containing the excited nucleus 111Cd/* resulting from electron capture by lllIn. Our investigations indicate that for the ring 14N NQI parameters in RDX and β-HMX there is very good agreement between theory and experiment. For the peripheral 14N nuclei in NO2 groups, while the calculated electronic structures do explain the much weaker quadrupole coupling constants for these nuclei relative to the ring 14N nuclei, there are significant differences between theory and experiment. The influence of intermolecular interactions between adjacent molecules in the solid is invoked as a possible source for these differences. For the controlled substances, Cocaine and Heroin, again very good agreement is obtained between theory and experiment. For Cocaine Hydrochloride theory is able to explain the much smaller observed 14N nuclear quadrupole resonance frequency as compared to pure Cocaine. However there are significant differences between theory and experiment for the 14N and 35Cl quadrupole resonance frequencies. The influence of intermolecular interactions is one of the factors suggested to explain the difference. For the silicon (111) surface, the observed 111Cd/* NQI parameters, with the cadmium nucleus assumed to be located at the same site as the 111In nucleus from which it is generated, can be successfully explained by theory with the indium atom located at the two distinct sites available with the DAS model for the 7 x 7 reconstructed (111) surface. Some quantitative differences still remain, one of the main factor suggested for their explanation being a need for a

  7. Uranus' (3-0) H2 quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1987-01-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  8. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  9. New measurement of the lifetime of the 2 + 1 state of 12Be

    DOE PAGES

    Morse, C.; McCutchan, E. A.; Iwasaki, H.; ...

    2017-05-03

    The lifetime of themore » $$2_1^+$$ state at 2.1 MeV in $$^{12}$$Be has been measured using inelastic scattering of a $$^{12}$$Be beam at 43 MeV/nucleon with a gold target. Through the Doppler shift attenuation method, the mean-life of the $$2_1^+$$ state has been determined as 2.5±0.7(stat)±0.3 (syst) ps, which gives a B(E2; $$2_1^+$$ → $$0_{g.s.}^+$$)) value of 4.9±1.3±0.5 in Weisskopf units. The result shows a large quadrupole strength in the ground state transition, providing further evidence on the disappearance of the N=8 magic number. The B(E2; $$2_1^+$$ → $$0_{g.s.}^+$$) value together with the deformation length measured by proton inelastic scattering yields a neutron quadrupole matrix element two times larger than those for $$^{14}$$C and $${16}$$O.« less

  10. 78 FR 62629 - Proposed Information Collection Request; Comment Request; Clean Water Act Section 404 State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... comments to OMB. Abstract: Section 404(g) of the Clean Water Act authorizes States [and Tribes] to assume... States/Tribes requesting assumption of the Clean Water Act section 404 permit program; States/ [[Page... Collection Request; Comment Request; Clean Water Act Section 404 State-Assumed Programs (Renewal) AGENCY...

  11. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  12. SHRP2 naturalistic driving study, phase I summary : State College, Pennsylvania data collection site.

    DOT National Transportation Integrated Search

    2013-08-01

    The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study is the largest naturalistic driving study undertaken, collecting data from six sites around the United States, including State College, PA. Recruitment and admission of human...

  13. Final priority; Technical Assistance on State Data Collection--IDEA Data Management Center. Final priority.

    PubMed

    2014-08-05

    The Assistant Secretary for the Office of Special Education and Rehabilitative Services (OSERS) announces a priority under the Technical Assistance on State Data Collection program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to fund a cooperative agreement to establish and operate an IDEA Data Management Center (Center) that will provide technical assistance (TA) to improve the capacity of States to meet the data collection requirements of the Individuals with Disabilities Education Act (IDEA).

  14. Fast computation of quadrupole and hexadecapole approximations in microlensing with a single point-source evaluation

    NASA Astrophysics Data System (ADS)

    Cassan, Arnaud

    2017-07-01

    The exoplanet detection rate from gravitational microlensing has grown significantly in recent years thanks to a great enhancement of resources and improved observational strategy. Current observatories include ground-based wide-field and/or robotic world-wide networks of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2. This results in a large quantity of data to be processed and analysed, which is a challenge for modelling codes because of the complexity of the parameter space to be explored and the intensive computations required to evaluate the models. In this work, I present a method that allows to compute the quadrupole and hexadecapole approximations of the finite-source magnification with more efficiency than previously available codes, with routines about six times and four times faster, respectively. The quadrupole takes just about twice the time of a point-source evaluation, which advocates for generalizing its use to large portions of the light curves. The corresponding routines are available as open-source python codes.

  15. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  16. 14 CFR 298.66 - Reporting exemption for State collection of data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Reporting exemption for State collection of data. 298.66 Section 298.66 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS...

  17. 14 CFR 298.66 - Reporting exemption for State collection of data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reporting exemption for State collection of data. 298.66 Section 298.66 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS...

  18. Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP

    DOE PAGES

    Ambrosio, G.; Andreev, N.; Anerella, M.; ...

    2011-11-14

    After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled inmore » the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  19. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  20. Dipole and quadrupole synthesis of electric potential fields. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1979-01-01

    A general technique for expanding an unknown potential field in terms of a linear summation of weighted dipole or quadrupole fields is described. Computational methods were developed for the iterative addition of dipole fields. Various solution potentials were compared inside the boundary with a more precise calculation of the potential to derive optimal schemes for locating the singularities of the dipole fields. Then, the problem of determining solutions to Laplace's equation on an unbounded domain as constrained by pertinent electron trajectory data was considered.

  1. Investigation of 112Cd via the (d,p) Reaction and a Reassessment of the Quadrupole-Octupole Coupled Excitation

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    The single-particle neutron states in 112Cd have been probed with the 111Cd(d,p) reaction. Beams of up to 1.2 µA of polarized 22 MeV deuterons bombarded 111Cd targets. The reaction protons were momentum analyzed with a Q3D magnetic spectrograph, with spectra were recorded at 10 angles between 10 and 60° with a resolution of 6-7 keV FWHM. In addition to the (d,p) transfer data, (d,d) elastic-scattering data were also obtained and used to ascertain the proper optical model parameters. Cross sections and analyzing powers for all levels observed to be populated were fit to results of DWBA and ADWA calculations, and spectroscopic factors were determined. The 5- level at 2373 keV, previously assigned as a member on the quadrupole-octupole quintuplet set of states because of its enhanced B(E2;5 - to 31 - ) value, was observed to be one of the strongest peaks in the spectrum, and is reassigned as the s1/2 otimes h11/2 two-quasineutron configuration.

  2. 76 FR 34741 - Notice of Proposed Information Collection; Comment Request, Entitlement and State Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5481-N-06] Notice of Proposed Information Collection; Comment Request, Entitlement and State Community Development Block (CDBG) Program... Block Grant (CDBG) programs (State CDBG Program, CDBG Disaster Recovery Supplemental Funding, CDBG...

  3. Microscopic evidence for magnetic ordering in NdCu3Ru4O12 : 63,65Cu nuclear quadrupole resonance study

    NASA Astrophysics Data System (ADS)

    Yogi, M.; Niki, H.; Hedo, M.; Komesu, S.; Nakama, T.

    2018-05-01

    We have conducted 63,65Cu nuclear quadrupole resonance (NQR) measurements on A-site ordered perovskite compounds LaCu3Ru4O12 and NdCu3Ru4O12 to investigate their ground state and spin fluctuations. While there is only one Cu site in the crystal structure, multiple NQR resonance lines were observed. This is presumed to be due to the presence of slight distortion and lattice defects in the samples. The nuclear spin-lattice relaxation rate divided by temperature, 1 /T1 T , for LaCu3Ru4O12 showed almost constant value indicating the Fermi-liquid state. A remarkable increase in 1 /T1 T due to spin fluctuations was observed in NdCu3Ru4O12 . Furthermore, an evident magnetic phase transition at TM = 0.6 K was revealed from the distinct peak of 1 /T1 T and the broadening of the NQR spectrum.

  4. Investigation of Ion Transmission Effects on Intact Protein Quantification in a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Appulage, Dananjaya Kalu; McAllister, Erin A.; Schug, Kevin A.

    2017-09-01

    Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N2, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. [Figure not available: see fulltext.

  5. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    NASA Astrophysics Data System (ADS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  6. Characterization of organic gunshot residues in lead-free ammunition using a new sample collection device for liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Benito, Sandra; Abrego, Zuriñe; Sánchez, Alicia; Unceta, Nora; Goicolea, M Aranzazu; Barrio, Ramón J

    2015-01-01

    The identification of characteristic organic gunshot residues (OGSR) provides conclusive evidence in the elucidation of elemental profiles when lead-free ammunition is fired. OGSR also prevents false negatives. Toward this aim, a quick and efficient method based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF) was developed to detect and identify 18 gunpowder additives in gunshot residues (GSR). The unequivocal identification of target analytes was assured by using MS/MS mode. Swabs were compared with home-modified tape lift supports covered with a PTFE layer to determine the better sampling technique. The modified tape lift provided better extraction recoveries and enabled the analysis of inorganic and organic GSR simultaneously. The developed method was applied to the analysis of GSR from four different lead-free ammunitions. Diphenylamine and its nitrated degradation products and centralites were identified in all samples, providing strong evidence of GSR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability.

    PubMed

    Weegman, Bradley P; Kumar Sajja, Venkata Sunil; Suszynski, Thomas M; Rizzari, Michael D; Scott Iii, William E; Kitzmann, Jennifer P; Mueller, Kate R; Hanley, Thomas R; Kennedy, David J; Todd, Paul W; Balamurugan, Appakalai N; Hering, Bernhard J; Papas, Klearchos K

    2016-01-01

    Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  8. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability

    PubMed Central

    Kumar Sajja, Venkata Sunil; Rizzari, Michael D.; Scott III, William E.; Kitzmann, Jennifer P.; Kennedy, David J.; Todd, Paul W.; Balamurugan, Appakalai N.; Hering, Bernhard J.

    2016-01-01

    Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation. PMID:27843954

  9. State road fund revenue collection processes : differences and opportunities of improved efficiency

    DOT National Transportation Integrated Search

    2001-07-01

    Research regarding the administration and collection of road fund revenues has focused on gaining an understanding of the motivations for tax evasion, methods of evasion, and estimates of the magnitude of evasion for individual states. To our knowled...

  10. Investigating the large deformation of the 5 /2+ isomeric state in 73Zn: An indicator for triaxiality

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.

    2018-04-01

    Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.

  11. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindza, Paul; Lassiter, Steven; Sun, Eric

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  12. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE PAGES

    Brindza, Paul; Lassiter, Steven; Sun, Eric; ...

    2017-06-01

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  13. Collectivity in Small Collision Systems: An Initial-State Perspective

    DOE PAGES

    Schlichting, Sören; Tribedy, Prithwish

    2016-01-01

    Measurements of multiparticle correlations in the collisions of small systems such as p+p, p/d/ 3 He+A show striking similarity to the observations in heavy-ion collisions. A number of observables measured in the high-multiplicity events of these systems resemble features that are attributed to collectivity driven by hydrodynamics. However, alternative explanations based on initial-state dynamics are able to describe many characteristic features of these measurements. In this brief review, we highlight some of the recent developments and outstanding issues in this direction.

  14. 78 FR 30939 - Notice of Proposed Information Collection Requests: State Library Administrative Agencies Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Requests: State Library Administrative Agencies Survey, FY 2014 AGENCY: Institute of Museum and Library..., collection of information. SUMMARY: The Institute of Museum and Library Service (``IMLS'') as part of its... purpose of this Notice is to solicit comments concerning the continuance of the State Library...

