Science.gov

Sample records for quadrupole icp-ms optimisation

  1. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    PubMed

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  2. Allanite age-dating: Non-matrix-matched standardization in quadrupole LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Burn, M.; Lanari, P.; Pettke, T.; Engi, M.

    2014-12-01

    Allanite Th-U-Pb age-dating has recently been found to be powerful in unraveling the timing of geological processes such as the metamorphic dynamics in subduction zones and crystallization velocity of magmas. However, inconsistencies among analytical techniques have raised doubts about the accuracy of allanite age data. Spot analysis techniques such as LA-ICP-MS are claimed to be crucially dependent on matrix-matched standards, the quality of which is variable. We present a new approach in LA-ICP-MS data reduction that allows non-matrix-matched standardization via well constrained zircon reference materials as primary standards. Our data were obtained using a GeoLas Pro 193 nm ArF excimer laser ablation system coupled to an ELAN DRC-e quadrupole ICP-MS. We use 32 μm and 24 μm spot sizes; laser operating conditions of 9 Hz repetition rate and 2.5 J/cm2 fluence have proven advantageous. Matrix dependent downhole fractionation evolution is empirically determined by analyzing 208Pb/232Th and 206Pb/238U and applied prior to standardization. The new data reduction technique was tested on three magmatic allanite reference materials (SISSb, CAPb, TARA); within error these show the same downhole fractionation evolution for all allanite types and in different analytical sessions, provided measurement conditions remain the same. Although the downhole evolution of allanite and zircon differs significantly, a link between zircon and allanite matrix is established by assuming CAPb and TARA to be fixed at the corresponding reference ages. Our weighted mean 208Pb/232Th ages are 30.06 ± 0.22 (2σ) for SISSb, 275.4 ± 1.3 (2σ) for CAPb, and 409.9 ± 1.8 (2σ) for TARA. Precision of single spot age data varies between 1.5 and 8 % (2σ), dependent on spot size and common lead concentrations. Quadrupole LA-ICP-MS allanite age-dating has thus similar uncertainties as do other spot analysis techniques. The new data reduction technique is much less dependent on quality and homogeneity

  3. Determination of iodine and molybdenum in milk by quadrupole ICP-MS.

    PubMed

    Reid, Helen J; Bashammakh, Abdul A; Goodall, Phillip S; Landon, Mark R; O'Connor, Ciaran; Sharp, Barry L

    2008-03-15

    A reliable method for the determination of iodine and molybdenum in milk samples, using alkaline digestion with tetramethylammonium hydroxide and hydrogen peroxide, followed by quadrupole ICP-MS analysis, has been developed and tested using certified reference materials. The use of He+O2 (1.0 ml min(-1) and 0.6 ml min(-1)) in the collision-reaction cell of the mass spectrometer to remove (129)Xe+-- initially to enable the determination of low levels of 129I--also resulted in the quantitative conversion of Mo(+) to MoO2+ which enabled the molybdenum in the milk to be determined at similar mass to the iodine with the use of Sb as a common internal standard. In order to separate and pre-concentrate iodine at sub microg l(-1) concentrations, a novel method was developed using a cation-exchange column loaded with Pd2+ and Ca2+ ions to selectively retain iodide followed by elution with a small volume of ammonium thiosulfate. This method showed excellent results for aqueous iodide solutions, although the complex milk digest matrix made the method unsuitable for such samples. An investigation of the iodine species formed during oxidation and extraction of milk sample digests was carried out with a view to controlling the iodine chemistry.

  4. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  5. Optimisation and critical evaluation of a collision cell technology ICP-MS system for the determination of arsenic in foodstuffs of animal origin.

    PubMed

    Dufailly, Vincent; Noël, Laurent; Guérin, Thierry

    2008-03-24

    The determination of arsenic (75As) was studied using an ICP-MS equipped with collision cell technology (CCT). Different mixtures of gases (He and H2) were tested using HCl conditions and a He flow rate of 4 mL min(-1) was found to be suitable for the removal of the poly-atomic spectral interference [40Ar35Cl]+. Trueness of the optimised method has been evaluated in both standard and CCT modes on six certified reference materials in foodstuffs of animal origin and on three external proficiency testing schemes (FAPAS). The results obtained generally coincided with the certified values, except for CCT mode in some categories of samples (meat, mussels and milk powder), for which a positive bias on results was observed due to the formation of poly-atomic interferences within the collision cell. The main interferences were studied and their contributions estimated. [58Fe16O1H]+ and [74Ge1H]+ were the most significant interferences formed in the cell. Finally, different parameters (e.g. hexapole and quadrupole bias voltage, nebuliser gas flow) were optimised to try to attenuate these interferences.

  6. ICP-MS Workshop

    SciTech Connect

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  7. Determination of trace element concentrations and stable lead, uranium and thorium isotope ratios by quadrupole-ICP-MS in NORM and NORM-polluted sample leachates.

    PubMed

    Mas, J L; Villa, M; Hurtado, S; García-Tenorio, R

    2012-02-29

    This work focuses on the monitoring of the potential pollution in scenarios that involve NORM-related industrial activities (environmental or in-door scenarios). The objective was to develop a method to determine extent and origin of the contamination, suitable for monitoring (i.e. simple, fast and economical) and avoiding the use of too many different instruments. It is presented a radiochemical method that allows the determination of trace element concentrations and 206Pb/207Pb/208Pb, 238U/234U and 232Th/230Th isotope ratios using a single sample aliquot and a single instrument (ICP-QMS). Eichrom UTEVA® extraction chromatography minicolumns were used to separate uranium and thorium in sample leachates. Independent ICP-MS determinations of uranium and thorium isotope ratios were carried out afterwards. Previously a small aliquot of the leachate was used for the determination of trace element concentrations and lead isotope ratios. Several radiochemical arrangements were tested to get maximum performances and simplicity of the method. The performances of the method were studied in terms of chemical yields of uranium and thorium and removal of the potentially interfering elements. The established method was applied to samples from a chemical industry and sediments collected in a NORM-polluted scenario. The results obtained from our method allowed us to infer not only the extent, but also the sources of the contamination in the area.

  8. Use of experimental design for optimisation of the cold plasma ICP-MS determination of lithium, aluminum and iron in soft drinks and alcoholic beverages.

    PubMed

    Bianchi, F; Careri, M; Maffini, M; Mangia, A; Mucchino, C

    2003-01-01

    A sensitive method for the simultaneous determination of (7)Li, (27)Al and (56)Fe by cold plasma ICP-MS was developed and validated. Experimental design was used to investigate the effects of torch position, torch power, lens 2 voltage, and coolant flow. Regression models and desirability functions were applied to find the experimental conditions providing the highest global sensitivity in a multi-elemental analysis. Validation was performed in terms of limits of detection (LOD), limits of quantitation (LOQ), linearity and precision. LODs were 1.4 and 159 ng L(-1) for (7)Li and (56)Fe, respectively; the highest LOD found being that for (27)Al (425 ng L(-1)). Linear ranges of 5 orders of magnitude for Li and 3 orders for Fe were statistically verified for each compound. Precision was evaluated by testing two concentration levels, and good results in terms of both intra-day repeatability and intermediate precision were obtained. RSD values lower than 4.8% at the lowest concentration level were calculated for intra-day repeatability. Commercially available soft drinks and alcoholic beverages contained in different packaging materials (TetraPack, polyethylene terephthalate (PET), commercial cans and glass) were analysed, and all the analytes were detected and quantitated. Copyright 2002 John Wiley & Sons, Ltd.

  9. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Wolf, R.E.; Todd, A.S.; Brinkman, S.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.

  10. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Wolf, Ruth E; Todd, Andrew S; Brinkman, Steve; Lamothe, Paul J; Smith, Kathleen S; Ranville, James F

    2009-12-15

    This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the (67)Zn/(66)Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured (67)Zn/(66)Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.

  11. Extraction and pre-concentration of platinum and palladium from microwave-digested road dust via ion exchanging mesoporous silica microparticles prior to their quantification by quadrupole ICP-MS.

    PubMed

    Nischkauer, Winfried; Neouze, Marie-Alexandra; Vanhaecke, Frank; Limbeck, Andreas

    We report on the use of mesoporous silica microparticles (μPs) functionalized with quarternary amino groups for the isolation of platinum and palladium tetrachloro complexes from aqueous road dust digests. The μPs have a size ranging from 450 to 850 nm and are suspended directly in the aqueous digests, upon which the anionic Pt and Pd complexes are retained on the cationic surface. Subsequently, the μPs are separated by centrifugation. Elements that cause spectral interferences in ICP-MS determination of Pt and Pd can be quantitatively removed by adding fresh 0.240 mol L(-1) HCl to the μPs and by repeating the centrifugation step. The analyte-loaded μPs are then dissolved in 0.1 mL of 2 mol L(-1) HF, diluted to 2 mL, and the solutions thus obtained are analyzed by quadrupole ICP-MS. This method avoids analyte elution from the sorbent. This "dispersed particle extraction" approach yielded a run-to-run relative standard deviation ≤ 5 % for Pt and ≤ 4 % for Pd (at 0.1 ng mL(-1), n = 4 road dust digests). Method detection limits (expressed as concentrations in the dust samples) are 2 and 1 ng g(-1) for Pt and Pd, respectively. The method was validated by analysis of a reference material (BCR CRM 723) and applied to the analysis of road dust samples collected in downtown Vienna. Pt and Pd concentrations in samples collected in summer and in winter were compared, with concentrations ranging from 205 to 1445 ng g(-1) for Pt and from 201 to 1230 ng g(-1) for Pd. Graphical AbstractMesoporous silica microparticles (μPs) functionalized with quarternary amino groups were used for isolating platinum and palladium from aqueous road dust digests. The μPs were suspended directly in the aqueous digests, and the analyte-loaded μPs were analyzed using "dispersed particle extraction".

  12. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sindern, Sven

    2017-02-01

    The group of the rare earth elements (REEs) serves as valuable indicator of numerous geological processes such as magma formation or fluid-rock interaction. The decay systems of the radioactive REE isotopes 138La, 147Sm and 176Lu are used for geochronometric dating of a range of events, starting from first steps of planetary formation to younger steps of geodynamic development. Thus, the abundance of all REEs occurring in a large range of concentrations as well as precise isotope ratios must be analysed in different geomaterials. The inductively coupled plasma (ICP) ion source and various types of mass spectrometers (MS) represent the basis to fulfil the analytical requirements of geoscientific studies. Today, ICP-quadrupole MS and ICP-sector field MS (SFMS) with a single detector or multiple ion collection (MC-ICP-MS) are standard instruments for REE analyses in the geosciences. Due to the need for in situ analysis, laser ablation (LA)-ICP-MS has become an important trace element microprobe technique, which is widely applied for determination of REE concentrations and isotope compositions in geoscientific laboratories. The quality of concentration analysis or isotope ratio determination of REEs by ICP-MS and LA-ICP-MS is affected by many parameters. Most significant are interferences caused by polyatomic oxide and hydroxide ion species formed in the plasma as well as fractionation effects leading to non-stoichiometric behaviour during element determination or to biased isotope ratio measurements. Laser-induced fractionation and isobaric interferences have to be considered as additional effects for LA-ICP-MS. As analyte elements and matrix are unseparated, mineral standards matching the matrix of samples are a prerequisite for accurate and precise REE concentration and isotope ratio determination. Application of fs lasers instead of the more common ns lasers in LA-ICP-MS systems turns out to be a significant step to reduce laser-induced fractionation and to

  13. Minimization of mass interferences in quadrupole inductively coupled plasma mass spectrometric (ICP-MS) determination of palladium using a flow injection on-line displacement solid-phase extraction protocol

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Liu, Li-Wen; Yan, Xiu-Ping

    2006-07-01

    A flow injection on-line displacement solid-phase extraction protocol was employed to minimize mass interferences with determination of palladium by inductively coupled plasma mass spectrometry (ICP-MS). The developed method involved in on-line complexing of Ag + with pyrrolidine dithiocarbamate (PDC), presorption of the resultant Ag-PDC onto a microcolumn packed with the cigarette filter, displacement sorption of Pd 2+ through loading the sample solution onto the microcolumn due to on-line displacement reaction between Pd 2+ and the presorbed Ag-PDC, elution of the retained Pd 2+ with 50 μL of ethanol for on-line ICP-MS detection. Interferences from co-existing heavy metal ions with lower stability of their PDC complexes relative to Ag-PDC were minimized/eliminated. No interferences from 5 mg L - 1 Zn and 3 mg L - 1 Pb for 104Pd, 0.4 mg L - 1 Cu for 105Pd, 6 mg L - 1 Zn and 2 mg L - 1 Cd for 106Pd, 6 mg L - 1 Zn and 3 mg L - 1 Cd for 108Pd, and 2 mg L - 1 Cd for 110Pd were observed for the determination of 100 ng L - 1 Pd. The enhancement factors of 71-75, sample throughput of 23 samples h - 1 and detection limits of 2.8-3.5 ng L - 1 were achieved with the consumption of 3.0 mL of sample solution. The precision (RSD) for eleven replicate determinations of Pd at the 100 ng L - 1 level was 1.8-2.7%. The developed method was applied to the determination of palladium in rock samples.

  14. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  15. Reproducibility of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements in mussel shells and comparison with micro-drill sampling and solution ICP-MS.

    PubMed

    Phung, Anh Tuan; Baeyens, Willy; Leermakers, Martine; Goderis, Steven; Vanhaecke, Frank; Gao, Yue

    2013-10-15

    The accumulation of trace elements (Mg, Mn, Sr, Ba) in Unio pictorum L. mussel shells from Lake Balaton has been assessed using a Laser Ablation (LA) system coupled to either a quadrupole-based or a sector-field inductively coupled plasma-mass spectrometer (ICP - MS), as well as by a combination of micro-drill sampling and solution ICP-MS. The LA-ICP-MS measurements were carried out in the holes made by the micro-drilling system. The longitudinal concentration profiles obtained with the different methods show similar patterns. However, the absolute concentrations determined at individual spots (holes) can be quite different. Especially Ba shows erratic peaks at a very small spatial scale. A paired, two-sample t-test between LA-ICP-MS longitudinal profiles and between LA-ICP-MS and micro-drill/solution ICP-MS profiles indicates that, in most cases, there is no significant difference between the concentration profiles of Ba, Mg, Mn and Sr. Average shell concentrations of Mg, Mn, Sr and Ba, as obtained by LA-ICP-MS and micro-drill/solution ICP-MS, compare well with bulk shell concentrations as obtained by acid digestion/ICP-MS of larger shell pieces. Next to the four elements mentioned above, also the concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn could be determined by bulk shell analysis. The element concentrations in 11 shells, all sampled at the same site, show a relative standard deviation (RSD) between 2% (Ni) and 46% (Zn). LA-ICP-MS and micro-drill solution ICP-MS are not sensitive enough for the determination of ultra-trace elements in Lake Balaton's mussel shells. We estimated the amount of shell material necessary to determine Ni, Pb, Cr and Cu by micro-drilling ICP-MS (for a concentration that equals 3 times their limit of detection) at, respectively, 0.04, 0.82, 2.7 and 0.4 mg, while the amount sampled by micro-drilling is about 0.06 mg.

  16. Title: The validation of Cryogenic Laser Ablation ICP-MS (CLA-ICP-MS) methods by comparison to laser ablation (LA)-ICP-MS and solution based ICP-MS methods, for the analysis of metals in biological tissues

    NASA Astrophysics Data System (ADS)

    Hannigan, R.; Darrah, T. H.; Horton, M.

    2009-12-01

    ICP-MS and laser ablation ICP-MS (LA-ICP-MS) are well established techniques for the analysis of metals in geological and environmental samples. LA-ICP-MS is commonly used in geological applications to determine the spatial distribution of metal concentrations at small sampling intervals (as low as 10 microns). However, measurement of metals in water-rich, soft biological tissues typically requires samples to be digested into solutions, obfuscating spatial variations in metal concentrations. The cryogenic cell solidifies (by freezing) soft tissue, allowing these tissues to be analyzed by laser ablation for spatial variations in metal concentration. The cell is temperature programmable and capable of maintaining a sample at any temperature between -35C and 25C throughout prolonged analysis. We validate the cryogenic laser ablation ICP-MS (CLA-ICP-MS) method using NIST Glass SRM 612. We also compare metal concentration data analyzed by cryogenic laser ablation ICP-MS (CLA-ICP-MS), LA-ICP-MS, and solution based ICP-MS, for human and rodent brain samples. The cryogenic laser ablation cell will expand analytical capabilities for measuring spatial distribution and concentration of metals incorporated into biological tissues.

  17. Aqueous Organometal Speciation by GC-ICP-MS and HPLC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hannigan, R.

    2005-12-01

    Organometals, specifically organomercury, organotin and organolead, may only account for a small fraction of the total metal load in aquatic systems. Despite their lower relative abundance, organometal species may have a larger impact on the environment. Although biogeochemical studies of mercury, tin, and to a lesser degree lead, have been done, little is known about the transport and transformation of these organometals in the water column and, more specifically, at the sediment-water interface. Our knowledge is limited, in part, by the lack of instrumental techniques that provide simultaneous highly precise data about the metal species and binding ligand. We have developed a series of hyphenated techniques that allow for precise quantification of the elemental and organic forms of these metals. Most importantly these methods remove sample pre-treatment from the methods though headspace trap desorption, split injection and sequential chromatography with split detection providing detailed information about the metals and organics in stream water samples. Our data show that using headspace trap GC-ICP-MS it is possible to by-pass chromatographic separation of the species and detect elemental, dimethyl and methyl mercury in a single sample from a single injection. Additional research shows that GC-ICP-MS and HPLC-ICP-MS speciation of organotins provide differential speciation data with GC-ICP-MS detecting, at very low concentrations, butylins and HPLC-ICP-MS detecting, at very low concentrations, ethyltins. Integration of these techniques into a single system will eventually lead to a system which provides simultaneous detection of metals and organic binding ligands in a single sample.

  18. ICP-MS Data Analysis Software

    SciTech Connect

    Kinard, W. Frank

    1999-01-14

    VG2Xl - this program reads binary data files generated by VG instrumentals inductively coupled plasma-mass spectrometers using PlasmaQuad Software Version 4.2.1 and 4.2.2 running under IBM OS/2. ICPCalc - this module is a macro for Microsoft Excel written in VBA (Virtual Basic for Applications) that performs data analysis for ICP-MS data required for nuclear materials that cannot readily be done with the vendor''s software. VG2GRAMS - This program reads binary data files generated by VG instruments inductively coupled plasma mass spectrometers using PlasmaQuad software versions 4.2.1 and 4.2.2 running under IBM OS/2.

  19. ICPCALC. ICP-MS Data Analysis Software

    SciTech Connect

    Kinard, F.

    1997-08-08

    VG2Xl - this program reads binary data files generated by VG instrumentals inductively coupled plasma-mass spectrometers using PlasmaQuad Software Version 4.2.1 and 4.2.2 running under IBM OS/2. ICPCalc - this module is a macro for Microsoft Excel written in VBA (Virtual Basic for Applications) that performs data analysis for ICP-MS data required for nuclear materials that cannot readily be done with the vendor`s software. VG2GRAMS - This program reads binary data files generated by VG instruments inductively coupled plasma mass spectrometers using PlasmaQuad software versions 4.2.1 and 4.2.2 running under IBM OS/2.

  20. Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, M.

    2016-12-01

    Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise

  1. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  2. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration.

    PubMed

    Gschwind, Sabrina; Aja Montes, Maria de Lourdes; Günther, Detlef

    2015-05-01

    In 2011, the European Commission introduced new regulations on how nanomaterials are defined. Since then, researchers have emphasized that more complete characterization of nanoparticles (NPs) includes not just mass and size determinations, but also the determination of the particle number concentrations. In this study, two different sample introduction approaches for the analysis of NP suspensions with inductively coupled plasma mass spectrometry (ICP-MS) were investigated: pneumatic nebulization (sp-ICP-MS) and microdroplet generation (MDG-ICP-MS). These approaches were compared for the determination of particle number concentrations (PNCs) of gold and silver NP suspensions diluted in either ultra-pure water or citrate solution. For accurate sp-ICP-MS analysis, it is crucial to know the transport efficiency of nebulized sample into the plasma. Here, transport efficiencies, measured by the waste collection method, were 11-14 % for Ag suspensions and 9-11 % for Au. In contrast, the droplet transport efficiency of MDG-ICP-MS was 100 %. Analysis by sp-ICP-MS yielded a lower particle number concentration than expected (only 20-40 % of the expected value), whereas MDG-ICP-MS had NP recoveries up to 80 %. This study indicates that NP reference materials are of major importance for particle number determination and detailed results on particle number concentrations for different suspensions with respect to storage time are discussed.

  3. Element Distribution in Allende Determined by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Wombacher, F.; Funk, C.; Frick, D. A.; Koch, J.; Günther, D.

    2016-08-01

    A novel LA-ICP-MS method has been developed in order to evaluate elemental distributions of 26 major and trace elements in chondritic meteorites. A reconnaissance study on a section from the Allende chondrite is presented.

  4. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1993-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels.

  5. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S. . Santa Barbara Operations); Mroz, E.; Olivares, J.A. )

    1993-01-01

    A method has been developed to analyze mercuric iodide (HgI[sub 2]) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI[sub 2], as well as preliminary correlations between HgI[sub 2] detector performance and elemental contamination levels.

  6. Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS.

    PubMed

    Montaño, Manuel D; Majestic, Brian J; Jämting, Åsa K; Westerhoff, Paul; Ranville, James F

    2016-05-03

    The rapid development of nanotechnology has led to concerns over their environmental risk. Current analytical techniques are underdeveloped and lack the sensitivity and specificity to characterize these materials in complex environmental and biological matrices. To this end, single particle ICP-MS (spICP-MS) has been developed in the past decade, with the capability to detect and characterize nanomaterials at environmentally relevant concentrations in complex environmental and biological matrices. However, some nanomaterials are composed of elements inherently difficult to quantify by quadrupole ICP-MS due to abundant molecular interferences, such as dinitrogen ions interfering with the detection of silicon. Three approaches aimed at reducing the contribution of these background molecular interferences in the analysis of (28)Si are explored in an attempt to detect and characterize silica colloids. Helium collision cell gases and reactive ammonia gas are investigated for their conventional use in reducing the signal generated from the dinitrogen interference and background silicon ions leaching from glass components of the instrumentation. A new approach brought on by the advent of microsecond dwell times in single particle ICP-MS allows for the detection and characterization of silica colloids without the need for these cell gases, as at shorter dwell times the proportion of signal attributed to a nanoparticle event is greater relative to the constant dinitrogen signal. It is demonstrated that the accurate detection and characterization of these materials will be reliant on achieving a balance between reducing the contribution of the background interference, while still registering the maximum amount of signal generated by the particle event.

  7. Analysis and Speciation of Lanthanoides by ICP-MS

    NASA Astrophysics Data System (ADS)

    Telgmann, Lena; Lindner, Uwe; Lingott, Jana; Jakubowski, Norbert

    2016-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g-1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents.

  8. High Resolution Coral Cd Measurements Using LA-ICP-MS and ID-ICP-MS: Calibration and Interpretation

    NASA Astrophysics Data System (ADS)

    Matthews, K. A.; Grottoli, A. G.; McDonough, W. F.; Palardy, J. E.

    2007-12-01

    Cadmium in coral skeleton ([Cd]coral) tracks oceanic upwelling. This study assessed the Cd signal in three species of coral ( Porites lobata, Pavona gigantea, Pavona clavus) from a seasonally upwelling region (Gulf of Panamá, Pacific Ocean) using high-resolution laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Single LA tracks in all species yielded variable results, however the average of multiple paths mirrored changes in in situ seawater Cd ([Cd]sw). In addition, averaged P. clavus data from LA-ICP-MS was correlated to isotope dilution-ICP-MS data, albeit with lower concentrations using the latter method. Although the seawater and coral time series trends were similar, maximum [Cd]coral preceded [Cd]sw by approximately 1 month. When applying this 1-month offset, [Cd]coral was well correlated to [Cd]sw, providing the first direct calibration for this upwelling proxy (distribution coefficient = 1.3-1.7). A three year record of cyclic [Cd]coral demonstrated the ability of LA-ICP-MS to rapidly generate long records for paleoupwelling reconstruction. Further improvements in measurement precision would make this technique comparable to existing ID-ICP-MS methods, but with higher sample throughput and temporal resolution.

  9. A table of polyatomic interferences in ICP-MS

    USGS Publications Warehouse

    May, Thomas W.; Wiedmeyer, Ray H.

    1998-01-01

    Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic “isobaric” interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous sources, such as the sample matrix, reagents used for preparation, plasma gases, and entrained atmospheric gases.

  10. Isotopic analyses by ICP-MS in clinical samples.

    PubMed

    Rodushkin, Ilia; Engström, Emma; Baxter, Douglas C

    2013-03-01

    This critical review focuses on inductively coupled plasma mass spectrometry (ICP-MS) based applications for isotope abundance ratio measurements in various clinical samples relevant to monitoring occupational or environmental exposure, human provenancing and reconstruction of migration pathways as well as metabolic research. It starts with a brief overview of recent advances in ICP-MS instrumentation, followed by selected examples that cover the fields of accurate analyte quantification using isotope dilution, tracer studies in nutrition and toxicology, and areas relying upon natural or man-made variations in isotope abundance ratios (Pb, Sr, actinides and stable heavy elements). Finally, some suggestions on future developments in the field are provided.

  11. High precision 11B/10B analysis with a simplified MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Tanimizu, M.; Nagaishi, K.

    2012-04-01

    -precision isotopic analysis of boron by positive thermal ionization mass spectrometry with sample preheating, J. Anal. At. Spectrom., 26, 359-365. Louvat, P., Bouchez, J, and Paris, G., 2011. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): Optimisation and application to boron in seawater and carbonate samples., Geostand. Geoanal. Res., 35, 75-88.

  12. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Sabine; Zoriy, Miroslav; Matusch, Andreas; Wu, Bei; Salber, Dagmar; Palm, Christoph; Becker, J Susanne

    2010-01-01

    The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized. Copyright 2009 Wiley Periodicals, Inc.

  13. Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS.

    PubMed

    Nolan, Annette L; Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J

    2004-11-01

    Isotope dilution is a useful technique to measure the labile metal pool, which is the amount of metal in soil in rapid equilibrium (<7 days) with the soil solution. This is normally performed by equilibrating soil with a metal isotope, and sampling the labile metal pool by using an extraction (E value), or by growing plants (L value). For Cu, this procedure is problematic for E values, and impossible for L values, due to the short half-life of the 64Cu radioisotope (12.4 h), which makes access and handling very difficult. We therefore developed a technique using enriched 65Cu stable isotope and measurement of 63Cu/65Cu ratios by quadrupole inductively coupled plasma mass spectrometry (ICP-MS) to measure labile pools of Cu in soils using E value techniques. Mass spectral interferences in detection of 63Cu/65Cu ratios in soil extracts were found to be minimal. Isotope ratios determined by quadrupole ICP-MS compared well to those determined by high-resolution (magnetic sector) ICP-MS. E values determined using the stable isotope technique compared well to those determined using the radioisotope for both uncontaminated and Cu-contaminated soils.

  14. LIBS and LA-ICP-MS; Old techniques, new approaches

    NASA Astrophysics Data System (ADS)

    Mueller, P. A.; Foster, D. A.; Gonzalez, J.; Colucci, M.; Russo, R.

    2012-12-01

    Over the past decade laser ablation in-situ solid sampling for chemical analysis with an ICP-MS analyzer (LA-ICP-MS, single and multi-collector) has become a generally accepted technique across a wide range of disciplines (geochemistry, forensic science, life sciences, etc). More recently, Laser Induced Breakdown Spectrometry (LIBS) has developed into a complementary technique that offers full spectral analysis of the laser plasma without the need for a mass spectrometer. Both techniques provide in-situ solid sample elemental and isotopic analysis at high spatial resolution (<5 microns) with minimal sample preparation. LA-ICP-MS affords the analyst low detection limits (ppb) and the ability to optimize across a specific mass range for high precision element or isotope ratios. LIBS, while providing slightly higher detection limits (ppm), allows for simultaneous and near complete spectral coverage of the laser plasma. Both techniques are capable of producing semi-quantitative and quantitative data. Integration of a LA and LIBS system could be a powerful tool to allow full spectral element and isotope/element ratio data on the same laser plume (plasma and particulates). Although LIBS and LA typically operate under different conditions of pulse length, spot size, and energy, the ability to capture elemental abundance information from the light that is otherwise wasted during LA makes an important complement to the limited number of ions measured in multi-collector ICP-MS analyses. Such an approach would not require the compromises in sampled volume associated with either split-streams (two ICP-MS systems required; diluted aerosol streams) or with peak switching in the MS (magnetic or electrostatic) because extraction of light-based information does not impact the number of ions measured for isotope ratios. We present LIBS experiments with UV-nanosecond lasers at 17mJ energies delivered to spot sizes of <100 μm and light directed to an ICCD detection system on NIST

  15. Triple Quad-ICP-MS Measurement of Toxic Metals in Mainstream Cigarette Smoke from Spectrum Research Cigarettes.

    PubMed

    Pappas, R Steven; Gray, Naudia; Gonzalez-Jimenez, Nathalie; Fresquez, Mark; Watson, Clifford H

    2016-01-01

    We previously reported toxic metal concentrations in the mainstream smoke from 50 varieties of commercial cigarettes available in the USA using quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). However, efforts to continue producing high quality data on select mainstream cigarette smoke constituents demand continued improvements in instrumentation and methodology and application of the methodology to cigarettes that differ in design or construction. Here we report a new application of 'triple quad'-ICP-MS instrumentation to analyze seven toxic metals in mainstream cigarette smoke from the Spectrum variable nicotine research cigarettes. The Spectrum cigarettes are available for research purposes in different configurations of low or conventional levels of nicotine, mentholated or nonmentholated, and tar delivery ranges described as 'low tar' or 'high tar'. Detailed characterizations of specific harmful or potentially harmful constituents delivered by these research cigarettes will help inform researchers using these cigarettes in exposure studies, cessation studies and studies related to nicotine addiction or compensation.

  16. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods

    PubMed Central

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    2014-01-01

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd2+ leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As+ from m/z 75 to AsO+ at m/z 91 and Se+ from m/z 78 to SeO+ at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ. PMID:25609851

  17. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods.

    PubMed

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd(2+) leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As(+) from m/z 75 to AsO(+) at m/z 91 and Se(+) from m/z 78 to SeO(+) at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ.

  18. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  19. Determination of (99)Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ((99)Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine (99)Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO4) solution. After the reduction of KMnO4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Laser ablation ICP-MS: Application in biomedical research.

    PubMed

    Sussulini, Alessandra; Becker, Julia Susanne; Becker, Johanna Sabine

    2017-01-01

    In the last decade, the development of diverse bioanalytical methodologies based on mass spectrometry imaging has increased, as has their application in biomedical questions. The distribution analysis of elements (metals, semimetals, and non-metals) in biological samples is a point of interest in life sciences, especially within the context of metallomics, which is the scientific field that encompasses the global analysis of the entirety of elemental species inside a cell or tissue. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been efficiently employed to generate qualitative and quantitative maps of elemental distribution in thin tissue sections of a variety of biological samples, for example, brain, cartilage, spinal cord, etc. The combination of elemental with molecular mass spectrometry allows obtaining information about the elements bound to proteins, when they are previously separated by gel electrophoresis (metalloproteomics), and also adding a new dimension to molecular mass spectrometry imaging by the correlation of molecular and elemental distribution maps in definite regions in a biological tissue. In the present review, recent biomedical applications in LA-ICP-MS imaging as a stand-alone technique and in combination with molecular mass spectrometry imaging techniques are discussed. Applications of LA-ICP-MS in the study of neurodegenerative diseases, distribution of contrast agents and metallodrugs, and metalloproteomics will be focused in this review. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:47-57, 2017. © 2015 Wiley Periodicals, Inc.

  1. Elemental speciation in biomolecules by LC-ICP-MS with magnetic sector and collision cell instruments

    SciTech Connect

    Wang, Jin

    1999-11-08

    A methodology that can monitor and identify inorganic elements in biological and environmental systems was developed. Size exclusion chromatography (SEC) separates biomolecules, which are then nebulized by a microconcentric nebulizer. The resulting aerosol is desolved and introduced into either a high resolution ICP-MS device or a quadrupole device with a collision cell. Because of the high sensitivity and spectral resolution and high sample introduction efficiency, many unusual or difficult elements, such as Cr, Se, Cd and U, can be observed at ambient levels bound to proteins in human serum. These measurements are made in only a few minutes without preliminary isolation and preconcentration steps. Serum samples can be titrated with spikes of various elements to determine which proteins bind a given metal and oxidation state. Experiments concerning the effects of breaking disulfide linkages and denaturation on metal binding in proteins were also investigated. Elemental distribution in liver extract was also obtained.

  2. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    PubMed

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  3. Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS

    DOE PAGES

    Thompson, Robert L.; Bank, Tracy; Roth, Elliot; ...

    2016-07-30

    Here, the supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied thesemore » materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs.« less

  4. Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS

    SciTech Connect

    Thompson, Robert L.; Bank, Tracy; Roth, Elliot; Granite, Evan

    2016-07-30

    Here, the supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied these materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs.

  5. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  6. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    SciTech Connect

    Sullivan, Patrick Allen

    2005-12-17

    %-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.

  7. Sector field mass spectrometers in ICP-MS

    NASA Astrophysics Data System (ADS)

    Jakubowski, Norbert; Moens, Luc; Vanhaecke, Frank

    1998-11-01

    A new generation of sector field mass spectrometers, with improved analytical figures of merit at even lower prices, is commercially available, giving a strong impetus to the development of inductively coupled plasma mass spectrometry (ICP-MS) sector field instrument applications in the analytical community. It is the aim of this paper to give an overview of these instruments, to introduce some basic concepts, to discuss their peculiarities and performance, and to present some selected examples of analytical applications to demonstrate the `state of the art'.

  8. Analysis of some Romanian fruit juices by ICP-MS

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.

    2013-11-01

    The present study was carried out to evaluate the heavy metal content of 21 Romanian single strength fruit (plum, apple, sour cherry) juices. The samples were collected from five Romanian areas namely: Alba, Maramures, Cluj, Salaj and Moldova. The results indicated macro (Na, Mg, Ca, P) and micro (Fe, Zn, Ni, Cr, Cd, Pb, etc) elements in the selected samples. The determination was performed by ICP-MS. Our results for fruit juice were compared with allowable limits for drinking water in the United Kingdom (NS30).

  9. Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien

    2004-08-01

    Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have

  10. Fingerprinting of ground water by ICP-MS. Final report

    SciTech Connect

    Stetzenbach, K.; Johannesson, K.

    1996-04-30

    Geochemical investigations of groundwater sources and mixing have relied heavily on the major solutes (Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, Cl{sup -}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, {plus_minus}F{sup -}, Br{sup -} , PO{sub 4}{sup 3-}), stable isotopes of hydrogen and oxygen ({delta}D and {delta}{sup 18}O), and, occasionally, radionuclides such as tritium ({sup 3}H) and carbon-14 ({sup 14}C). Problems with geochemical interpretations of such analyses arise from the low number of major solutes (typically between 7 and 8 are reported) which results in insufficient information for definitive interpretations. Moreover, isotopic analyses can be very costly. We present an alternative approach using numerous trace elements that occur naturally in all ground waters and that can now be measured rapidly and routinely using the inductively coupled plasma-mass spectrometer (ICP-MS) at the Harry Reid Center for Environmental Studies (HRC) at a fraction of the cost of isotopic analysis. The tremendous number of solutes that can be measured by ICP-MS necessitates the examination of each data set by multivariate statistical techniques that help to reduce the data and illuminate correlations between trace elements and, therefore, ground waters of similar and/or different origins.

  11. Determination of phosphorus in small amounts of protein samples by ICP-MS.

    PubMed

    Becker, J Sabine; Boulyga, Sergei F; Pickhardt, Carola; Becker, J; Buddrus, Stefan; Przybylski, Michael

    2003-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.

  12. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  13. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS.

    PubMed

    Diwakar, Prasoon K; Harilal, Sivanandan S; LaHaye, Nicole L; Hassanein, Ahmed; Kulkarni, Pramod

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes.

  14. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    SciTech Connect

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening and collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.

  15. Developments in ICP-MS: electrochemically modulated liquid chromatography for the clean-up of ICP-MS blanks and reduction of matrix effects by flow injection ICP-MS

    SciTech Connect

    Gross, Cory Thomas

    2008-01-01

    The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.

  16. Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Sela, Hagit; Dobrowolska, Justina; Zoriy, Miroslav; Becker, J. Susanne

    2008-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have proved themselves to be powerful and sensitive inorganic mass spectrometric techniques for analysing stable and radioactive isotopes in different application fields because of their high sensitivity, low detection limits, good accuracy and precision. New applications of ICP-MS focus on tracer experiments and the development of isotope dilution techniques together with nanoflow injections for the analysis of small volumes of biological samples. Today, LA-ICP-MS is the method of choice for direct determination of metals, e.g., on protein bands in gels after the gel electrophoresis of protein mixtures. Tracer experiments using highly enriched 65Cu were utilized in order to study the formation of metal-binding bovine serum proteins. A challenging task for LA-ICP-MS is its application as an imaging mass spectrometric technique for the production of isotope images (e.gE, from thin sections of brain tissues stained with neodymium). In this paper, we demonstrate the application of imaging mass spectrometry on single particles (zircon and uranium oxide). Single Precambrian zircon crystals from the Baltic Shield were investigated with respect to isotope ratios using LA-ICP-MS for age dating. The U-Pb age was determined from the isochrone with (1.48 ± 0.14) × 109 a. Using isotope ratio measurements on 10 nuclear uranium oxide single particles the 235U/238U isotope ratio was determined to be 0.032 ± 0.004. This paper describes recent developments and applications of isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles.

  17. Trace element determination in vitamin E using ICP-MS.

    PubMed

    Ponce De León, Claudia A; Montes Bayón, Maria; Caruso, Joseph A

    2002-09-01

    Vitamin E supplements are either isolated from plants sources or prepared synthetically. Isolation from plants includes eight different tocopherol structures. Vitamin E synthesis includes seven different stereoisomers, which involves the use of several catalysts that may lead to trace element contamination in the vitamin. The use of ICP-MS is an ideal technique for detecting these trace elements. However, the oily nature of the samples requires the development of a sample preparation methodology. This study was done upon the request of synthetic vitamin E manufacturers to test the trace metal purity of their samples. In this work, the comparison of an acid microwave digestion and emulsion preparation is discussed. Cromium, nickel, tin and lead were found in the synthetic vitamin E analyzed and 200, 60, 9 and 45 ppb were the concentrations found respectively for these elements. Digesting the samples gives slightly lower detection limits compared to the emulsion preparation.

  18. Sensitive redox speciation of neptunium by CE-ICP-MS.

    PubMed

    Stöbener, Nils; Amayri, Samer; Gehl, Aaron; Kaplan, Ugras; Malecha, Kurtis; Reich, Tobias

    2012-11-01

    Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1 × 10(-9) and 5 × 10(-10) mol L(-1) for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10(-9) to 10(-6) mol L(-1). The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5 × 10(-7) mol L(-1) Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe(2+) led to complete sorption of the Np onto the clay. After desorption with HClO(4), a mixture of Np(IV) and Np(V) was found in solution by CE-ICP-MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe(2+).

  19. Overview and comparison of ICP-MS methods for environmental analyses

    SciTech Connect

    Wolf, R.E.; Denoyer, E.; Grosser, Z.

    1996-11-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) offers the modern laboratory a number of advantages, including low detection limits and high sample throughput. The EPA has recognized the potential benefits of this technique for analytical capability and the ability to reduce the cost per test and has recently approved a series of new methods based on ICP-MS instrumentation.

  20. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues.

    PubMed

    Becker, J Sabine; Becker, J Susanne

    2010-01-01

    The determination of the localization and distribution of essential and beneficial metals (e.g., Cu, Fe, Zn, Mn, Co, Ti, Al, Ca, K, Na, Cr and others), toxic metals (like Cd, Pb, Hg, U), metalloids (e.g., As, Se, Sb), and non-metals (such as C, S, P, Cl, I) in biological tissues is a challenging task for life science studies. Over the past few years, the development and application of mass spectrometric imaging (MSI) techniques for elements has been rapidly growing in the life sciences in order to investigate the uptake and the transport of both essential and toxic metals in plant and animal sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a very sensitive and efficient trace, surface, and isotopic analytical technique for biological samples. LA-ICP-MS is increasingly utilized as an elemental mass spectrometric technique using double-focusing sector field (LA-ICP-SFMS) or quadrupole mass spectrometers (LA-ICP-QMS) to produce images of detailed regionally specific element distributions in thin biological tissue sections. Nowadays, MSI studies focus on brain research for studying neurodegenerative diseases such as Alzheimer's or Parkinson's, stroke, or tumor growth, or for the imaging of cancer biomarkers in tissue sections.The combination of the mass spectrometry imaging of metals by LA-ICP-MS with proteomics using biomolecular mass spectrometry (such as MALDI-MS or ESI-MS) to identify metal-containing proteins has become an important strategy in the life sciences. Besides the quantitative imaging of metals, non-metals and metalloids in biological tissues, LA-ICP-MS has been utilized for imaging metal-containing proteins in a 2D gel after electrophoretic separation of proteins. Recent progress in applying LA-ICP-MS in life science studies will be reviewed including the imaging of thin slices of biological tissue and applications in proteome analysis in combination with MALDI/ESI-MS to analyze metal-containing proteins.

  1. Selenite biotransformation during brewing. Evaluation by HPLC-ICP-MS.

    PubMed

    Sánchez-Martínez, Maria; da Silva, Erik Galvão P; Pérez-Corona, Teresa; Cámara, Carmen; Ferreira, Sergio L C; Madrid, Yolanda

    2012-01-15

    Yeast (Saccharomyces cerevisiae) and lactic bacteria have shown their ability to accumulate and transform inorganic selenium into organo Se compounds. The objective of this work was to evaluate selenium biotransformation during brewing by using S. cerevisiae and Saccharomyces uvarum for Ale and Lager fermentation, respectively. Se-enriched beer was produced by the addition of sodium selenite (0, 0.2, 1.0, 2.0, 10.0, 20.0 μg Se mL(-1), respectively) to the fermentation media composed of yeast, malt extract and water. The alcoholic fermentation process was not affected by the presence of selenium regardless of the type of Saccharomyces being used. The percentage of selenium incorporated into beer, added between 1.0 and 10 μg mL(-1) was 55-60% of the selenium initially present. Se-compounds in post-fermentation (beer and yeast) products were investigated by using an analytical methodology based on HPLC-ICP-MS. For this purpose, several sample treatments, including ultrasonic-assisted enzymatic hydrolysis, in conjunction with different separation mechanisms like dialysis and anion exchange HPLC chromatography were applied for unambiguously identifying Se-species that produce during brewing. Selenomethionine was the main selenium compound identified in beer and yeast, being this species in the only case of the former not associated to peptides or proteins. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. ICP MS selection of radiopure materials for the GERDA experiment

    SciTech Connect

    Di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.

  3. ICP MS selection of radiopure materials for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  4. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.

  5. Determination of Toxic Metals in Little Cigar Tobacco with 'Triple Quad' ICP-MS.

    PubMed

    Pappas, R Steven; Martone, Naudia; Gonzalez-Jimenez, Nathalie; Fresquez, Mark R; Watson, Clifford H

    2015-06-01

    Smoking remains the leading cause of preventable death in the USA. Much of the focus on harmful and potentially harmful constituents (HPHCs) in tobacco products has been on cigarettes. Little cigars gained popularity over the last decade until tobacco taxes made cigarettes more expensive in the USA. Many little cigar brands are similar in size with cigarettes and may be smoked in a similar manner. Scant data are available on HPHC concentrations in little cigars, therefore we developed and applied a new analytical method to determine concentrations of 10 toxic metals in little cigar tobacco. The method utilizes 'triple quadrupole' ICP-MS. By optimizing octapole bias, energy discrimination and cell gas flow settings, we were able to accurately quantify a range of elements including those for which the cell gas reactions were endothermic. All standard modes (Single Quad No Gas, MS-MS NH3/He and MS-MS O2) were utilized for the quantitation of 10 toxic metals in little cigar tobacco, including uranium, which was added as an analyte in the new method. Because of the elimination of interfering ions at 'shifted analyte masses', detection limits were lower compared with a previous method. Tobacco selenium concentrations were below the limit of detection in the previous method, but the new technology made it possible to report all selenium concentrations.

  6. Isotopic signature of selected lanthanides for nuclear activities profiling using cloud point extraction and ICP-MS/MS.

    PubMed

    Labrecque, Charles; Lebed, Pablo J; Larivière, Dominic

    2016-05-01

    The presence of fission products, which include numerous isotopes of lanthanides, can impact the isotopic ratios of these elements in the environment. A cloud point extraction (CPE) method was used as a preconcentration/separation strategy prior to measurement of isotopic ratios of three lanthanides (Nd, Sm, and Eu) by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). To minimise polyatomic interference, the combination of interferents removal by CPE, reaction/collision cell conditions in He and NH3 mode and tandem quadrupole configuration was investigated and provided optimal results for the determination of isotopic ratio in environmental samples. Isotopic ratios were initially measured in San Joaquin soil (NIST-2709a), an area with little contamination of nuclear origin. Finally, samples collected from three sites with known nuclear activities (Fangataufa Lagoon in French Polynesia, Chernobyl and the Ottawa River near Chalk River Laboratory) were analysed and all exhibited altered isotopic ratios for (143/145)Nd, (147/149)Sm, and (151/153)Eu. These results demonstrate the potential of CPE and ICP-MS/MS for the detection of altered isotopic ratio in environmental samples collected in area subjected to nuclear anthropogenic contamination. The detection of variations in these isotopic ratios of fission products represents the first application of CPE in nuclear forensic investigations of environmental samples.

  7. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and

  8. Micronebulization for trace analysis of lanthanides in small biological specimens by ICP-MS

    NASA Astrophysics Data System (ADS)

    Dressler, Valderi L.; Pozebon, Dirce; Matusch, Andreas; Becker, J. Sabine

    2007-10-01

    This work deals with the development of a mass spectrometric method for the determination of lanthanides (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) at ng g-1 levels in small amounts of biological specimens by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. Two different systems were investigated for introducing the aqueous solutions of the sample into the plasma: a desolvating system (APEX) with micronebulizer and a nano-volume flow injection system combined with a total consumption nebulizer (DS-5). Both solution introduction systems were used together with a quadrupole ICP mass spectrometer. The performances of the investigated nebulizers were compared to that of the MicroMist nebulizer, which was fitted to a mini cyclonic spray chamber. The solution uptake rate was: 700 [mu]L min-1 for MicroMist, 330 [mu]L min-1 for APEX and 8 [mu]L min-1 for DS-5. By using the APEX and the DS-5 nebulizers the oxides formation rate is reduced compared to MicroMist nebulizer, but to a larger extent by APEX. The relative detection limits for lanthanides ranged from 0.57 to 6.1 ng L-1 and 30 to 170 ng L-1 for the APEX and the DS-5 nebulizer, respectively. The absolute detection limits were in the range of 6.7 to 54 pg for APEX and 3.1 to 7.6 fg for DS-5. The method was applied for lanthanides determination in mussel tissue (BCR 668) and in slugs organs. Good precision and accuracy were obtained with the use of APEX, since the oxide interference is markedly reduced. Slight interference was still observed with the use the DS-5 nebulizer, mainly by Ba oxides. By using the nano-volume flow injection nebulizer, lanthanide determination in small amounts of slug tissue was possible, only requiring 76 nL of digested sample solution into the plasma of ICP-MS.

  9. Ni speciation in tea infusions by monolithic chromatography--ICP-MS and Q-TOF-MS.

    PubMed

    Ščančar, Janez; Zuliani, Tea; Žigon, Dušan; Milačič, Radmila

    2013-02-01

    For humans, Ni is not considered to be an essential trace element. Its compounds, at levels present in foodstuffs and drinks, are generally considered to be safe for consumption, but for individuals who already suffer from contact allergy to Ni and may be subject to develop systemic reactions from its dietary ingestion, dietary exposure to Ni must be kept under control. Being the second most popular beverage, tea is a potential source of dietary Ni. Present knowledge on its speciation in tea infusions is poor. Therefore, complete speciation analysis, consisting of separation by liquid chromatography using a weak CIM DEAE-1 monolithic column, "on-line" detection by inductively coupled plasma mass spectrometry (ICP-MS) and "off-line" identification of ligands by hybrid quadrupole time-of-flight mass spectrometry (Q-TOF MS), was implemented for the first time to study Ni speciation in tea infusions. Total concentrations of Ni in dry leaves of white, green, oolong and black tea (Camellia sinensis) and flowers of herbal chamomile (Matricaria chamomilla) and hibiscus (Hibiscus sabdariffa) tea were determined after microwave digestion by ICP-MS. They lay between 1.21 and 14.4 mg kg(-1). Good agreement between the determined and the certified values of the Ni content in the standard reference material SRM 1573a tomato leaves confirmed the accuracy of the total Ni determination. During the infusion process, up to 85 % of Ni was extracted from tea leaves or flowers. Separation of Ni species was completed in 10 min by applying aqueous linear gradient elution with 0.6 mol L(-1) NH(4)NO(3). Ni was found to be present in the chromatographic fraction in which quinic acid was identified by Q-TOF in all the tea infusions analysed, which had pH values between 5.6 and 6.0. The only exception was the infusion of hibiscus tea with a pH of 2.7, where results of speciation analysis showed that Ni is present in its divalent ionic form.

  10. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  11. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  12. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  13. Application of laser microdissection ICP-MS for high resolution elemental mapping in mouse brain tissue: a comparative study with laser ablation ICP-MS.

    PubMed

    Sussulini, Alessandra; Becker, J Sabine

    2015-01-01

    Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of Element Distribution and Abundances in Chondritic Components by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funk, C.; Wombacher, F.; Frick, D. A.; Tabersky, D.; Koch, J.; Günther, D.

    2014-09-01

    A method using femtosecond LA-ICP-MS for in-situ determination of element abundances and distribution in chondritic components will be presented. Internal standard independent calibration to innovative ext. standards is applied for quantification.

  15. ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.

    PubMed

    Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K

    2017-01-01

    Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Wu, Bei; Zoriy, Miroslav; Chen, Yingxu; Becker, J Sabine

    2009-04-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of (39)K(+), (24)Mg(+), (55)Mn(+), (63)Cu(+), (31)P(+), (34)S(+) and (11)B(+) were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon ((13)C(+)) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L(-1). The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 microg g(-1) for Cu and 14,000 microg g(-1) for K.

  17. Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution.

    PubMed

    Quemet, Alexandre; Brennetot, Rene; Chevalier, Emilie; Prian, Edwina; Laridon, Anne-Laure; Mariet, Clarisse; Fichet, Pascal; Laszak, Ivan; Goutelard, Florence

    2012-09-15

    An analytical procedure was developed to determine the concentration of 25 impurities (Li, Be, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ag, Cd, In, Sm, Eu, Gd, Dy, W, Pb, Bi and Th) in a uranium matrix using the quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). The dissolution of U(3)O(8) powder was made with a mixture of hydrochloric acid and nitric acid. Then, a selective separation of uranium using the UTEVA column was used before measurement by Q-ICP-MS. The procedure developed was verified using the Certified Reference Material "Morille". The analytical results agree well except for 5 elements where values are underestimated (Li, Be, In, Pb and Bi). Among the list of impurities, iron was particularly investigated because it is well known that this element possesses a polyatomic interference that increases the detection limit. A comparison between iron detection limits obtained with different methods was performed. Iron polyatomic interference was at least reduced, or at best entirely resolved in some cases, by using the cold plasma or the collision/reaction cell with several gases (He, NH(3) and CH(4)). High-resolution ICP-MS was used to compare the results obtained. A detection limit as low as 8 ng L(-1) was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  19. Development of a species-specific isotope dilution GC-ICP-MS method for the determination of thiophene derivates in petroleum products.

    PubMed

    Heilmann, Jens; Heumann, Klaus G

    2008-01-01

    A species-specific isotope dilution technique for accurate determination of sulfur species in low- and high-boiling petroleum products was developed by coupling capillary gas chromatography with quadrupole ICP-MS (GC-ICP-IDMS). For the isotope dilution step 34S-labeled thiophene, dibenzothiophene, and mixed dibenzothiophene/4-methyldibenzothiophene spike compounds were synthesized on the milligram scale from elemental 34S-enriched sulfur. Thiophene was determined in gasoline, 'sulfur-free' gasoline, and naphtha. By analyzing reference material NIST SRM 2296, the accuracy of species-specific GC-ICP-IDMS was demonstrated by an excellent agreement with the certified value. The detection limit is always limited by the background noise of the isotope chromatograms and was determined for thiophene to be 7 pg absolute, which corresponds to 7 ng sulfur/g sample under the experimental conditions used. Dibenzothiophene and 4-methyldibenzothiophene were determined in different high-boiling petroleum products like gas oil, diesel fuel, and heating oil. In this case a large concentration range from about < 0.04 to more than 2,000 microg g(-1) was covered for both sulfur species. By parallel GC-ICP-MS and GC-EI-MS experiments (EI-MS electron impact ionization mass spectrometry) the substantial influence of co-eluting hydrocarbons on the ICP-MS sulfur signal was demonstrated, which can significantly affect results obtained by external calibration but not those by the isotope dilution technique.

  20. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic.

    PubMed

    Heitland, Peter; Blohm, Martin; Breuer, Christian; Brinkert, Florian; Achilles, Eike Gert; Pukite, Ieva; Köster, Helmut Dietrich

    2017-05-01

    ICP-MS and HPLC-ICP-MS were applied for diagnosis and therapeutic monitoring in a severe intoxication with a liquid containing hexavalent chromium (Cr(VI)) and inorganic arsenic (iAs). In this rare case a liver transplantation of was considered as the only chance of survival. We developed and applied methods for the determination of Cr(VI) in erythrocytes and total chromium (Cr) and arsenic (As) in blood, plasma, urine and liver tissue by ICP-MS. Exposure to iAs was diagnosed by determination of iAs species and their metabolites in urine by anion exchange HPLC-ICP-MS. Three days after ingestion of the liquid the total Cr concentrations were 2180 and 1070μg/L in whole blood and plasma, respectively, and 4540μg/L Cr(VI) in erythrocytes. The arsenic concentration in blood was 206μg/L. The urinary As species concentrations were <0.5, 109, 115, 154 and 126μg/L for arsenobetaine, As(III), As(V), methylarsonate (V) and dimethylarsinate (V), respectively. Total Cr and As concentrations in the explanted liver were 11.7 and 0.9mg/kg, respectively. Further analytical results of this case study are tabulated and provide valuable data for physicians and toxicologists. Copyright © 2017. Published by Elsevier GmbH.

  1. Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature

    NASA Astrophysics Data System (ADS)

    Leisen, Mathieu; Dubessy, Jean; Boiron, Marie-Christine; Lach, Philippe

    2012-08-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become an essential analytical tool for the study of paleofluid chemistry through the analysis of individual fluid inclusions. The calculation of major and trace element concentrations in fluid inclusions is usually based on empirical equations whose significance and accuracy are questionable. In addition, methods for estimation of analytical uncertainties element concentration in individual fluid inclusions are lacking. This study describes a method based upon Pitzer's thermodynamic model for the calculation of major element (Na, K, Mg and Ca) concentrations in low-to moderate-salinity fluid inclusions. A signal processing protocol, used in combination with the new method is also developed to calculate the concentration, for each inclusion, and uncertainty for each major and trace element. In order to validate the proposed method, synthetic and natural fluid inclusions (from Alpine quartz veins) were ablated with a 193 nm ArF excimer laser and analyzed with a quadrupole ICP-MS, equipped with an octopole collision-reaction cell. The difference between the calculated and actual element concentration (i.e. accuracy) does not exceed 20% and the calculated relative standard deviation (i.e. precision) for all element concentrations is ˜10% in standards (glasses, solutions in capillary tubes and synthetic fluid inclusions). The element concentrations obtained with this new method for the Alpine fluid inclusions are in good agreement with those previously measured using Laser Induced Breakdown Spectroscopy (LIBS) or crush-leach methods. Finally, the calculated concentrations and associated uncertainties determined for each element in individual fluid inclusions show that the sensitivity of LA-ICP-MS analysis is high enough to reflect small variations of major and trace element concentrations in the Alpine paleofluid, initially considered to have a constant chemistry. The new approach presented in

  2. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    PubMed

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. An uncertainty budget for trace analysis by isotope-dilution ICP-MS with proper consideration of correlation.

    PubMed

    Moser, J; Wegscheider, W; Meisel, T; Fellner, N

    2003-09-01

    Isotope-dilution mass spectrometry (IDMS) is considered to be a method without significant correction factors. It is also believed that this method is well understood. But unfortunately a large number of different uncertainty budgets have been published that consider different correction factors. These differences lead to conflicting combined uncertainties especially in trace analysis. It is described how the known correction factors must be considered in the uncertainty budget of values determined by IDMS combined with ICP-MS (ICP-IDMS). The corrections applied are dead time, background, interference, mass discrimination, blank correction and air buoyancy.IDMS measurements consist always of a series of isotope abundance ratio measurements and can be done according to different measurement protocols. Because the measurement protocols of IDMS are often rather sophisticated, correlations of influence quantities are difficult to identify. Therefore the measurement protocol has to be carefully considered in the specification of the measurand and a strategy is presented to properly account for these correlations. This will be exemplified for the estimation of mass fractions of platinum group elements (PGEs) and Re in the geological reference material UB-N (from CRPG-CNRS, Nancy in France) with ICP-IDMS. The PGEs with more than one isotope and the element Re are measured with on-line cation-exchange chromatography coupled to a quadrupole ICP-MS. All contents are below 10 microg kg(-1). Only osmium is separated from the matrix by direct sparging of OsO(4) into the plasma. This leads to transient signals for all PGEs and Re. It is possible to estimate the combined uncertainties and keep them favourably small despite the low contents, the transient signals and the sophisticated correction model.

  5. Development and characterisation of a new interface for coupling capillary LC with collision-cell ICP-MS and its application for phosphorylation profiling of tryptic protein digests.

    PubMed

    Pröfrock, Daniel; Leonhard, Peter; Ruck, Wolfgang; Prange, Andreas

    2005-01-01

    A comparison of different nebulisers for direct hyphenation of capillary and nano liquid chromatography (Cap-LC, Nano-LC) and quadrupole-based collision cell inductively coupled plasma mass spectrometry (CC-ICP-MS) for phosphorylation profiling of tryptic protein digests is described. Helium was used as cell gas and specially tuned instrumental conditions were used to achieve background minimisation at the mass of phosphorus, because of kinetic energy discrimination of the interfering polyatomic ions. The proposed set-up is based on a modified capillary electrophoresis interface and a home-made 4 mL spray chamber. It enables the use of gradient conditions with a highly concentrated organic mobile phase as often used in protein phosphorylation analysis, without the need to apply membrane desolvation for removal of the organic phase or further background minimisation. No significant signal suppression or other negative effects caused by the organic mobile phase occur, because of the low flow rates used in Cap-LC and the robust plasma conditions of the CC-ICP-MS instrument. A tryptic digest of beta-casein was investigated as model compound to demonstrate the applicability of the proposed set-up for phosphorylation profiling in protein analysis using quadrupole based collision-cell ICP-MS as phosphorus-specific detector. Detection limits for phosphorylated peptides down to the sub picomole level were obtained. As a complementary technique, electrospray ionisation tandem mass spectrometry (ESI-MS-MS) with data base searching was used for further characterisation of the phosphorylated peptides detected.

  6. Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS.

    PubMed

    Lauer, Estelle; Villa, Max; Jotterand, Morgane; Vilarino, Raquel; Bollmann, Marc; Michaud, Katarzyna; Grabherr, Silke; Augsburger, Marc; Thomas, Aurélien

    2017-03-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was performed to map elements in thin formalin-fixed paraffin-embedded tissue sections of two forensic cases with firearm and electrocution injuries, respectively. In both cases, histological examination of the wounded tissue regions revealed the presence of exogenous aggregates that may be interpreted as metallic depositions. The use of imaging LA-ICP-MS allowed us to unambiguously determine the elemental composition of the observed aggregates assisting the pathologist in case assessments. To the best of our knowledge, we demonstrate for the first time the use of imaging LA-ICP-MS as a complementary tool for forensic pathologists and toxicologists in order to map the presence of metals and other elements in thin tissue sections of post-mortem cases.

  7. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS.

    PubMed

    Mueller, Larissa; Herrmann, Antje J; Techritz, Sandra; Panne, Ulrich; Jakubowski, Norbert

    2017-05-01

    Actual research demonstrates that LA-ICP-MS is capable of being used as an imaging tool with cellular resolution. The aim of this investigation was the method development for LA-ICP-MS to extend the versatility to quantitative and multiplexing imaging of single eukaryotic cells. For visualization of individual cells selected, lanthanide-labeled antibodies were optimized for immuno-imaging of single cells with LA-ICP-MS. The molar content of the artificial introduced labels per cell was quantified using self-made nitrocellulose-coated slides for matrix-matched calibration and calculated amounts were in the range of 3.1 to 17.8 atmol per cell. Furthermore, the quantification strategy allows a conversion of 2D intensity profiles based on counts per second (cps) to quantitative 2D profiles representing the molar amount of the artificial introduced elemental probes per pixel for each individual cell. Graphical abstract ᅟ.

  8. Trace elemental content of biological materials. A comparison of NAA and ICP-MS analysis.

    PubMed

    Ward, N I; Abou-Shakra, F R; Durrant, S F

    1990-01-01

    The advantages and disadvantages of neutron activation analysis (NAA) and inductively coupled plasma-source mass spectrometry (ICP-MS) for the analysis of biological materials is reviewed. Comparison is made between NAA (instrumental) and ICP-MS (conventional pneumatic solution nebulization and laser ablation) analysis of the biological reference material National Bureau of Standards (NBS) SRM 1577 Bovine Liver. Relatively good agreement is achieved between the results for the 18 elements analyzed by both techniques and those either certified or reported in the literature. Elemental concentrations for Li, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, Br, Rb, and Cs are also reported for IAEA Mixed Human Diet (H9), NBS SRM 909 Human Serum, and NBS SRM 1577a Bovine Liver, analyzed by solution nebulization ICP-MS.