  15. Studies of positive-parity low-spin states in the A = 150 region

    NASA Astrophysics Data System (ADS)

    Bark, Robert; Li, Zhipan; Majola, Siyabonga; Sharpey-Schafer, John; Shi, Zhi; Zhang, Shuangquan

    2018-05-01

    A systematic investigation of low-lying levels of nuclides in the mass 150 region has been undertaken at iThemba LABS. An extensive set of data on the low-lying, positive-parity bands in the nuclides between N = 88 and 92 and Sm to Yb has been obtained from γ-γ coincidence measurements following fusion-evaporation reactions optimized of the population of low-spin states. The energies and electromagnetic properties of the so-called β- and γ-bands of nuclei in this region have been compared with the solutions of a five dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with moments-of-inertia and mass parameters determined by constrained self-consistent relativistic mean-field calculations using the PC-F1 relativistic functional. Some of the results of this comparison are presented here.

  16. New Bottles for Old Wine? California State University Initiates an Electronic Core Journals Collection.

    ERIC Educational Resources Information Center

    Healy, Leigh Watson

    1999-01-01

    The Journal Access Core Collection (JACC) initiative of the California State University (CSU) enables libraries to address the demand for print journals collections in a cooperative acquisitions project by offering their most heavily used journals to all CSU users on the Web. Implementation of the JACC, its key requirements and future…

  17. Measurement of picosecond lifetimes in neutron-rich Xe isotopes

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Kröll, Th.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; Bruce, A. M.; Fraile, L. M.; de France, G.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Jentschel, M.; Jolie, J.; Korten, W.; Köster, U.; Lalkovski, S.; Lozeva, R.; Mach, H.; Mǎrginean, N.; Mutti, P.; Paziy, V.; Regan, P. H.; Simpson, G. S.; Soldner, T.; Thürauf, M.; Ur, C. A.; Urban, W.; Warr, N.

    2016-09-01

    Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of 235U and 241Pu, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even 138,140,142Xe isotopes lying between the double shell closure N =82 and Z =50 and a deformed region with octupole collectivity. Method: The γ rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N =82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N =90 .

  18. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  19. A theoretical study on directivity control of multiple-loudspeaker system with a quadrupole radiation pattern in low frequency range

    NASA Astrophysics Data System (ADS)

    Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi

    2017-08-01

    Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.

  20. Wavelet signatures of K-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p‧) scattering off 146, 148, 150Nd

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Jingo, M.; Kleinig, W.; Krugmann, A.; Krumbolz, A. M.; Kvasil, J.; Mabiala, J.; Mira, J. P.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Papka, P.; Reinhard, P.-G.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.; Usman, I. T.

    2018-04-01

    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146, 148, 150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0 , 1 and K = 2 components.

  1. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  2. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  3. Prostheses and orthoses in the collections of the Auschwitz-Birkenau State Museum.

    PubMed

    Przeździak, Bogumił; Lutomirski, Adam; Kulczyk, Maria

    2011-01-01

    The authors described 424 orthopaedic appliances left by the prisoners of the Nazi Concentration Camp in Oświęcim. A collection of prostheses and orthoses, which is currently a part of the Auschwitz-Birkenau State Museum's exhibition, is extraordinary as it illustrates the fate of innocent, crippled people, who were incarcerated and murdered. Another point of value of the collection is its technical aspect, as it provides a clear picture of construction of prostheses and orthoses at the beginning of the 20th century.

  4. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  5. 78 FR 55252 - Proposed Information Collection Request; Comment Request; State Review Framework

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OECA-2010-0291; FRL-9900-88-OECA] Proposed Information Collection Request; Comment Request; State Review Framework AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency is planning to submit a request to renew an...

  6. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  7. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  8. On-target digestion of collected bacteria for MALDI mass spectrometry.

    PubMed

    Dugas, Alton J; Murray, Kermit K

    2008-10-03

    An on-target protein digestion system was developed for the identification of microorganisms in collected bioaerosols using off-line matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Bacteria analysis techniques based on MALDI-MS were adapted for use with an orthogonal MALDI quadrupole-time-of-flight mass spectrometer. Bioaerosols were generated using a pneumatic nebulizer and infused into a chamber for sampling. An Andersen N6 single-stage impactor was used to collect the bioaerosols on a MALDI target. On-target digestion was carried out inside temporary mini-wells placed over the impacted samples. The wells served as miniature reactors for proteolysis. Collected test aerosol particles containing the protein cytochrome c and E. coli bacteria were proteolyzed in situ using trypsin or cyanogen bromide. A total of 19 unique proteins were identified for E. coli. Using the TOF-MS spectra of the digested samples, peptide mass mapping was performed using the MASCOT search engine and an iterative search technique.

  9. Mechanical Design Studies of the MQXF Long Model Quadrupole for the HiLumi LHC

    DOE PAGES

    Pan, Heng; Anderssen, Eric; Ambrosio, Giorgio; ...

    2016-12-20

    The Large Hadron Collider Luminosity upgrade (HiLumi) program requires new low-β triplet quadrupole magnets, called MQXF, in the Interaction Region (IR) to increase the LHC peak and integrated luminosity. The MQXF magnets, designed and fabricated in collaboration between CERN and the U.S. LARP, will all have the same cross section. The MQXF long model, referred as MQXFA, is a quadrupole using the Nb3Sn superconducting technology with 150 mm aperture and a 4.2 m magnetic length and is the first long prototype of the final MQXF design. The MQXFA magnet is based on the previous LARP HQ and MQXFS designs. Inmore » this paper we present the baseline design of the MQXFA structure with detailed 3D numerical analysis. A detailed tolerance analysis of the baseline case has been performed by using a 3D finite element model, which allows fast computation of structures modelled with actual tolerances. Tolerance sensitivity of each component is discussed to verify the actual tolerances to be achieved by vendors. In conclusion, tolerance stack-up analysis is presented in the end of this paper.« less

  10. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  11. A two-dimensional MHD global coronal model - Steady-state streamers

    NASA Technical Reports Server (NTRS)

    Wang, A.-H.; Wu, S. T.; Suess, S. T.; Poletto, G.

    1992-01-01

    A 2D, time-dependent, numerical, MHD model for the simulation of coronal streamers from the solar surface to 15 solar is presented. Three examples are given; for dipole, quadrupole and hexapole (Legendre polynomials P1, P2, and P3) initial field topologies. The computed properties are density, temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions, their accuracy is discussed. Besides solutions for dipole, quadrupole, and hexapole geometries, the model use of realistic values for the density and Alfven speed while still meeting the requirement that the flow speed be super-Alfvenic at the outer boundary by extending the outer boundary to 15 solar radii.

  12. Interacting Boson Model and nucleons

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2012-10-01

    An overview on the recent development of the microscopic derivation of the Interacting Boson Model is presented with some remarks not found elsewhere. The OAI mapping is reviewed very briefly, including the basic correspondence from nucleon-pair to boson. The new fermionboson mapping method is introduced, where intrinsic states of nucleons and bosons for a wide variation of shapes play an important role. Nucleon intrinsic states are obtained from mean field models, which is Skyrme model in examples to be shown. This method generates IBM-2 Hamiltonian which can describe and predict various situations of quadrupole collective states, including U(5), SU(3), O(6) and E(5) limits. The method is extended so that rotational response (cranking) can be handled, which enables us to describe rotational bands of strongly deformed nuclei. Thus, we have obtained a unified framework for the microscopic derivation of the IBM covering all known situations of quadrupole collectivity at low energy.

  13. Spontaneous structural distortion of the metallic Shastry-Sutherland system Dy B4 by quadrupole-spin-lattice coupling

    NASA Astrophysics Data System (ADS)

    Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun

    2016-11-01

    Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.

  14. 78 FR 75959 - Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0709] Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring and... INFORMATION: Title: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance...

  15. 77 FR 48173 - Comment Request for Information Collection for Monitoring Implementation of Changes to State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Collection for Monitoring Implementation of Changes to State Unemployment Insurance (UI) Programs, Extension... to Scott Gibbons, Office of Unemployment Insurance, Employment and Training Administration, U.S... responsibility for ensuring that states implement the extension and modifications to the Emergency Unemployment...

  16. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.

    PubMed

    Pirandola, Stefano; Braunstein, Samuel L; Lloyd, Seth

    2008-11-14

    We provide a simple description of the most general collective Gaussian attack in continuous-variable quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates which are achievable with coherent states, joint measurements of the quadratures and one-way classical communication.

  17. Beyond the Boost: Measuring the Intrinsic Dipole of the Cosmic Microwave Background Using the Spectral Distortions of the Monopole and Quadrupole.

    PubMed

    Yasini, Siavash; Pierpaoli, Elena

    2017-12-01

    We present a general framework for the accurate spectral modeling of the low multipoles of the cosmic microwave background (CMB) as observed in a boosted frame. In particular, we demonstrate how spectral measurements of the low multipoles can be used to separate the motion-induced dipole of the CMB from a possible intrinsic dipole component. In a moving frame, the leakage of an intrinsic dipole moment into the CMB monopole and quadrupole induces spectral distortions with distinct frequency functions that, respectively, peak at 337 and 276 GHz. The leakage into the quadrupole moment also induces a geometrical distortion to the spatial morphology of this mode. The combination of these effects can be used to lift the degeneracy between the motion-induced dipole and any intrinsic dipole that the CMB might possess. Assuming the current peculiar velocity measurements, the leakage of an intrinsic dipole with an amplitude of ΔT=30  μK into the monopole and quadrupole moments will be detectable by a PIXIE-like experiment at ∼40  nK (2.5σ) and ∼130  nK (11σ) level at their respective peak frequencies.

  18. Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole-time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product.

    PubMed

    Anumol, Tarun; Lehotay, Steven J; Stevens, Joan; Zweigenbaum, Jerry

    2017-04-01

    Veterinary drug residues in animal-derived foods must be monitored to ensure food safety, verify proper veterinary practices, enforce legal limits in domestic and imported foods, and for other purposes. A common goal in drug residue analysis in foods is to achieve acceptable monitoring results for as many analytes as possible, with higher priority given to the drugs of most concern, in an efficient and robust manner. The U.S. Department of Agriculture has implemented a multiclass, multi-residue method based on sample preparation using dispersive solid phase extraction (d-SPE) for cleanup and ultrahigh-performance liquid chromatography-tandem quadrupole mass spectrometry (UHPLC-QQQ) for analysis of >120 drugs at regulatory levels of concern in animal tissues. Recently, a new cleanup product called "enhanced matrix removal for lipids" (EMR-L) was commercially introduced that used a unique chemical mechanism to remove lipids from extracts. Furthermore, high-resolution quadrupole-time-of-flight (Q/TOF) for (U)HPLC detection often yields higher selectivity than targeted QQQ analyzers while allowing retroactive processing of samples for other contaminants. In this study, the use of both d-SPE and EMR-L sample preparation and UHPLC-QQQ and UHPLC-Q/TOF analysis methods for shared spiked samples of bovine muscle, kidney, and liver was compared. The results showed that the EMR-L method provided cleaner extracts overall and improved results for several anthelmintics and tranquilizers compared to the d-SPE method, but the EMR-L method gave lower recoveries for certain β-lactam antibiotics. QQQ vs. Q/TOF detection showed similar mixed performance advantages depending on analytes and matrix interferences, with an advantage to Q/TOF for greater possible analytical scope and non-targeted data collection. Either combination of approaches may be used to meet monitoring purposes, with an edge in efficiency to d-SPE, but greater instrument robustness and less matrix effects when

  19. 75 FR 62185 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0709] Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring and... of Nursing Shortages in State Homes; Application for Assistance for Hiring and Retaining Nurses at...

  20. Comparative metabolites profiles of osthole in normal and osteoporosis rats using liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Nani; Wang, Xuping; Zhang, Yang; Zhang, Qiaoyan; Xu, Pingcui; Xin, Hailiang; Wu, Renjie; Shou, Dan; Qin, Luping

    2018-05-30

    Osthole is a derivative of coumnarin, which has been used to treat several diseases, including osteoporosis. To investigate the metabolite profile of osthole in osteoporosis rats was utilized to understand its underlying mechanisms of its anti-osteoporosis effect. In this study, plasma samples were collected from normal and osteoporosis rats after oral administration of osthole and analyzed to identify the metabolites of osthole by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. By comparing the molecular weight and MS fragmentation of the metabolites with those of parent drug and reference standards, a total of 36 metabolites in plasma were identified. Demethylation, hydroxylation, hydroxymethylene loss and reduction, and subsequent glucuronidation, methylation and sulfation were the major metabolic pathways of osthole in both normal and osteoporosis rats. A specific hydration metabolic pathway was found in osteoporosis rats. These results provided a meaningful basis for studying the underlying mechanism of the anti-osteoporosis effect of osthole. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The 1.5 post-Newtonian radiative quadrupole moment in the context of a nonlocal field theory of gravity

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain

    2018-04-01

    We recently suggested a nonlocal modification of Einstein’s field equations in which Newton’s constant G was promoted to a covariant differential operator G_Λ(\\Box_g) . The latter contains two independent contributions which operate respectively in the infrared (IR) and ultraviolet (UV) energy regimes. In the light of the recent direct gravitational radiation measurements we aim to determine the UV-modified 1.5 post-Newtonian radiative quadrupole moment of a generic n-body system. We eventually use these preliminary results in the context of a binary system and observe that in the limit vanishing UV parameters we precisely recover the corresponding general relativistic results. Moreover we notice that the leading order deviation of the UV-modified radiative quadrupole moment numerically coincides with findings obtained in the framework of calculations performed previously in the context of the perihelion precession of Mercury.

  2. Effects of the quadrupole wakefields in a passive streaker

    DOE PAGES

    Craievich, Paolo; Lutman, Alberto A.

    2016-10-05

    A novel method based on transverse wakefields has been recently proposed to characterize the temporal profile of a relativistic electron bunch. The electron bunch is streaked by the interaction with the transverse wakefield excited when the electrons travel off-axis in a device called the passive streaker. Furthermore, for the large transverse off-axis offsets required to effectively streak the electron bunch, higher order modes can be excited. The time-dependent quadrupole wakefield of the dielectric-lined structure can cause a significant enlargement of the transverse profile at the screen. Consequently, the measurement resolution is decreased also at the bunch tail. We report onmore » how the temporal profile can be effectively reconstructed also including the defocusing effect for a given transverse beam distribution at the passive streaker.« less

  3. Relaxation and decoherence of qubits encoded in collective states of engineered magnetic structures

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Rubtsov, Alexey N.; Lichtenstein, Alexander I.; Ribeiro, Pedro

    2017-09-01

    The quantum nature of a microscopic system can only be revealed when it is sufficiently decoupled from surroundings. Interactions with the environment induce relaxation and decoherence that turn the quantum state into a classical mixture. Here, we study the timescales of these processes for a qubit encoded in the collective state of a set of magnetic atoms deposited on a metallic surface. For that, we provide a generalization of the commonly used definitions of T1 and T2 characterizing relaxation and decoherence rates. We calculate these quantities for several atomic structures, including a collective spin, a setup implementing a decoherence-free subspace, and two examples of spin chains. Our work contributes to the comprehensive understanding of the relaxation and decoherence processes and shows the advantages of the implementation of a decoherence free subspace in these setups.

  4. Analysis of field errors for LARP Nb 3Sn HQ03 quadrupole magnet

    DOE PAGES

    Wang, Xiaorong; Ambrosio, Giorgio; Chlachidze, Guram; ...

    2016-12-01

    The U.S. LHC Accelerator Research Program, in close collaboration with CERN, has developed three generations of high-gradient quadrupole (HQ) Nb 3Sn model magnets, to support the development of the 150 mm aperture Nb 3Sn quadrupole magnets for the High-Luminosity LHC. The latest generation, HQ03, featured coils with better uniformity of coil dimensions and properties than the earlier generations. We tested the HQ03 magnet at FNAL, including the field quality study. The profiles of low-order harmonics along the magnet aperture observed at 15 kA, 1.9 K can be traced back to the assembled coil pack before the magnet assembly. Based onmore » the measured harmonics in the magnet center region, the coil block positioning tolerance was analyzed and compared with earlier HQ01 and HQ02 magnets to correlate with coil and magnet fabrication. Our study the capability of correcting the low-order non-allowed field errors, magnetic shims were installed in HQ03. Furthermore, the expected shim contribution agreed well with the calculation. For the persistent-current effect, the measured a4 can be related to 4% higher in the strand magnetization of one coil with respect to the other three coils. Lastly, we compare the field errors due to the inter-strand coupling currents between HQ03 and HQ02.« less

  5. Comparison between triple quadrupole, time of flight and hybrid quadrupole time of flight analysers coupled to liquid chromatography for the detection of anabolic steroids in doping control analysis.

    PubMed

    Pozo, Oscar J; Van Eenoo, Peter; Deventer, Koen; Elbardissy, Hisham; Grimalt, Susana; Sancho, Juan V; Hernandez, Felix; Ventura, Rosa; Delbeke, Frans T

    2011-01-17

    Triple quadrupole (QqQ), time of flight (TOF) and quadrupole-time of flight (QTOF) analysers have been compared for the detection of anabolic steroids in human urine. Ten anabolic steroids were selected as model compounds based on their ionization and the presence of endogenous interferences. Both qualitative and quantitative analyses were evaluated. QqQ allowed for the detection of all analytes at the minimum required performance limit (MRPL) established by the World Anti-Doping Agency (between 2 and 10 ng mL(-1) in urine). TOF and QTOF approaches were not sensitive enough to detect some of the analytes (3'-hydroxy-stanozolol or the metabolites of boldenone and formebolone) at the established MRPL. Although a suitable accuracy was obtained, the precision was unsatisfactory (RSD typically higher than 20%) for quantitative purposes irrespective of the analyser used. The methods were applied to 30 real samples declared positives either for the misuse of boldenone, stanozolol and/or methandienone. Most of the compounds were detected by every technique, however QqQ was necessary for the detection of some metabolites in a few samples. Finally, the possibility to detect non-target steroids has been explored by the use of TOF and QTOF. The use of this approach revealed that the presence of boldenone and its metabolite in one sample was due to the intake of androsta-1,4,6-triene-3,17-dione. Additionally, the intake of methandienone was confirmed by the post-target detection of a long-term metabolite. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Lifetime measurement of high spin states in (75) Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javid; Trivedi, T.; Maurya, K.

    2010-01-01

    The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.

  7. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  8. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  9. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  10. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    NASA Astrophysics Data System (ADS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  11. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  12. Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.

    2002-10-01

    Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.

  13. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-02-27

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  14. 76 FR 16790 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... of Information Collection Request: New collection; Title of Information Collection: Autism Spectrum Disorders (ASD): State of the States Services and Supports for People with ASD; Use: The information that is...

  15. High spin states of 72-74Kr

    NASA Astrophysics Data System (ADS)

    Kaushik, M.; Kumawat, M.; Singh, U. K.; Saxena, G.

    2018-05-01

    A theoretical investigation has made on the structure of high spin states of 72-74Kr within the framework of cranked Hartree-Fock-Bogoliubov (CHFB) theory employing a pairing + quadrupole + hexadecapole model interaction. Dependence of shape with the spin, excitation energy, alignment of proton as well as neutron 0g9/2 orbital along with backbending phenomenon are discussed upto a high spin J = 26. We found reasonable agreement with the experimental values and other theoretical calculations.

  16. Study of the in vitro metabolism of TJ0711 using ultra high performance liquid chromatography with quadrupole time-of-flight and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry.

    PubMed

    Hu, Lei; Lv, Zhenhua; Li, Gao; Xu, Xiaolong; Zhang, Chenghao; Cao, Peng; Huang, Jiangeng; Si, Luqin

    2015-06-01

    TJ0711 (1-[4-(2-methoxyethyl)phenoxy]-3-[2-(2-methoxyphenoxy)ethylamino]-2-propanol) is a novel β-adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β-blocker. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Collective Yu-Shiba-Rusinov states in magnetic clusters at superconducting surfaces

    NASA Astrophysics Data System (ADS)

    Körber, Simon; Trauzettel, Björn; Kashuba, Oleksiy

    2018-05-01

    We study the properties of collective Yu-Shiba-Rusinov (YSR) states generated by multiple magnetic adatoms (clusters) placed on the surface of a superconductor. For magnetic clusters with equal distances between their constituents, we demonstrate the formation of effectively spin-unpolarized YSR states with subgap energies independent of the spin configuration of the magnetic impurities. We solve the problem analytically for arbitrary spin structure and analyze both spin-polarized (dispersive energy levels) and spin-unpolarized (pinned energy levels) solutions. While the energies of the spin-polarized solutions can be characterized solely by the net magnetic moment of the cluster, the wave functions of the spin-unpolarized solutions effectively decouple from it. This decoupling makes them stable against thermal fluctuation and detectable in scanning tunneling microscopy experiments.

  18. Collective Bargaining Agreement between Portland State University Chapter, American Association of University Professors, and Portland State University [July 1, 1983-June 30, 1985].

    ERIC Educational Resources Information Center

    Portland State Univ., OR.

    The collective bargaining agreement between Portland State University and Portland State University Chapter (550 members) of the American Association of University Professors (AAUP) covering the period July 1, 1983-June 30, 1985 is presented. Items covered in the agreement include: definitions and recognition of AAUP, AAUP rights, exchange of…

  19. 31 CFR 539.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Administrative collection; referral to United States Department of Justice. 539.705 Section 539.705 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE...

  20. 31 CFR 537.705 - Administrative collection; referral to United States Department of Justice.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Administrative collection; referral to United States Department of Justice. 537.705 Section 537.705 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY...

  1. Assessment of collection schemes for packaging and other recyclable waste in European Union-28 Member States and capital cities.

    PubMed

    Seyring, Nicole; Dollhofer, Marie; Weißenbacher, Jakob; Bakas, Ioannis; McKinnon, David

    2016-09-01

    The Waste Framework Directive obliged European Union Member States to set up separate collection systems to promote high quality recycling for at least paper, metal, plastic and glass by 2015. As implementation of the requirement varies across European Union Member States, the European Commission contracted BiPRO GmbH/Copenhagen Resource Institute to assess the separate collection schemes in the 28 European Union Member States, focusing on capital cities and on metal, plastic, glass (with packaging as the main source), paper/cardboard and bio-waste. The study includes an assessment of the legal framework for, and the practical implementation of, collection systems in the European Union-28 Member States and an in depth-analysis of systems applied in all capital cities. It covers collection systems that collect one or more of the five waste streams separately from residual waste/mixed municipal waste at source (including strict separation, co-mingled systems, door-to-door, bring-point collection and civic amenity sites). A scoreboard including 13 indicators is elaborated in order to measure the performance of the systems with the capture rates as key indicators to identify best performers. Best performance are by the cities of Ljubljana, Helsinki and Tallinn, leading to the key conclusion that door-to-door collection, at least for paper and bio-waste, and the implementation of pay-as-you-throw schemes results in high capture and thus high recycling rates of packaging and other municipal waste. © The Author(s) 2016.