  9. Plutonium bioassay by inductively coupled plasma mass spectrometry ICP/MS

    SciTech Connect

    Wyse, E.J.; Fisher, D.R.

    1993-04-01

    The determination of plutonium in urine poses several analytical challenges, e.g., detectability, matrix, etc. We have investigated the feasibility of analyzing plutonium in processed urine by inductively coupled plasma mass spectrometry (ICP/MS). The urine samples are first spiked with [sup 244]Pu as a tracer and internal standard, then processed by co-precipitation and column chromatography using TRU-Spec[trademark], an extraction resin. By enhancing ICP/MS detection capabilities via improved sample introduction and data acquisition efficiencies, an instrumental detection limit of 5 to 50 fg (0.3 to 3 fCi for [sup 239]pu) is typically obtained, depending on the desired degree of quantitation. A brief summary of the analytical method as well as the basis for measuring radionuclides by ICP/MS are submitted; the separation procedure, methods of sample introduction, and data acquisition techniques are then highlighted.

  10. Plutonium bioassay by inductively coupled plasma mass spectrometry ICP/MS

    SciTech Connect

    Wyse, E.J.; Fisher, D.R.

    1993-04-01

    The determination of plutonium in urine poses several analytical challenges, e.g., detectability, matrix, etc. We have investigated the feasibility of analyzing plutonium in processed urine by inductively coupled plasma mass spectrometry (ICP/MS). The urine samples are first spiked with {sup 244}Pu as a tracer and internal standard, then processed by co-precipitation and column chromatography using TRU-Spec{trademark}, an extraction resin. By enhancing ICP/MS detection capabilities via improved sample introduction and data acquisition efficiencies, an instrumental detection limit of 5 to 50 fg (0.3 to 3 fCi for {sup 239}pu) is typically obtained, depending on the desired degree of quantitation. A brief summary of the analytical method as well as the basis for measuring radionuclides by ICP/MS are submitted; the separation procedure, methods of sample introduction, and data acquisition techniques are then highlighted.

  11. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    PubMed

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  12. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    SciTech Connect

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  13. Determination of thorium in environmental and workplace materials by ICP-MS.

    PubMed

    Holmes, L; Pilvio, R

    2000-01-01

    The paper outlines the advantages of the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) over radiometric techniques to measure natural thorium, 232Th. Experimental parameters that must be taken into account in the sample digestion, preparation and ICP-MS analysis of environmental (soils, rocks, sediments) or workplace (thorium oxide, reference solutions) materials are described. The methods presented are applied to various reference materials, with the aim of providing suitable procedures to be useful for other important thorium containing materials (such as monazite sands or welding electrodes). The participation in a European Commission intercomparison exercise is detailed and a comparison with alpha spectrometry is made.

  14. Determination of trace elements in zeolites by laser ablation ICP-MS.

    PubMed

    Pickhardt, C; Brenner, I B; Becker, J S; Dietze, H J

    2000-09-01

    Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1-11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower microg/g range (from 0.03 microg/g for Lu, Ta and Th to 7.3 microg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation

  15. LA-ICP-MS depth profiling perspective on cleaning protocols for elemental analyses in planktic foraminifers

    NASA Astrophysics Data System (ADS)

    Vetter, Lael; Spero, Howard J.; Russell, Ann D.; Fehrenbacher, Jennifer S.

    2013-08-01

    Measurements of trace metal ratios in foraminiferal calcite are routinely used to reconstruct paleoceanographic conditions. Analyses using solution-based inductively coupled plasma mass spectrometry (ICP-MS) require dissolution of the entire foraminifer shell. The potential exists for contamination from adherent clays, mineralized coatings, and other diagenetic components that confound the biogenic trace metal signal. We present results from a cleaning experiment on fossil specimens of the planktic foraminifer Orbulina universa that were cracked into several shell fragments and subjected to different cleaning protocols. We use laser ablation ICP-MS (LA-ICP-MS) depth profiling to evaluate the effects of reductive, oxidative, and chelating (diethylene-triamine pentaacetic acid) cleaning protocols on shell Mg/Ca and Ba/Ca ratios. Using the natural pattern of intrashell Mg/Ca heterogeneity exhibited by O. universa, we demonstrate that reductive and oxidative cleaning can dissolve shell calcite from available surfaces, although intrashell Mg/Ca minima and maxima are unaffected. High-resolution depth profiles can be used to identify areas of heterogeneous intrashell Ba/Ca, which can be excluded from computations of whole-shell Ba/Ca. The size and density of shell pores plays a major role in the degree of contamination from sedimentary material. We demonstrate an approach for computing whole-shell Me/Ca ratios from LA-ICP-MS depth profiles that accounts for potential contamination and diagenetic overprinting.

  16. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    SciTech Connect

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.; Miller, Brian W.; Morley, Shannon M.; Barinaga, Charles J.; Eiden, Gregory C.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  18. Application of ICP-MS for the assessment of thorium excretion in urine.

    PubMed

    Roth, P; Werner, E; Wendler, I; Schramel, P

    1996-01-01

    A method for rapid and sensitive determination of thorium in urine by inductively coupled plasma mass spectometry (ICP-MS) is described. The method is sufficiently sensitive to detect 1 ng/L 232Th in urine without any sample preparation. The mean urinary 232Th excretion in 23 unexposed subjects was 6.2 +/- 3.3 ng/d.

  19. Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs.

    PubMed

    Timerbaev, Andrei R; Pawlak, Katarzyna; Aleksenko, Svetlana S; Foteeva, Lidia S; Matczuk, Magdalena; Jarosz, Maciej

    2012-12-15

    The mode of action of metal-based anticancer drugs, including their accumulation in blood, transport, delivery to cancer cell, and cell processing (together with release of an active form and possibly targeting) is largely dependent on protein binding. Among analytical methods capable of providing a better understanding of metallodrug-protein interactions, capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) detection is arguably a premier technique. Since its advent to the area of metallodrug proteomics in 2004, the benefits of CE-ICP-MS became evident, stimulating further research and methodological developments. This hyphenated technique's merits comprise an ability to separate rapidly and efficiently the parent drug and protein-bound drug form(s), with no alteration of original speciation in the sample, to identify the metal-containing species due to specific ICP-MS response, to measure the binding parameters (e.g. rate and equilibrium constants), and finally to quantify the metal-protein adducts in real-world samples. This review is aimed on offering the reader a summary of applications of CE-ICP-MS to various metallodrug-protein systems, with a focus on experimental strategies in use for the assessment of binding reactivity and affinity, monitoring in vitro cellular transformations and serum binding profiles, and ex vivo metallodrug-proteomic analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  1. Studying the distribution pattern of selenium in nut proteins with information obtained from SEC-UV-ICP-MS and CE-ICP-MS.

    PubMed

    Kannamkumarath, Sasi S; Wrobel, Katarzyna; Wuilloud, Rodolfo G

    2005-03-31

    In this work, size exclusion chromatography (SEC) with UV and inductively coupled plasma mass spectrometry (ICP-MS) detection was used to study the association of selenium to proteins present in Brazil nuts (Bertholletia excelsa) under five different extraction conditions. As expected, better solubilization of proteins was observed using 0.05molL(-1) sodium hydroxide and 1% sodium dodecylsulfate (SDS) in Tris/HCl buffer (0.05molL(-1), pH 8) as compared to 0.05molL(-1) HCl, 0.05molL(-1) Tris/HCl or hot water (60 degrees C). Due to non-destructive character of Tris-SDS treatment, this was applied for studying molecular weight (MW) distribution patterns of selenium-containing nut proteins. Three different SEC columns were used for obtaining complete MW distribution of selenium: Superdex 75, Superdex Peptide, and Superdex 200 were tested with 50mmolL(-1) Tris buffer (pH 8), 150mmolL(-1) ammonium bicarbonate buffer (pH 7.8), phosphate (pH 7.5), and CAPS (pH 10.0) mobile phases. Using Superdex 200 column, the elution of at least three MW fractions was observed with UV detection (200-10kDa) and ICP-MS chromatogram showed the co-elution of selenium with the two earlier fractions. The apparent MWs of these selenium-containing fractions were respectively about 107 and 50kDa, as evaluated from the column calibration. For further characterization of individual selenium species, the defatted nuts were hydrolyzed with proteinase K and analyzed by capillary electrophoresis (CE) with ICP-MS detection. The suitability of CE for the separation of selenite, selenate, selenocystine and selenomethionine in the presence of the nut sample matrix is demonstrated. Complete separation of the above mentioned selenium species was obtained within a migration time of 7min. In the analysis of nut extracts with CE-ICP-MS, selenium was found to be present mainly as selenomethionine.

  2. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Vašinová Galiová, M; Nývltová Fišáková, M; Kynický, J; Prokeš, L; Neff, H; Mason, A Z; Gadas, P; Košler, J; Kanický, V

    2013-02-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to map the matrix (Ca, P) and trace (Ba, Sr, Zn) elements in the root section of a fossilized brown bear (Ursus arctos) tooth. Multielemental analysis was performed on a (2.5 × 1.5)cm(2) area. For elemental distribution, a UP 213 laser ablation system was coupled either with a quadrupole or a time of flight ICP-MS. The cementum and dentine on the slice of the sample surface were clearly distinguishable, especially changes in elemental distribution in the summer and winter bands in the fossil root dentine. Migration and diet of U. arctos were determined on the basis of fluctuations in Sr/Zn ratio and their contents. Quantification was accomplished with standard reference material of bone meal (NIST 1486) and by the use of electron microprobe analysis (EMPA). Changes in Sr/Zn and Sr/Ba ratios relating to the season, and composition of food during the lifetime of the animal are discussed on basis of analysis of light stable isotopes. It was observed that there was an increase in the Sr/Zn ratio during the winter season caused by a reduction of food intake during hibernation. Above mentioned inferences drawn from elemental data obtained by LA-ICP-MS were confirmed independently by determination of carbon, nitrogen and strontium isotopes. Moreover, diagenesis and its interfering influence on the biogenic composition of cementum and dentine were resolved. According to the distribution and/or content of the element of interest, post-mortem alterations were revealed. Namely, U, Na, Fe, Mg and F predicate about the suitability of the selected area for determination of migration and diet.

  3. Ultra-trace determination of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments.

    PubMed

    Amr, Mohamed A; Helal, Abdul-Fattah I; Al-Kinani, Athab T; Balakrishnan, Perumal

    2016-03-01

    The development of practical, fast, and reliable methods for the ultra-trace determination of anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS) were investigated in term of its accuracy and precision for producing reliable results. The radionuclides were extracted from 1 kg of the environmental soil samples by concentrated nitric and hydrochloric acids. The leachate solutions were measured directly by triple quadrupole CRC-ICP-MS/MS. For quality assurance, a chemical separation of the concerned radionuclides was conducted and then measured by single quadrupole-ICP-MS. The developed methods were next applied to measure the anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu in soil samples collected throughout the State of Qatar. The average concentrations of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu were 0.606 fg/g (3.364 Bq/kg), 0.619 fg/g (2.038 Bq/kg), 0.034 fg/g (0.0195 Bq/kg), 65.59 fg/g (0.150 Bq/kg), and 12.06 fg/g (0.103 Bq/kg), respectively.

  4. Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS.

    PubMed

    Yedomon, Brice; Menudier, Alain; Etangs, Florence Lecavelier Des; Anani, Ludovic; Fayomi, Benjamin; Druet-Cabanac, Michel; Moesch, Christian

    2017-09-01

    This study aimed to investigate the blood concentration of 29 trace elements, metals or metalloids, in a healthy population of Cotonou not directly exposed to metals in order to propose reference values. Blood samples from 70 blood donors were collected in K2 EDTA tubes for trace elements during September 2015 and a questionnaire was used to assess lifestyle exposure. Blood metal concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) equipped with a quadrupole-based reaction cell. Among the selected blood donors 51.4% were aged from 18 to 36 years and 49.6% from 37 to 65 years. Among the 29 elements analyzed As, Pb, Mn, Pd, Sb, Co, Se, Sr showed blood concentrations higher than the reference values found in the literature for non-exposed healthy European populations and their geometric means were respectively 5.81; 47.39; 19.71; 1.91; 7.50; 0.66; 163.01; 30.53μg/L. This study provides the first reference value (5th-95th percentiles) for each element in Cotonou, which enables us to carry out further investigations on environmental and occupational exposure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  6. The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS

    SciTech Connect

    Liezers, Martin; Farmer, Orville T.; Dion, Michael P.; Thomas, Linda MP; Eiden, Gregory C.

    2015-01-01

    We report the development and testing of a simple collector arrangement for a commercial quadrupole ICP-MS that for the first time has been used to produce small quantities of highly enriched (>99.99%) single isotopes, with deposition rates >10 ng/hour. The collector assembly replaces the standard instrument detector allowing for implantation with simultaneous monitoring of the incident ion current. Even under zero bias implant conditions, low energy (<10 eV), ion collection efficiency was observed to be very high ~99%. 151Eu ion currents of 0.1-0.5 nA were collected on a simple, planar foil without resorting to any type of cup configuration. Recovery of the enriched isotope from such foils is much simpler than from a more complex cup configuration. High rejection of adjacent mass isotopes was demonstrated by selectively implanting 167Er without any discernible co-implantation of 166Er and 168Er. The important analytical possibilities of the new approach to isotope ratio measurement, tracer purification and radiation measurements are discussed.

  7. ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution.

    PubMed

    Ettler, Vojtech; Mihaljevic, Martin; Komárek, Michael

    2004-01-01

    The Pb isotopic composition (206Pb/207Pb and 208Pb/206Pb) in smelter-impacted soils was measured using a quadrupole-based ICP-MS. Four forest/tilled soil profiles were sampled according to the distance from the lead smelter in Príbram (Czech Republic), prevailing wind direction, geological background and soil type. The results were compared with the Pb isotopic composition of bedrocks and waste materials from Pb metallurgy (smelting slags, air-pollution-control residues). The isotopic composition of soils confirms the predominant role of metallurgy on the general pollution in the area. The highly contaminated soils from the vicinity of the smelter contain up to 35,300 mg Pb kg(-1) and exhibit an isotopic composition close to that of car battery processing (206Pb/207Pb up to 1.177). A coupled concentration/isotopic study of soil profiles showed that the smelter-induced pollution had penetrated even to the mineral soil horizons, indicating an important vertical mobility of Pb contaminant within the soil profile. The calculated downward penetration rate of Pb in soils ranges from 0.3 to 0.36 cm year(-1).

  8. Use of ICP/MS with ultrasonic nebulizer for routine determination of uranium activity ratios in natural water

    USGS Publications Warehouse

    Kraemer, T.F.; Doughten, M.W.; Bullen, T.D.

    2002-01-01

    A method is described that allows precise determination of 234U/238U activity ratios (UAR) in most natural waters using commonly available inductively coupled plasma/mass spectrometry (ICP/MS) instrumentation and accessories. The precision achieved by this technique (??0.5% RSD, 1 sigma) is intermediate between thermal ionization mass spectrometry (??0.25% RSID, 1 sigma) and alpha particle spectrometry (??5% RSD, 1 sigma). It is precise and rapid enough to allow analysis of a large number of samples in a short period of time at low cost using standard, commercially available quadrupole instrumentation with ultrasonic nebulizer and desolvator accessories. UARs have been analyzed successfully in fresh to moderately saline waters with U concentrations of from less than 1 ??g/L to nearly 100 ??g/L. An example of the uses of these data is shown for a study of surface-water mixing in the North Platte River in western Nebraska. This rapid and easy technique should encourage the wider use of uranium isotopes in surface-water and groundwater investigations, both for qualitative (e.g. identifying sources of water) and quantitative (e.g. determining end-member mixing ratios purposes.

  9. Potassium stable isotopic compositions measured by high-resolution MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Lloyd, N. S.; Ellam, R. M.; Simon, J. I.

    2012-12-01

    Potassium isotopic (41K/39K) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the 40K/39K ratio can provide precise values but assume identical 40K/39K ratios (e.g. 0.05‰ (1σ) in [1]); this is appropriate in some cases (e.g. identifying excess 41K) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25‰ precisions (1σ) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as 38ArH+ and 40ArH+ and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2‰ (1σ, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make 41K/39K ratio measurements with 0.07‰ precisions (1σ). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for 41K). Although ICP-MS does not yield accurate 41K/39K values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative 41K/39K values can be precisely determined via sample-standard bracketing. As cold plasma

  10. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions

  11. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  12. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications

    NASA Astrophysics Data System (ADS)

    Zack, Thomas; Stockli, Daniel F.; Luvizotto, George L.; Barth, Matthias G.; Belousova, Elena; Wolfe, Melissa R.; Hinton, Richard W.

    2011-09-01

    Rutile is a common accessory mineral that occurs in a wide spectrum of metamorphic rocks, such as in blueschists, eclogites, and granulites and as one of the most stable detrital heavy minerals in sedimentary rocks. The advent of rutile trace element thermometry has generated increased interest in a better understanding of rutile formation. This study documents important analytical advances in in situ LA-ICP-MS U/Pb geochronology of rutile: (1) Matrix matching, necessary for robust in situ dating is fulfilled by calibrating and testing several rutile standards (R10, R19, WH-1), including the presentation of new TIMS ages for the rutile standard R19 (489.5 ± 0.9 Ma; errors always stated as 2 s). (2) Initial common lead correction is routinely applied via 208Pb, which is possible due to extremely low Th/U ratios (usually <0.003) in most rutiles. Employing a 213 nm Nd:YAG laser coupled to a quadrupole ICP-MS and using R10 as a primary standard, rutile U/Pb concordia ages for the two other rutile standards (493 ± 10 Ma for R19; 2640 ± 50 Ma for WH-1) and four rutile-bearing metamorphic rocks (181 ± 4 Ma for Ivrea metapelitic granulite; 339 ± 7 Ma for Saidenbach coesite eclogite; 386 ± 8 Ma for Fjortoft UHP metapelite; 606 ± 12 Ma for Andrelandia metepelitic granulite) always agree within 2% with the reported TIMS ages and other dating studies from the same localities. The power of in situ U/Pb rutile dating is illustrated by comparing ages of detrital rutile and zircon from a recent sediment from the Christie Domain of the Gawler Craton, Australia. While the U/Pb age spectrum from zircons show several pronounced peaks that are correlated with magmatic episodes, rutile U/Pb ages are marked by only one pronounced peak (at ca 1,675 Ma) interpreted to represent cooling ages of this part of the craton. Rutile thermometry of the same detrital grains indicates former granulite-facies conditions. The methods outlined in this paper should find wide application in studies

  13. Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz

    2017-06-01

    Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.

  14. Quantitative determination of bromine and iodine in food samples using ICP-MS.

    PubMed

    Nguyen, Thi Kim Dzung; Ludwig, Rainer

    2014-01-01

    Trace concentrations of bromine and iodine in food samples and certified reference materials (CRMs) were determined by an inductively coupled plasma-mass spectrometry (ICP-MS) technique after low-power microwave digestion and extraction into an aqueous quaternary ammonium hydroxide solution. The recovery after sample preparation was quantitative. The internal standard for the measurement of the analyte on ICP-MS was optimized in this study. The detection limits were 0.19 and 0.68 ng g(-1) for I and Br, respectively, when a 10 ng g(-1) Te solution as an internal standard was used, applying the signal of (125)Te. The high recovery and reproducibility are sufficient for the quantitative analysis of these elements, and the analytical procedure is recommended for the analysis of Br and I in various kinds of bio-samples.

  15. Determination of thorium by ICP-MS and ICP-OES.

    PubMed

    Holmes, L

    2001-01-01

    Natural thorium (232-Th) has traditionally been measured by radiometric techniques such as alpha and gamma spectrometry. However. with both ICP-OES and ICP-MS instruments becoming relatively common in many analytical laboratories. these techniques have become more acceptable in thorium analysis. This paper will briefly describe an overview of the instrumentation currently available and the techniques themselves applied to thorium analysis. Both techniques have low detection limits and require little sample treatment after the sample digestion. Routine sample analysis time is short and spectra easy to interpret. usually giving results with low uncertainties, Whereas ICP-OES measures total thorium only, ICP-MS also offers the potential to measure other long-lived thorium isotopes (t 1/2 > 10(4) years), such as 232Th. However, other important isotopes, such as 228Th. are still out of reach for routine analysis. The main disadvantage of the techniques is the requirement for a sample digestion stage.

  16. Development of ICP-MS based nanometrology techniques for characterization of silver nanoparticles in environmental systems

    NASA Astrophysics Data System (ADS)

    Mitrano, Denise Marie

    The ubiquitous use of goods containing nanoparticles (NPs) will lead inevitably to environmental release and interaction with biota. Methods to detect, quantify, and characterize NPs in environmental matrices are highlighted as one of the areas of highest priority research in understanding potential environmental and health risks. Specifically, techniques are needed to determine the size and concentration of NPs in complex matrices. Particular analytical challenges include distinguishing NPs from other constituents of the matrix (i.e. natural particles, humic substances, and debris), method detection limits are often higher than exposure concentrations, and differentiating dissolved metal and NPs. This work focuses on the development and optimization of two methods that address a number of challenges for nanometrology: single particle (sp)ICP-MS and asymmetrical flow field flow fractionation (AF4)-ICP-MS. Advancements in the spICP-MS method included systematic studies on distinction between ionic and NP fractions, resolution of polydisperse NP samples, and defining the techniques' dynamic range (in terms of both particle size and concentration). Upon application of the technique, silver (Ag) NPs were discovered in raw wastewater treatment plant influent and effluent. Furthermore, methodical Ag NP stability studies determined the influence of particle capping agents and water chemistry parameters in a variety of synthetic, natural and processed waters. Method development for AF4-ICP-MS revolved around optimizing run conditions (i.e. operational flows, carrier fluid, membrane choice) to study detection limits, sample recovery, and resolution of polydisperse samples. Practical studies included sizing Ag NP in a sediment-dwelling, freshwater oligochaete (Lumbriculus variegatus) and the kinetics of accumulation of protein bound Ag+. In direct comparison, spICP-MS was found to be more versatile with less sample preparation and lower total analyte detection limit (ng/L vs

  17. [Determination of 23 elements in beverages by FAAS and ICP-MS].

    PubMed

    Xu, Zi-Gang; Tang, Mi-Rao

    2005-05-01

    23 elements in 11 kinds of beverages were determined by FAAS and ICP-MS. The effects of nitric acid and coexist elements on FAAS determination were studied and the experimental conditions were optimized. The results show that these beverages contain abundant inorganic elements like K, Na, Ca and Mg, which are important for human being. The content of trace elements As, Pb, Cu, Zn and Fe are under the tolerance limit of GB standard.

  18. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    PubMed

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2005-04-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) with a special laser ablation system for bulk analyses (LINA-Spark(TM)-Atomiser) was applied for direct determinations of chlorine, bromine, and iodine in rock and sediment samples. Special attention was focused on possible inter-halogen fractionations and analyte/spike isotope fractionations by using LA-ICP-MS and LA-ICP-IDMS, respectively. A variation of Br/Cl and I/Cl element intensity ratios by a factor of 1.3-3 was observed when changing the nebulizer gas flow rate in the range of 0.84-1.0 L min-1 and the laser power density in the range of 2-10 GW cm-2, respectively. When using an internal standard for halogen quantification in LA-ICP-MS, this inter-element fractionation can cause systematic errors, which can be avoided by applying the isotope dilution technique. However, at high laser power densities (>5.7 GW cm-2 for iodine and >4.0 GW cm-2 for bromine and chlorine) the corresponding measured isotope ratio of the isotope-diluted sample deviates significantly from the target value. Under optimised conditions concentrations in the range of 30 [mu]g g-1-16 × 103 [mu]g g-1 for chlorine, <2-140 [mu]g g-1 for bromine, and <0.1-31 [mu]g g-1 for iodine were determined by LA-ICP-IDMS in two sediment reference materials (SRM 1646, SRM 2704) and three rock reference samples (GS-N, Granite; BX-N, Bauxite; DT-N, Disthene), which have not been certified for these halogens. The sediment results agree well within the given uncertainties with indicative values by different methods and the results of the rock samples with those obtained by negative thermal ionisation isotope dilution mass spectrometry. The detection limits of LA-ICP-IDMS are 8 [mu]g g-1 for chlorine, 1.7 [mu]g g-1 for bromine, and 0.1 [mu]g g-1 for iodine.

  20. Fingerprinting of ground water by ICP-MS; Progress report, July 1, 1991--December 31, 1991

    SciTech Connect

    Stetzenbach, K.

    1991-12-31

    The purpose of this project is to investigate the use of minor constituents of ground water and vadose zone water such as the rare earths and some lighter elements, to delineate ground water flow paths and recharge zones in the Yucca Mountain area. The major piece of equipment required to perform this task is an inductively coupled plasma-mass spectrometer (ICP-MS). This instrument has been purchased and should be delivered in February 1992. During this reporting period, three ICP-MS systems were evaluated the Perkin-Elmer Elan 5000 was chosen. As part of the evaluation process, samples of J-13 water and tuff were prepared and analyzed by each of the competing companies. This gave us the opportunity to make initial observations as to the number of compounds and their concentrations present in the J-13 samples. Table 1 lists the results of the analysis of J-13 water. Once the ICP-MS is operational, we will be collecting and analyzing waters from existing wells, springs, and seeps to determine which of these minor chemical constituents will be most helpful in establishing chemical signatures for the ground waters beneath Yucca Mountain.

  1. Fast Scanning Single Collector ICP-MS for Low Level Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Newman, K.; Georg, B.

    2010-12-01

    Multiple collector (MC)-ICP-MS is recognized as a workhorse in the field of isotope ratio measurements. With its unrivalled precision, high sample throughput and multi-element coverage, MC-ICPMS has opened up new areas of study in earth, environmental and biological sciences. However, SC-ICP-MS is fit for purpose for many applications where sample amount is limited and fractionations are relatively large. To compensate for the inherent ion beam instability associated with the ICP ion source, fast scanning magnetic sector instruments are used. Here, we describe and discuss the use of the Nu Attom SC-ICP-MS for low level isotope ratio measurements. The Nu Attom is a double focusing magnetic sector mass spectrometer with unique fast scanning capabilities. Deflectors located at the entrance and exit of the flight tube are used to alter the effective magnet radius by changing the ion trajectory. This enables a fast electrostatic scan over a mass range of approximately 40%. In contrast to other fast scanning magnetic sector instruments, there is no change in the ion energy which may introduce additional mass bias effects. The Nu Attom also has fully adjustable source and collector slits. This facilitates measurements in medium mass resolution (R=1500-2500), whilst maintaining a flat topped peak necessary for precise isotope ratio measurements. The potential applications of the Nu Attom in isotope ratio measurements will be explored.

  2. Histopathological localization of cadmium in rat placenta by LA-ICP-MS analysis.

    PubMed

    Yamagishi, Yoshikazu; Furukawa, Satoshi; Tanaka, Ayano; Kobayashi, Yoshiyuki; Sugiyama, Akihiko

    2016-10-01

    In order to clarify the histological localization of cadmium (Cd) in the placenta, we analyzed paraffin sections of placentas from rats with a single Cd exposure on gestation day 18 by the LA-ICP-MS imaging method compared with the histopathological changes. The placentas were sampled at 1 hour, 2 hours, 3 hours, 6 hours, and 24 hours after treatment. Histopathologically, the trophoblasts in the labyrinth zone of the Cd group showed swelling at 1 hour. At 2 and 3 hours, the trophoblasts showed swelling and vacuolar degeneration. At 6 and 24 hours, the syncytiotrophoblasts selectively underwent necrosis/apoptosis, resulting in a decrease in number. Remarkable metallothionein expression was observed in the trophoblastic septa, particularly cytotrophoblasts at 24 hours. The LA-ICP-MS analysis detected the localization of Cd in the fetal part of the placenta from 1 hour onwards. In particular, the intensity of Cd was prominent in the labyrinth zone and tended to increase with the progression of trophoblastic septa damages. The LA-ICP-MS analysis using the paraffin sections detected the localization of Cd in the fetal part of the placenta, and this methodology will be one of the valuable tools to detect heavy metals in toxicological pathology.

  3. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.

    PubMed

    Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin

    2017-10-15

    Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10(2) HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10(3) HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    SciTech Connect

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  5. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    SciTech Connect

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  6. Assessment of CE-ICP/MS hyphenation for the study of uranyl/protein interactions.

    PubMed

    Huynh, Thi-Ngoc Suong; Bourgeois, Damien; Basset, Christian; Vidaud, Claude; Hagège, Agnès

    2015-06-01

    Identification of uranyl transport proteins is key to develop efficient detoxification approaches. Therefore, analytical approaches have to be developed to cope with the complexity of biological media and allow the analysis of metal speciation. CE-ICP/MS was used to combine the less-intrusive character and high separation efficiency of CE with the sensitive detection of ICP/MS. The method was based on the incubation of samples with uranyl prior to the separation. Electrophoretic buffers were compared to select a 10 mM Tris to 15 mM NaCl buffer, which enabled analyses at pH 7.4 and limited dissociation. This method was applied to the analysis of a serum. Two main fractions were observed. By comparison with synthetic mixtures of proteins, the first one was attributed to fetuin and in a lesser extent to HSA, and the second one to uranyl unbound to proteins. The analysis showed that fetuin was likely to be the main target of uranyl. CE-ICP/MS was also used to investigate the behavior of the fetuin-uranyl complex, in the presence of carbonate, an abundant complexing agent of uranyl in blood. This method enabled association constants determination, suggesting the occurrence of both FETUA(UO2(2+)) and FETUA(UO2(2+))(CO3(2-)) complexes, depending on the carbonate concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Simultaneous Speciation of Arsenic, Selenium, and Chromium by HPLC-ICP-MS

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Morrison, Jean M.; Lamothe, Paul J.

    2008-01-01

    An adaptation of an analytical method developed for chromium speciation has been utilized for the simultaneous determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) species using high performance liquid chromatography (HPLC) separation with ICP-MS detection. Reduction of interferences for the determination of As, Se, and Cr by ICP-MS is a major consideration for this method. Toward this end, a Dynamic Reaction Cell (DRC) ICP-MS system was used to detect the species eluted from the chromatographic column. A variety of reaction cell gases and conditions may be utilized, and the advantages and limitations of the gases tested to date will be presented and discussed. The separation and detection of the As, Se, and Cr species of interest can be achieved using the same chromatographic conditions in less than 2 minutes by complexing the Cr(III) with EDTA prior to injection on the HPLC column. Practical aspects of simultaneous speciation analysis will be presented and discussed, including issues with HPLC sample vial contamination, standard and sample contamination, species stability, and considerations regarding sample collection and preservation methods. The results of testing to determine the method's robustness to common concomitant element and anion effects will also be discussed. Finally, results will be presented using the method for the analysis of a variety of environmental and geological samples including waters, soil leachates and simulated bio-fluid leachates.

  8. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    NASA Astrophysics Data System (ADS)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-01

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  9. Trace element speciation by ICP-MS in large biomolecules and its potential for proteomics.

    PubMed

    Sanz-Medel, Alfredo; Montes-Bayón, María; Luisa Fernández Sánchez, María

    2003-09-01

    Latest studies on the chemical association of trace elements to large biomolecules and their importance on the bioinorganic and clinical fields are examined. The complexity of the speciation of metal-biomolecules associations in various biological fluids is stressed. Analytical strategies to tackle speciation analysis and the-state-of-the-art of the instrumentation employed for this purpose are critically reviewed. Hyphenated techniques based on coupling chromatographic separation techniques with ICP-MS detection are now established as the most realistic and potent analytical tools available for real-life speciation analysis. Therefore, the status and potential of metal and semimetals elemental speciation in large biocompounds using ICP-MS detection is mainly focused here by reviewing reported metallo-complexes separations using size-exclusion (SEC), ion-exchange (IE), reverse phase chromatography (RP) and capillary electrophoresis (CE). Species of interest include coordination complexes of metals with larger proteins (e.g. in serum, breat milk, etc.) and metallothioneins (e.g. in cytosols from animals and plants) as well as selenoproteins (e.g. in nutritional supplements), DNA-cisplatin adducts and metal/semimetal binding to carbohydrates. An effort is made to assess the potential of present trace elements speciation knowledge and techniques for "heteroatom-tagged" (via ICP-MS) proteomics.

  10. Application of a new HPLC-ICP-MS method for simultaneous determination of Al(3+) and aluminium fluoride complexes.

    PubMed

    Zioła-Frankowska, Anetta; Kuta, Jan; Frankowski, Marcin

    2015-10-01

    The paper presents the new HPLC-ICP-MS method used for conducting speciation analysis of aluminum as free Al(3+) and aluminum fluoride complexes during one analysis. In the study, 5% HNO3 was used as a derivative reagent in order to minimize the possibility of clogging the torch in ICP-MS. Using the new HPLC-ICP-MS method, speciation analysis of aluminum and aluminum fluoride complexes was conducted on the basis of model solutions and real samples (soil-water extracts and groundwater samples). The analysis in the presented analytical system lasts only 4 min.

  11. [Determination of As and Se in animal and plant samples by the normal ICP-MS with and without octupole reaction system and the ICP-MS with ORS].

    PubMed

    Shi, Yan-zhi; Wang, Ying-feng; He, Run-juan; Chen, Deng-yun

    2005-06-01

    Scme certified reference materials (CRMs) were digested and the elemental concentrations were determined by ICP-MS instrument, and the results include not only the trace key elements such as As, Pb, Hg and Cd but also the major components such as Ca, Fe, K, Na etc. The digestion method, the recoveries, and the detection limits are discussed to piove the reliability of ICP-MS and EPA200.8 method for the determination of the elements in fcxxl and plant samples. The ICP-MS instrument with ORS (octupole reaction system) was applied to the determination of As, Se etc, and the results are compared with those from the normal ICP-MS without ORS. The removal of ArCl and ArAr interference is discussed, and the advantage of ORS is proved by measuring the As and Se in some CRMs.

  12. Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas

    2014-05-01

    Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected

  13. Online Rhenium Fractionation Correction Using Tungsten-Doping Technique on a Magnetic Sector ICP-MS.

    NASA Astrophysics Data System (ADS)

    Poirier, A.

    2001-12-01

    Precise Re concentrations are commonly analysed by ID-NTIMS. The use of multicollector ICP-MS may alternatively be more time effective for similar precisions. One major drawback with ICP-MS is the lack of control concerning instrumental mass bias, which tends to be time dependant for a given machine setting. The mass discrimination in the ICP-MS is a sum of numerous phenomena, mainly the space charge effects within the plasma, the supersonic gaseous expansion between the cones, and the fractionation related to the hexapole , in the case of the IsoProbe (Micromass' ICP-MS). Rhenium possesses only two isotopes, so an internal fractionation correction is not possible -at least for spiked samples. A standard bracketing technique would be efficient to resolve this problem if the fractionation effects were evolving regularly with time; we have evidence that it is not always the case for our instrument. Similarly to the Pb-Tl systematics, we added some W to a Re standard solution. These two elements are neighbours in the Mendeleiev table and do not have any isobars. This allows us to measure 184W, 185Re, 186W and 187Re simultaneously (static mode, 188Os is also monitored) and compare the 186W/184W and 187Re/185Re. Repeated analyses of this mixture yielded different fractionation factors ( that is the beta value from the exponential law, normalised to 187Re/185Re=1.67398, Gramlich et al, 1973 and 186W/184W=0.927633, Lee and Halliday, 1995) for these two metals. However these beta values evolve together with time. The relationship between the beta-Re and beta-W is linear, with a slope of one and a non-zero intercept within instrumental precision. The slope indicates that these elements behave similarly in the ICP-MS. The intercept is most likely a result of inconsistent normalising values for the measured ratios : the Re reference value currently used may have to be reconsidered. In conclusion, empirical results allow to calculate an accurate "on-line" fractionation factor

  14. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  15. Infra-red femtosecond laser ablation: Benefit for LA-ICP-MS elemental analysis?

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; d'Abzac, F.; Freydier, R.; Seydoux-Guillaume, A.; Chmeleff, J.; Chatel, B.

    2011-12-01

    Femtosecond (fs) laser ablation systems have now been used for about a decade for elemental analysis in chemical and geosciences laboratories. Published studies investigated the influence of various analytical parameters, such as laser pulsewidth, wavelength, energy or ablation duration, on the quality of the analytical data produced by fs Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). It was rapidly found that under comparable analytical conditions, chemical fractionation effects that may occur during laser-induced particle production, transport and/or decomposition in the ICP-MS plasma torch become negligible in the fs laser ablation regime under 300 fs laser pulsewidth. Another major benefit of fs laser ablation is its restricted matrix-sensitive nature compared to ns laser ablation, thereby facilitating greatly LA-ICP-MS calibration for chemical analysis with a reference material having completely different optical and chemical properties compared to the sample to be analyzed (e.g., a standard glass to calibrate analyses of a phosphate mineral). This effect is particularly remarkable as it can be stated from both UV and IR fs laser ablation studies. Reproducible laser ablations of optical quality quartz can also be produced using such an IR laser. Precise, accurate and reproducible chemical analyses may be obtained using ns laser ablation systems. However, this is achieved under carefully controlled analytical conditions using state of the art ablation cells. Instead, it appears that fs laser ablation is making LA-ICP-MS analyses more reliable. More recently, analytical studies combined with high spatial resolution microscopic techniques allowed us to understand better the nature of fs laser-matter interaction through the direct examination of the laser-induced craters and of the particles produced. These investigations have shown the dominance of mechanical over thermal effects on the solids ablated using a fs laser. Whatever the

  16. Determination of trace elements on polysilicates by ID-ICP-MS with ultrasonic nebulization/membrane desolvation

    SciTech Connect

    Bonchin-Cleland, S.; Olivares, J.A.; Miller, G.G.; Gallegos, L.; Dawson, H.J.

    1996-06-01

    This work investigates the performance of an ID-ICP-MS (isotope dilution-inductively coupled plasma mass spectrometry) system with USN/MD (ultrasonic nebulization/membrane desolvation) sample introduction for the determination of trace metal impurities in polysilicon.

  17. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    PubMed

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  18. Next generation of labeling reagents for quantitative and multiplexing immunoassays by the use of LA-ICP-MS.

    PubMed

    Kanje, S; Herrmann, A J; Hober, S; Mueller, L

    2016-11-14

    Immuno imaging by the use of Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) is a growing research field in life sciences such as biology and biomedicine. Various element labeling strategies for antibodies have been developed for the application of multiplex immunoassays analyzed by the use of LA-ICP-MS. High multiplexing capabilities, a wide linear dynamic range and the possibility of absolute quantification are the main advantages of ICP-MS. But in the context of immuno imaging by the use of LA-ICP-MS, quantification of analytes is limited due to non-controllable antibody labeling chemistry. In the presented proof-of-principle a novel antibody labeling technique has been investigated which results in a controlled labeling degree. A small affinity protein based on the C2 domain of protein G was modified with conventional metal coded tags (MeCAT) after introducing a cysteine into the C-terminus of the protein. The modified C2 domain photo-crosslinks to the Fc or Fab region of the IgG and allows specific and covalent labeling of antibodies for multiplex immunoassay analysis by the use of LA-ICP-MS. In combination with a house-made calibration membrane the amount of labeled antibody-antigen complexes in a multiplex western blot immunoassay was determined by LA-ICP-MS.

  19. [Interest and limits of inductively coupled plasma mass spectrometry (ICP-MS) for urinary diagnosis of radionuclide internal contamination].

    PubMed

    Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain

    2013-01-01

    After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.

  20. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  1. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques.

    PubMed

    Hsiao, I-Lun; Bierkandt, Frank S; Reichardt, Philipp; Luch, Andreas; Huang, Yuh-Jeen; Jakubowski, Norbert; Tentschert, Jutta; Haase, Andrea

    2016-06-22

    Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization.

  2. QEMSCAN+LA-ICP-MS: a 'big data' generator for sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter; Rittner, Martin; Garzanti, Eduardo

    2017-04-01

    Sedimentary provenance may be traced by 'fingerprinting' sediments with chemical, mineralogical or isotopic means. Normally, each of these provenance proxies is characterised on a separate aliquot of the same sample. For example, the chemical composition of the bulk sample may be analysed by X-ray fluorescence (XRF) on one aliquot, framework petrography on another, heavy mineral analysis on a density separate of a third split, and zircon U-Pb dating on a further density separate of the heavy mineral fraction. The labour intensity of this procedure holds back the widespread application of multi-method provenance studies. We here present a new method to solve this problem and avoid mineral separation by coupling a QEMSCAN electron microscope to an LA-ICP-MS instrument and thereby generate all four aforementioned provenance datasets as part of the same workflow. Given a polished hand specimen, a petrographic thin section, or a grain mount, the QEMSCAN+LA-ICP-MS method produces chemical and mineralogical maps from which the X-Y coordinates of the datable mineral are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic and, hence, geochronological analysis. In the process of finding all the zircons in a sediment grain mount, the QEMSCAN yields the compositional and mineralogical compositions as byproducts. We have applied the new QEMSCAN+LA-ICP-MS instrument suite to over 100 samples from three large sediment routing systems: (1) the Tigris-Euphrates river catchments and Rub' Al Khali desert in Arabia; (2) the Nile catchment in northeast Africa and (3) desert and beach sands between the Orange and Congo rivers in southwest Africa. These studies reveal (1) that Rub' Al Khali sand is predominantly derived from the Arabian Shield and not from Mesopotamia; (2) that the Blue Nile is the principal source of Nile sand; and (3) that Orange River sand is carried northward by longshore drift nearly 1,800km from South Africa to southern

  3. Online Standard Additions Technique for La-ICP-MS Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Roy, J.; Asogan, D.; Moody, S.; Clarke, D.

    2014-12-01

    Historically, quantification with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been limited to the ability to matrix match both standards and samples. This can prove problematic when a particular matrix matched standard is not readily available. Liquid standard addition has been shown1-4 as an alternative technique for quantification that does not require matrix matching; however, further fundamental study is needed especially considering the different mass flow rates delivered to the plasma from traditional pneumatic nebulizers and laser ablation itself. In this work, the authors combine a specialized low-flow desolvating nebulizer system with LA-ICP-MS. This nebulizer system efficiently removes water vapour, thereby significantly reducing oxide based mass spectral interferences. For the instrument setup, the output from the laser is combined with the dried aerosol from the nebulizer system prior to entering the ICP-MS source. By using two sources of dry aerosol, mixing efficiency is improved whilst minimising plasma power lost to solvent (water vapour) processing. The method was applied to both USGS Green River Shale and an Arkansas Womble Shale. The results showed a number of elements that were correctly quantified using the technique as compared to reference values. References Gunther, D., Cousin, H., Magyar, B., Leopold, I., J. Anal. Atom. Spectrom., 1997, 12, 165 - 170. Leach, J.J., Allen, L. A., Aeschliman, D.B., Houk, R.S., Anal. Chem., 1999, 71, 440 - 445. O'Conner, C.J.P., Sharp, B.L, Evans, P.J., Anal. Atom. Spectrom., 2006, 21, 556. Yang, C.K., Chi, P.H., Lin, Y.C., Sun, Y.C., Yang, M.H., Talanta, 2010, 80, 1222 - 1227.

  4. Arsenic speciation in clinical samples: urine analysis using fast micro-liquid chromatography ICP-MS.

    PubMed

    Morton, Jackie; Leese, Elizabeth

    2011-02-01

    Arsenic speciation is a subject that is developing all the time both from improvements in analytical techniques and from increases in toxicological understanding. Despite speciation methods being widely developed, arsenic speciation is not routinely offered as an analysis in clinical laboratory. The work in this paper describes a simple routine method for arsenic speciation that could be easily implemented in clinical laboratories. The method described, a new, fast analytical method for arsenic speciation, is reported using micro-liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (μLC-ICP-MS). The method uses a low-pressure delivery six-port valve with a 5 cm anion exchange column, which allows a fully resolved separation of five arsenic species (arsenobetaine [AB], arsenite [As(3+)], arsenate [As(5+)], mono-methylarsonic acid [MMA(5+)] and dimethylarsinic acid [DMA(5+)]) in urine in just 6 min. This fast analytical method offers an arsenic speciation method that is feasible for a laboratory that does not have the capability for a dedicated arsenic speciation LC-ICP-MS instrument. The micro-LC system is small, easy to install and is fully integrated with the ICP-MS software. The results reported here are from urine samples from 65 workers in a semiconductor work providing a sample for their routine biological monitoring to assess workplace exposure. Control samples from 20 unexposed people were also determined. Results show that the semiconductor workers exhibit very low levels of arsenic in their urine samples, similar to the levels in the controls, and thus are not significantly exposed to arsenic. Care must be taken when interpreting urinary arsenic species results because it is not always possible to differentiate between dietary and other external sources of exposure.

  5. Rare Earth Element Mapping of Garnet by Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Koenig, A. E.; Koenig, A. E.; Magloughlin, J. F.; Ridley, W. I.

    2001-12-01

    The introduction of the electron microprobe brought tremendous advancement to our understanding of mineral forming reactions, thermobarometry and the patterns and controls of major element zoning. Today, the application of laser ablation ICP-MS (LA-ICP-MS) is providing the same advancements, but at the trace element scale. While considerable attention has been paid to the behavior of trace elements in a crystal-melt system, the number of studies addressing trace elements in metamorphic minerals is few. We have developed methods using LA-ICP-MS to rapidly construct quantitative trace element maps of geologic (minerals, corals, coal, etc.) and non-geologic (tree rings, sheep horns, fish scales, metals, etc.) materials. Experimental determination of trace element partitioning and the parameters that control it are determined almost exclusively on experimental melt products and natural glasses. With this study we demonstrate that insight into the behavior of the trace elements during metamorphic mineral growth is now readily obtainable. Garnets from the Nason terrane, North Cascades, WA, USA have been analyzed in order to study trace element heterogeneity. In the Nason terrane, almandine-rich garnets in amphibolite facies rocks all possess distinct enhanced HREE compatibility in the cores with varying degrees of complex zoning towards the rim. A distinct trace-element-enriched annulus is present in nearly all garnets studied. Annuli enriched in the HREEs and Y are common, but annuli enriched only in the LREEs are also present. We suggest the annuli are the result of the breakdown of REE-rich minerals such as monazite, apatite and/or xenotime. The HREE zoning patterns from rim to core can be used to model the changing mechanism for growth zoning. While it is clear that various mechanisms operate during the entire growth history, it appears that intercrystalline diffusion is the dominant mechanism producing HREE zoning in the early stages of garnet growth.

  6. Determination of butyltin compounds in environmental samples by isotope-dilution GC-ICP-MS.

    PubMed

    Alonso, J Ignacio García; Encinar, Jorge Ruiz; González, Pablo Rodríguez; Sanz-Medel, Alfredo

    2002-07-01

    Isotope-dilution analysis in combination with GC-ICP-MS detection has been applied to the determination of butyltin species in environmental samples. Different spikes containing the isotopically labeled butyltin species have been synthesized in the laboratory after optimization of the reaction conditions. The isotopic compositions of the tin species in the different spike solutions were determined by GC-ICP-MS after derivatization by aqueous ethylation with sodium tetraethylborate. Reverse isotope-dilution analysis was used for quantitation of the spike solutions by means of natural MBT, DBT, and TBT standards. The mixed spikes were used for simultaneous analysis of MBT, DBT and TBT in the certified reference materials, PACS-2, CRM 462, and CRM 646, with satisfactory results. The excellent agreement of the different speciation results obtained by use of the different spikes is a good indicator of the precision, accuracy, and reliability which can be achieved by using isotope-dilution analysis for trace metal speciation. Application of a double spike containing (119)Sn-enriched MBT (79.7 At%), (118)Sn-enriched DBT (86.7 At%), and (119)Sn-enriched TBT (83.1 At%) also enabled evaluation of the conditions resulting in quantitative extraction of the species from the solid matrix, in combination with possible alterations depending on the different extraction procedures used (mechanical shaking, ultrasounds, and microwaves). Mathematical equations used for this purpose computed the correct species concentrations directly and, additionally, the decomposition factors (from TBT to DBT and from DBT to MBT) after precise measurement of the (119)Sn/(120)Sn and (118)Sn/(120)Sn ratios for all butyltin species by GC-ICP-MS.

  7. A comparison of double-focusing sector field ICP-MS, ICP-OES and octopole collision cell ICP-MS for the high-accuracy determination of calcium in human serum.

    PubMed

    Simpson, Lorna A; Hearn, Ruth; Merson, Sheila; Catterick, Tim

    2005-02-28

    Human serum is routinely measured for total calcium content in clinical studies. A definitive high-accuracy and low-uncertainty method is required for reference measurements to underpin medical diagnoses. This study presents a novel octopole collision cell ICP-MS, high-accuracy, methodology and comparison of that technique with double-focusing sector field ICP-MS and an ICP-OES method. Double-matched isotope dilution mass spectrometry (IDMS) was employed for ICP-MS techniques and an exact matching bracketing technique using scandium as an internal standard was used for ICP-OES analysis. Medium resolution mode was utilised for double-focusing sector field ICP-MS analysis to resolve the dominant interferences on the (44)Ca/(42)Ca isotope pair. Hydrogen reaction gas was employed to chemically resolve a number of polyatomic interferences predominantly through charge transfer reactions in the octopole collision cell. Comparison data presented for NIST CRM 909b human serum analysis from all three techniques demonstrates highest accuracy (99.6%) and lowest uncertainty (1.1%) for octopole collision cell ICP-MS. Data from ICP-OES using a non-IDMS technique produces comparably accurate data and low-uncertainties. The much higher total expanded uncertainties for double-focusing sector field ICP-MS compared with octopole collision cell data are explained by lower precision on the measurement of the (44)Ca/(42)Ca isotope ratio. Data for octopole collision cell ICP-MS submitted for an international blind trial comparison (CCQM K-14) demonstrated excellent agreement with the mean of all participants with a low expanded uncertainty.

  8. Fingerprinting of groundwater by ICP-MS. Quarterly progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Stetzenbach, K.

    1996-02-01

    This document is a progress report for the Fingerprinting of Ground Water by ICP-MS project during the time period from October 1, 1995 to December 31, 1995. The groundwater fingerprinting study has been expanded by including samples from more wells on the Nevada Test Site and from the region east and north of Yucca Mountain as well as from several more springs in the area. Geochemical analyses of these new samples were performed in order to more thoroughly evaluate the regional groundwater chemistry and flow regime. The results of the geochemical analyses are described in this report.

  9. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is

  10. Determination of δ88/86Sr Using Matrix Correction by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, T.; Bian, X. P.; Zhu, Z. Y.

    2014-12-01

    Stable Sr isotopic compositions (δ88/86Sr) in marine carbonates potentially provide key information on paleoseawater temperature (Rüggeberg et al. 2008). Traditional methods for δ88/86Sr determination by 87Sr-84Sr double-spike TIMS or MC-ICP-MS require chemical purification of Sr before spectrometric measurements because of matrix effects. Recent studies suggested that the matrix-matching method, in which matrix-matched standard solutions were used to bracket untreated water samples, gave precise and accurate results for sulfur isotopic ratios by MC-ICP-MS (Lin et al., 2014). The obvious advantage of this method is that there is no need for chemical purification, thus eliminating the possibility of isotope fractionation during the ion chromatography and expediting sample throughput. In this study, we applied the matrix-matching method to δ88/86Sr determination by MC-ICP-MS. NIST 987 Sr solution and a purified seawater sample (collected from the South China Sea) were selected for this study. Given that major matrices in carbonate come form Ca2+, NIST 987 and SW solutions containing 40 ppm Ca2+ were prepared by adding high-purity Ca solution. All solutions used contained 200 ppb Sr and the 88Sr/86Sr ratios were measured using a Neptune MC-ICP-MS. The purified SW was first determined using SSB method, in which pure NIST 987 was used as standard to bracket SW and yielded δ88/86Sr value of 0.366 ± 0.008‰ (2SE, n = 10). The δ88/86Sr values of Ca-bearing SW were then measured by using pure NIST 987 solution as the working standard to investigate matrix effects. The determined δ88/86Sr value (0.039 ± 0.021‰; 2SE, n = 10) deviated obviously from the reference value. Finally, the matrix-matched NIST 987 was applied as the working standard to bracket the Ca-bearing SW, and the measured δ88/86Sr value is 0.351 ± 0.009‰ (2SE, n = 10), consistent with the reference value within uncertainties. The consistent δ88/86Sr values and comparable external precision

  11. Natural variability of coral Cd/Ca using a novel isotope dilution ICP-MS method

    NASA Astrophysics Data System (ADS)

    Matthews, K. A.; McDonough, W. F.; Grottoli, A. G.

    2005-12-01

    Here we present a new method for the rapid and precise determination of Cd/Ca in coral skeleton using inductively coupled mass spectrometry (ICP-MS). This ratio has been shown to be a promising proxy for oceanic upwelling. This method uses isotope dilution for Cd determination and gravimetric standards with internal standardization for Ca determination. In addition, an ion exchange resin is used to separate the earth alkaline metals (Ca, Sr, Ba) from Cd to reduce the high total dissolved solids (TDS) while maintaining a strong Cd signal. Each sample is then processed as a pair, once for Ca (and Sr and Ba, if desired) and once for Cd. Although not yet explored, other possible elements that could be run in the Cd set include vanadium, zinc and manganese. Reproducibility with this method is comparable to other ICP-MS methods, yielding 1sd precision of ~2% and repeated analyses of reference materials (BCR-1, BHVO-1, W-2, GSR-6, JCp-1) fall within established ranges. The removal of TDS has a distinct advantage over other ICP-MS methods that use more concentrated coral solutions; reducing the introduction of high-concentration elements, such as Ca, Mg and Sr, to the mass spectrometer is necessary in a multi-use laboratory that requires low background at those masses. Currently sample size is <30mg (allows for duplicate measurements), which is similar to that used for coral Cd analysis via GFAAS, but with ICP-MS multiple elements can be measured simultaneously. Preliminary results from coral samples ( Pavona gigantea) in the seasonally-upwelling Gulf of Panama (Pacific) indicate that, while average Cd concentrations are higher during upwelling than nonupwelling, the range due to natural variability among the P. gigantea individuals renders this difference statistically insignificant. These results suggest that for P. gigantea, much of the variability observed in single-core coral records of Cd/Ca may not be caused by upwelling. Additional results from different depths and

  12. Application of the Generalised Power Law To Double-Spike Measurements by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Bonnand, P.; Pearce, C. R.; Fehr, M.

    2010-12-01

    It is now well established that instrumental mass fractionation on MC-ICP-MS instruments does not always adhere to the exponential mass fractionation law and can be better described by the generalised power law (GPL)[1-3]. However, existing double-spike equations assume exponential mass fractionation behaviour[4,5]. Therefore, deviations from the exponential law become important because of the large amount of fractionation in the MC-ICP-MS. We have collected Cr and Mo double-spike standard data over a number of years. These data plot with small but measurable mass dependent differences from zero per mil, which vary between analytical sessions. We interpret that these deviations are due to small variations in the mass fractionation behaviour of the MC-ICP-MS and are related to differences in the type of nebuliser and cone geometry. The GPL relies on deriving a value for the exponent term, n, and its value can be derived from the slope of the natural logarithms of the measured isotope ratios[2]. However, the instrumental mass fractionation on modern MC-ICP-MS is very stable within an analytical session, so the spread in the isotope ratios of a standard is not very large, making it difficult to derive any statistically valid information on the value of the slope. For Cr, which only has four isotopes, we adopt a numerical technique for deriving the value of n. Offsets in the δ53Cr values can be reproduced by varying n between 0.058 and 0.090. Molybdenum has seven isotopes and is therefore possible to incorporate the GPL into the double-spike equations and solve directly for n, using four isotope ratios. The advantage of this technique is that allows the correct mass fractionation behavior to be applied to standards and samples within and between analytical sessions. This provides a means to generating high-precision data without recourse to ad hoc daily corrections. [1]Vance & Thirlwall, 2002, Chem. Geol. 185, 227-240. [2]Wombacher & Rehkamper, 2003, JAAS 18, 1371

  13. [Detection of trace elements in the sediment of Lop Nur samples by ICP-MS].

    PubMed

    Hu, Xin; An, Deng-Di; Dlinur, Mlik; Li, Jiang; Liu, Yu-Xiang; Ji, Heng-Ying; Zhu, Yan-Lei

    2012-06-01

    Twenty eight trace elements in the sediment of Lop Nur in different latitude and longitude were tested by ICP-MS. The results showed that the metal contents in the soil profile followed a growing trend from the surface to the bottom. And the essential element P for living body in each sample was very low, and was the lowest on the surface, while was matched in the other four layers. The results will help to understand the ecosystem evolution of Lop Nur drying up after the sediment deposition.

  14. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  15. Experimental design for TBT quantification by isotope dilution SPE-GC-ICP-MS under the European water framework directive.

    PubMed

    Alasonati, Enrica; Fabbri, Barbara; Fettig, Ina; Yardin, Catherine; Del Castillo Busto, Maria Estela; Richter, Janine; Philipp, Rosemarie; Fisicaro, Paola

    2015-03-01

    In Europe the maximum allowable concentration for tributyltin (TBT) compounds in surface water has been regulated by the water framework directive (WFD) and daughter directive that impose a limit of 0.2 ng L(-1) in whole water (as tributyltin cation). Despite the large number of different methodologies for the quantification of organotin species developed in the last two decades, standardised analytical methods at required concentration level do not exist. TBT quantification at picogram level requires efficient and accurate sample preparation and preconcentration, and maximum care to avoid blank contamination. To meet the WFD requirement, a method for the quantification of TBT in mineral water at environmental quality standard (EQS) level, based on solid phase extraction (SPE), was developed and optimised. The quantification was done using species-specific isotope dilution (SSID) followed by gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The analytical process was optimised using a design of experiment (DOE) based on a factorial fractionary plan. The DOE allowed to evaluate 3 qualitative factors (type of stationary phase and eluent, phase mass and eluent volume, pH and analyte ethylation procedure) for a total of 13 levels studied, and a sample volume in the range of 250-1000 mL. Four different models fitting the results were defined and evaluated with statistic tools: one of them was selected and optimised to find the best procedural conditions. C18 phase was found to be the best stationary phase for SPE experiments. The 4 solvents tested with C18, the pH and ethylation conditions, the mass of the phases, the volume of the eluents and the sample volume can all be optimal, but depending on their respective combination. For that reason, the equation of the model conceived in this work is a useful decisional tool for the planning of experiments, because it can be applied to predict the TBT mass fraction recovery when the

  16. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS.

    PubMed

    Persson, Daniel P; Hansen, Thomas H; Laursen, Kristian H; Schjoerring, Jan K; Husted, Søren

    2009-09-01

    The increasing prevalence of iron (Fe) and zinc (Zn) deficiencies in human populations worldwide has stressed the need for more information about the distribution and chemical speciation of these elements in cereal products. In order to investigate these aspects, barley grains were fractionated into awns, embryo, bran and endosperm and analysed for Fe and Zn. Simultaneously, phosphorus (P) and sulfur (S) were determined since these elements are major constituents of phytic acid and proteins, respectively, compounds which are potentially involved in Fe and Zn binding. A novel analytical method was developed in which oxygen was added to the octopole reaction cell of the ICP-MS. This approach greatly improved the sensitivity of sulfur, measured as (48)SO(+). Simultaneously, Fe was measured as (72)FeO(+), P as (47)PO(+), and Zn as (66)Zn(+), enabling sensitive and simultaneous analysis of these four elements. The highest concentrations of Zn, Fe, S and P were found in the bran and embryo fractions. Further analysis of the embryo using SEC-ICP-MS revealed that the speciation of Fe and Zn differed. The majority of Fe co-eluted with P as a species with the apparent mass of 12.3 kDa, whereas the majority of Zn co-eluted with S as a 3 kDa species, devoid of any co-eluting P. Subsequent ion pairing chromatography of the Fe/P peak showed that phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate: IP(6)) was the main Fe binding ligand, with the stoichiometry Fe(4)(IP(6))(18). When incubating the embryo tissue with phytase, the enzyme responsible for degradation of phytic acid, the extraction efficiency of both Fe and P was doubled, whereas that of Zn and S was unaffected. Protein degradation on the other hand, using protease XIV, boosted the extraction of Zn and S, but not that of Fe and P. It is concluded that Fe and Zn have a different speciation in cereal grain tissues; Zn appears to be mainly bound to peptides, while Fe is mainly associated with phytic acid.

  17. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS.

    PubMed

    Navratilova, Jana; Praetorius, Antonia; Gondikas, Andreas; Fabienke, Willi; von der Kammer, Frank; Hofmann, Thilo

    2015-12-10

    Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.

  18. Quantitative determination of multiple elements in botanicals and dietary supplements using ICP-MS.

    PubMed

    Avula, Bharathi; Wang, Yan-Hong; Smillie, Troy J; Duzgoren-Aydin, Nurdan S; Khan, Ikhlas A

    2010-08-25

    A method was developed and validated for the analysis of 21 elements in various botanicals and dietary supplements using ICP-MS. Closed-vessel microwave digestion of botanicals and dietary products was assisted by various different procedures. The samples digested with concentrated nitric and hydrochloric acid (8:2) revealed the best recoveries (91-106%) using the reference certified materials (SRM 3280, SRM 1566b). The method was validated for linearity, precision, accuracy, LOD, and LOQ. The LOD was found to be in the range from 0.005 to 1.09 ng/mL with the exception of potassium. Eleven botanicals and 21 dietary supplements were analyzed. Among the analyzed elements, K was the most abundant followed by Na, Mg, Al, Ca, Mn, and Fe, whereas V, Cr, Co, Ni, Se, Cd, Hg, and Pb were present in low concentrations in most of the samples. The results showed that the ICP-MS method is a simple, fast, and reliable for the multielement determination in dietary supplements and botanicals.

  19. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  20. Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Raish, Mohammad; Ahmad, Ajaz; Shakeel, Faiyaz

    2017-02-01

    None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.

  1. Relevance of NH4F in acid digestion before ICP-MS analysis.

    PubMed

    Mariet, Clarisse; Belhadj, Oulfa; Leroy, Stéphanie; Carrot, Francine; Métrich, Nicole

    2008-10-19

    In order to implement a simpler, less expensive and more safe sample dissolution procedure, we have substituted the HF-HClO(4) mixture by NH(4)F. By testing three certified reference materials, lichen 336, basalt BE-N, soil 7, it was found that the three-reagents digestion without HF and HClO(4) (HNO(3)+H(2)O(2)+NH(4)F was used) was very effective for the pretreatment of ICP-MS measurement. The comparison was based on the measurement results and their uncertainties. All are reference material for amount contents of different trace elements. The accuracy and precision of the developed method were tested by replicate analyses of reference samples of established element contents. The accuracy of the data as well as detection limits (LODs) vary among elements but are usually very good (accuracy better than 8%, LODs usually below 1 microg/g in solids). ICP-MS capabilities enable us to determine routinely 13 and 16 minor and trace elements in basalt and soil.