  2. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    PubMed

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  3. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2017-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.

  5. 76 FR 20087 - Proposed Collection; Comment Request; State Small Business Credit Initiative Allocation Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... programs that leverage private lending to help finance small businesses and manufacturers that are... DEPARTMENT OF THE TREASURY Proposed Collection; Comment Request; State Small Business Credit Initiative Allocation Agreement AGENCY: Departmental Offices, Small Business Lending Funds, Treasury. ACTION...

  6. Fabrication of First 4-m Coils for the LARP MQXFA Quadrupole and Assembly in Mirror Structure

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Anerella, Michael; ...

    2017-01-23

    The US LHC Accelerator Research Program is constructing prototype interaction region quadrupoles as part of the US in-kind contribution to the Hi-Lumi LHC project. The low-beta MQXFA Q1/Q3 coils have a 4-m length and a 150 mm bore. The design is first validated on short, one meter models (MQXFS) developed as part of the longstanding Nb3Sn quadrupole R&D by LARP in collaboration with CERN. In parallel, facilities and tooling are being developed and refined at BNL, LBNL, and FNAL to enable long coil production, assembly, and cold testing. Long length scale-up is based on the experience from the LARP 90more » mm aperture (TQ-LQ) and 120 mm aperture (HQ and Long HQ) programs. A 4-m long MQXF practice coil was fabricated, water jet cut and analyzed to verify procedures, parts, and tooling. In parallel, the first complete prototype coil (QXFP01a) was fabricated and assembled in a long magnetic mirror, MQXFPM1, to provide early feedback on coil design and fabrication following the successful experience of previous LARP mirror tests.« less

  7. Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides.

    PubMed

    Krokhin, Oleg; Ens, Werner; Standing, Kenneth G; Wilkins, John; Perreault, Hélène

    2004-01-01

    The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable

  8. Implications and Strategies in Collection Development for Multicultural Education at Tennessee State University.

    ERIC Educational Resources Information Center

    Kenerson, Murle E.

    This document profiles the role of Tennessee State University's Brown-Daniel Library in its collection development activities for a culturally diverse student body. It recommends that a series of goals and objectives be maintained in the selection criteria of library materials for students having diverse backgrounds. Topics include a brief…

  9. Multiculturalism Bibliography: Selected Sources from the Collection of the New York State Library.

    ERIC Educational Resources Information Center

    New York State Library, Albany.

    This bibliography of selected sources from the New York State Library collection focuses on four minority groups: African Americans, Asian Americans, Hispanic Americans, and Native Americans. It also lists resources pertaining to other conditions that often cause individuals or groups to meet with discrimination such as age, disability, ethnicity,…

  10. Children's mental health and collective violence: a binational study on the United States-Mexico border.

    PubMed

    Leiner, Marie; Puertas, Hector; Caratachea, Raúl; Avila, Carmen; Atluru, Aparna; Briones, David; Vargas, Cecilia de

    2012-05-01

    To investigate the risk effects of poverty and exposure to collective violence attributed to organized crime on the mental health of children living on the United States-Mexico border. A repeated, cross-sectional study measured risk effects by comparing scores of psychosocial and behavioral problems among children and adolescents living on the border in the United States or Mexico in 2007 and 2010. Patients living in poverty who responded once to the Pictorial Child Behavior Checklist (P+CBCL) in Spanish were randomly selected from clinics in El Paso, Texas, United States (poverty alone group), and Ciudad Juarez, Chihuahua, Mexico (poverty plus violence group). Only children of Hispanic origin (Mexican-American or Mexican) living below the poverty level and presenting at the clinic for nonemergency visits with no history of diagnosed mental, neurological, or life-threatening disease or disability were included. Exposure to collective violence and poverty seemed to have an additive effect on children's mental health. Children exposed to both poverty and collective violence had higher problem scores, as measured by the P+CBCL, than those exposed to poverty alone. It is important to consider that children and adolescents exposed to collective violence and poverty also have fewer chances to receive treatment. Untreated mental health problems predict violence, antisocial behaviors, and delinquency and affect families, communities, and individuals. It is crucial to address the mental health of children on the border to counteract the devastating effects this setting will have in the short term and the near future.

  11. 76 FR 25733 - 30-Day Notice of Proposed Information Collection DS 4053, Department of State Mentor-Protégé...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Collection DS 4053, Department of State Mentor-Prot[eacute]g[eacute] Program Application ACTION: Notice of... Information Collection: Department of State Mentor-Prot[eacute]g[eacute] Program Application. OMB Control...-4053. Respondents: Small and large for-profit companies planning to team together in an official mentor...

  12. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles

    NASA Astrophysics Data System (ADS)

    Schanz, M.; Endres, M.; Löwe, K.; Lienig, T.; Deppert, O.; Lang, P. M.; Varentsov, D.; Hoffmann, D. H. H.; Gutfleisch, O.

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material—single wedges and a fully assembled PMQ module—were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  13. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles.

    PubMed

    Schanz, M; Endres, M; Löwe, K; Lienig, T; Deppert, O; Lang, P M; Varentsov, D; Hoffmann, D H H; Gutfleisch, O

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material-single wedges and a fully assembled PMQ module-were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  14. 78 FR 69664 - Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2006-0394; FRL-9903-09-OW] Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency is planning...

  15. 78 FR 64012 - Agency Information Collection Activities; Proposed Collection; Comments Requested; New Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... DEPARTMENT OF JUSTICE [OMB Number 1121--NEW] Agency Information Collection Activities; Proposed Collection; Comments Requested; New Collection: 2013 Census of Federal, State, and Local Law Enforcement Agencies ACTION: 60-day notice. The Department of Justice (DOJ), Office of Justice Programs, Bureau of...

  16. 76 FR 18581 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... collected will include the types of criminal cases appealed to state intermediate appellate courts and... collection: Survey of State Court Criminal Appeals, 2010. The Department of Justice, Office of Justice... electronic submission of responses. Overview of This Information (1) Type of information collection: New data...

  17. Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Mehrotra, Nitin

    2018-04-01

    Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.

  18. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Gilson, Erik

    2013-01-01

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linearmore » focusing channels.« less

  19. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2013-08-15

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complexmore » linear focusing channels.« less

  20. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  1. 75 FR 52995 - Submission for OMB Review, Comment Request, Proposed Collection: State Library Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ..., Proposed Collection: State Library Administrative Agencies Survey, FY 2011-2013 AGENCY: Institute of Museum and Library Services, The National Foundation for the Arts and the Humanities. ACTION: Submission for OMB Review, Comment Request. SUMMARY: The Institute of Museum and Library Services announces the...

  2. 76 FR 58818 - Agency Information Collection Activities: Submission for OMB review; Comment Request; State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2011-0023; OMB...; State Preparedness Report AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: The Federal Emergency Management Agency (FEMA) is submitting a request for review and approval of a collection...

  3. Using Hyperfine Structure to Quantify the Effects of Substitution on the Electron Distribution Within a Pyridine Ring: a Study of 2-, 3-, and 4-PICOLYLAMINE

    NASA Astrophysics Data System (ADS)

    McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.

    2017-06-01

    The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.

  4. An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2001-01-01

    There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.

  5. 76 FR 20044 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Form: State Criminal Alien Assistance Program. The Department of Justice (DOJ), Office of Justice... currently approved collection. (2) The title of the form/collection: State Criminal Alien Assistance Program... Section 130002(b) as amended in 1996, BJA administers the State Criminal Alien Assistance Program (SCAAP...

  6. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  7. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  8. New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet.

    PubMed

    Glenn, Tasha; Monteith, Scott

    2014-12-01

    With the rapid and ubiquitous acceptance of new technologies, algorithms will be used to estimate new measures of mental state and behavior based on digital data. The algorithms will analyze data collected from sensors in smartphones and wearable technology, and data collected from Internet and smartphone usage and activities. In the future, new medical measures that assist with the screening, diagnosis, and monitoring of psychiatric disorders will be available despite unresolved reliability, usability, and privacy issues. At the same time, similar non-medical commercial measures of mental state are being developed primarily for targeted advertising. There are societal and ethical implications related to the use of these measures of mental state and behavior for both medical and non-medical purposes.

  9. 75 FR 79068 - 60-Day Notice of Proposed Information Collection: Form- DS-1950, Department of State Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... a currently approved collection. Originating Office: Bureau of Human Resources, Office of.... Moore, Bureau of Human Resources, Recruitment Division, Student Programs, U.S. Department of State... of request for public comments. SUMMARY: The Department of State is seeking Office of Management and...

  10. 75 FR 52545 - Notice of Proposed Information Collection: Comment Request, State Community Development Block...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR 5377-N-02] Notice of Proposed Information Collection: Comment Request, State Community Development Block (CDBG) Program AGENCY: Office of... Block Grant (CDBG) Program. OMB Control Number, if applicable: 2506-0085. Description of the need for...

  11. 75 FR 15446 - Agency Information Collection Activities: United States-Caribbean Basin Trade Partnership Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs And Border Protection Agency Information Collection Activities: United States- Caribbean Basin Trade Partnership Act AGENCY: U.S. Customs and Border Protection... respondent burden, U.S. Customs and Border (CBP) invites the general public and other Federal agencies to...

  12. 75 FR 56663 - Agency Information Collection (Quarterly Report of State Approving Agency Activities); Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... INFORMATION CONTACT: Denise McLamb, Enterprise Records Service (005R1B), Department of Veterans Affairs, 810... a currently approved collection. Abstract: VA reimburses State Approving Agencies (SAAs) for expenses incurred in the approval and supervision of education and training programs. SAAs are required to...

  13. Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasil'ev, O. S.; Derevyashkin, S. P.; Kolachevsky, N. N.; Lebedinskii, Yu. Yu.; Poteshin, S. S.; Sysoev, A. A.; Tkalya, E. V.; Tregubov, D. O.; Troyan, V. I.; Khabarova, K. Yu.; Yudin, V. I.; Yakovlev, V. P.

    2017-06-01

    A multisection linear quadrupole trap for Th3+ ions is described. Multiply charged ions are obtained by the laser ablation method. The possibility of trapping and retention of ˜103 ions is demonstrated in macroscopic time scales of ˜30 s. Specific features of cooling Th3+ ions on the electron transitions with wavelengths of 1088, 690 and 984 nm in Th3+ ion are discussed; a principal scheme of a setup for laser cooling is presented.

  14. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, andmore » a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.« less

  15. Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-01-01

    Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material. PMID:19591456

  16. Fast rotating neutron stars with realistic nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.

    2015-07-01

    We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.

  17. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Qian, Mingrong; Zhang, Hu; Wu, Liqin; Jin, Nuo; Wang, Jianmei; Jiang, Kezhi

    2015-01-01

    A sensitive gas chromatographic-triple quadrupole mass spectrometric (GC-QqQ MS) analytical method, for the determination of zearalenone and its five derivatives in edible vegetable oil, was developed. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated and dried with nitrogen gas. The residue was silylated with N,O-bis-trimethylsilyltrifluoroacetamide, containing 1% trimethylchlorosilane. GC-QqQ MS was performed in the reaction-monitoring mode to confirm and quantify mycotoxins in vegetable oil. The limits of quantitation were 0.03-0.2 μg kg(-1) for the six mycotoxins. The average recoveries, measured at 2, 20 and 200 μg kg(-1), were in the range 80.3-96.5%. Zearalenone was detected in the range 5.2-184.6 μg kg(-1) in nine maize oils and at 40.7 μg kg(-1) in a rapeseed oil from the local market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 76 FR 5401 - Bureau of Justice Statistics; Agency Information Collection Activities: Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... collected will include the types of criminal cases appealed to state intermediate appellate courts and... notice of information collection under review: Survey of State Court Criminal Appeals, 2010. The... submission of responses. Overview of This Information (1) Type of information collection: New data collection...

  19. 45 CFR 303.102 - Collection of overdue support by State income tax refund offset.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES STANDARDS FOR PROGRAM OPERATIONS § 303.102 Collection of overdue... services under § 302.33 of this chapter, and (2) The State does not determine, using guidelines it must...

  20. 45 CFR 303.102 - Collection of overdue support by State income tax refund offset.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT ENFORCEMENT PROGRAM), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES STANDARDS FOR PROGRAM OPERATIONS § 303.102 Collection of overdue... services under § 302.33 of this chapter, and (2) The State does not determine, using guidelines it must...

  1. Low collectivity of the first 2+ states of 212,210Po

    NASA Astrophysics Data System (ADS)

    Kocheva, D.; Rainovski, G.; Jolie, J.; Pietralla, N.; Blazhev, A.; Astier, A.; Altenkirch, R.; Bast, M.; Beckers, M.; Ansari, S.; Braunroth, Th.; Cappellazzo, M.; Cortés, M. L.; Dewald, A.; Diel, F.; Djongolov, M.; Fransen, C.; Gladnishki, K.; Goldkuhle, A.; Hennig, A.; Karayonchev, V.; Keatings, J. M.; Kluge, E.; Kröll, Th.; Litzinger, J.; Moschner, K.; Müller-Gatermann, C.; Petkov, P.; Rudigier, M.; Scheck, M.; Spagnoletti, P.; Scholz, Ph.; Schmidt, T.; Spieker, M.; Stahl, C.; Stegmann, R.; Stolz, A.; Vogt, A.; Stoyanova, M.; Thöle, P.; Warr, N.; Werner, V.; Witt, W.; Wölk, D.; Zamora, J. C.; Zell, K. O.; Van Isacker, P.; Ponomarev, V. Yu.

    2018-05-01

    The lifetimes of the first 2+ excited states of 212,210Po were measured in two transfer reactions 208Pb(12C,8Be)212Po and 208Pb(12C,10Be)210Po by the Recoil Distance Doppler Shift (RDDS) method and by the Doppler Shift Attenuation method (DSAM), respectively. The derived absolute B(E2) values of 2.6(3) W.u. for 212Po and 1.83(28) W.u. for 210Po indicate low collectivity. It is shown that the properties of the yrast {2}1+, {4}1+, {6}1+ and {8}1+ states in both nuclei cannot be described consistently in the framework of nuclear shell models. It is also demonstrated in the case of 210Po that Quasi-particle Phonon Model (QPM) calculations cannot overcome this problem thus indicating the existence of a peculiarity which is neglected in both theoretical approaches.

  2. 78 FR 52569 - Submission for OMB Review, Comment Request, Proposed Collection: State Library Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ..., Proposed Collection: State Library Administrative Agencies Survey, FY 2014-2016 AGENCY: Institute of Museum... Agencies Survey, FY 2014, was published in the Federal Register on May 23, 2013 (78 FR 30939). No comments... Administrative Agencies Survey, FY 2014. OMB Number: 3137-0072. Agency Number: 3137. Affected Public: Federal...

  3. Collective identity and intergroup prejudice among Jewish and Arab students in the United States.

    PubMed

    Ruttenberg, J; Zea, M C; Sigelman, C K

    1996-04-01

    Relationships between indicators of collective identity (collective self-esteem, religious involvement, and involvement in ethnic organizations) and prejudice toward the other-group were examined in a sample of Jewish and Arab students in the United States. Contrary to expectations, collective identity variables were largely unrelated to prejudice among the Jewish students, although the Jewish students who expressed the least amount of anti-Arab sentiment were those who were the most religious. As expected, the Arab students who (a) had low public collective self-esteem and (b) were highly involved in religious and ethnic organizations tended to be the most prejudiced. The findings for Arab students, in particular, contradict findings obtained in the laboratory, using the minimal intergroup paradigm, and suggest that individuals who are highly involved in in-group activities but believe their group is not viewed favorably by others may derogate the members of a salient out-group in an attempt to acquire a more positive social identity.

  4. 76 FR 62757 - Agency Information Collection Activities: Proposed Collection; Comment Request-State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... DEPARTMENT OF AGRICULTURE Food and Nutrition Service Agency Information Collection Activities... Nutrition Service (FNS), USDA. ACTION: Notice. SUMMARY: In accordance with the Paperwork Reduction Act of... Nutrition Programs administered under the Child Nutrition Act of 1966. This collection is a revision of a...

  5. Capacity Building for collecting primary data through Crowdsourcing - An Example of Disaster affected Uttarakhand State (India)

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, Y. V. N.; Raju, P. L. N.; Srivastav, S. K.; Kumar, P.; Mitra, D.; Karnatak, H.; Saran, S.; Pandey, K.; Oberai, K.; Shiva Reddy, K.; Gupta, K.; Swamy, M.; Deshmukh, A.; Dadhwal, V. K.; Bothale, V.; Diwakar, P. G.; Ravikumar, M. V.; Leisely, A.; Arulraj, M.; Kumar, S.; Rao, S. S.; Singh Rawat, R.; Pathak, D. M.; Dutt, V.; Negi, D.; Singh, J.; Shukla, K. K.; Tomar, A.; Ahmed, N.; Singh, B.; Singh, A. K.; Shiva Kumar, R.

    2014-11-01

    Uttarakhand State of India suffered a widespread devastation in June 2013 due to floods caused by excessive rain in the upper reaches of the Himalaya, glacial lake outburst flood (GLOF) and landslides. Restoration process in this mountainous State calls for scientifically sound planning so that the vulnerabilities and risks to such natural hazards are minimised and developmental processes are sustainable in long run. Towards this, an understanding of the patterns and major controls of damage of the recent disaster is a key requirement which can be achieved only if the primary data on locations and types of damage along with other local site conditions are available. Considering widespread damage, tough nature of terrain and the need for collecting the primary data on damage in shortest possible time, crowdsourcing approach was considered to be the most viable solution. Accordingly, a multiinstitutional initiative called "Map the Neighbourhood in Uttarakhand" (MANU) was conceptualised with the main objective of collecting primary data on damage through participation of local people (mainly students) using state-of-art tools and technologies of data collection and a mechanism to integrate the same with Bhuvan geo-portal (www.bhuvan.nrsc.gov.in) in near real-time. Geospatial analysis of crowd-sourced points with different themes has been carried out subsequently for providing inputs to restoration planning and for future developmental activities. The present paper highlights the capacity building aspect in enabling the data collection process using crowdsourcing technology.

  6. Ion mobility analyzer - quadrupole mass spectrometer system design

    NASA Astrophysics Data System (ADS)

    Cuna, C.; Leuca, M.; Lupsa, N.; Mirel, V.; Bocos-Bintintan, V.; Cuna, Stela; Cosma, V.; Tusa, Florina

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  7. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  8. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  9. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    PubMed

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs

  10. The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.

  11. Occupational exposure monitoring data collection, storage, and use among state-based and private workers' compensation insurers.

    PubMed

    Shockey, Taylor M; Babik, Kelsey R; Wurzelbacher, Steven J; Moore, Libby L; Bisesi, Michael S

    2018-06-01

    Despite substantial financial and personnel resources being devoted to occupational exposure monitoring (OEM) by employers, workers' compensation insurers, and other organizations, the United States (U.S.) lacks comprehensive occupational exposure databases to use for research and surveillance activities. OEM data are necessary for determining the levels of workers' exposures; compliance with regulations; developing control measures; establishing worker exposure profiles; and improving preventive and responsive exposure surveillance and policy efforts. Workers' compensation insurers as a group may have particular potential for understanding exposures in various industries, especially among small employers. This is the first study to determine how selected state-based and private workers' compensation insurers collect, store, and use OEM data related specifically to air and noise sampling.  Of 50 insurers contacted to participate in this study, 28 completed an online survey. All of the responding private and the majority of state-based insurers offered industrial hygiene (IH) services to policyholders and employed 1 to 3 certified industrial hygienists on average. Many, but not all, insurers used standardized forms for data collection, but the data were not commonly stored in centralized databases. Data were most often used to provide recommendations for improvement to policyholders. Although not representative of all insurers, the survey was completed by insurers that cover a substantial number of employers and workers. The 20 participating state-based insurers on average provided 48% of the workers' compensation insurance benefits in their respective states or provinces. These results provide insight into potential next steps for improving the access to and usability of existing data as well as ways researchers can help organizations improve data collection strategies. This effort represents an opportunity for collaboration among insurers, researchers, and

  12. 42 CFR 488.68 - State Agency responsibilities for OASIS collection and data base requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operating the OASIS system: (a) Establish and maintain an OASIS database. The State agency or other entity designated by CMS must— (1) Use a standard system developed or approved by CMS to collect, store, and analyze..., system back-up, and monitoring the status of the database; and (3) Obtain CMS approval before modifying...

  13. Bird collections in the United States and Canada

    USGS Publications Warehouse

    Banks, R.C.; Clench, M.H.; Barlow, J.C.

    1973-01-01

    This survey was initiated in 1966 as a project of a subcommittee of the A.O.U.'s Committee on Research, at that time chaired by Paul H. Baldwin. The subcommittee consisted of the authors and Ralph J. Raitt. In 1968 the project was separated from the Committee on Research and the temporary Committee on Collections was established, with the present authors as its members. This paper is the final report of the committee.In the past, many studies utilizing museum materials have been handicapped by ignorance of the existence of potentially important specimens. We hoped, by means of this survey, to enable future workers to take full advantage of all available material. The objectives of the survey were to determine the locations of collections of ornithological material with research potential, particularly skins, skeletons, fluid-preserved specimens, eggs, and nests; to assess the sizes and particular geographic or systematic strengths of the various collections; to locate former private collections; to learn what collections include holotypes, and who is responsible for the collections. These basic points are generally well-known for the larger institutions that specialize in maintaining research collections, but not for many smaller collections containing valuable material. The survey was inspired by and patterned after a series made of mammal collections (see Anderson et al. 1963, J. Mammal. 44: 471-500).

  14. 76 FR 38450 - 60-Day Notice of Proposed Information Collections: Ten Information Collections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF STATE [Public Notice: 7512] 60-Day Notice of Proposed Information Collections: Ten Information Collections ACTION: Notice of request for public comments. SUMMARY: The Department of State is seeking Office of Management and Budget (OMB) approval for the information collections described below...

  15. 76 FR 81554 - 60-Day Notice of Proposed Information Collection: Department of State Acquisition Regulation (DOSAR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... following methods: Email: LatvanasBA@state.gov You must include the information collection title and OMB... submit information, on an as-needed basis, and relate to the occurrence of specific circumstances. Dated...

  16. 76 FR 43701 - Renewal of Agency Information Collection for Class III Tribal State Gaming Compact Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Compact Process. The information collection is currently authorized by OMB Control Number 1076-0172, which... OMB Control Number: 1076-0172. Title: Class III Tribal State Gaming Compact Process, 25 CFR 293. Brief...