  2. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  3. Characterizing Carbonates from the Sheep Pass Formation, Nevada Using Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Piccione, G.; Rasbury, T.; Davis, D. M.; Druschke, P.; Hanson, A. D.; Parrish, R. R.; Austin-Giddings, W.

    2014-12-01

    Laser ablation plasma mass spectrometry allows for rapid high spatial resolution sampling, which is favorable for geochemically variable samples such as carbonates. This method also allows characterization of samples through the evaluation of elements, element ratios, and isotope ratios. Pairing LA ICP-MS with paragenetic studies provides the ability to geochemically characterize physically distinguishable fluid events that formed new phases. This is particularly useful for analysis of vein filling minerals, which can then be attributed to a tectonic or magmatic event. Coupling elemental analyses with U-Pb dating allows us to not only date the timing of mineralization and its associated tectonic activity, but also to better characterize the fluids in order to understand where they came from and what they may have interacted with. A suite of carbonates from the basal member of the Sheep Pass Formation in east-central Nevada was analyzed using LA ICP-MS, yielding U-Pb ages that are in agreement with both the ages found using ID TIMS and the known age of that member. An age was also attained for fluorite from a vein that cuts the dated Sheep Pass member. This age is distinctly younger than the lacustrine carbonates and is consistent with evidence that the major bounding faults of this basin have experienced multiple phases of movement.

  4. DNA quantification via ICP-MS using lanthanide-labeled probes and ligation-mediated amplification.

    PubMed

    Brückner, Kathrin; Schwarz, Kathleen; Beck, Sebastian; Linscheid, Michael W

    2014-01-07

    The combination of lanthanide-tagged oligonucleotide probes with inductively coupled plasma mass spectrometry (ICP-MS) as the detection technique is a novel labeling and analysis strategy for heterogeneous nucleic acid quantification assays. We describe a hybridization assay based on biotin-streptavidin affinity using lanthanide-labeled reporter probes and biotinylated capture probes. For the basic sandwich type assay, performed in streptavidin-coated microtitration wells, the limit of detection (LOD) was 7.2 fmol of DNA target, corresponding to a final concentration of 6 pM terbium-labeled probes detectable by ICP-MS after elution from the solid support. To improve the sensitivity and sequence specificity of the approach, it was combined with established molecular biological techniques, i.e., elution with a restriction endonuclease and signal and target amplification by the ligase detection reaction (LDR) and ligase chain reaction (LCR), respectively. Initial experiments showed that the enzymes facilitated the discrimination of single-base mismatches within the recognition or ligation site. Furthermore, LCR as a target amplification step resulted in a 6000-fold increase of sensitivity, and finally an LOD of 2.6 amol was achieved with an artificial double-stranded DNA target.

  5. Determination of 232Th in urine by ICP-MS for individual monitoring purposes.

    PubMed

    Baglan, N; Cossonnet, C; Ritt, J

    2001-07-01

    Thorium is naturally occurring in various ores used for industrial purposes and has numerous applications. This paper sets out to investigate urine analysis as a suitable monitoring approach for workers potentially exposed to thorium. Due to its biokinetic behavior and its low solubility, urinary concentrations are generally very low, requiring therefore high sensitivity analytical methods. An analytical procedure has been developed for detecting 232Th concentrations of below 1 mBq L(-1) quickly and easily. Due to the long half-life (1.41 x 10(10) y) of 232Th, the potential of a procedure based on urine sample dilution and ICP-MS (inductively coupled plasma-mass spectrometry) measurement was investigated first. Two dilution factors were chosen: 100, which is more suitable for long-term measurement trials, and 20, which increases sensitivity. It has been shown that a 100-fold dilution can be used to measure concentrations of below 1 mBq L(-1), whereas a 20-fold one can be used to reach concentrations of below 0.06 mBq L(-1). Then, on the basis of the limitation of the procedure based on urine dilution, the suitable field of application for the different procedures (100-fold and 20-fold dilution and also a chemical purification followed by an ICP-MS measurement) was determined in relation to monitoring objectives.

  6. [Determination of total Bromine in urine by inductively coupled plasma mass spectrometry (ICP-MS)].

    PubMed

    Zhou, Changmei; Zhu, Hangju; Liu, Deye; Miao, Rongming; Ying, Lihong; Zhu, Baoli

    2015-05-01

    To establish a method to determine total bromine in urine. Diluted urine samples were directly introduced into ICP-MS then quantized by standard curve. Total bromine in urine was linear within 1.0~50 mg/L with r > 0.999, When spiked at a concentration of 0.020 mg/L, 0.050 mg/L, 0.150 mg/L, the recovery was 95%~98%, intra-assay precision was 1.4% 3.2%, inter-assay precision was 3.4% to 5.0%. Urine could store in -20 °C refrigerator 3 months without any bromine loss. Using ICP-MS to determine the urinary total bromine, the method is fast, accurate, wide linear range of features, could meet with the requirement of Part 5 of occupational health standards guide: Method determination of chemical substances in biological materials (GBZ/T 210.5-2008), a strong competitive advantage in a wide range of survey, suitable for promotion.

  7. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS

    PubMed Central

    Navratilova, Jana; Praetorius, Antonia; Gondikas, Andreas; Fabienke, Willi; von der Kammer, Frank; Hofmann, Thilo

    2015-01-01

    Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted. PMID:26690460

  8. [Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].

    PubMed

    Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei

    2015-12-01

    An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.

  9. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds.

    PubMed

    Lewen, Nancy; Mathew, Shyla; Schenkenberger, Martha; Raglione, Thomas

    2004-06-29

    A robust general inductively coupled plasma-mass spectrometry (ICP-MS) based method was developed as an alternative to the wet chemical heavy metals test prescribed in the United States Pharmacopoeia (USP), British Pharmacopoeia (BP), Japanese Pharmacopoeia (JP) and European Pharmacopoeia (EP). The described method provides specific detection and quantitation for each of the elements expected to give rise to a positive response in the compendial methods: arsenic (As), selenium (Se), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), silver (Ag), palladium (Pd), platinum (Pt), mercury (Hg), molybdenum (Mo) and ruthenium (Ru). The subjectiveness of the visual based semi-quantitative comparison that is performed in the compendial methods is eliminated through the utilization of the ICP-MS. The described method has been in use for several years and its versatility has been demonstrated by successfully applying it to a wide variety of sample matrices. Analysis of the specific elemental data from the numerous sample matrices investigated indicates that there is no dependence of the various chemical functionalities contained in the sample matrices on the individual element recoveries. The average recovery for each element from the various sample matrices investigated ranged from 89 to 102%.

  10. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS.

    PubMed

    Narukawa, Tomohiro; Suzuki, Toshihiro; Inagaki, Kazumi; Hioki, Akiharu

    2014-12-01

    The extraction of arsenic (As) species present in rice flour samples was investigated using different extracting solvents, and the concentration of each species was determined by HPLC-ICP-MS after heat-assisted extraction. The extraction efficiencies for total arsenic species and especially for arsenite [As(III)] and arsenate [As(V)] were investigated. As(III), As(V) and dimethylarsinic acid (DMAA) were found in the samples, and the concentration of DMAA did not vary with treatment conditions. However, the concentrations of extracted total arsenic and those of As(III) and As(V) depended on the extracting solvents. When an extracting solvent was highly acidic, the concentrations of extracted total arsenic were in good agreement with the total arsenic concentration determined by ICP-MS after microwave-assisted digestion, though a part of the As(V) was reduced to As(III) during the highly acidic extraction process. Extraction under neutral conditions increased the extracted As(V), but extracted total arsenic was decreased because a part of the As(III) could not be extracted. Optimum conditions for the extraction of As(III) and As(V) from rice flour samples are discussed to allow the accurate determinations of As(III), As(V) and DMAA in the rice flour samples. Heat block extraction techniques using 0.05 mol L(-1) HClO4 and silver-containing 0.15 mol L(-1) HNO3 were also developed.

  11. Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS

    NASA Astrophysics Data System (ADS)

    Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.

    2007-12-01

    A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic

  12. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques

    NASA Astrophysics Data System (ADS)

    Müller, Larissa; Traub, Heike; Jakubowski, Norbert

    2016-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g-1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies.

  13. Microanalytical isotope ratio measurements and elemental mapping using laser ablation ICP-MS for tissue thin sections: zinc tracer studies in rats.

    PubMed

    Urgast, Dagmar S; Ou, Ou; Gordon, Margaret-Jane; Raab, Andrea; Nixon, Graeme F; Kwun, In-Sook; Beattie, John H; Feldmann, Jörg

    2012-01-01

    The kinetics of zinc absorption, metabolism and excretion is extensively studied by nutritionists. Stable isotopes of zinc can be used to identify body zinc compartments that have different turnover kinetics. Since the compartments might belong to physiological subsections of different organs, there is a need for microsampling analysis to determine isotope ratios of the trace element zinc in tissue samples. Here, we study the feasibility to use laser ablation coupled to quadrupole ICP-MS for the determination of zinc tracers given to rats at different time points with the aim to generate isotope ratio bioimages of heart tissue. A double tracer ((70)Zn and (67)Zn) experiment with rats was designed to label the exchangeable zinc pool as well as the stable zinc pool. The isotope ratios determined by laser ablation ICP-MS were evaluated by additional measurements of tissue digests. Accumulated tracers which made up more than 0.1% of total zinc could be identified in the tissues of the treated rats. It was established that at least 50 measurements from the microsampling were necessary to distinguish between controls and a tracer treated rat resulting in reduced resolution of the bioimage. With the parameters used, features in the tissue thin sections of at least 250 μm(2) in size are necessary to detect the incorporation of a tracer. When different time points have to be measured, higher precisions are required and therefore a larger area needs to be ablated (1 mm(2)). Using the bioimages and pool measurements from one physiological feature, it was possible to show that the aorta cell walls incorporate the zinc tracer at the different time points.

  14. Vanadium determination in chloride matrices using ICP-MS: finding the optimum collision/reaction cell parameters for suppressing polyatomic interferences.

    PubMed

    Chrastný, Vladislav; Komárek, Michael; Mihaljevic, Martin; Stíchová, Jana

    2006-07-01

    Efficiencies of He/NH3 and He/H2 collision gases were compared in a conventional type of hexapole cell of an inductively coupled plasma mass spectrometer (ICP-MS). The optimum conditions [hexapole and quadrupole bias voltage (V(H) and V(Q)) and collision/reaction gas flow rates] were tested for vanadium determination (51V) in chloride matrices. When the He/H2 mixture was used, the optimum values of V(H) and V(Q) were -10.0 and -8.0 V, respectively. This set-up corresponds to the kinetic energy discrimination effect. When the He/NH3 mixture was used, the optimum values of V(H) and V(Q) were +10.0 and -7.0 V, respectively. Positive V(H) values correspond to the ion kinetic energy effect, which allows the reactivity of the ions entering the collision/reaction cell with the reaction gas to be controlled. The obtained results showed that the He/H2 mixture is not optimal for V determination in samples containing chlorides due to the insufficient suppression of the polyatomic interference of 35Cl16O+. Data obtained from vanadium determination using the He/NH3 mixture were consistent for all selected Cl- concentrations, and the results were acceptable. The detection limit was comparable with detection limits obtained from ICP-MS equipped with a dynamic reaction cell. Analyses of elements forming interfering molecules, e.g., iron (56Fe), arsenic (75As) and selenium (80Se), were in good agreement with the certified values for both studied collision/reaction gas mixtures.

  15. Evaluation of selenium species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee) using mixed ion-pair reversed phase HPLC-ICP-MS.

    PubMed

    Thosaikham, Witphon; Jitmanee, Kritsana; Sittipout, Rossukon; Maneetong, Sarunya; Chantiratikul, Anut; Chantiratikul, Piyanete

    2014-02-15

    HPLC-ICP-MS based on ion-paired reversed phase chromatography for the selenium speciation using the mixture of 1-butanesulfonic acid (BA) and trifluoroacetic acid (TFA) as the mixed ion-pairing reagents was developed and applied to selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee). Several conditions of ion-paired reversed phase HPLC-ICP-MS, such as pH of the mobile phase, concentration of ion pairing reagents, types and length of analytical column, and flow rate of the mobile phase, were optimised for five selenium species; selenate (Se(VI)), Selenite (se(IV)), selenocysteine (SeC), Se-methylselenocysteine (SeMC) and selenomethionine (SeM). The results showed that the optimum conditions for pH, BA and TFA condition, type of separating column and flow rate, were 4.5, 8mM, 4mM, C18 (250 mm length × 4.6mm I.D) and 1.2 mL min(-1), respectively. These conditions archived separation of the organic selenium species. The limits of detection (LOD) and quantitation (LOQ) of each selenium species were lower than 5 and 16 ng Se mL(-1), respectively. Furthermore, the recoveries of most selenium species were good, except for SeC. In this research, selenium-enriched pakchoi was cultivated by supplementing inorganic selenium from selenate into sand. The result showed that inorganic selenium, SeMC, SeM and several unknown species were found in selenium-enriched pakchoi sprouts by using the proposed method. Thereby, the biotransformation of selenate in pakchoi was similar to other Brassicaceae plants such as kale and broccoli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Epigenetics: an important challenge for ICP-MS in metallomics studies.

    PubMed

    Wrobel, Katarzyna; Wrobel, Kazimierz; Caruso, Joseph A

    2009-01-01

    Trace metal analysis has been long regarded as one of the principle tasks in areas of chemical analysis. At the early stage of instrumental development, total concentration was assessed in a variety of samples, yielding results, among others, for environmental, biological, and clinical samples. With the power of newer analytical techniques, such as inductively coupled plasma mass spectrometry (ICP-MS), accurate quantitative results can now be obtained at ultra-trace levels not only for metals, but also for metalloids and several non-metals. Even though the importance of trace elements in many biological processes is widely accepted, the elucidation of their biological pathways, understanding specific biological functions, or possible toxicological aspects is still a challenge and a driving force to further develop analytical methodology. Over the past decades, the scientific interest has moved from total element determination to include speciation analysis, which provides quantitative information of one or more individual element species in a sample. More recently, metallomics has been introduced as a more expanded concept, in which the global role of all metal/metalloids in a given system is considered. Owing to the multi-elemental focus of metallomics research, the use of ICP-MS becomes indispensable. Furthermore, considering the biological role of metals/metalloids and the use of elements as internal or external molecular tags, epigenetics should be considered as an important emerging application for metallomics studies and approaches. Among a variety of epigenetic factors, essential nutrients, but also environmental toxins, have been shown to affect DNA methylation, modification of histone proteins, and RNA interference, all of them being implicated in cancer, cardiovascular disease, and several inherited conditions. Recent studies suggest that epigenetics may be a critical pathway by which metals produce health effects. In this Trends article, the basic

  17. Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian

    2017-04-01

    Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems

  18. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the

  19. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  20. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS.

    PubMed

    El Hadri, Hind; Petersen, Elijah J; Winchester, Michael R

    2016-07-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of nanoparticle (NP) size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 and 60 nm gold nanoparticles. Graphical Abstract Correction of nanoparticle size measurement by spICP-MS using an internal standard.

  1. Intelligent Analysis of Samples by Semiquantitative Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Technique: A Review.

    PubMed

    Krzciuk, Karina

    2016-07-03

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a popular and routine analytical method that has been used for determination of trace elements since the 1980s. It provides fast quantitative analysis and allows the determination of more than 70 elements with good accuracy and very low detection limits, but requires an intricate calibration procedure. In analyses of samples for which very low detection limits are not required a semiquantitative ICP-MS analysis mode can be used. This approach is more time- and cost-effective, and it uses a simple calibration procedure. This article presents a critical review of the semiquantitative (SQ) mode of ICP-MS and describes current and future applications of SQ analysis.

  2. Apatite fission track dating by LA-ICP-MS and External Detector Method: How do they stack up?

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Gleadow, A. J.; Kohn, B. P.

    2013-12-01

    Analysis of trace element compositions by laser ablation ICP-MS has become a widely used tool to determine in-situ ages in geochronology. Although used primarily for U-Pb dating, LA-ICP-MS has been successfully adapted to other dating techniques such as apatite fission track (Hasebe et al., 2004) or (U-Th)/He (Boyce et al., 2006), making it an ideal tool for multi-system thermochronological studies. LA-ICP-MS fission track dating has several important advantages over the traditional external detector method (EDM), particularly in terms of sample turn-around time and the fact that neutron irradiations (and the handling of radioactive materials) are no longer necessary, while providing a similar level of in-situ information. Perhaps the most important benefits of LA-ICP-MS fission track dating is that it could potentially be used as an absolute dating technique with no Zeta-calibration necessary. However, beyond the initial study of Hasebe et al. (2004), little work has been done to compare results obtained by LA-ICP-MS with those from EDM analysis, and it remains unclear whether the two methods yield equivalent results. We present an extensive dataset of fission track results that were analysed using both LA-ICP-MS and EDM dating. The samples were selected to represent a variety of compositions, with single grain ages ranging from a few million to over a billion years. Both techniques were applied on identical grains, thereby eliminating uncertainties associated with natural variability. The comparison shows that, with a few exceptions, single grain fission track ages from LA-ICP-MS and EDM are concordant within analytical uncertainties and scatter symmetrically around the 1:1 correlation line. Although the relative difference in single grain ages varies significantly in either direction (up to 70%), there are no systematic variations between the two methods suggesting that this variation is simply due to random sampling effects. However, we did find systematic

  3. Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry (ICP-MS)

    SciTech Connect

    Ghazi, A.M.; Vanko, D.A. ); Roedder, E. ); Seeley, R.C. )

    1993-09-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is used to determine rare earth element (REE) abundances in fluid inclusions. Quartz concentrates from the Bingham porphyry Cu-Mo deposit, Utah, US, and from a quartz vein in brecciated amphibolite dredged from the Mathematician Ridge, an abandoned spreading center in the eastern Pacific, were prepared by a modified crush-leach method. Leachates and solutions from acid digestion of quartz residue from leaching were analyzed by ICP-MS, using conventional sample introduction. The results demonstrate that the crush-leach method, followed by ICP-MS analysis of leachates, is effective for REE determination. Chondrite-normalized REE patterns for the Bingham samples are light rare earth elements (LREE) enriched, with a small negative Eu anomaly, and the pattern for the Mathematician Ridge sample is nearly flat, with a positive Eu anomaly.

  4. Application of ICP-MS, INAA and RNAA to the determination of some "difficult" elements in infant formulas.

    PubMed

    Chajduk, Ewelina; Polkowska-Motrenko, Halina

    2017-01-01

    In this work a determination of selected elements in the infant formulas commercially available on the Polish market was done. 14 different materials (milk-based formulas and grain porridges) were analyzed. Both, inductively coupled plasma mass spectrometry (ICP-MS) and instrumental neutron activation analysis (INAA) were applied for the determination of As, Cr, Fe and Se, which are recognized as the problematic elements for ICP-MS. For As and Se, the radiochemical NAA was also used. The daily intake of Se and Fe in the age 0-6 months for non-breast fed infants was estimated and compared with present safety limits.

  5. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    PubMed Central

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  6. Determination of 241Pu in nuclear waste slurries: a comparative study using LSC and ICP-MS.

    PubMed

    Jäggi, M; Röllin, S; Alvarado, J A Corcho; Eikenberg, J

    2012-02-01

    (241)Pu was determined in slurry samples from a nuclear reactor decommissioning project at the Paul Scherrer Institute (Switzerland). To validate the results, the (241)Pu activities of five samples were determined by LSC (TriCarb and Quantulus) and ICP-MS, with each instrument at a different laboratory. In lack of certified reference materials for (241)Pu, the methods were further validated using the (241)Pu information values of two reference sediments (IAEA-300 and IAEA-384). Excellent agreement with the results was found between LSC and ICP-MS in the nuclear waste slurries and the reference sediments.

  7. Oxygenation mechanism of ions in dynamic reaction cell ICP-MS.

    PubMed

    Narukawa, Tomohiro; Chiba, Koichi

    2013-01-01

    A dynamic reaction cell (DRC) is one of the most effective tools for eliminating spectral interferences caused by polyatomic molecules in inductively coupled plasma mass spectrometry (ICP-MS). Oxygen gas (O2), by producing oxygenated ions, is very effective in reducing some specific spectral interferences. In this study, the oxygenation of elemental ions (M(+)) in the DRC was investigated experimentally, and a new explanation for oxygenation based on the enthalpy changes in the oxygenating reactions is proposed. The enthalpy changes of each M(+) were calculated and the possibility of each reaction occurring was evaluated. The calculations were in good agreement with experimental observations. Theoretical and experimental results supported the hypothesis that the enthalpy changes (ΔH) of M(+)+ O2 → MO(+) + O and M(+) + O → MO(+) and the thermodynamic stability of M(+)-O are key factors controlling oxygenation of M(+) in the DRC.

  8. Physical-Chemical Characterization of Sediments From the Great Salt Lake via FFF-ICP- MS

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Diaz, X.; Johnson, W. P.

    2006-12-01

    Sedimentation may be the major effective mechanism of selenium removal from the water column of the Great Salt Lake if there is a permanent sequestration of selenium in deposited sediment. However, re-suspension and re-solubilization of selenium into the water column may also release deposited selenium back to the water column. To quantify these processes the settling phase must be characterized in terms of makeup (e.g. biological versus mineral), size (molecular to particulate), and the selenium burden must be apportioned among these various molecular to particulate fractions in the settling phase. Water column samples were fractionated among dissolved, molecular and particulate sizes using centrifugation and fluid flow fractionation (FFF) and the associated selenium was measured using ICP-MS. This talk presents the results of characterization of the water column via these techniques, and relates these results to results from characterization of deposited sediment.

  9. Evaluation of chelation preconcentration for the determination of actinide elements by flow injection ICP-MS

    SciTech Connect

    Evans, E.H.; Truscott, J.B.; Bromley, L.; Jones, P.; Turner, J.; Fairman, B.E.

    1998-12-31

    A chelation column preconcentration method has been developed for the determination of uranium and thorium in waters by ICP-MS. Detection limits of 24 pg and 60 pg respectively were obtained, but these were blank limited. Uranium and Thorium were determined in certified reference materials. Results for uranium were 121 {+-} 21 and 15 {+-} 3 ng/g in NIST 1566a and NIST 1575 compared with certified values of 132 {+-} 12 and 20 {+-} 4 ng/g respectively. Results for thorium were 29 {+-} 8 and 28 {+-} 5 ng/g in NIST 1566a and NIST 1575 compared with indicative and certified values of 40 and 37 {+-} 3 ng/g respectively. The on-line separation of actinide radionuclides was achieved by selective elution of U, Th, Pu, Np, and Am.

  10. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  11. Clinical applications of HPLC-ICP-MS element speciation: A review.

    PubMed

    Delafiori, Jeany; Ring, Gavin; Furey, Ambrose

    2016-06-01

    Arsenic (As), Selenium (Se) and Mercury (Hg) are three trace elements that have been the subject of much analytical discussion and investigation over the last three decades. While Selenium (Se) is among the list of essential trace elements necessary for the regulation of metabolic processes and overall health, As and Hg are not, and have been the centre of various cases surrounding the contamination of food, water and the environment. The focus of this review is to explore the area of chemical speciation, particularly as it relates to the measurement of these elements in various clinical matrices by HPLC-ICP-MS. This review will highlight the importance of accurately identifying the various chemical species of each of these elements, especially when considering their respective toxicological impacts on human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2017-08-24

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  13. Studies on the content of heavy metals in Aries River using ICP-MS

    SciTech Connect

    Voica, Cezara Kovacs, Melinda Feher, Ioana

    2013-11-13

    Among the industrial branches, the mining industry has always been an important source of environmental pollution, both aesthetically and chemically. Through this paper results of ICP-MS characterization of Aries River Basin are reported. Mining activities from this area has resulted in contamination of environment and its surrounding biota. This is clearly evidenced in analyzed water samples, especially from Baia de Aries site where increased amount of trace elements as Cr, Zn, As, Se, Cd, Pb and U were founded. Also in this site greater amount of rare earth elements was evidenced also. Through monitoring of Aries River from other non-mining area it was observed that the quantitative content of heavy metals was below the maximum permissible levels which made us to conclude that the water table wasn't seriously affected (which possibly might be attributed to the cessation of mining activities in this area from a few years ago)

  14. The Approach to Reducing the Detection Limit for LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Poteshin, S. S.; Sysoev, Alexey A.; Torbotryas, R.

    This work is a part of the RED-100 big project. The aim of the RED-100 experiment is to detect the presently undiscovered coherent neutrino scattering off xenon atomic nuclei. The manufacture of such detectors requires ultrapure materials with very low content of natural radioactive elements. So the pure titanium was selected to assay the uranium and thorium contaminations on 1 ng/g level. In this paper we investigate the possibility of reducing the LOD for LA-ICP-MS analysis by increasing the pulse repetition rate of solid-state laser irradiation up to 4,000 Hz and appropriate adjusting the irradiation power. LODs for U and Th in titanium matrix estimation fell in the sub 10-10 g g- 1 level.

  15. Progress in LA-ICP-MS Microanalysis Using a 200 nm-femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Stoll, B.; Weis, U.; Jacob, D. E.; Mertz-Kraus, R.; Andreae, M. O.

    2013-12-01

    We have investigated the performance of LA-ICP-MS for the microanalysis of a variety of samples of different matrices using the 200 nm Ti-sapphire based fs-laser ablation system NWR Femto200 combined with the sector-field ICP-MS Thermo Element2. For comparison, we conducted similar experiments with three ns lasers: 193 nm Nd:YAG, 213 nm Nd:YAG, 193 nm ArF excimer. Measurements were performed with different spot sizes (10 - 65 μm), pulse repetition rates (5 - 250 Hz) and energy densities (0.5 - 0.7 Jcm-2) in spot and line scan analysis modes. We applied those settings to well-characterized and homogeneous synthetic silicate, geological, carbonate and phosphate microanalytical reference materials from NIST, USGS, MPI-DING and others. Our investigations show that in the case of UV-fs laser ablation line scan analysis is much more appropriate than spot analysis. In contrast to the ns lasers, fs laser spot analysis is characterized by a strong decrease of ion intensities, presumably caused by the generation of color centers by fs laser pulses [1]. On the other hand, line scan analyses yield uniform and relative high ion intensities so that detection limits for the various elements are similar to ns laser ablation. In LA-ICP-MS, the major limitations regarding measurement accuracy are matrix effects. The experiments demonstrate that in each case the fs data are more reproducible and less matrix-dependent with respect to fractionation factors [2] and mass-load induced matrix effects [3] than the results obtained using the ns lasers. The fractionation factors of refractory, volatile, lithophile and chalcophile elements are unity for the line scan mode and agree within an uncertainty of 1 %, whereas significantly lower, but matrix-independent, values for the volatile elements Pb (0.93 × 0.03) and Zn (0.88 × 0.04) were observed using the spot analysis mode. This implies that calibration can be performed reliably for quite different matrices using certified silicate

  16. Intercomparison of INAA and ICP-MS results for thorium determination in Pakistani diet.

    PubMed

    Akhter, P; Orfi, S D; Kawamura, H; Ahmad, N; Khaleeq-Ur-Rahman, M

    2002-01-01

    A pilot study on ingestion and organ content of trace elements of importance in radiological protection was to be carried out in Pakistan. Baseline analytical data on daily dietary intake of thorium was to be measured using Instrumental Neutron Activation Analysis (INAA) technique. To determine the accuracy and reliability of our technique, some samples were measured in Pakistan using INAA and in Japan using Inductively Coupled Plasma-Mass Spectrometry. For intercomparison of results overall mean Z-scores were calculated. The results showed validity of our technique. Mean value of 232Th concentration in Pakistani diet samples using INAA technique is 0.0062 +/- 0.0028 microg/g and with ICP-MS technique is 0.0069 +/- 0.0032 microg/g.

  17. Studies on the content of heavy metals in Aries River using ICP-MS

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Kovacs, Melinda; Feher, Ioana

    2013-11-01

    Among the industrial branches, the mining industry has always been an important source of environmental pollution, both aesthetically and chemically. Through this paper results of ICP-MS characterization of Aries River Basin are reported. Mining activities from this area has resulted in contamination of environment and its surrounding biota. This is clearly evidenced in analyzed water samples, especially from Baia de Aries site where increased amount of trace elements as Cr, Zn, As, Se, Cd, Pb and U were founded. Also in this site greater amount of rare earth elements was evidenced also. Through monitoring of Aries River from other non-mining area it was observed that the quantitative content of heavy metals was below the maximum permissible levels which made us to conclude that the water table wasn't seriously affected (which possibly might be attributed to the cessation of mining activities in this area from a few years ago).

  18. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  19. [Analysis of different types of soil by FTIR and ICP-MS].

    PubMed

    Zhao, Shuai-qun; Liu, Gang; Ou, Quan-hong; Xu, Juan; Ren, Jing; Hao, Jian-ming

    2014-12-01

    Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma mass spectrometry (ICP-MS) were used to study six types of farmland soil from different areas. The FTIR results showed that the infrared spectra of soil were mainly composed of the absorption band of clay minerals, organic matter and inorganic salts, such as carbonate, phosphate, manganate and so on. The mineral atlas of six soil samples were all of montmorillonite type. The ICP-MS test results showed that the available elements content of different types and colours of soil samples were different There was significant lack status of available Ca between different types of farmland soil, the content of available Mg in Huludao soil was in the medium level, other areas were in the status of shortage. There was only significant lack status of available Mn and available Zn in Baiyin soil, the content of available Fe in Chenggong soil was in the status of shortage, the content of available Cu in all areas was particularly rich. The content of available P in Jining soil was rich, Luoyang and Huludao soil were in the medium level, the soil of Chenggong, Baiyin and Luliang were in the status of shortage. The content of available K in Luoyang, Chenggong and Jining soil was relatively rich, Luliang soil was in the medium level, the soil of Huludao and Baiyin were in the status of shortage. It is observed that the deeper the color of soil samples, the richer the amount of some available trace elements such as magnesium, copper, iron, manganese and zinc. According to the national classification standard of available elements content, we analyzed the nutrients of available elements content in the farmland soil of different areas, and implemented remedial measures for the lacking of available elements for all of the six areas.

  20. Simultaneous speciation of endogenous and exogenous elements by HPLC/ICP-MS with enriched stable isotopes.

    PubMed

    Suzuki, K T

    1996-01-01

    High performance liquid chromatography (HPLC)/ inductively coupled argon plasma-mass spectrometry (ICP-MS) was introduced to investigate the distributions of selenium (Se) in biological fluids. The method was to determine both the natural abundance of Se and an enriched stable isotope of Se used as a tracer. The distributions of Se in plasma and in urine specimens were determined in Wistar rats on various Se diets with and without an intravenous injection of 82Se-selenite. Although the distribution of natural abundance Se (endogenous Se) in the plasma was affected little by the nutritional status of Se, that in the urine gave a Se peak depending on the nutritional status of Se, and the peak was identified as methylselenol. When 82Se-selenite was injected in excess into rats given three different Se diets (Se-deficient, Se-adequate, Se-excessive), three Se peaks occurred in the HPLC chromatogram of the urine samples, corresponding to selenite, methylselenol and trimethylselenonium ion in the order of elution, and the intensities of the tracer peaks reflected the nutritional status. These results indicate that the HPLC/ICP-MS method is a powerful analytical tool for specifying Se-containing biological constituents, both natural abundance and enriched stable isotopes. Methylselenol in urine is proposed to be a sensitive and Se-specific biological indicator for diagnosing the nutritional status of Se. Furthermore, it was shown that an enriched stable isotope such as 82Se-selenite was shown to be used for the same purpose, and that 82Se-methylselenol and 82Se-trimethylselenonium ion in urine were more sensitive indicators of the Se status of the rats.

  1. Speciation analysis of arsenic and selenium compounds by CE-dynamic reaction cell-ICP-MS.

    PubMed

    Hsieh, Meng-Wei; Liu, Chen-Ling; Chen, Jing-Huan; Jiang, Shiuh-Jen

    2010-07-01

    A dynamic reaction cell ICP-MS was used as a CE detector for the speciation analysis of arsenic and selenium. Samples containing arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, selenite, selenate, selenocysteine, selenomethione, and Se-methylselenocysteine were subjected to electrophoretic separation before being introduced into the microconcentric nebulizer (CEI-100) for their determination by ICP-MS. The separation has been achieved in a 60 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used was 25 mmol/L CAPS, and 0.5 mmol/L SDS at pH 9.5, whereas the applied voltage was set at 25 kV. The potentially interfering (38)Ar(40)Ar(+) and (40)Ar(40)Ar(+) at the selenium masses m/z 78 and 80 were reduced in intensity by approximately three orders of magnitude by using 1.4 mL/min CH(4) as reactive cell gas in the dynamic reaction cell. Arsenic was determined as the adduct ion (75)As(12)CH(2) (+) at m/z 89. The LOD for arsenic and selenium was in the range of 0.6-1.8 ng/mL, and 0.5-1.4 ng/mL, respectively, based on peak height. This method has been applied to determine various arsenic and selenium compounds in NIST SRM 1633a Coal Fly Ash and NRCC DOLT-3 Dogfish Liver reference materials and a selenium dietary supplement. The arsenic and selenium compounds were extracted from fish liver and dietary supplement by using Protease XIV and Lipase, and from coal fly ash with HF solution. The spike recoveries were in the range 91-103% for all the species studied.

  2. Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet

    NASA Astrophysics Data System (ADS)

    Raimondo, Tom; Payne, Justin; Wade, Benjamin; Lanari, Pierre; Clark, Chris; Hand, Martin

    2017-04-01

    A persistent problem in the study of garnet geochemistry is that the consideration of major elements alone excludes a wealth of information preserved by trace elements, particularly the rare-earth elements (REEs). This is despite the fact that trace elements are generally less vulnerable to diffusive resetting, and are sensitive to a broader spectrum of geochemical interactions involving the entire mineral assemblage, including the growth and/or dissolution of accessory minerals. We outline a technique for the routine acquisition of high-resolution 2D trace element maps by LA-ICP-MS, and introduce an extension of the software package XMapTools for rapid processing of LA-ICP-MS data to visualise and interpret compositional zoning patterns. These methods form the basis for investigating the mechanisms controlling geochemical mobility in garnet, which are argued to be largely dependent on the interplay between element fractionation, mineral reactions and partitioning, and the length scales of intergranular transport. Samples from the Peaked Hill shear zone, Reynolds Range, central Australia, exhibit contrasting trace element distributions that can be linked to a detailed sequence of growth and dissolution events. Trace element mapping is thus employed to place garnet evolution in a specific paragenetic context and derive absolute age information by integration with existing U-Pb monazite and Sm-Nd garnet geochronology. Ultimately, the remarkable preservation of original growth zoning and its subtle modification by subsequent re-equilibration is used to `see through' multiple superimposed events, thereby revealing a previously obscure petrological and temporal record of metamorphism, metasomatism, and deformation.

  3. New approach of a transient ICP-MS measurement method for samples with high salinity.

    PubMed

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like Kd values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area.

  4. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  5. Advances in the measurement of sulfur isotopes using laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Pribil, M. J.; Koenig, A. E.; Fayek, M.; Slack, J. F.

    2008-05-01

    Although sulfur is poorly ionized in an argon plasma, there are many applications for sulfur isotope analysis using an ICP source. Studies using a desolvation system (DSN) and an aqueous source of sulfur, where the sulfur is complexed with a cation to form a sulfur salt, e.g., calcium or sodium to provide a stable delivery of sulfur through the sample introduction system indicate that precision (~ 0.3 per mil) and accuracy are maintained at sulfur concentrations as low as 1 mg/L. Based on this data, solid sampling of sulfides and sulfates can provide an adequate amount supply of sulfur to an ICP source, even allowing for the relatively poor transport efficiency of laser ablation systems. The main limitations on accuracy and precision are the initial sampling volume, principally a function of spot size and laser fluence and the decreased instrument sensitivity resulting from the pseudo- medium or high resolution mode of analysis required to eliminate polyatomic isobaric interferences. These factors, in turn, determine the minimal grain size necessary for analysis. There are also fit-for-purpose considerations. For instance, many base metal sulfide systems have large variations in sulfur isotope composition, so that precision as poor as one per mil can still provide useful information. Here, we describe the methodology used at the USGS for laser ablation analysis of sulfides and sulfates using a second generation MC-ICP-MS and demonstrate the accuracy of the method based upon a grain-by-grain comparison of laser ablation and ion microprobe sulfur isotope data. A laser ablation MC-ICP-MS study of base metal mineralization at Dry Creek deposit, east-central Alaska demonstrates that the range in sulfur isotope composition of pyrite, sphalerite and galena, based on analysis of individual grains, is almost twice that reported for any other individual VMS deposit. Analysis on the microscopic scale thus provides additional insights into the potential sources of sulfur for

  6. Comparison of GC-ICP-MS and HPLC-ICP-MS for species-specific isotope dilution analysis of tributyltin in sediment after accelerated solvent extraction.

    PubMed

    Wahlen, Raimund; Wolff-Briche, Céline

    2003-09-01

    This study describes a direct comparison of GC and HPLC hyphenated to ICP-MS determination of tributyltin (TBT) in sediment by species-specific isotope dilution analysis (SS-IDMS). The certified reference sediment PACS-2 (NRC, Canada) and a candidate reference sediment (P-18/HIPA-1) were extracted using an accelerated solvent extraction (ASE) procedure. For comparison of GC and LC methods an older bottle of PACS-2 was used, whilst a fresh bottle was taken for demonstration of the accuracy of the methods. The data obtained show good agreement between both methods for both the PACS-2 sediment (LC-ICP-IDMS 828+/-87 ng g(-1) TBT as Sn, GC-ICP-IDMS 848+/-39 ng g(-1) TBT as Sn) and the P-18/ HIPA-1 sediment (LC-ICP-IDMS 78.0+/-9.7 ng g(-1) TBT as Sn, GC-ICP-IDMS 79.2+/-3.8 ng g(-1) TBT as Sn). The analysis by GC-ICP-IDMS offers a greater signal-to-noise ratio and hence a superior detection limit of 0.03 pg TBT as Sn, in the sediment extracts compared to HPLC-ICP-IDMS (3 pg TBT as Sn). A comparison of the uncertainties associated with both methods indicates superior precision of the GC approach. This is related to the better reproducibility of the peak integration, which affects the isotope ratio measurements used for IDMS. The accuracy of the ASE method combined with HPLC-ICP-IDMS was demonstrated during the international interlaboratory comparison P-18 organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The results obtained by GC-ICP-IDMS for a newly opened bottle of PACS-2 were 1087+/-77 ng g(-1) Sn for DBT and 876+/-51 ng g(-1) Sn for TBT (expanded uncertainties with a coverage factor of 2), which are in good agreement with the certified values of 1090+/-150 ng g(-1) Sn and 980+/-130 ng g(-1) Sn, respectively.

  7. Development of an optimised method for analysis of (90)Sr in decommissioning wastes by triple quadrupole inductively coupled plasma mass spectrometry.

    PubMed

    Russell, B; García-Miranda, M; Ivanov, P

    2017-08-01

    The ongoing development of an optimised procedure for the measurement of (90)Sr in decommissioning samples using the latest generation triple quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ-MS) is presented. The procedure incorporates digestion, and separation from interferences using a combination of wet chemical and instrument-based separation using the ICP-QQQ-MS reaction cell. The key factors under study are the procedural time and limits of detection achievable compared to existing radiometric techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  9. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL(-1)). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  10. Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)

    SciTech Connect

    Shum, Sam

    1993-05-01

    This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization.

  11. Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters.

    PubMed

    Trzcinka-Ochocka, Malgorzata; Brodzka, Renata; Janasik, Beata

    2016-03-01

    In case of clinical analysis, especially in blood lead (Pb-B) and cadmium (Cd-B) determination, the accuracy and precision of the method are crucial. The objective of this article is to present a simple and useful method for Pb-B and Cd-B determination using ICP-MS (inductively coupled plasma-mass spectrometry) as well as GF-AAS (graphite furnace-atomic absorption spectrometry). The principle of the method is based on the deproteinization of blood samples by addition of 5% nitric acid that eliminates the presence of the protein in the samples, thereby excluding the influence of the organic matrix on the result determinations. A comparison of the two techniques ICP-MS and GF-AAS was established for Pb and Cd determinations in the same 40 blood samples collected from lead workers. The results showed that validation parameters for ICP-MS and GF-AAS were similar, however better for ICP-MS for Pb-B determinations. The detection limit (3×SD) for Pb-B determinations for ICP-MS and GF-AAS was, respectively, 0.16 and 1.0 μg/l, and for Cd-B it was, respectively, 0.08 and 0.02 μg/l. Correlation coefficients (rs) for comparable Pb-B and Cd-B determinations, using these two techniques, showed very good statistically significant correlations and were r = 0.9988, P < 0.0001 for Pb-B and r = 0.9949, P < 0.0001 for Cd-B. The obtained results indicate that the method of deproteinization of blood samples is still the best way to eliminate spectral interferences and influence of the organic matter. The elaborated method is especially dedicated to clinical laboratories and determined low concentrations of lead and cadmium in biological samples. © 2014 Wiley Periodicals, Inc.

  12. Antimony Isotope Variations in Natural Systems Determined by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ludden, J.; Rouxel, O.; Fouquet, Y.

    2001-12-01

    Sb has two stable isotopes of mass 121 and 123 with average abundance of 57.362% and 42.638% respectively and to date no geochemical or cosmochemical investigations of the variations of these isotopes have been attempted. In fact, the development of Sb isotope measurements for biogeochemical studies is challenging as Sb isotopes have a low percentage mass differences (1.6%) precluding large mass fractionation and Sb is a trace element below 100 ng/g for most geological samples and below 100 ng/l for seawater. However, it is anticipated that the redox changes of Sb(V) and Sb(III) species as well as biological activity and Sb volatilization or transport in hydrothermal systems can produce significant isotope fractionation in natural systems. The isotopic analyses of Sb have been performed using a continuous flow hydride generation system coupled to a Micromass MC-ICP-MS and the instrumental mass fractionation is corrected using a standard-sample bracketing approach. Total Sb, as well as Sb(III) and Sb(V) aqueous species are chemically purified prior to HG-MC-ICP-MS analysis. Using this analytical scheme, the minimum Sb required per analysis is 10 ng and the estimated external precision of the 123Sb/121Sb isotope ratio is 0.4 ɛ -units (2σ ). The data are reported relative to our internal standards (MERCK elemental standard solution). The isotopic fractionation factors between the coexisting species Sb(III) and Sb(V) have been investigated both on-line and after chemical separation. For the kinetic reduction experiment of Sb(V), the reducing agent used was KI as classically used for Sb(V) reduction and we obtained an instantaneous fractionation factor of 8.6 ɛ -units. For off-line experiments, we separated Sb(III) from a partially oxidized Sb solution and obtained a fractionation factor ranging from 5 to 6 ɛ -units. Preliminary results on Sb isotopic composition of selected terrestrial materials including seawater, soils, sediments and hydrothermal sulfides have

  13. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev

  14. Quantitating Iron in Serum Ferritin by Use of ICP-MS

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Gillman, Patricia L.

    2003-01-01

    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid

  15. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.

    2014-12-01

    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAI<2 were chosen for in-situ strontium isotope analysis using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Conodont samples are from totally 25 layers in seven conodont zones making it possible for a high resolution 87Sr/ 86Sr curve reconstruction during the Permian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al

  16. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik J.; Kober, Bernd; Dolgopolova, Alla; Gallagher, Kerry; Spiro, Baruch; Le Roux, Gaël; Mason, Thomas F. D.; Kylander, Malin; Coles, Barry J.

    2004-04-01

    Analytical protocols for accurate and precise Pb isotope ratio determinations in peat, lichen, vegetable, chimney dust, and ore-bearing granites using MC-ICP-MS and their application to environmental studies are presented. Acid dissolution of various matrix types was achieved using high temperature/high pressure microwave and hot plate digestion procedures. The digests were passed through a column packed with EiChrom Sr-resin employing only hydrochloric acid and one column passage. This simplified column chemistry allowed high sample throughput. Typically, internal precisions for approximately 30 ng Pb were below 100 ppm (+/-2[sigma]) on all Pb ratios in all matrices. Thallium was employed to correct for mass discrimination effects and the achieved accuracy was below 80 ppm for all ratios. This involved an optimization procedure for the 205Tl/203Tl ratio using least square fits relative to certified NIST-SRM 981 Pb values. The long-term reproducibility (+/-2[sigma]) for the NIST-SRM 981 Pb standard over a 5-month period (35 measurements) was better than 350 ppm for all ratios. Selected ore-bearing granites were measured with TIMS and MC-ICP-MS and showed good correlation (e.g., r=0.999 for 206Pb/207Pb ratios, slope=0.996, n=13). Mass bias and signal intensities of Tl spiked into natural (after matrix separation) and in synthetic samples did not differ significantly, indicating that any residual components of the complex peat and lichen matrix did not influence mass bias correction. Environmental samples with very different matrices were analyzed during two different studies: (i) lichens, vegetables, and chimney dust around a Cu smelter in the Urals, and (ii) peat samples from an ombrotrophic bog in the Faroe Islands. The presented procedure for sample preparation, mass spectrometry, and data processing tools resulted in accurate and precise Pb isotope data that allowed the reliable differentiation and identification of Pb sources with variations as small as 0

  17. Au-Skarn Mineralization: Constraints from LA-ICP-MS U-Pb Zircon Dating

    NASA Astrophysics Data System (ADS)

    Gaspar, M.; Vervoort, J. D.; Meinert, L. D.

    2003-12-01

    In situ U-Pb zircon geochronology by laser ablation ICP-MS was performed on samples from the intrusive rocks of the Buckhorn Mountain, Washington in order to constrain the age of the Crown Jewel Au-skarn deposit. The analyses were conducted at Washington State University using a ThermoFinnigan Element2 single collector, high resolution magnetic sector ICP-MS, and a New Wave UP 213 Nd-YAG (213 nm) laser ablation system. The analytical parameters included a repetition rate of 10 Hz, a 40 microns spot size, and a total analysis time of 30 seconds per spot. A 94-35 cascade standard was used to bracket the samples. Two distinct 206Pb/238 U ages were obtained, 52.3 Ma +/- 1.6, 165.0 Ma +/- 5.9, 163.4 +/- 5.7, and 169.8 +/- 12.1 (all errors are 2 sigma). These ages represent distinct magmatic events occuring during the two main tectonic periods in the region. The oldest age ( ˜165 Ma) is associated with the accretion of the Quesnel terrain during the Middle Jurassic while the younger age ( ˜52 Ma) represents the magmatism during the Eocene extension that is well represented by the Challis Volcanics in the vicinity. The Jurassic ages were obtained in one sample from a deformed granodiorite dike and two samples from the main granodiorite intrusive facies that, based on the skarn mineralogy zonation, is spatially associated with the skarn. The Eocene intrusive unit was intercepted in one drill core but is clearly distinct from the granodiorites both geochemically and mineralogically. This facies is more an adamellite, with a distinctive pinkish colour due to a K-spar alteration. It is higher in silica, and depleted in compatible elements (Ca, Fe, Ti, Mg, P, Y, and V) relative to the granodiorite. Geochemically the granodiorite has a composition typical of plutons associated with Au-skarns worldwide. Because Au mineralization is erratically distributed and does not correlate with any of the skarn mineralogy, a question can be raised. Does the Au mineralization have any

  18. Zircon U-Pb dating using LA-ICP-MS: Quaternary tephras in Yakushima Island, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi; Uesawa, Shimpei; Nanayama, Futoshi; Nakagawa, Shojiro

    2017-05-01

    Zircon U-Pb dating using LA-ICP-MS was applied to three Quaternary tephras in Yakushima Island, southern Japan: the Anbo Tephra, the Koseda pyroclastic flow deposit (Ksd), and the Kikai-Tozurahara (K-Tz) Tephra. The obtained U-Pb ages were 0.73 ± 0.04 Ma (error shown as 95% confidence level) for the Anbo, 0.63 ± 0.04 Ma for the Ksd, and 0.17 ± 0.05 Ma for the K-Tz. These ages are consistent with or slightly older than those reported previously, which demonstrates the applicability of the U-Pb method to date zircons as young as 0.1 Ma. The K-Tz contains 0.7-0.6 Ma zircons, assumed to be derived from the Anbo and Ksd tephras. Because the K-Tz was originated from the Kikai Caldera, 30 km north of Yakushima Island, both the Anbo and Ksd were likely also derived from the same caldera system. Therefore our data and interpretation will contribute to elucidate the magmatic history of the Kikai Caldera whose latest eruption devastated prehistoric human settlements of southern Kyushu, Japan, and provide an improved chronostratigraphic constraint for Japan.

  19. Profiling of illicit cocaine seized in China by ICP-MS analysis of inorganic elements.

    PubMed

    Liu, Cuimei; Hua, Zhendong; Meng, Xin

    2017-07-01

    For the first time in China, the inorganic element profiling of cocaine specimens was performed at the National Narcotics Laboratory. An inductive coupled plasma-mass spectrometry (ICP-MS) method was developed and validated for simultaneous analysis of 26 inorganic elements, including sodium (Na), magnesium (Mg), aluminuim (Al), potassium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), silver (Ag), cadmium (Cd), antimony (Sb), barium (Ba), lanthanum (La), cerium (Ce), thallium (Tl), lead (Pb), thorium (Th), and uranium (U) in illicit cocaine samples. Ultrasonic assisted dissolution was applied for sample preparation. Minimum sample preparation and analysis time were required, which was suitable for routine analysis. After the analysis of 183 cocaine samples seized from 2011 to 2015, the element concentration ranges of cocaine sample were obtained. Based on the quantitative data set of 26 inorganic elements in 131 linked/un-linked cocaine samples, fifty combinations of pre-treatment methods and distance/correlation measurements were tested for their potential discrimination power for cocaine profiling, and normalization+standardization+logarithm (N+S+L)/Cosine correlation exhibited the best result. After hierarchical cluster analysis (HCA) analysis of 183 cocaine samples, 21 groups of linked samples were found within and between provinces, which provide intelligence for case connection and revealing of the distribution networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].

    PubMed

    Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun

    2016-01-01

    By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.

  1. Fingerprinting of ground water by ICP-MS. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Stetzenbach, K.

    1994-12-31

    This report contains the results of the chemical analysis of water from springs in Death Valley National Park, California. The springs were selected to represent a variety of aquifers at various flow rates. Nevares, Texas, and Travertine springs are believed to represent carbonate aquifers, whereas the other springs are believed to come from volcanic or valley fill aquifers. Each spring was sampled two to five times between June, 1992 and March, 1994. Samples were collected and analyzed by the Harry Reid Center for Environmental Studies (HRC) Environmental/Analytical Laboratory, at the University of Nevada, Las Vegas. The coordinates and dates of sampling are included. The chemical analyses performed on these spring waters included major cations and anions and trace elements. The analyses for the major anions were performed by atomic absorption (AA) spectrophotometry, the anions by ion chromatography (IC) and the trace elements by inductively coupled plasma-mass spectrometry (ICP-MS). The standard operating procedures (SOP) used for each method are included. It is believed that this is the first effort at such a comprehensive trace element analysis of ground waters. HRC has had to develop, test, and refine sampling and analysis procedures throughout the course of this study. A great deal of effort has gone into ensuring that even with the variations in methods and procedures, the data quality from any one sampling is comparable to the others.

  2. Bromate pollutant in ozonated bottled Zamzam water from Saudi Arabia determined by LC/ICP-MS.

    PubMed

    Al-Ansi, Seham A; Othman, Ahmed A; Al-Tufail, Mohammed A

    2011-01-01

    Bromate (BrO(3) (-)) as a human carcinogenic pollutant in bottled drinking Zamzam water from Mecca, Saudi Arabia has been determined using liquid chromatography inductively coupled plasma mass spectrometry (LC/ICP-MS). For analysis, samples were injected directly without any further pretreatment, using only 50 μL injection volume. The method showed: 0.5 μg/L detection limit, 1.0 μg/L limit of quantification and 1.0-200.0 μg/L linearity range (r(2) = 0.9998). The relative standard deviation (%RSD) values for reproducibility (interday precision) obtained are at 11 % and 14 % for bromate and bromide at low concentration levels (5, 10 μg/L) and at 4 % for both at high concentration levels (50, 100 μg/L), respectively. The results concluded that the ozonated bottled Zamzam water samples are contaminated with bromate. The concentration is 20 times higher than U.S. Environmental Protection Agency (U.S. EPA) allowable limit (10 μg/L) for bromate in bottled drinking water. Bottled drinking water brands, disinfected with ozone showed relatively lower levels of bromate as compared with Zamzam water.

  3. Reversed Phase Column HPLC-ICP-MS Conditions for Arsenic Speciation Analysis of Rice Flour.

    PubMed

    Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu

    2015-01-01

    New measurement conditions for arsenic speciation analysis of rice flour were developed using HPLC-ICP-MS equipped with a reversed phase ODS column. Eight arsenic species, namely, arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA), arsenobetaine (AsB) and arsenocholine (AsC), were separated and determined under the proposed conditions. In particular, As(III) and MMAA and DMAA and AsB were completely separated using a newly proposed eluent containing ammonium dihydrogen phosphate. Importantly, the sensitivity changes, in particular those of As(V) and As(III) caused by coexisting elements and by complex matrix composition, which had been problematical in previously reported methods, were eliminated. The new eluent can be applied to C8, C18 and C30 ODS columns with the same effectiveness and with excellent repeatability. The proposed analytical method was successfully applied to extracts of rice flour certified reference materials.

  4. Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy.

    PubMed

    Charalambous, Chrystalla; Aletrari, Maria; Piera, Panagiota; Nicolaidou-Kanari, Popi; Efstathiou, Maria; Pashalidis, Ioannis

    2013-02-01

    The uranium concentration and the isotopic ratio (238)U/(234)U have been determined in Cypriot groundwater samples by ICP-MS after ultrafiltration and acidification of the samples and α-spectroscopy after pre-concentration and separation of uranium by cation-exchange (Chelex 100 resin) and electro-deposition on stainless steel discs. The uranium concentration in the groundwater samples varies strongly between 0.1 and 40 μg l(-1). The highest uranium concentrations are found in groundwater samples associated with sedimentary rock formations and the obtained isotopic ratio (238)U/(234)U varies between 0.95 and 1.2 indicating basically the presence of natural uranium in the studied samples. The pH of the groundwater samples is neutral to weak alkaline (7 < pH < 8) and this is attributed to the carbonaceous content of the sedimentary rocks and the ophiolitic origin of the igneous rocks, which form the background geology in Cyprus. Generally, in groundwaters uranium concentration in solution increases with decreasing pH (7 < pH < 8) and this is attributed to the fact that at lower pH dissolution of soil minerals occurs, and uranium, which is adsorbed or forms solid solution with the geological matrix enters the aqueous phase. This is also corroborated by the strong correlation between the uranium concentration and the electrical conductivity (e.g. dissolved solids) measured in the groundwaters under investigation.

  5. Isotope dilution - high efficiency nebulization-ICP-MS: The coupling of accuracy and sensitivity.

    PubMed

    Wildner, H; Wünsch, G

    1996-03-01

    If sample pretreatment, nebulization and method of calibration are suitably adapted to each other the performance of inductively coupled plasma - mass spectrometry ICP-MS can be greatly increased. High accuracy is obtained by high precision and low bias. For a given concentration higher sensitivity means higher count rates and therefore higher precision. Systematic errors are minimized by employing a definitive method of calibration. Increased sensitivity is obtained by introducing higher amounts of sample into the measurement system via high efficiency nebulizers (ultrasonic nebulizer, hydraulic-high pressure nebulizer according to Berndt and concentric high efficiency nebulizer according to Meinhard). Because this means also higher matrix effects a combination of ion chromatographic (IC-TMS) and thermal trace-matrix-separation by aerosol desolvation (T-TMS) is introduced. Isotope dilution (ID) proves to be the calibration most suitable to achieve the highest accuracy. First applications on the analysis of refractory metals (e.g. Ti, V, Nb, Ta) and non-metals (e.g. P, S, As, Se) showed recoveries of 60-105%, an imprecision of the recoveries of 2-50%, but an overall inaccuracy of only 0.1 to 4%.

  6. Determination of Toxic Metals in Little Cigar Tobacco with “Triple Quad” ICP-MS

    PubMed Central

    Pappas, R. Steven; Martone, Naudia; Gonzalez-Jimenez, Nathalie; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Smoking remains the leading cause of preventable death in the United States. Much of the focus on harmful constituents (HPHCs) in tobacco products has been on cigarettes. Little cigars have gained popularity over the last decade as tobacco taxes made cigarettes more expensive in the U.S. Many little cigar brands are similar in size with cigarettes and may be smoked in a similar manner. Scant data are available on HPHC levels in little cigars, therefore we developed and applied a new analytical method to determine concentrations of ten toxic metals in little cigar tobacco. The method utilizes “triple quadrupole” ICP-MS. By optimizing octapole bias, energy discrimination, and cell gas flow settings, we were able to accurately quantify a range of elements including those for which the cell gas reactions were endothermic. All standard modes (Single Quad No Gas, MS/MS NH3/He, and MS/MS O2) were utilized for the quantitation of ten toxic metals in little cigar tobacco, including uranium, which was added as an analyte in the new method. Because of the elimination of interfering ions at “shifted analyte masses,” detection limits were lower compared to a previous method. Tobacco selenium concentrations were below the limit of detection in the previous method, but the new technology made it possible to report all selenium concentrations. PMID:25724197

  7. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    NASA Technical Reports Server (NTRS)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  8. Sediment profiles of less commonly determined elements measured by Laser Ablation ICP-MS.

    PubMed

    Dolor, Marvourneen K; Helz, George R; McDonough, William F

    2009-01-01

    Anthropogenic influences on trace element profiles in dated sediments from estuaries have been often documented, with the vast majority of studies focusing on a short list of high-abundance trace elements. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) provides a new approach that minimizes sample preparation and contamination while yielding data on a much larger list of elements simultaneously. We present concentrations and enrichment factor profiles for 22 elements at a locality that is 50 km southeast of Baltimore, the principal industrial city on Chesapeake Bay. Samples representing deposition over almost the entire 20th century were obtained from two archived cores collected 20 years apart. The following elements exhibit profiles consistent with a strong anthropogenic influence, i.e. enrichment after 1920 followed by decline after ca.1980, possibly reflecting increased regulatory efforts: Mn, Co, Cu, Zn, Ag, Cd, In, Sn, Sb, Te, Tl, Pb and Bi. As expected, the redox-sensitive elements: Mo, Re and U have similar profiles to one another. Previously, the potentially hazardous elements, Ag, In, Sb, Te, Tl and Bi, have been measured only rarely in estuarine sediments and never in Chesapeake Bay. Our discovery that their profiles track those of well-known pollutants underscores a need to investigate their sources, transport and biogeochemical behavior. Several rarely determined trace elements, Ga, Ge and Nb, exhibit trendless profiles, as do the major elements, Ti and Fe.

  9. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    PubMed Central

    Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health. PMID:27766178

  10. Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration.

    PubMed

    Huang, Chaozhang; Hu, Bin

    2008-03-01

    A new method was developed for the speciation of inorganic tellurium species in seawater by inductively coupled plasma-MS (ICP-MS) following selective magnetic SPE (MSPE) separation. Within the pH range of 2-9, tellurite (Te(IV)) could be quantitatively adsorbed on gamma-mercaptopropyltrimethoxysilane (gamma-MPTMS) modified silica-coated magnetic nanoparticles (MNPs), while the tellurate (Te(VI)) was not retained and remained in solution. Without filtration or centrifugation, these tellurite-loaded MNPs could be separated easily from the aqueous solution by simply applying external magnetic field. The Te(IV) adsorbed on the MNPs could be recovered quantitatively using a solution containing 2 mol/L HCl and 0.03 mol/L K2Cr2O7. Te(VI) was reduced to Te(IV) by L-cysteine prior to the determination of total tellurium, and its assay was based on subtracting Te(IV) from total tellurium. The parameters affecting the separation were investigated systematically and the optimal separation conditions were established. Under the optimal conditions, the LOD obtained for Te(IV) was 0.079 ng/L, while the precision was 7.0% (C = 10 ng/L, n = 7). The proposed method was successfully applied to the speciation of inorganic tellurium in seawater.

  11. [Application of ICP-MS to detection of mineral elements and heavy metals in Cassava's byproducts].

    PubMed

    Tao, Hai-Teng; Zhang, Chun-Jiang; Chen, Xiao-Ming; Lüi, Fei-Jie; Tai, Jian-Xiang; Li, Kai-Mian

    2009-07-01

    Cassava is a main cultivated tropical crop in China, its rich starch roots are often used to produce fuel ethanol in recent years, so it's a kind of hot biomass energy crops. But cassava's byproducts such as leaves, stems and peels are regarded as waste, and are not fully utilized. Cassava's byproducts contain many nutrients, and can be used to process high value food products. The contents of mineral elements and heavy metals in cassava's byproducts were studied by ICP-MS. The results showed that cassava's byproducts contained many elements necessary to human health, the sequence of macroelements was K>Ca>P> Mg>S>Mn>Zn>Na>Fe>B>Cu, particularly, the contents of Fe, Mn, Zn and B ranged from 10 to 800 microg x g(-1) (DW), while the contents of microelements including Mo, Co, Se and Ge ranged from 0.01 to 0.2 microg x g(-1) (DW), which are important to human health. Besides macroelements and microelements, the contents of heavy metals (As, Cr, Pb and Hg) were also important to identify the quality of farm products, and the results showed that cassava's byproducts contained little heavy metals except Pb (2.19 microg x g(-1) (DW) in stalk peels). All the data showed that cassava's byproducts accorded with the national hygiene standards.

  12. [Application of ICP-MS to detecting ten kinds of heavy metals in KCl fertilizer].