  17. State Practices in Managing Part B Funds. A Report of Survey Information Collected by the National Office.

    ERIC Educational Resources Information Center

    Smith, Glenn; Cummings, Veda

    The document summarizes data collected from 40 State Education Agency Part B administrators responding to a survey asking states to report information relative to the Local Education Agency application process, management of flo-thru of Part B funds, management of incentive grant funds, use of discretionary Part B funds, and promotion of inservice…

  18. 75 FR 17438 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2010-0141] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION: Notice of... new Agreement State applications. Annually for participation by Agreement States in the IMPEP reviews...

  19. 77 FR 74471 - Agency Information Collection Activities; Comment Request; State of Preschool Survey 2013-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... centralizes data about publicly provided early childhood education opportunities. Data are collected from state agencies responsible for providing early childhood education and made available for secondary... available from federal agencies supporting early childhood education programs such as Head Start and the U.S...

  20. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... intervention and preschool service providers with data on their qualifications, certification, and preparation... Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood Longitudinal Data Systems; Rule #0;#0;Federal Register / Vol. 77, No...

  1. 75 FR 45207 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0709] Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring and... use of other forms of information technology. Title: Regulation on Reduction of Nursing Shortages in...

  2. 78 FR 55778 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0709] Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring and... techniques or the use of other forms of information technology. Title: Regulation on Reduction of Nursing...

  3. Thermal Analysis of the ILC Superconductin Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototypemore » setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.« less

  4. List of type specimens deposited since 1998 in the United States Department of Agriculture Nematode Collection, Beltsville, Maryland

    USDA-ARS?s Scientific Manuscript database

    The United States Department of Agriculture Nematode Collection (USDANC) is one of the largest and most valuable in existence and includes millions of specimens housed in over 39,800 permanent slides and 9,300 vials. This Collection preserves type specimens of nematodes to serve as a reference for i...

  5. Four States, Four Projects, One Mission: Collectively Enhancing Mental and Behavioral Health Capacity Throughout the Gulf Coast.

    PubMed

    Langhinrichsen-Rohling, Jennifer; Osofsky, Howard; Osofsky, Joy; Rohrer, Glenn; Rehner, Timothy

    The 2010 Deepwater Horizon oil spill triggered numerous concerns regarding the health and well-being of citizens within the already vulnerable Gulf Coast region. Four Mental and Behavioral Health Capacity Projects (MBHCPs) united to form the Quad-State MBHCP component of the Gulf Region Health Outreach Program (GRHOP). Their shared mission was to increase mental and behavioral health (MBH) capacity within coastal counties of Louisiana, Mississippi, Alabama, and the Florida Panhandle. To describe strategies used to collectively enhance the impact of the 4 state-specific MBHCPs and to share lessons learned from a multistate collaborative flexibly designed to meet a shared mission. Archival materials were assessed. They included attendance sheets/notes from regularly scheduled group meetings, GRHOP quarterly and annual reports, and state-specific MBHCP logic models. Nationally available data on MBH services provided in project-relevant primary care sites were also examined. Three strategies were found to be effective facilitators of collective success: (i) reciprocal participation in the backbone organization (GRHOP); (ii) creation and comparison of state-specific MBHCP logic models and activities; and (iii) cross-fertilization among the MBHCP state-specific logic models, a unified Quad-State, and the GRHOP-wide logic model to generate additional synergistic endeavors and measureable outcomes. Examples of region-wide MBHCP success, such as uptake in integrated health services in health care clinics across the jurisdiction of investment, are presented. Isolated approaches to complex issues are, at times, ineffective. The Collective Impact (CI) model, with an emphasis on coordination among existing organizations, stakeholders, and the public, can serve as a guidepost to facilitate sustainable change even when used in a modified form. Strategies discussed herein for maximizing the 5 prescribed CI conditions provide an important roadmap for how to interface among

  6. A versatile computer-controlled pulsed nuclear quadrupole resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Fisher, Gregory; MacNamara, Ernesto; Santini, Robert E.; Raftery, Daniel

    1999-12-01

    A new, pulsed nuclear quadrupole resonance (NQR) spectrometer capable of performing a variety of pulsed and swept experiments is described. The spectrometer features phase locked, superheterodyne detection using a commercial spectrum analyzer and a fully automatic, computer-controlled tuning and matching network. The tuning and matching network employs stepper motors which turn high power air gap capacitors in a "moving grid" optimization strategy to minimize the reflected power from a directional coupler. In the duplexer circuit, digitally controlled relays are used to switch different lengths of coax cable appropriate for the different radio frequencies. A home-built pulse programmer card controls the timing of radio frequency pulses sent to the probe, while data acquisition and control software is written in Microsoft Quick Basic. Spin-echo acquisition experiments are typically used to acquire the data, although a variety of pulse sequences can be employed. Scan times range from one to several hours depending upon the step resolution and the spectral range required for each experiment. Pure NQR spectra of NaNO2 and 3-aminopyridine are discussed.

  7. 78 FR 11645 - Agency Information Collection Activities: Final Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... EXPORT-IMPORT BANK OF THE UNITED STATES [Public Notice 2013-0115] Agency Information Collection Activities: Final Collection; Comment Request AGENCY: Export-Import Bank of the United States. ACTION...-Im Bank approved insurance claims. Affected Public: This form affects entities involved in the export...

  8. 78 FR 32652 - Agency Information Collections Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... Reauthorization Act of 2009 (CHIPRA) Quality Demonstration Grant Program: Survey Data Collection.'' In accordance... Grant Program: Survey Data Collection. The Children's Health Insurance Program Reauthorization Act of... other States in designing and implementing their projects. Of the 10 grantee States selected, six are...

  9. 77 FR 37729 - 30-Day Notice of Proposed Information Collections: DDTC Brokering Collections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Director of Defense Trade Controls, Bureau of Political- Military Affairs, U.S. Department of State. [FR... DEPARTMENT OF STATE [Public Notice 7929] 30-Day Notice of Proposed Information Collections: DDTC... collections of information. SUMMARY: The Department of State has submitted the following information...

  10. Chemical profiling and quantification of Chinese medicinal formula Huang-Lian-Jie-Du decoction, a systematic quality control strategy using ultra high performance liquid chromatography combined with hybrid quadrupole-orbitrap and triple quadrupole mass spectrometers.

    PubMed

    Yang, Yang; Wang, Hong-Jie; Yang, Jian; Brantner, Adelheid H; Lower-Nedza, Agnieszka D; Si, Nan; Song, Jian-Fang; Bai, Bing; Zhao, Hai-Yu; Bian, Bao-Lin

    2013-12-20

    To clarify and quantify the chemical profiling of Huang-Lian-Jie-Du decoction (HLJDD) rapidly, a feasible and accurate strategy was developed by applying high speed LC combined with hybrid quadrupole-orbitrap mass spectrometer (Q-Exactive) and UHPLC-triple quadruple mass spectrometer (UHPLC-QqQ MS). 69 compounds, including iridoids, alkaloids, flavonoids, triterpenoid, monoterpene and phenolic acids, were identified by their characteristic high resolution mass data. Among them, 18 major compounds were unambiguously detected by comparing with reference standards. In the subsequent quantitative analysis, 17 representative compounds, selected as quality control markers, were simultaneously detected in 10 batches of HLJDD samples by UHPLC-QqQ MS. These samples were collected from four different countries (regions). Icariin, swertiamarin and corynoline were employed as internal standards for flavonoids, iridoids and alkaloids respectively. All the analytes were detected within 12min. Polarity switching mode was used in the optimization of multiple reaction monitoring (MRM) conditions. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r(2)>0.9990). The relative standard deviations (RSD) of inter- and intra-day precisions were less than 5.0%. This method was also validated by repeatability, stability (8h) and recovery, with respective RSDs less than 4.6%, 5.0% and 6.3%. This research established a high sensitive and efficient method for the integrating quality control, including identification and quantification of Chinese medicinal formulas. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects.

    PubMed

    Cheng, J L; Vermeulen, N; Sipe, J E

    2017-03-06

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response.

  13. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.

  14. Collective and non-collective structures in nuclei of mass region A ≈ 125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, A. K.; Collaboration: INGA Collaboration; Gammasphere Collaboration

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kindmore » of excitation mechanism, where 8-12 particles above the {sup 114}Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.« less

  15. Evidence of nontermination of collective rotation near the maximum angular momentum in Rb75

    NASA Astrophysics Data System (ADS)

    Davies, P. J.; Afanasjev, A. V.; Wadsworth, R.; Andreoiu, C.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D. G.; Johnston-Theasby, F. L.; Joshi, P.; Macchiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Ward, D.

    2010-12-01

    Two of the four known rotational bands in Rb75 were studied via the Ca40(Ca40,αp)Rb75 reaction at a beam energy of 165 MeV. Transitions were observed up to the maximum spin Imax of the assigned configuration in one case and one-transition short of Imax in the other. Lifetimes were determined using the residual Doppler shift attenuation method. The deduced transition quadrupole moments show a small decrease with increasing spin, but remain large at the highest spins. The results obtained are in good agreement with cranked Nilsson-Strutinsky calculations, which indicate that these rotational bands do not terminate, but remain collective at Imax.

  16. 78 FR 73538 - Agency Information Collection Activities: Proposed Collection Renewal; Comment Request Re...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Collection Renewal; Comment Request Re: Foreign Branching and Investment by Insured State Nonmember Banks... collection entitled Foreign Branching and Investment by Insured State Nonmember Banks (OMB No. 3064-0125). At... information: Title: Foreign Branching and Investment by Insured State Nonmember Banks. OMB Number: 3064-0125...

  17. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    PubMed Central

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-01

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher-pressure regions (e.g., ion source interfaces) of mass spectrometers, thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to-charge ratios. In this study, a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadrupole mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at a pressure of 9–10 Torr. Key factors for the HPIF performance characterized included the effects of RF amplitude, the DC gradient, and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (LC-SRM) analyses of low-abundance peptides spiked into a highly complex mixture was also compared with that obtained using both a commercial S-lens interface and an in-line dual-ion funnel interface. PMID:26107611

  18. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D{sub 2} and HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Tung Weicheng; Adamowicz, Ludwik

    2010-04-15

    We have carried out an accurate determination of the quadrupole moment of the deuteron nucleus. The evaluation of the constant is achieved by combining high accuracy Born-Oppenheimer calculations of the electric field gradient at the nucleus in the H{sub 2} molecule with spectroscopic measurements of the quadrupolar splitting in D{sub 2} and HD. The derived value is Q=0.285783(30) fm{sup 2}.

  19. 77 FR 48171 - Comment Request for Information Collection for State Administration of Applications and Grants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ...). Individuals with hearing or speech impairments may access the telephone number above via TTY by calling the... to the enactment of the North American Free Trade Agreement (NAFTA) Implementation Act (Pub. L. 103... Collection for State Administration of Applications and Grants for the Self-Employment Assistance (SEA...

  20. Connections between the dynamical symmetries in the microscopic shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg; Drumev, K. P.

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQMmore » Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.« less

  1. Breakdown of dynamic balance of a particle in a quadrupole cell by laser-induced aerosol heating.

    PubMed

    Itoh, M; Lwamoto, T; Takahashi, K; Kuno, S

    1992-08-20

    The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO(2) laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 10(5) W/m(2). The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

  2. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; López-Márquez, Diana M; Berrueta, Luis A; Gallo, Blanca; Alonso-Salces, Rosa M

    2018-09-15

    In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MS E was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Constants of 1-Bromo-1-fluoroethane.