    PubMed

    Rui, Yu-kui; Shen, Jian-bo; Zhang, Fu-suo; Yan, Yun; Jing, Jing-ying; Meng, Qing-feng

    2008-10-01

    With the rapid development of society, more and more attention has been focused on environmental safety, especially on the pollutions of heavy metals, pesticides, persistent organic pollutants and deleterious microorganism. Heavy metals are difficult to metabolize in human body are quite harmful, so research on the pollution of heavy metals is increasingly important. There are many pollution sources of heavy metals, including waste residue, waste water and exhaust gas from industry and automobile, and garbage from human life. The contents of 10 kinds of heavy metals (Cr, Ni, Cu, As, Cd, Sn, Sb, Hg, Tl and Pb) in potassium fertilizer (KCl) from Russia were analyzed by ICP-MS. The results showed that potassium fertilizer (KCl) contained less heavy metals than organic-inorganic compound fertilizer; the content of heavy metals Cr, Ni, Cu, As, Cd, Sn, Sb, Hg, Tl and Pb is 0.00, 65.54, 238.85, 190.60, 0.98, 14.98, 2.97, 10.04, 1.28 and 97.42 ng x g(-1), respectively, which accords with the correlative standards. All the data showed that if potassium fertilizer (KCl) is manufactured through normal channel, the content of heavy metals should be little and safe.

  13. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS.

    PubMed

    Ammann, Adrian A

    2002-02-01

    Biogenic (e.g. phytochelatins, porphyrins, DOM) as well as anthropogenic (e.g. NTA, EDTA, phosphonates) chelators affect the mobility and cycling of heavy metals in environmental waters. Since such chelators can form strongly bound anionic heavy metal complexes that are stable and highly mobile, anion-exchange chromatography coupled to ICP-MS was investigated. A narrow bore HPLC system was connected to a micro concentric nebuliser for in-line sample introduction. A new chromatographic procedure based on a synthetic hydrophilic quaternary ammonium anion exchanger in combination with nitrate as a strong eluent anion, and gradient elution, provided high separation selectivity and a large analytical window. Low detection limits (nmol L(-1)) were achieved by on-column matrix removal and sample preconcentration. This allowed the method to be successfully applied to different environmental research areas. In ecotoxicological studies of heavy metal effects on algae low concentrations of metal EDTA complexes were determined in nutrient solutions without interference from high (buffer) salt concentrations. In groundwater, infiltrated by a polluted river, mobile metal EDTA species were observed. In river water of different pollution levels beside CuEDTA other anionic Cu-complexes were found in nmol L(-1) concentrations.

  14. Depth Profiling (ICP-MS) Study of Trace Metal `Grains' in Solid Asphaltenes

    NASA Astrophysics Data System (ADS)

    Pillay, Avin E.; Bassioni, Ghada; Stephen, Sasi; Kühn, Fritz E.

    2011-08-01

    Knowledge of trace metal `grains' in asphaltenes could play a significant role in enhancing refining and processing of crudes and also in providing useful information on mechanistic and migratory features linked to asphaltenes. These metals originate directly from interaction of oils with source-rock, mineral matter, and formation water and their accumulation in asphaltene matrices could vary from oil well to oil well. Suitable asphaltene samples were subjected to high-performance ICP-MS laser depth profiling (213 nm) to depths of 50 μm at 5 μm intervals. The study was conducted in the absence of standardization and characteristic intensities originating from the metals of interest were measured. Ten metal profiles were investigated (Na, Mg, Al, Mn, Fe, Zn, Sr, Pb, V, and Ni). The experimental results showed non-uniform distribution of trace metals and identified areas where such metals agglomerate. The data suggested that certain chemical and physical conditions within the structure of asphaltenes are favorable for metal `grain' formation at specific points. The exact mechanism for this behavior is not clear at this stage, and has considerable scope for future studies, including mathematical modeling simulations of asphaltenes. We also found that solid asphaltenes could be a useful forerunner of scale formation.

  15. Application of ICP-MS radionuclide analysis to {open_quotes}real world{close_quotes} samples of Department of Energy Radioactive Waste

    SciTech Connect

    Meeks, A.M.; Giaquinto, J.M.; Keller, J.M.

    1997-06-01

    Disposal of Department of Energy (DOE) radioactive waste into repositories such as the Waste Isolation Pilot Plant (WIPP) and the Nevada Test Site (NTS) requires characterization to ensure regulatory and transportation requirements are met. Characterization is also used to collect information regarding chemistry of the waste for processing concerns. The range of characterization typically includes radio nuclide activity, RCRA metals and organic compounds, process metals, and risk assessment. Recent addition of an inductively coupled plasma quadrupole mass spectrometer in a radioactive contaminated laboratory at the Oak Ridge National Laboratory (ORNL) has provided cost savings, time savings, reduced personnel exposure to radiation, and in some cases, improved accuracy over the traditional techniques for radionuclides, risk assessment and metals analysis. Application of ICP-MS to ORNL waste tank characterization has also provided the opportunity to estimate never-before-measured radionuclides and metals without increased cost. Data from analyses of ORNL waste tank sludges and supernates indicate the benefit of using this technique over counting techniques and Thermal Ionization Mass Spectrometry (TIMS) for analysis of fission products and U isotopics as well as the ability to estimate certain radionuclides and metals for the first time in these tanks.

  16. In-situ U/Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for thermochronological applications

    NASA Astrophysics Data System (ADS)

    Zack, T.; Stockli, D. F.; Luvizotto, G. L.; Barth, M. G.; Wolfe, M. R.; Hinton, R. W.; Berndt-Gerdes, J.; Kooijman, E.

    2009-12-01

    The advent of rutile thermometry brought an increasing interest in understanding rutile formation and its temporal evolution. Here we report progress on several fronts of in situ U-Pb rutile geochronology: (1) Matrix matching, necessary for robust in situ dating is fullfilled by calibrating and testing rutile standards (R10 and R19), including the presentation of new TIMS ages for the rutile standard R19. (2) Common lead correction is routinely applied via 208Pb, which is possible due to extremely low Th/U ratios (usually <0.003) in most rutiles. Employing a 213 nm Nd:YAG laser coupled to a quadrupole ICP-MS and using R10 as a primary standard, rutile U/Pb ages for the other rutile standard and four rutile-bearing metamorphic rocks always agree better than 2% with the reported TIMS ages and other dating studies from the same localities. The methods outlined in this contribution should find wide application in thermochronological studies that require age information of single spots, e.g., single-crystal zoning and texturally-controlled dating. With this information we are able to address the effect of shielding of inclusion phases by robust host minerals.

  17. U-Th-Pb in petroleum by LA-ICP-MS: Source rocks-crude oils comparison.

    NASA Astrophysics Data System (ADS)

    Gourlan, Alexandra T.; Ricard, Estelle; Prinzhofer, Alain; Christophe, Pecheyran; Donard, Olivier X. C.

    2010-05-01

    The U, Th elemental and Pb isotopic ratios in petroleum source rocks have been determined for the first time and compared with crude oils from different regions in the World using a femtosecond laser ablation (high ablation rates) coupled to an ICP-MS and direct analysis of digested samples on ICP-MS. The advantage of femtosecond compared to nanosecond laser ablation is that it drastically reduces thermal effects, minimizes isotope and elemental fractionation and matrix effects during chemical analysis of solid samples. Fs-Laser Ablation coupled to an ICP-MS is therefore a potentially valuable tool for the determination of trace metals in crude oils as well as in solid samples such as source rocks. The principal problems encountered arise from the lack of isotopic lead standards in organic matrixes and the heterogeneity of source rocks which contain sulphides with high natural U and Th concentrations. Therefore, to determine exactly the U, Th and Pb contents in source rocks, two analytical techniques have to be compared. In one, the use of the laser ablation allows us to analyze in-situ small parts of the organic materials and to determine the proportions of two end members: pure kerogene and pure sulphides. In the other, the use of the conventional dissolution of the same pellets involves total consumption of the sample and gives an average value of the isotopic lead ratios and U, Th and Pb concentrations of the bulk sample. For the two cases a "sample-standard bracketing" procedure was applied using NIST 612 glass standard for ablation and NIST 981 in aqueous solution for the mineralization. Due to the lack of organic matrix standards, the fs-LA-ICP-MS technique produces only qualitative trace element (U, Th and Pb) and isotopic analysis of source rocks. Our results obtained on both crude oils and associated source rocks have shown that Th, U, Pb systematics determined using the two analytical methods (mineralization of kerogen directly analyzed on ICP-MS or MC

  18. External calibration strategy for trace element quantification in botanical samples by LA-ICP-MS using filter paper.

    PubMed

    Nunes, Matheus A G; Voss, Mônica; Corazza, Gabriela; Flores, Erico M M; Dressler, Valderi L

    2016-01-28

    The use of reference solutions dispersed on filter paper discs is proposed for the first time as an external calibration strategy for matrix matching and determination of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn in plants by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). The procedure is based on the use of filter paper discs as support for aqueous reference solutions, which are further evaporated, resulting in solid standards with concentrations up to 250 μg g(-1) of each element. The use of filter paper for calibration is proposed as matrix matched standards due to the similarities of this material with botanical samples, regarding to carbon concentration and its distribution through both matrices. These characteristics allowed the use of (13)C as internal standard (IS) during the analysis by LA-ICP-MS. In this way, parameters as analyte signal normalization with (13)C, carrier gas flow rate, laser energy, spot size, and calibration range were monitored. The calibration procedure using solution deposition on filter paper discs resulted in precision improvement when (13)C was used as IS. The method precision was calculated by the analysis of a certified reference material (CRM) of botanical matrix, considering the RSD obtained for 5 line scans and was lower than 20%. Accuracy of LA-ICP-MS determinations were evaluated by analysis of four CRM pellets of botanical composition, as well as by comparison with results obtained by ICP-MS using solution nebulization after microwave assisted digestion. Plant samples of unknown elemental composition were analyzed by the proposed LA method and good agreement were obtained with results of solution analysis. Limits of detection (LOD) established for LA-ICP-MS were obtained by the ablation of 10 lines on the filter paper disc containing 40 μL of 5% HNO3 (v v(-1)) as calibration blank. Values ranged from 0.05 to 0.81  μg g(-1). Overall, the use of filter paper as support for dried aqueous

  19. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES).

    PubMed

    de la Calle, Inmaculada; Menta, Mathieu; Klein, Marlène; Séby, Fabienne

    2017-08-15

    Cosmetics are part of the daily life of most of the people. Thus, a complete characterization of the products we applied in our skin is necessary. In this work, an analytical investigation of a wide variety of cosmetics from the point of view of total element content and metallic nanoparticles (NPs) has been performed. Firstly, we analyzed the total element content by ICP-MS and ICP-OES after acid digestion as an assessment of the presence of metal impurities. Prohibited elements in cosmetics, according to the European Commission regulation No 1223/2009, were not detected, and only elements mentioned in the label were found (e.g. Al, Fe, Ti and Si). Secondly, a screening of the presence of NPs has been performed by Dynamic Light Scattering (DLS) and Single Particle Inductively-Coupled Plasma Mass Spectrometry (SP-ICP-MS). Two sample preparation procedures were applied. The first protocol consisted in the preparation of suspensions in 0.1% w/v SDS and the second based on defatting with hexane followed by resuspension in water. DLS was employed as a routine method for a fast analysis of NPs, but this technique showed limitations due to the lack of specificity. SP-ICP-MS analyses were then performed, first as a screening technique to evaluate the presence of TiO2 and Au NPs in cosmetics suspensions prepared in SDS; and second, when a positive answer was obtained about the presence of NPs from the screening, SP-ICP-MS was used for particle size determination. Results showed that only TiO2 NPs were present in two sunscreens, one anti-wrinkle day cream, one lip balm protector labeled as 'nano' and in one brand of toothpaste not labeled as 'nano'. Sizes obtained for both sample preparations were compared and ranged from 30 to 120nm in most of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods.

    PubMed

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-01-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size (xBET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 (xBET = 111 nm) and Alu3 (xBET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm(2) cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  1. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  2. Method validation for determination of heavy metals in wine and slightly alcoholic beverages by ICP-MS

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Dehelean, Adriana; Pamula, A.

    2009-08-01

    The Organisation International de la Vigne et du Vin (OIV) fixed an uppermost level for some heavy metals in wine. Consequently, the need to determine very low concentration of elements that may be present in wine in trace and ultra trace levels occurred. Inductively coupled plasma mass spectrometry ICP-MS is considered an excellent tool for detailed characterization of the elementary composition of many samples, including samples of drinks. In this study a method of quantitative analysis for the determination of toxic metals (Cr, As, Cd, Ni, Hg, Pb) in wines and slightly alcoholic beverages by ICP-MS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, the minimum detection limit, the limit of quantification, accuracy and uncertainty.

  3. Exposure assessment method for products containing nanomaterials using a gas sample introduction system for ICP-MS

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuto; Kato, Nobuyuki; Nishiguchi, Kohe; Yoneda, Minoru

    2017-06-01

    General aerosol-measuring instruments allow real-time measurements of air particle concentrations. However, these measurements cannot distinguish free particles from target nanomaterials because they do not differentiate nanomaterials. The purpose of this study is investigation of the quantitative nature of atmospheric nanoparticles using GED (Gas Exchange Device)-ICP-MS to detect and measure nanoparticles as an element. The per particle signal intensity increased proportionally to the volume until the particle size reaches 120 nm. For all particle sizes from 20 nm to 160nm, the measured values of FMPS (Fast Mobility Particle Sizer) were consistently higher than those for ICP-MS. The system will be able to adapt to an exposure assessment of CNT (Carbon Nanotube) because carbon-base materials can be identified and quantified as long as an index element can be found.

  4. A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS.

    PubMed

    Herrmann, A J; Techritz, S; Jakubowski, N; Haase, A; Luch, A; Panne, U; Mueller, L

    2017-05-21

    High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods. In this work different staining procedures for the single cell analysis with LA-ICP-MS were optimized. An iridium intercalator was utilized to stain the cell nuclei whereas the whole cell was stained by the use of maleimido-mono-amide-DOTA (mDOTA) complexing lanthanide(iii) ions. The content of the artificially introduced metals per cell was quantified using a matrix matched calibration approach based on cellulose membranes onto which standards were spotted by a microarray spotter. Absolute metal stain amounts in the range of 2.34 to 9.81 femtomole per cell were determined. The metal staining procedures allow direct identification and visualization of single cells and their cell compartments by element microscopy without the use of bright field images of the sample.

  5. The first example of MEEKC–ICP-MS coupling and its application for the analysis of anticancer platinum complexes

    PubMed Central

    Bytzek, Anna K.; Reithofer, Michael R.; Galanski, Markus; Groessl, Michael; Keppler, Bernhard K.; Hartinger, Christian G.

    2010-01-01

    MEEKC is a powerful electrodriven separation technique with many applications in different disciplines, including medicinal chemistry; however the coupling to highly sensitive and selective mass spectrometric detectors was limited due to the ion suppressive effect of the surfactant SDS. Herein, the first example of the coupling of MEEKC to ICP-MS is presented and an MEEKC method for the separation of Pt(II) and Pt(IV) anticancer drugs and drug candidates was developed. Different compositions of microemulsions were evaluated and the data were compared to those collected with standard ultraviolet/visible spectroscopy (UV/vis) detection. The MEEKC–ICP-MS system was found to be more sensitive than MEEKC–UV/vis and the analysis of UV/vis silent compounds is now achievable. Furthermore, the migration behavior of the Pt(II) and Pt(IV) compounds under investigation is correlated to their differences in structure. PMID:20349510

  6. Validation of Gold and Silver Nanoparticle Analysis in Fruit Juices by Single-Particle ICP-MS without Sample Pretreatment.

    PubMed

    Witzler, Markus; Küllmer, Fabian; Hirtz, Annika; Günther, Klaus

    2016-05-25

    With the increasing use of nanoparticles in consumer products, the need for validated quantitation methods also rises. This becomes even more urgent because the risks of nanomaterials are still not conclusively assessed. Fast, accurate, and robust single-particle (sp) ICP-MS is a promising technique as it is capable of counting and sizing particles at very low concentrations at the same time. Another feature is the simultaneous distinction between dissolved and particulate analytes. The present study shows, for the first time to our knowledge, a method validation for the rapid analysis of silver and gold nanoparticles with sp-ICP-MS in fruit juices without sample preparation. The investigated matrices water, orange juice, and apple juice were spiked with particles and only diluted prior to measurement without using a digestion reagent. The validations regarding particle size are successful according to the German GTFCh's guideline with deviations of accuracy and precision below 15%.

  7. Development of analytical techniques for ultra trace amounts of nuclear materials in environmental samples using ICP-MS for safeguards

    PubMed

    Magara; Hanzawa; Esaka; Miyamoto; Yasuda; Watanabe; Usuda; Nishimura; Adachi

    2000-07-01

    The authors have begun to develop analytical techniques for ultra trace amounts of nuclear materials and to prepare a clean chemistry laboratory for environmental sample analyses. The analytical techniques include bulk and particle analyses. For the bulk analysis, concentrations and isotopic ratios of U and/or Pu are determined by inductively-coupled plasma mass spectrometry (ICP-MS) and thermal ionization mass spectrometry (TIMS). In the particle analysis, isotopic ratios of U and/or Pu in each particle will be measured by secondary ion mass spectrometry (SIMS). This paper reports on the outline for the development of analytical techniques and the current situation of the development of the bulk analysis using ICP-MS is described.

  8. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL(-1)) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  10. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  11. Lead as transient geochemical tracers in the environment: Assessing high precision isotope ratio measurements in lichens, peat, and silicates using multi-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Weiss, D. J.; Kober, B.; Mason, T. F.; Dolgopolova, A.; Coles, B. J.; Gallagher, K.; Leroux, G.; Spiro, B.; Seltmann, R.

    2003-04-01

    In recent years, MC-ICP-MS has become a powerful tool to measure Pb isotopes with high precision and accuracy. Yet, this technique is still relatively new, and the complexities related to using an ICP ion source for high precision isotope measurements are only now becoming apparent. In addition, most analytical development work so far has focussed on synthetic solutions and silicate material. Given the great importance of Pb isotopes in environmental geochemical studies, however, a careful assessment of analytical procedures for environmental samples is clearly needed and warranted. Consequently, we present here a study of the analytical performance of the Imperial College/Natural History Museum (IC/NHM) IsoProbe MC-ICPMS with respect to high precision Pb isotope measurements in peat, lichen and silicates. After acid digestion, the samples were passed through an exchange column using a new procedure developed at the University of Heidelberg (Kober, in prep.). This chemistry yielded quantitative recoveries and allowed a high sample throughput as only one column passage was needed to achieve stable ion beam signals. Selected samples were also analysed on a Finnegan MAT261 TIMS. Typical internal precisions of 10-35 ppm (1se) were achieved on all Pb isotope ratios in all matrices. Measurements of Pb 981 NIST standards spiked with Tl 997 NIST showed that the certified NBS Tl ratio had to be adjusted daily up to 2.38993 in order to obtain accurate data. The reproducibility for the synthetic standard over a three month period using daily optimised Tl values (but with no 2σ outlier rejection routine applied) was below 300 ppm for all ratios (including the 208Pb/204Pb ratio). On peak zeroing (OPZ) and half mass baseline correction procedures gave similar precisions. However, the accuracies on the 204 ratios were significantly worse using half mass baseline correction for Pb/Tl ratios less than 2. This behaviour is consistent with tailing of 205Tl onto the 204Pb peak

  12. Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.

    PubMed

    Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong

    2016-10-04

    Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ(71)Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ(71)Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ(71)Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.

  13. Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS.

    PubMed

    Parsons, J G; Martinez-Martinez, A; Peralta-Videa, J R; Gardea-Torresdey, J L

    2008-02-01

    ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.

  14. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    SciTech Connect

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analyses is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.

  15. Evaluation of the combined measurement uncertainty in isotope dilution by MC-ICP-MS.

    PubMed

    Fortunato, G; Wunderli, S

    2003-09-01

    The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained. This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO(3)/H(2)O(2) microwave digestion. The thallium isotope amount ratio ( n((205)Tl)/ n((203)Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n((206)Pb)/ n((208)Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study "lead in wine" organised by the CCQM (Comité Consultatif pour la Quantité de Matière, BIPM, Paris; the highest measurement authority for analytical chemical measurements). The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=kxuc, k=2)The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R(206,B) of the blend between the enriched spike and the sample.

  16. Speciation And Uptake of Arsenic Accumulated By Corn Seedlings Using XAS And DRC-ICP-MS

    SciTech Connect

    Parsons, J.G.; Martinez-Martinez, A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.

    2009-05-21

    ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.

  17. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  18. Monthly-resolved coral skeletal lead isotopic determination in picogram quantities by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Chou, Y.; Shen, C.; Lo, Y.; Chang, C.

    2011-12-01

    Pb concentrations and isotopic composition in coral skeletons have been applied to understanding annual-decadal trends of natural hydrological evolution, ocean circulation, and anthropogenic pollution. However, the low Pb contents of only 10s-100s ng/g has hindered measurements of monthly-resolved coral Pb isotopic records and limited its applications. We refined chemistry and improved instrumental methodology to develop a reliable procedure for picogram-quantity coral Pb isotopic determination (Pb-204, Pb-206, Pb-207, and Pb-208) on a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Thermo Electron NEPTUNE). The overall procedural blank is <20 pg. Replicate measurements made on standard NIST SRM 981 shows that our method can achieve a precision of ± 300 ppm (2σ) for Pb-207/Pb-206 and Pb-208/Pb-206 with 100s-1000s pg of Pb. Monthly-resolution Pb isotopic and concentration records of a coral Porites collected by Son Tra Island, central Vietnam (16°12'59.4", 108°1'57.1") from 1978-2004 AD have been measured. Three features are exhibited as follows: (1) The high Pb/Ca background level of 0.652 μmol/mol after 1992, 1.5 times larger than value of 0.437 μmol/mol in 1978-1992, shows an impact of economic development on hydrological change. (2) Ratios of Pb-208/Pb-207, Pb-206/Pb-207, and Pb-206/Pb-204 are relatively low in winter and high in summer, reflecting different seasonal sources. (3) Significant Pb isotopic anomalies in 1991-1992 could result from the eruption of Mt. Pinatubo on June 15, 1991. Our results indicate that monthly-resolved coral Pb isotopic and concentration can be used as proxies of seasonal climate changes, volcanic impacts and humanity activities.

  19. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  20. Resolving global versus local/regional Pu sources in the environment using sector ICP-MS

    USGS Publications Warehouse

    Ketterer, M.E.; Hafer, K.M.; Link, C.L.; Kolwaite, D.; Wilson, Jim; Mietelski, J.W.

    2004-01-01

    Sector inductively coupled plasma mass spectrometry is a versatile method for the determination of plutonium activities and isotopic compositions in samples containing this element at fallout levels. Typical detection limits for 239+240Pu are 0.1, 0.02 and 0.002 Bq kg -1Pu for samples sizes of 0.5 g, 3 g, and 50 g of soil, respectively. The application of sector ICP-MS-based Pu determinations is demonstrated in studies in sediment chronology, soil Pu inventory and depth distribution, and the provenance of global fallout versus local or regional Pu sources. A sediment core collected from Sloans Lake (Denver, Colorado, USA) exhibits very similar 137Cs and 239+240Pu activity profiles; 240Pu/239Pu atom ratios indicate possible small influences from the Nevada Test Site and/or the Rocky Flats Environmental Technology Site. An undisturbed soil profile from Lockett Meadow (Flagstaff, Arizona, USA) exhibits an exponential decrease in 239+240Pu activity versus depth; 240Pu/239Pu in the top 3 cm is slightly lower than the global fallout range of 0.180 ?? 0.014 due to possible regional influence of Nevada Test Site fallout. The 239??240Pu inventory at Lockett Meadow is 56 ?? 4 Bq m-2, consistent with Northern Hemisphere mid-latitude fallout. Archived NdF3 sources, prepared from Polish soils, demonstrate that substantial 239+240Pu from the 1986 Chernobyl disaster has been deposited in north eastern regions of Poland; compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/239pu and 241Pu/239Pu co-vary and range from 0.186-0.348 and 0.0029-0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407??[240Pu/239Pu] - 0.0413; r2 = 0.9924). ?? The Royal Society of Chemistry 2004.

  1. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  2. Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS

    PubMed Central

    Parsons, J.G.; Martinez-Martinez, A.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L.

    2014-01-01

    ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots. PMID:17928032

  3. Determination of B/Ca of natural carbonates by HR-ICP-MS

    NASA Astrophysics Data System (ADS)

    Misra, Sambuddha; Greaves, Mervyn; Owen, Robert; Kerr, Joanna; Elmore, Aurora C.; Elderfield, Henry

    2014-04-01

    report a new method for HR-ICP-MS based accurate and precise B/Ca determination from low mass natural carbonates (≤5 µg CaCO3), utilizing a mixed acid matrix (0.1 M HNO3 and 0.3 M HF) and accurate matrix matching technique. Our procedural B/Ca blank of 2.0 ± 1.0 µmol/mol, internal precision ≤1.0%, average within run external precision ≤4.0% (2σ), and rapid sample analysis (60 samples/day) make the method well suited for routine measurements. Established methods of B/Ca determination require ≥65 µg CaCO3 to achieve a comparable external precision of 3.5% (2σ). We report a B/Ca detection limit of 2 µmol/mol compared to ≥10 µmol/mol for previous methods, a fivefold improvement. The method presented here can determine a wide range of B/Ca (9.0-250 µmol/mol) in mass limited samples with considerable tolerance for matrix matching efficiency (≤±30%). The long-term reproducibility of B/Ca measured on Cambridge in-house consistency standards containing <20, ˜85, and ˜200 µmol/mol of B/Ca are ±3.7% (2σ, n = 100), ±3.9% (2σ, n = 150), and ±3.2% (2 s, n =180), respectively. A host of other trace element to Ca ratios can also be determined at comparable external precision from samples containing ≤5 µg CaCO3. This method is suitable for trace element analysis of single foraminifera shells.

  4. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  5. LA-iMageS: a software for elemental distribution bioimaging using LA-ICP-MS data.

    PubMed

    López-Fernández, Hugo; de S Pessôa, Gustavo; Arruda, Marco A Z; Capelo-Martínez, José L; Fdez-Riverola, Florentino; Glez-Peña, Daniel; Reboiro-Jato, Miguel

    2016-01-01

    The spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory. Since existing solutions are usually commercial or hard-to-use for average users, this work introduces LA-iMageS, an open-source, free-to-use multiplatform application for fast and automatic generation of high-quality elemental distribution bioimages from LA-ICP-MS data in the PerkinElmer Elan XL format, whose results can be directly exported to external applications for further analysis. A key strength of LA-iMageS is its substantial added value for users, with particular regard to the customization of the elemental distribution bioimages, which allows, among other features, the ability to change color maps, increase image resolution or toggle between 2D and 3D visualizations.

  6. Metabolomic and elemental analysis of camel and bovine urine by GC-MS and ICP-MS.

    PubMed

    Ahamad, Syed Rizwan; Alhaider, Abdul Qader; Raish, Mohammad; Shakeel, Faiyaz

    2017-01-01

    Recent studies from the author's laboratory indicated that camel urine possesses antiplatelet activity and anti-cancer activity which is not present in bovine urine. The objective of this study is to compare the volatile and elemental components of bovine and camel urine using GC-MS and ICP-MS analysis. We are interested to know the component that performs these biological activities. The freeze dried urine was dissolved in dichloromethane and then derivatization process followed by using BSTFA for GC-MS analysis. Thirty different compounds were analyzed by the derivatization process in full scan mode. For ICP-MS analysis twenty eight important elements were analyzed in both bovine and camel urine. The results of GC-MS and ICP-MS analysis showed marked difference in the urinary metabolites. GC-MS evaluation of camel urine finds a lot of products of metabolism like benzene propanoic acid derivatives, fatty acid derivatives, amino acid derivatives, sugars, prostaglandins and canavanine. Several research reports reveal the metabolomics studies on camel urine but none of them completely reported the pharmacology related metabolomics. The present data of GC-MS suggest and support the previous studies and activities related to camel urine.

  7. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the (63)Cu:(65)Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  8. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations

    NASA Astrophysics Data System (ADS)

    Yamada, Noriyuki

    2015-08-01

    Kinetic energy discrimination (KED) is one of the means to control cell-formed interferences in collision/reaction cell ICP-MS, and also a technique to reduce polyatomic ion interferences derived from the plasma or vacuum interface in collision cell ICP-MS. The operation of KED is accurately described to explain how spectral interferences from polyatomic ions are reduced by this technique. The cell is operated under non-thermal conditions to implement KED, where the hard sphere collision model is aptly employed to portray the transmission of ions colliding with the cell gas that they don't chemically react with. It is theoretically explained that the analyte atomic ions surmount the energy barrier placed downstream of the cell and the interfering polyatomic ions do not due to their lower kinetic energy than the atomic ions, resulting in polyatomic interference reduction. The intrinsic limitations of this technique are shown to lie in the statistical nature of collision processes, which causes the broadening of ion kinetic energy distribution that hinders efficient KED. The reaction cell operation with KED, where plasma-derived interferences are reduced by the reactive cell gas while cell-formed interferences are suppressed by the energy barrier, is also described in a quantitative manner. This review paper provides an in-depth understanding of KED in cell-based ICP-MS for analysts to make better use of it.

  9. Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method.

    PubMed

    Kagawa, Tsuyoshi; Ohno, Masashi; Seki, Tatsuya; Chikama, Katsumi

    2009-09-15

    Isotope dilution mass spectroscopy (IDMS)/ICP-MS combined with microchip solvent extraction was successfully applied for the online determination of copper in an aluminum alloy. The microchip solvent extraction was developed for the separation of Cu from major element, and optimal pH range was wider than that of the batchwise extraction method. The dimensions of the microchip were 30 mm x 70 mm and that of micro-channel on the microchip was 180 microm wide and 40 microm deep. The copper complex with 8-hydroxyquinoline was extracted into o-xylene at pH 5.5 and back extracted with 0.1 mol l(-1) nitric acid at flow rate of 20 microl min(-1). The total extraction efficiency (water/organic solvent/nitric acid) was around 40%. IDMS/ICP-MS was coupled with solvent extraction for precise determination of Cu. The extraction and back-extraction on the microchip took about 1s and the total measurement time for the IDMS/ICP-MS was about 40s/sample. The blank value of this method was 0.1 ng g(-1). The proposed method was used for the determination of Cu in Al standard materials (JSAC 0121-C, The Japan Society for Analytical Chemistry and 7074 Al alloy, Nippon Light Metal Co. Ltd.). The obtained analytical results are in good agreement with the certified values.

  10. Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP-MS.

    PubMed

    Taylor, V F; Evans, R D; Cornett, R J

    2007-01-01

    A rapid method for the extraction and determination of 90Sr in natural water, plant and sediment samples was developed using extraction chromatography and dynamic reaction cell ICP-MS, with O2 as a reaction gas. While isobaric interference from the stable isotope 90Zr was efficiently removed by this method, interferences produced from in-cell reactions with Fe+ and Ni+ required suppression by tuneable bandpass, and in sediments, additional chromatographic separation. Method detection limits were 0.1 pg g-1 (0.5 Bq g-1), 0.04 pg g-1(0.2 Bq g-1), and 3 pg L-1 (5 Bq L-1) for sediments, plant and water samples, respectively, and 90Sr concentrations determined by ICP-MS were in good agreement with activities determined by Cerenkov counting and with certified reference values. While mass spectrometric determination does not rival detection limits achievable by radiometric counting, radiometric determination of 90Sr, a pure beta-emitter, is hindered by long analysis times (several weeks); the comparatively fast analysis achieved via ICP-MS enables same-day preparation and analysis of samples, making this an important technique for the environmental monitoring of areas contaminated by radioactivity.