    PubMed

    Tatamitani; Kuwano; Fuchigami; Oe; Ogata

    1999-08-01

    The microwave spectrum of 1-bromo-1-fluoroethane, CHBrF-CH(3) and CHBrF-CH(2)D ((79/81)Br), has been studied for the first time from 8 to 41 GHz. A least-squares analysis of the observed a- and b-type transition frequencies gave rotational and centrifugal distortion constants and components of the bromine nuclear quadrupole coupling constant tensor in the principal axes system as follows: A = 8979.428(5) MHz, B = 2883.898(3) MHz, C = 2310.535(3) MHz, Delta(J) = 0.74(2) kHz, Delta(JK) = 2.49(3) kHz, Delta(K) = 5.3(5) kHz, delta(J) = 0.146(1) kHz, delta(K) = 2.75(4) kHz, chi(aa) = 493.49(29) MHz, chi(bb) - chi(cc) = -38.89(11) MHz, and ||chi(ab) || = 161.8(28) MHz for the CH(79)BrF-CH(3) species; A = 8979.257(5) MHz, B = 2859.072(3) MHz, C = 2294.572(3), Delta(J) = 0.76(2) kHz, Delta(JK) = 2.51(3) kHz, Delta(K) = 4.5(4) kHz, delta(J) = 0.145(1) kHz, delta(K) = 2.70(4) kHz, chi(aa) = 412.42(27) MHz, chi(bb) - chi(cc) = -32.56 (11) MHz, and ||chi(ab) || = 133.3(3) MHz for the CH(81)BrF-CH(3) species. The structural parameters are calculated from the 24 observed rotational constants, and electronic properties of the carbon-bromine bond in 1-bromo-1-fluoroethane are evaluated from the observed nuclear quadrupole coupling constants. These molecular properties are compared with those of other related molecules. The molecular structure of 1-bromo-1-fluoroethane is found to be very close to that of 1,1-difluoroethane except for the C-Br bond. Copyright 1999 Academic Press.

  4. Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Constants of 1-Bromo-1-fluoroethane

    NASA Astrophysics Data System (ADS)

    Tatamitani, Yoshio; Kuwano, Susumu; Fuchigami, Kiyokatu; Oe, Sumio; Ogata, Teruhiko

    1999-08-01

    The microwave spectrum of 1-bromo-1-fluoroethane, CHBrF-CH3 and CHBrF-CH2D (79/81Br), has been studied for the first time from 8 to 41 GHz. A least-squares analysis of the observed a- and b-type transition frequencies gave rotational and centrifugal distortion constants and components of the bromine nuclear quadrupole coupling constant tensor in the principal axes system as follows: A = 8979.428(5) MHz, B = 2883.898(3) MHz, C = 2310.535(3) MHz, ΔJ = 0.74(2) kHz, ΔJK = 2.49(3) kHz, ΔK = 5.3(5) kHz, δJ = 0.146(1) kHz, δK = 2.75(4) kHz, χaa = 493.49(29) MHz, χbb - χcc = -38.89(11) MHz, and ‖χab‖ = 161.8(28) MHz for the CH79BrF-CH3 species; A = 8979.257(5) MHz, B = 2859.072(3) MHz, C = 2294.572(3), ΔJ = 0.76(2) kHz, ΔJK = 2.51(3) kHz, ΔK = 4.5(4) kHz, δJ = 0.145(1) kHz, δK = 2.70(4) kHz, χaa = 412.42(27) MHz, χbb - χcc = -32.56 (11) MHz, and ‖χab‖ = 133.3(3) MHz for the CH81BrF-CH3 species. The structural parameters are calculated from the 24 observed rotational constants, and electronic properties of the carbon-bromine bond in 1-bromo-1-fluoroethane are evaluated from the observed nuclear quadrupole coupling constants. These molecular properties are compared with those of other related molecules. The molecular structure of 1-bromo-1-fluoroethane is found to be very close to that of 1,1-difluoroethane except for the C-Br bond.

  5. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    An ultra-high performance liquid chromatography-ion mobility- quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine core structure, plus methylated, oxidized, and reduced speci...

  6. Simultaneous analysis by Quadrupole-Orbitrap mass spectrometry and UHPLC-MS/MS for the determination of sedative-hypnotics and sleep inducers in adulterated products.

    PubMed

    Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young

    2017-12-01

    Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PubChem3D: Shape compatibility filtering using molecular shape quadrupoles

    PubMed Central

    2011-01-01

    Background PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height? Results Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz) were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz), of allowed values for the similarity metric, shape Tanimoto (ST) ≥ 0.8. The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative) as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered by the 3-D neighbor set

  8. Large-area few-layer hexagonal boron nitride prepared by quadrupole field aided exfoliation

    NASA Astrophysics Data System (ADS)

    Lun Lu, Han; Zhi Rong, Min; Qiu Zhang, Ming

    2018-03-01

    A quadrupole electric field-mediated exfoliation method is proposed to convert micron-sized hexagonal boron nitride (h-BN) powder into few-layer hexagonal boron nitride nanosheets (h-BNNS). Under optimum conditions (400 Hz, 40 V, 32 μg ml-1, sodium deoxycholate, TAE medium), the h-BN powders (thickness >200 nm, horizontal scale ˜10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering and atomic force microscope data show that the yield is 47.6% (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers).

  9. HESQ (Helical Electrostatic Quadrupole), a low energy beam transport for the SSC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raparia, D.

    A Helical Electrostatic Quadrupole (HESQ) is an option for the low energy beam transport (LEBT) of the SSC linac to transport and match a 35 keV H{sup {minus}} beam from a circular symmetric Magnetron ion source to a 428 MHz RFQ. Being an electrostatic focusing lens, the HESQ avoids neutralization of the H{sup {minus}} beam due to the background gas. The HESQ lenses provide stronger first-order focusing in contrast to weak second-order focusing of einzel lenses and is also stronger than alternating gradient focusing. In this paper, we will present a design and results of a PIC code simulation withmore » space charge.« less

  10. 76 FR 35023 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Extension of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... With Changes; State Criminal Alien Assistance Program ACTION: 30-day notice of information collection... collection expire. (2) The title of the form/collection: State Criminal Alien Assistance Program. (3) The... Criminal Alien Assistance Program (SCAAP) with the Bureau of Immigration and Customs Enforcement (ICE), and...

  11. 77 FR 35679 - Agency Information Collection Activities: Final Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... EXPORT-IMPORT BANK OF THE UNITED STATES [Public Notice 2012-0134] Agency Information Collection Activities: Final Collection; Comment Request AGENCY: Export-Import Bank of the U.S. ACTION: Submission for...: The Export-Import Bank of the United States (Ex-Im Bank), as a part of its continuing effort to reduce...

  12. E1 transitions from octupole vibration states

    NASA Astrophysics Data System (ADS)

    Cottle, P. D.

    1993-04-01

    Electric dipole moments are extracted from data for E1 transitions deexciting octupole vibration states in nineteen nuclei. The moments are then compared to values calculated using the droplet model prescription of Dorso, Myers, and Swiatecki. It is found that the E1 moments in quadrupole deformed nuclei can be reproduced with the droplet model using the same model parameters that reproduce atomic masses and fission barriers. This result supports the suggestion of Butler and Nazarewicz that single particle effects are usually much smaller than macroscopic effects in E1 transitions associated with octupole vibrations in reflection symmetric deformed nuclei.

  13. Use of liquid chromatography hybrid triple-quadrupole mass spectrometry for the detection of emodin metabolites in rat bile and urine.

    PubMed

    Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui

    2017-10-01

    Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Metabolic profiling of Hoodia, Chamomile, Terminalia Species and evaluation of commercial preparations using Ultra-High Performance Quadrupole Time of Flight-Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    Ultra-High Performance-Quadrupole Time of Flight Mass Spectrometr(UHPLC-QToF-MS)profiling has become an impattant tool for identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. Chemometric approaches can be used to ana...

  15. Pulsed Multiple Reaction Monitoring Approach to Enhancing Sensitivity of a Tandem Quadrupole Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, Mikhail E.; Prasad, Satendra; Prior, David C.

    2011-02-23

    Liquid chromatography (LC)-triple quadrupole mass spectrometers operating in a Multiple Reaction Monitoring (MRM) mode are increasingly used for quantitative analysis of low abundance analytes in highly complex biochemical matrices. After development and selection of optimum MRM transition, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an Ion Funnel Trapmore » (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several reference peptides. The sensitivity improvement observed with the IFT coupled to the triple quadrupole instrument is based on several unique features. First, ion accumulation in the radio frequency (RF) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density per unit time compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed up to 5-fold enhanced peak amplitude and 2-3 fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~ 4 to ~ 8.« less

  16. 77 FR 36010 - Agency Information Collection Activities; Agency Information Collection Activities; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Collection; Comment Requested Deaths in Custody--Series of Collections From State-Level Law Enforcement... collection: Renewal of existing collection. (2) The title of the Form/Collection: Deaths in Custody Reporting... collection: Forms--Death Report on Inmates Under Jail Jurisdiction (CJ-9); Annual Summary on Inmates Under...

  17. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  18. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  19. Measuring masses of single bacterial whole cells with a quadrupole ion trap.

    PubMed

    Peng, Wen-Ping; Yang, Yi-Chang; Kang, Ming-Wei; Lee, Yuan T; Chang, Huan-Cheng

    2004-09-29

    A novel method has been developed to precisely measure the masses of single bacterial whole cells using a quadrupole ion trap as an electrodynamic balance. The bacterial cells were introduced into the ion trap by matrix-assisted laser desorption/ionization, confined in space by audio frequency ac fields, and detected by elastic light scattering. Mass measurement accuracy approaching 0.1% was achieved for Escherichia coli K-12 with a mass distribution of +/-3% from 60 repetitive measurements of the particles and their clusters. This is the first high-precision mass measurement reported for any intact microorganisms with masses greater than 1 x 1010 Da. The method opens new avenues for high-precision mass measurement of single microbial particles and offers an alternative approach for rapid identification of microorganisms by mass spectrometry.

  20. {open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, S.F.; Petschek, R.G.; Singer, K.D.

    1997-10-01

    We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light formore » which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.« less

  1. Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC

    DOE PAGES

    Ferracin, P.; G. Ambrosio; Anerella, M.; ...

    2015-12-18

    The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less

  2. 78 FR 73522 - Agency Information Collection Activities: Submission to OMB for Review and Approval; State Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OECA-2010-0291; FRL- 9903-87-OEI] Agency Information Collection Activities: Submission to OMB for Review and Approval; State Review Framework; EPA ICR Number 2185.05 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance with the...

  3. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TonThat, D.M.; Clarke, J.

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux lockedmore » operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}« less

  4. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  5. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  6. Comparing the Performance of Hyperbolic and Circular Rod Quadrupole Mass Spectrometers with Applied Higher Order Auxiliary Excitation

    NASA Technical Reports Server (NTRS)

    Gershman, D.J.; Block, B.P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2012-01-01

    This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.

  7. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  8. 78 FR 63980 - Agency Information Collection Activities; Proposed Collection; Public Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Title: State Medicaid Fraud Control Units' Reports. OMB No.: 0990-0162. Abstract: Office of Inspector... collection of information to comply with the requirements in Title 19 of the Social Security Act at 1903(q... certification/recertification of State Medicaid Fraud Control Units (MFCU). The collection is required by the...

  9. 78 FR 69171 - 60-Day Notice of Proposed Information Collection: Department of State Mentor Protégé Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...: Department of State Mentor Prot[eacute]g[eacute] Program Application ACTION: Notice of request for public... [email protected] . SUPPLEMENTARY INFORMATION: Title of Information Collection: Department of State Mentor... planning to team together in an official mentor-prot[eacute]g[eacute] capacity to enhance the capabilities...

  10. Consequences of a new experimental determination of the quadrupole moment of the sun for gravitation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, J.W.

    1983-03-07

    A preliminary experimental determination by Hill, Bos and Goode of the interior rotation of the sun leads to a nonzero value for the quadrupole-moment coefficient J/sub 2/. This produces a deviation of 1.6% from Einstein's prediction of the precession of the perihelion of Mercury. A nonsymmetric gravitational theory can fit the measured precession with this J/sub 2/ and all other solar-system relativity experiments for one value of a post-Newtonian parameter in the theory. A prediction is made for the perihelion precession of Icarus.

  11. Large Area Few Layers Hexagonal Boron Nitride Prepared by Quadrupole Field Aided Exfoliation.

    PubMed

    Hanlun, Lu; Rong, Min Zhi; Zhang, Ming Qiu

    2018-01-16

    A quadrupole electric field mediated exfoliation method is proposed to convert micron sized hexagonal boron nitride (hBN) powders into few layers hexagonal boron nitride nano-sheets (h-BNNS). Under the optimum conditions (400 Hz, 40 V, 32μg/mL, sodium deoxycholate, TAE medium), the hBN powders (thickness > 200 nm, horizontal scale ~ 10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering (DLS) and atomic force microscope (AFM) statistics show that the yield is 47.6 % (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers). © 2018 IOP Publishing Ltd.

  12. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    PubMed

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  13. 77 FR 12079 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Crime Victim...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Collection; Comments Requested: Crime Victim Compensation State Certification Form Request ACTION: 30-Day... Programs (OJP), Office for Victims of Crime (OVC) will be submitting the following information collection...: Crime Victim Compensation State Certification Form. (3) Agency form number, if any, and the applicable...

  14. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen

    2012-01-03

    An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society

  15. Laboratory Experiments of Helicity or Vortex Generation in an Electric Quadrupole: Simulation of Tonadoes with and without Lightning

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Laboratory Experiments of Helicity or Vortex Generation in an Electric Quadrupole: Simulation of Tornadoes with and without Lightning H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract Usually the source-origins of helicity or vortex generation have been considered to be thermohydrodynamic in the hydrodynamic (HD) regime and/or magnetohydrodynamic in the magnetohydrodynamic (MHD) regime. It has been shown, however, by the present author that an electric quadrupole is also capable for helicity or vortex generation and a new electric helic- ity defined as hE= v·E (v: flow velocity; E: electric field) has been introduced. Accordingly, we have now three kinds of helicity, namely fluid, magnetic, and electric helicity. In many cases of atmospheric and space electricity phenomena in nature, electric helicity or vortex generation of electric origin is involved as typically seen in tornadic thunderstorms. Conventional theory of tornadoes, however, space- charge and electric fields have never been considered properly so far, surprisingly in spite of their effects of significance, because of no theorv for such cases, although those effects have been recognized implicitly by field experiments. This paper fills up these demands by newly introducing the concept of 'Electric Helicity' based on 'Electrohydrodynamics' (EHD) established and developed over the last more than two decades and such a whole theory is applied to tornadioes with and without lightning. Further, experimental evidence of this theory is presented for the first time by using a 'universal electric-cusp type plasma reactor' designed more than a decade ago [1]. This device is composed of two positive and negative electrodes of lead spheres 1.5 cm in diameter suspended 2~5 cm above a copper plane on which a semispherical lead 1.25 cm in diameter or its modified object is placed. A whole setup is arranged in a wooden box

  16. Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS).

    PubMed

    Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R

    2013-07-01

    This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.

  17. Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, H.; Clifford, T.; Giordano, S.

    1984-01-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less

  18. B3LYP Calculation of Deuterium Quadrupole Coupling Constants in Molecules

    NASA Astrophysics Data System (ADS)

    Bailey, William C.

    1998-08-01

    The B3LYP/6-31G(df,3p) model for the calculation of deuterium nuclear quadrupole coupling constants (nqcc's) is shown to yield results as accurate as calculations previously performed at the MP4 level of theory. For 25 molecules, ranging from HD and DF to pyridine and fluorobenzene, the rms difference between the B3LYP nqcc's and the experimental nqcc's is 3.2 kHz (2.7%). For benzene, our calculations suggest that the experimental χbband χccof S. Jans-Bürli, M. Oldani, and A. Bauder, 1989.Mol. Phys.,68, 1111-1123) have been incorrectly assigned with respect to inertia axes and should be reversed. For borane carbonyl and nitric acid, it is shown that nqcc calculations using hydrogen bond lengths given by MP2/6-311 + G(d,p) optimizations in combination with the heavy atom experimental structures significantly improve agreement with the experimental nqcc's.

  19. 76 FR 66086 - Agency Information Collection Activities; Proposed Collection, Comments Requested: Reinstatement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Approved Collection for Which Approval Has Expired, Identity Theft Supplement (ITS) to the National Crime... approved collection for which approval has expired. (2) Title of the Form/Collection: Identity Theft... United States. The Identity Theft Supplement (ITS) to the National Crime Victimization Survey collects...

  20. 75 FR 3758 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... Collection Under Review: International Terrorism Victim Expense Reimbursement Program Application. The... which approval has expired. (2) The title of the form/collection: International Terrorism Victim Expense... international terrorism that occur(red) outside of the United States. The application will be used to collect...

  1. 77 FR 12847 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Information Technology Systems, and awardees under the Cooperative Agreement to Support Establishment of State... Identifier: CMS-10424] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY... to send comments regarding this burden estimate or any other aspect of this collection of information...

  2. 78 FR 31578 - Agency Information Collection Activities; Proposed Collection; Comments Requested: International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Collection Activities; Proposed Collection; Comments Requested: International Terrorism Victim Compensation... Form/Collection: International Terrorism Victim Expense Reimbursement Program (ITVERP) Application. (3... of acts of international terrorism that occur outside the United States. Applicants seeking...

  3. Investigation of excited 0+ states in 160Er populated via the (p, t) two-neutron transfer reaction

    NASA Astrophysics Data System (ADS)

    Burbadge, C.; Garrett, P. E.; Ball, G. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Faesternann, T.; Hertenberger, R.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; MacLean, A. D.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.

    2018-05-01

    Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength.

  4. Zoological Collections and Collecting in Cuba during the Twentieth Century.

    ERIC Educational Resources Information Center

    Taboada, Gilberto Silva

    1994-01-01

    Traces the history of 20th-century zoological collections in Cuba, and the present whereabouts of Cuba's zoological collections. The historical accounts are divided into two periods: from 1902 to 1959 and from 1959 to the present. A preliminary survey of the nature, size, and current state of these collections is included. (MDH)

  5. 75 FR 78263 - Agency Information Collection Activities: Extension of an Existing Information Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... of information collection under review; Form G- 646, Sworn Statement of Refugee Applying for... the Form/Collection: Sworn Statement of Refugee Applying for Admission to the United States. (3... the applicants to the United States as refugees. (5) An estimate of the total number of respondents...

  6. Charge collection and pore filling in solid-state dye-sensitized solar cells.

    PubMed

    Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Cesar, Ilkay; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-10-22

    The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the

  7. Collection Development Project.

    ERIC Educational Resources Information Center

    Nuby, Mary

    Undertaken to provide data on the current status of collection development in selected academic libraries, this study also analyzed the structure of the collection development function at Chicago Academic Library Council (CALC) institutions and outlined a formal collection development policy for Chicago State University's Douglas Library.…

  8. Method and apparatus for measuring the gas permeability of a solid sample

    DOEpatents

    Carstens, D.H.W.

    1984-01-27

    The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.

  9. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators.

    PubMed

    Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui

    2018-05-14

    Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.

  10. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less

  11. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu

    NASA Astrophysics Data System (ADS)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

    2012-07-01

    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  12. Hyperfine induced transition probabilities from 4{f}^{14}5s5p{}^{3}{{\\rm{P}}}_{0,2}^{o} states in Sm-like ions

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Li, Jiguang; Qu, Yizhi; Wang, Jianguo

    2017-11-01

    The hyperfine induced 4{f}145s5p{}3{{{P}}}0,2o-4{f}145{s}2{}1{{{S}}}0 transition probabilities for highly charged Sm-like ions are calculated within the framework of the multiconfiguration Dirac-Hartree-Fock method. Electron correlation, the Breit interaction and quantum electrodynamical effects are taken into account. For ions ranging from Z = 79 to Z=94,4{f}145s5p{}3{{{P}}}0o is the first excited state, and the hyperfine induced transition (HIT) is a dominant decay channel. For the 4{f}145s5p{}3{{{P}}}2o state, the HIT rates of Sm-like ions with Z=82-94 are reported as well as the magnetic dipole (M1) {}3{{{P}}}2o-{}3{{{P}}}1o, the electric quadrupole (E2) {}3{{{P}}}2o-{}3{{{P}}}0,1o, and the magnetic quadrupole (M2) {}3{{{P}}}2o-{}1{{{S}}}0 transition probabilities. It is found that M1 transition from the 4{f}145s5p{}3{{{P}}}2o state is the most important decay channel in this range on Z≥slant 82.

  13. Collective systematics in the mass 80 region

    NASA Astrophysics Data System (ADS)

    Tabor, S. L.

    1986-07-01

    The deformation of nuclei around A~80 is found to vary systematically as a function of the product of the number of protons and neutrons (or holes) (NpNn) in the shell extending from 28 to 50 particles. A similar result was reported previously for heavier even A nuclei, but this is the first investigation of a region in which neutrons and protons fill the same major shell and the first application of the technique to odd A nuclei. The systematic behavior is seen in both energy level spacings and electromagnetic quadrupole transition strengths and in both even-even and odd A nuclei. These systematics hold for the measures of deformation not involving the positions of the 0+ states, which are strongly affected by the coexistence of weakly and strongly deformed shapes in some A~80 nuclei. A rather surprising result is that the deformations of the odd-Z-even-N nuclei are substantially larger than those of the even-Z-odd-N nuclei.

  14. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  15. 75 FR 41868 - Agency Information Collection Activities: Proposed Collection: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Agency Information Collection Activities: Proposed Collection: Comment Request In compliance with the requirement for opportunity for public comment on proposed data collection projects (section 3506(c)(2)(A) of title 44, United States Code, as amended by the...

  16. Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap.

    PubMed

    di Lena, Fabio; Matyjaszewski, Krzysztof

    2009-11-07

    An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.

  17. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  18. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  19. 76 FR 1658 - 60-Day Notice of Proposed Information Collection: DS 4053, Department of State Mentor-Protégé...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... 4053, Department of State Mentor-Prot[eacute]g[eacute] Program Application, OMB 1405-0161 ACTION... Collection: Department of State Mentor-Prot[eacute]g[eacute] Program Application. OMB Control Number: OMB...: Small and large for-profit companies planning to team together in an official mentor-prot[eacute]g...

  20. 77 FR 50718 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Extension of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...; Victims of Crime Act, Crime Victim Assistance Grant Program State Performance Report ACTION: 30-Day Notice... (OJP), Office for Victims of Crime (OVC) will be submitting the following information collection... Form/Collection: Victims of Crime Act, Crime Victim Assistance Grant Program, State Performance Report...