  11. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    PubMed

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  12. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    SciTech Connect

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B; Farmer, Orville T; Duckworth, Douglas C

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by the applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.

  13. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    SciTech Connect

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

  14. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water.

  15. Speciation of iodine-containing proteins in Nori seaweed by gel electrophoresis laser ablation ICP-MS.

    PubMed

    Romarís-Hortas, V; Bianga, J; Moreda-Piñeiro, A; Bermejo-Barrera, P; Szpunar, J

    2014-09-01

    An analytical approach providing an insight into speciation of iodine in water insoluble fraction of edible seaweed (Nori) was developed. The seaweed, harvested in the Galician coast (Northwestern Spain), contained 67.7±1.3 μg g(-1) iodine of which 25% was water soluble and could be identifies as iodide. Extraction conditions of water insoluble residue using urea, NaOH, SDS and Triton X-100 were investigated. The protein pellets obtained in optimized conditions (after precipitation of urea extracts with acetone), were digested with trypsin and protease XIV. Size exclusion chromatography-ICP-MS of both enzymatic digests demonstrated the occurrence of iodoaminoacids putatively present in proteins. Intact proteins could be separated by gel electrophoresis after an additional extraction of the protein extract with phenol. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) with laser ablation ICP-MS detection of (127)I indicated the presence of iodine in protein bands corresponding to molecular masses of 110 kDa, 40 kDa, 27 kDa, 20 kDa and 10 kDa. 2D IEF-SDS PAGE with laser ablation ICP-MS (127)I imaging allowed the detection of 5 iodine containing protein spots in the alkaline pI range.

  16. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends.

    PubMed

    Pröfrock, Daniel; Prange, Andreas

    2012-08-01

    This focal point review provides an overview of recent developments and capabilities of inductively coupled plasma mass spectrometry (ICP-MS) coupled with different separation techniques for applications in the fields of quantitative environmental and bio-analysis. Over the past years numerous technical improvements, which are highlighted in this review, have helped to promote the evolution of ICP-MS to one of the most versatile tools for elemental quantification. In particular, the benefits and possibilities of using state-of-the-art hyphenated ICP-MS approaches for quantitative analysis are demonstrated with a focus on environmental and bio-analytical applications.

  17. Common-Lead Corrected U-Pb Age Dating of Perovskite by LA-SF-ICP-MS

    NASA Astrophysics Data System (ADS)

    Frei, D.

    2014-12-01

    Perovskite is a very useful mineral for dating the age of emplacement of kimberlites and associated rocks. Conventionally, U-Pb dating of perovskite is achieved using isotope dilution (ID-TIMS) or ion-probe (SHRIMP) techniques, which are time- and cost-intensive. The potential of the rapid and inexpensive laser ablation ICP-MS technique for U-Pb dating of perovskite has been demonstrated recently. We investigated the benefits of single collector magnetic sectorfield ICP-MS (SF-ICP-MS) instruments for U-Pb dating of perovskite by laser ablation. To this end perovskites from two kimberlites from Garnet Lake, W Greenland, and Pyramidefjeld, SW Greenland, have been separated. Multigrain aliquots of both perovskite separates were U-Pb dated by ID-TIMS, yielding emplacement ages of 568 ±11 Ma for the Garnet Lake kimberlite and 151 ±2 Ma for the Pyramidefjeld kimberlite. Subsequently both samples have been dated in-situ by laser ablation employing a ThermoFinnigan Element2 SF-ICP-MS coupled to a NewWave UP 213 laser system. A common lead correction was applied based on the measured 204Pb intensity (after correction for the measured 204(Pb+Hg) gas blank). Perovskite from the Ice River Complex, British Columbia, was used as a secondary standard for quality control purposes. Multiple in-situ measurements of the Ice River perovskite in two different analytical sessions yielded concordia ages of 359 ±3 Ma and 357 ±3 Ma, in excellent agreement with the age of 356 Ma determined by ID-TIMS (Heaman, pers. comm.). Nineteen in-situ analyses of perovskite grains extracted from the Garnet Lake kimberlite yielded a concordia age of 566 ±5 Ma, also in excellent agreement with the age obtained by ID-TIMS. Because of the very low Pb contents in perovskites from the Pyramidefjeld (around 1 ppm) and the associated large uncertainties of the common lead correction, no concordia age could be obtained. However, the in-situ laser ablation analysis yielded a common lead corrected weighted

  18. On the certification of cadmium at trace and ultratrace levels in standard reference materials using ID ICP-MS.

    PubMed

    Murphy, K E; Long, S E; Vocke, R D

    2007-04-01

    Analytical methods used for the isotope dilution inductively coupled plasma mass spectrometric (ID-ICP-MS) measurement of Cd at microg kg(-1) and sub-microg kg(-1) levels are described and applied to the certification of new dietary supplement, blood, and serum Standard Reference Materials (SRMs). The materials are: SRM 3240 Ephedra sinica Stapf Aerial Parts, SRM 3241 Ephedra sinica Stapf Native Extract, SRM 3243 Ephedra-Containing Solid Oral Dosage Form, SRM 3244 Ephedra-Containing Protein Powder, SRM 966 Toxic Metals in Bovine Blood, Level 1 (L1) and Level 2 (L2), and SRM 1598a Animal Serum. The concentration of Cd in the materials ranges from 120 microg kg(-1) down to 0.03 microg kg(-1). At these levels, the factors that most influence the accuracy of the ICP-MS data are the procedure blank and spectral and nonspectral interferences. Nonspectral interference, caused by the high concentration of dissolved solids in the matrices investigated, resulted in signal suppression. Matrix separation was used to enhance signal intensity and to reduce spectral interference for the accurate determination of Cd in SRM 1598a and SRM 3244. Chromatographic separation procedures using Chelex for SRM 1598a and anion exchange for SRM 3244 were optimized to achieve the desired separation characteristics without substantially increasing the procedure blank. Sensitivity for the determination of Cd in serum was additionally enhanced through the use of desolvation nebulization. We determined that separations were not required for the accurate ICP-MS determination of Cd in SRM 3240, SRM 3241, SRM 3243, and SRM 966 L2 under optimized analysis conditions. These samples were diluted to a minimum volume and introduced to the ICP-MS via low flow (40-100 microL/min) microconcentric nebulizers. SRM 966 L1 was also analyzed directly, but results were highly variable. The ID-ICP-MS sample preparation and ratio measurement protocols described here resulted in total expanded uncertainties of less

  19. Lengthy Ultrahigh-Pressure Metamorphism demonstrated by laser ablation split-stream ICP-MS

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Ginsburg, A. A.; Spencer, K.

    2011-12-01

    There is much disagreement about the maximum duration of ultrahigh-pressure (UHP) events. Some have argued for >20 Myr timescales based on geochronology, whereas others have countered that such conclusions are unsound because of the likelihood of inherited age components or because the long reach of thermal conduction is likely to induce melting and assimilation of the UHP terrane into the mantle. To assess these two possibilities we analyzed accessory minerals from eclogites and HP gneisses in the Western Gneiss Region of Norway using laser ablation split-stream (LASS) ICP-MS. LASS allows concurrent collection of trace, rare-earth element (REE), and U-Th-Pb data to directly link metamorphic conditions with the age of each spot analysis. Zircons from eclogite yield garnet-stable U-Pb ages (as shown by depressed HREE signatures) from as early as ~450 Ma, to as late as ~400 Ma; the bulk of these ages span 425-402 Ma. Monazites from grt-ky gneisses yield U-Pb and Th-Pb ages from 425-386 Ma and HREE, Eu*, Y and Sr contents that imply garnet growth and feldspar breakdown from 425-405 Ma, similar to the data of eclogite zircons. Monazite ages younger than 400 Ma contain elevated HREE and lower Sr contents, implying garnet breakdown and feldspar growth. The age and element data of the youngest, retrograde monazites are consistent with zircon LASS data from late-stage leucosomes, dikes, and stocks, which have U-Pb ages of 407-392 Ma and elevated HREEs. Titanite data complement the late-stage, garnet-poor zircon and monazite ages (~400-380 Ma), indicating up to 20 Myr of exhumation from the most profound depths. In summary, these LASS data force the interpretation that subduction of the Baltica craton was well underway by 425 Ma and reached its maximum depth prior to the onset of exhumation and rise to amphibolite-facies depths at ~405 Ma. Exhumation, melting, and metamorphic growth continued through at least 386 Ma.

  20. Danube catchment water chemistry monitoring - elemental pattern determination from source to mouth using ICP-MS

    NASA Astrophysics Data System (ADS)

    Tchaikovsky, Anastassiya; Zitek, Andreas; Irrgeher, Johanna; Prohaska, Thomas

    2014-05-01

    Monitoring the elemental composition of river water is an important tool to determine the chemical status of a river. However, currently many studies are limited to the analysis of heavy metals included in the EU Water Framework Directive Priority Substances List (Cd, Hg, Ni, Pb). Yet, the assessment of further elements (e.g. Ca, Mg, Si) can give additional relevant information for understanding catchment processes such as soil erosion, weathering, hydrological changes or glacial melting. In addition, site specific "elemental pattern" can be used as tracer for ecological studies, like habitat and migration studies of fish or birds. Elemental information is of particular interest complementary to isotopic data where only little variability in the isotopic signatures can be observed. In this work, we investigated water samples collected from 68 sampling sites along the longitudinal course of the river Danube including the major tributaries during the Joint Danube Survey 3 (JDS3) in 2013. Water samples were obtained as triplicates in the middle of the river and analyzed using Inductively Coupled - Plasma Mass Spectrometry (ICP-MS). Method validation was performed using riverine water (NRC SLRS-5) certified reference material as well as in-house prepared quality control standards. Due to the diverse geology and changing natural and anthropogenic factors along the longitudinal course of the Danube, pronounced elemental variations among the water samples were documented. For instance, especially some major elements (Ca, K, Mg, Na) together with some minor elements (Si, Sr) are known to reflect in particular regional geological morphologies. In addition, the variation in Si/Ca ratios can be used as an indicator for weathering conditions, especially in the mountainous areas along the Danube. Elevated concentrations of Cd, Cu, Fe, Ni, and Pb downstream of some large cities and industrial areas are signs of significant anthropogenic impact. In combination, the chemical

  1. Element-tracing of mineral matters in Dendrobium officinale using ICP-MS and multivariate analysis.

    PubMed

    Zhu, Nannan; Han, Shen; Yang, Chunning; Qu, Jixu; Sun, Zhirong; Liu, Wenjie; Zhang, Xiaomin

    2016-01-01

    Rare studies have been performed to trace the mineral elements in Dendrobium officinale. In this study, we aim to trace the mineral elements in D. officinale collected from ten geographical locations in China. ICP-MS system was used for simultaneous determination of mineral elements. Principal component analysis was performed using the obtained data in the quantification of mineral contents. Cluster analysis was performed using the Ward's method. Several of essential microelments were detected in D. officinale, including ferrum (Fe), manganese (Mn), zinc (Zn), chromium (Cr), nickel (Ni) and vanadium (V). Among these elements, three elements (i.e. Fe, Mn and Zn) were highly and simultaneously detected in the D. officinale collected from the ten locations. The level of Ni was positively associated with that of Zn (r = 0.986, P < 0.01). The level of titanium (Ti) was positively associated with that of V (r = 0.669, P < 0.05), and negatively associated with Cr (r = -0.710, P < 0.05). In addition, the level of Mn was positively associated with that of barium (r = 0.749, P < 0.05). Further, the level of Fe was positively associated with that of Ni (r = 0.664, P < 0.05), Zn (r = 0.742, P < 0.05), and rare earth elements (r = 0.847, P < 0.01), respectively. Three eigenvalues explained about 86.60 % of the total variance, which contributed significantly to the explanation of cumulative variance. Cluster analysis indicated the cultivars were categorized into 3 clusters. Ni, Zn, Fe, Cr, Ti and rare earth elements were designated as the characteristic elements. Cultivars collected from Yulin, Menghai, and Shaoguan ranked the top 3 in the comprehensive scores, indicating the content of the mineral elements was comparatively higher in these locations.

  2. High Spatial Resolution Analysis of Carbonates by In Situ Excimer Laser Ablation MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Shuttleworth, S.; Lloyd, N.; Douthitt, C.

    2012-12-01

    Speleothems are important climate archives. The time resolution of the paleochlimate proxies depends on the growth rates and the precision limitation of the analytical instrumentation [1]. As a consequence, for speleothems, better analytical precision combined with better spatial resolution will always be the goal, driven by a need to probe the timing and duration of climate events [1]. The Thermo Scientific NEPTUNE Plus with Jet Interface option offers unparalleled MC-ICP-MS sensitivity for heavy elements. An ion yield of >3 % has previously been reported for uranium solutions introduced by desolvating nebulizer[2]. For laser ablation Hf, the Jet Interface with N2 addition significantly improved sensitivity, which allowed precise and accurate 176Hf/177Hf ratios to be calculated using a spot size of just 25 μm diameter [3]. A Thermo Scientific NEPTUNE Plus with Jet Interface option was coupled with a Photon Machines excimer laser ablation system. This system features a short pulse width (4ns) 193 nm excimer laser and the HELEX 2 volume sample cell. The 193nm wavelength has been shown to reduce the particle size distribution of the aerosol produced by the laser ablation process [4] and this in turn has been shown to help minimize the effects of fractionation by ensuring that particles are in a size range so as to avoid incomplete vaporization and ionization in the plasma [5]. In this work we investigate U-Th dating of carbonates. Accurate LA U-Th isotope measurements on carbonates with U concentrations smaller than 1 μg/g are difficult due to small ion beams [1]. Hoffman et. al. [1] noted individual LA U-Th ratio precisions of about 2% (2 sigma) on a 134 ka sample with 134 μg/g U concentration. In this work we apply a combination of the high sampling efficiency two volume cell plus mixed gas plasmas to further enhance the capability. [1] Hoffman, D.L., et al. (2009). Chemical Geology. 259 253-261 [2] Bouman, C., et al. (2009). Geochim. Cosmochim. Acta. 73

  3. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha.

  4. Mass spectrometry imaging (MSI) of metals in mouse spinal cord by laser ablation ICP-MS.

    PubMed

    Becker, J Sabine; Kumtabtim, Usarat; Wu, Bei; Steinacker, Petra; Otto, Markus; Matusch, Andreas

    2012-03-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.7 mm by implementing a new conventional ablation system (NWR-213) and improving the spatial resolution from 120 μm to 65 μm in routine mode. Element images of the spinal cord are provided for the first time and the metalloarchitecture was established using a multimodal atlas approach. Furthermore, the spatial distribution of Rb was mapped for the first time in biological tissue. Metal concentrations were quantified using matrix-matched laboratory standards and normalization of the respective ion intensities to the average (13)C ion intensity of standards and samples as a surrogate of slice thickness. The "butterfly" shape of the central spinal grey matter was visualized in positive contrast by the distributions of Fe, Mn, Cu and Zn and in negative contrast by C and P. Mg, Na, K, S and Rb showed a more homogenous distribution. The concentrations averaged throughout grey matter and white matter were 8 and 4 μg g(-1) of Fe, 3 and 2 μg g(-1) of Cu, 8 and 5 μg g(-1) of Zn, 0.4 and 0.2 μg g(-1) of Mn. The carbon concentration in white matter exceeded that of grey matter by a factor of 1.44. Zn and Cu at 9 and 4 μg g(-1), respectively, were particularly enriched in the laminae I and II, in line with the high synaptic and cellular density there. Surprisingly Zn but not Cu was enriched in the central channel. Rb occurred at 0.3 μg g(-1) with a distribution pattern congruent to that of K. The coefficients of variation were 6%, 5%, 8% and 10% for Fe, Cu, Zn and Mn, respectively, throughout three different animals measured on different days. These MSI analyses of healthy wild type spinal cords demonstrate the suitability of the established techniques for

  5. [Application of ICP-MS in evaluating element contamination in soils].

    PubMed

    Wu, Ying-juan; Chen, Yong-heng; Yang, Chun-xia; Chang, Xiang-yang

    2008-12-01

    The Yunfu pyrite was the second biggest pyrite bed in the world. Plants using industrial ore of the Yunfu pyrite are distributed in many sections across the country. In the present paper, elements V, Cr, Co, Cu, Zn, Mo, Cd, Sb, Rb and Cs in soil profiles in slag disposing area of a sulfuric acid plant using industrial ore of theYunfu pyrite were studied. A method for simultaneously determination of metals and some reference elements in soils by ICP-MS was developed. The correlations between the metals and their reference elements were fast found. Enrichment factors were applied for evaluating the degree of soil contamination, and the problem about choosing contamination elements background values was pointed out. The results indicated that element V showed apparent and serious pollution, The Co showed middle degree pollution, and there has been a trend of apparent pollution. The Cr, Mo and Cd showed pollution between light degree and middle degree. The Zn and Sb showed light degree pollution, and there was a latent trend of middle degree pollution. The Cu showed light degree pollution. The high enrichment points of the V and the Cr were observed in the upper part (4.0-10.5 cm) and deep part of soil profiles (44.0-75.5 cm). Those of Co and Mo were found in the surface of soil profiles (0-5.0 cm), middle-upper part (9.5-10.5 cm) and middle part (29.5-46.0 cm), while those of Cd and Cu occurred just in the middle of soil profiles (29.5-46.0 cm). The formation of highly enrichment points of contamination elements in the soil profiles was the result of leaching and accumulating effect of the metals released from slag and the residual metals of highly weathered red soils. Most of pollution of V in the soil was contributed by the V in soil bed. Part of the V pollution in the soil was supplied by leaching and accumulating effect of the V which came from catalyst with lost activity in sulfuric acid production volatilizing into slag.

  6. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate.

    PubMed

    Asai, Shiho; Limbeck, Andreas

    2015-04-01

    Rare earth elements (REE) concentrated on cation-exchange resin particles were measured with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain chondrite-normalized REE plots. The sensitivity of REE increased in ascending order of the atomic number, according to the sensitivity trend in pneumatic nebulization ICP-MS (PN-ICP-MS). The signal intensities of REE were nearly proportional to the concentrations of REE in the immersion solution used for particle-preparation. Minimum measurable concentration calculated from the net signals of REE was approximately 1 ng/g corresponding to 0.1 ng in the particle-preparation solution. In LA analysis, formation of oxide and hydroxide of the light REE and Ba which causes spectral interferences in the heavy REE measurement was effectively attenuated due to the solvent-free measurement capability, compared to conventional PN-ICP-MS. To evaluate the applicability of the proposed method, the REE-adsorbed particles prepared by immersing them in a U-bearing solution (commercially available U standard solution) were measured with LA-ICP-MS. Aside from the LA analysis, each concentration of REE in the same U standard solution was determined with conventional PN-ICP-MS after separating REE by cation-exchange chromatography. The concentrations of REE were ranging from 0.04 (Pr) to 1.08 (Dy) μg/g-U. The chondrite-normalized plot obtained through LA-ICP-MS analysis of the U standard sample exhibited close agreement with that obtained through the PN-ICP-MS of the REE-separated solution within the uncertainties.

  7. An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals.

    PubMed

    Nageswara Rao, R; Talluri, M V N Kumar

    2007-01-04

    The recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of trace level inorganic impurities in drugs and pharmaceuticals have been reviewed. ICP-MS coupled with LC, GC and CE was used for speciation of heavy metals in pharmaceutical products. The review covers the period from 1995 to 2005 during which the technique was applied not only for determination of metallic impurities but also the assay of various trace elements in pharmaceuticals.

  8. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides.

    PubMed

    Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J

    2017-01-15

    The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La2O3, as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La2O3 nanoparticles (La2O3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La(3+)(over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La(3+) adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La2O3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The determination of the flour improver potassium bromate in bread by gas chromatographic and ICP-MS methods.

    PubMed

    Dennis, M J; Burrell, A; Mathieson, K; Willetts, P; Massey, R C

    1994-01-01

    The development and application of two methods for determining bromate in bread are described. A gas chromatographic (GC) method which relied on the formation of a volatile derivative of bromate gave a detection limit of 12 micrograms/kg. Duplicate analyses agreed well but recovery from breads spiked with bromate were low and averaged 30% for brown bread and 42% for white bread. Further studies indicated that this was caused by the derivatization reaction being suppressed by components of the sample and reagents used in their preparation. After taking both these factors into account, a recovery of 80% could be achieved. The GC method was used to carry out a survey of retail bread samples in 1989. Bromate was found in all six unwrapped breads analysed (median 35 micrograms/kg, range 17-317 micrograms/kg), whilst for 22 wrapped breads, seven were found to contain bromate (median < 12 micrograms/kg, range < 12-238 micrograms/kg). A second method of analysis employing inductively coupled plasma-mass spectrometry (ICP-MS) was developed which provided independent confirmation of the presence of bromate in these retail samples. The method gave a mean recovery of 71% from five spiked samples and a detection limit of 20 micrograms/kg. The GC and ICP-MS methods were compared by performing replicate analyses of a bread sample prepared with bromate-treated flour. Quantitative agreement between the two techniques was good. The precision of the ICP-MS technique (CV 12%) proved better than that found for the GC method (CV 18%). The Potassium Bromate (Prohibition as a Flour Improver) Regulation 1990 came into force on 1 April 1990 (Statutory Instrument 1990 Number 399).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Zr and U determination at trace level in simulated deep groundwater by Q ICP-MS using extraction chromatography.

    PubMed

    Gautier, C; Coppo, M; Caussignac, C; Laszak, I; Fichet, P; Goutelard, F

    2013-03-15

    In the framework of trace element analysis by Q ICP-MS in a simulated deep Callovo-Oxfordian groundwater, separation procedures based on extraction chromatography were developed to eliminate the high salt contents and to concentrate Zr and U simultaneously. Theoretical and experimental speciation studies showed the importance of adjusting the medium to HNO₃/HF (0.5 M/0.005 M) to guarantee the stability over time of the analytes before removal of the matrix. Two preconcentration methods based on TRU and TODGA resins were optimized for the simultaneous isolation of Zr and U prior to Q ICP-MS measurements. Using TRU resin, alkali and alkali earth metals contained in the deep groundwater were removed with 2 M HNO₃ whereas Zr and U were recovered with a HNO₃/NH₄HC₂O₄ (0.02 M/0.05 M) medium. For the separation protocol based on TODGA resin, alkali and alkali earth metals were eliminated with 3 M and 11 M HNO₃ while Zr and U were simultaneously stripped with a HNO₃/HF (0.5 M/0.2 M) medium. The procedure optimized on TODGA resin was validated with the French AFNOR NF T90-210 standard by studying linearity, limits of quantification (LOQ) and separation yields. The LOQ was determined at 0.008 μg L(-1) for Zr and U after the separation. Both analytes were recovered quantitatively. Compared to a sample dilution implemented to reduce the matrix effects, the developed preconcentration method allowed improving the sensitivity up to a 20 fold factor for Zr and U measurements at trace level by Q ICP-MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. High-resolution Analysis of Trace Elements in Encrusting Coralline Red Algae by Laser Ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Halfar, J.; Zack, T.; Simon, K.; Kronz, A.; Adey, W.; Lebednik, P. A.; Steneck, R. S.; Schoene, B. R.

    2009-05-01

    Coralline red algae constitute an ideal biogenic marine climate recorder owing to their common occurrence in mid- to high latitude oceans and their continuous growth. Encrusting coralline red algae have great potential as paleoclimate archives because they deposit spatially fixed annual growth increments in a high Mg-calcite skeleton and can reach ages of up to several hundred years. Here we present high-resolution Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) trace elemental analyses (Mg, Sr, Ba, U) from several coralline red algal specimens of the genus Clathromorphum, collected from the North Atlantic and North Pacific Oceans, that display average growth rates of around 300µm/year. Elemental ratios (Mg/Ca, Sr/Ca, Ba/Ca, U/Ca) were measured in sub-monthly resolution for up to century-long segments of coralline red algal growth. Several overlapping transects were analyzed in order to assess the robustness of the proxy data. The reproducibility is excellent and LA-ICP-MS measured Mg/Ca ratios were validated by comparison to electron microprobe data. In addition, data accuracy was tested by comparison to solution ICP-OES data from a bulk sample manually removed parallel to the laser ablation and electron microprobe transects. In particular, algal Mg/Ca ratios show a high degree of correlation with local seawater temperature on different timescales, providing further evidence for the temperature dependency of algal Mg/Ca variations and their use as a valuable paleothermometer. Hence, this study demonstrates the feasibility of extracting high-resolution geochemical signals from encrusting coralline red algae (such as Clathromorphum sp.) using laser ablation ICP-MS. This analysis technique allows rapid continuous sampling of the algal surface with unprecedented resolution and provides a valuable tool for future analysis of algal-derived environmental records.

  12. High-resolution analysis of trace elements in encrusting coralline red algae by laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Halfar, J.; Zack, T.; Simon, K.; Kronz, A.; Adey, W.; Lebednik, P. A.; Steneck, R. S.; Schöne, B. R.

    2009-04-01

    Coralline red algae constitute an ideal biogenic marine climate recorder owing to their common occurrence in mid- to high latitude oceans and their continuous growth. Encrusting coralline red algae have great potential as paleoclimate archives because they deposit spatially fixed annual growth increments in a high Mg-calcite skeleton and can reach ages of up to several hundred years. Here we present high-resolution Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) trace elemental analyses (Mg, Sr, Ba, U) from several coralline red algal specimens of the genus Clathromorphum, collected from the North Atlantic and North Pacific Oceans, that display average growth rates of around 300 m/year. Elemental ratios (Mg/Ca, Sr/Ca, Ba/Ca, U/Ca) were measured in sub-monthly resolution for up to 65-year long segments of coralline red algal growth. Several overlapping transects were analyzed in order to assess the robustness of the proxy data. The reproducibility is excellent and LA-ICP-MS measured Mg/Ca ratios were validated by comparison to electron microprobe data. In addition, data accuracy was tested by comparison to solution ICP-OES data from a bulk sample manually removed parallel to the laser ablation and electron microprobe transects. In particular, algal Mg/Ca ratios show a high degree of correlation with local seawater temperature on different timescales, providing further evidence for the temperature dependency of algal Mg/Ca variations and their use as a valuable paleothermometer. Hence, this study demonstrates the feasibility of extracting high-resolution geochemical signals from encrusting coralline red algae (such as Clathromorphum sp.) using laser ablation ICP-MS. This analysis technique allows rapid continuous sampling of the algal surface with unprecedented resolution and provides a valuable tool for future analysis of algal-derived environmental records.

  13. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples.

    PubMed

    Bettmer, Jörg; Heilmann, Jens; Kutscher, Daniel J; Sanz-Medel, Alfredo; Heumann, Klaus G

    2012-01-01

    The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of (62)Ni, (97)Mo, (117)Sn and (206)Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids.

  14. Green and efficient sample preparation method for the determination of catalyst residues in margarine by ICP-MS.

    PubMed

    Hartwig, Carla Andrade; Pereira, Rodrigo Mendes; Novo, Diogo La Rosa; Oliveira, Dirce Taina Teixeira; Mesko, Marcia Foster

    2017-11-01

    Responding to the need for green and efficient methods to determine catalyst residues with suitable precision and accuracy in samples with high fat content, the present work evaluates a microwave-assisted ultraviolet digestion (MW-UV) system for margarines and subsequent determination of Ni, Pd and Pt using inductively coupled plasma mass spectrometry (ICP-MS). It was possible to digest up to 500mg of margarine using only 10mL of 4molL(-1) HNO3 with a digestion efficiency higher than 98%. This allowed the determination of catalyst residues using the ICP-MS and free of interferences. For this purpose, the following experimental parameters were evaluated: concentration of digestion solution, sample mass and microwave irradiation program. The residual carbon content was used as a parameter to evaluate the efficiency of digestion and to select the most suitable experimental conditions. The accuracy evaluation was performed by recovery tests using a standard solution and certified reference material, and recoveries ranging from 94% to 99% were obtained for all analytes. The limits of detection for Ni, Pd and Pt using the proposed method were 35.6, 0.264 and 0.302ngg(-1), respectively. When compared to microwave-assisted digestion (MW-AD) in closed vessels using concentrated HNO3 (used as a reference method for sample digestion), the proposed MW-UV could be considered an excellent alternative for the digestion of margarine, as this method requires only a diluted nitric acid solution for efficient digestion. In addition, MW-UV provides appropriate solutions for further ICP-MS determination with suitable precision (relative standard deviation < 7%) and accuracy for all evaluated analytes. The proposed method was applied to margarines from different brands produced in Brazil, and the concentration of catalyst residues was in agreement with the current legislation or recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Developing a Methodology to Connect the Siberian Flood Basalts and the Permian-Triassic Extinction Through LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Baransky, E.; Rodriguez, S.; Rampino, M. R.

    2016-12-01

    The Siberian flood basalts have been implicated as a major contributor to the End-Permian extinction (252 Mya), the largest mass extinction known to date. Their relation is still unclear and more information about Meishan, China, the Global Stratotype Section and Point for the Upper Permian stage, is needed to better understand their link. Due to the slow sedimentation rate, 0.36 - 0.17 cm/ka, of this time and region, a centimeter by centimeter sampling using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) will attain a comprehensive, detailed elemental analysis. In this study, we established a method for preparation of powdered Meishan, China samples to use with the LA-ICP-MS. Powdered samples remove cost prohibitive thin section sample preparation, create homogenous samples and provide a process which can be mimicked for standard calibration preparation. We performed more than 80 trials to develop sample preparation procedures of beds 24 - 28 and polyvinyl alcohol 8-88 (PVA) standards for analyses of the Meishan samples. Pellet preparation varied in mass, amount of PVA solution, drying time and pressure. For comparison, limestone sample, like Bed 24, requires 10 μL of 5% PVA solution and can be immediately pressed, while clay enriched sample, like Bed 25, requires no solution and is dried at 40 ° before being compacted with a pre-dried hydraulic press. The differing ideal procedures indicate that sample preparation should be developed on a sample-by-sample basis, but these methods can be used for future studies with similar sample composition. This procedure will be used for our continuing research with the LA-ICP-MS which will more accurately analyze for a broad scope of elements. We will focus on Os, Re, Ir, and Hg to search for further evidence of the relationship between flood-basalt volcanism and extinctions.

  16. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  17. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    SciTech Connect

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  18. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  19. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS.

    PubMed

    Barin, J S; Pereira, J S F; Mello, P A; Knorr, C L; Moraes, D P; Mesko, M F; Nóbrega, J A; Korn, M G A; Flores, E M M

    2012-05-30

    The advantages and shortcomings of focused microwave-induced combustion (FMIC) for digestion of plant samples were studied. The effects of sample mass, absorbing solution, oxygen gas flow-rate, and time of reflux step on recoveries of major, minor and trace metals were systematically evaluated. Afterwards, Al, Ba, Ca, Co, Cr, Cu, Mg, Mn, Ni, Sr, V, and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES) and by inductively coupled plasma mass spectrometry (ICP-MS). The main advantages of FMIC when compared to microwave-assisted wet digestion (MAWD) and focused-microwave-assisted wet digestion (FMAWD) are the possibility to digest larger masses of samples (up to 3g) using shorter heating times and diluted nitric acid solution for absorbing all analytes. Using the selected experimental conditions for FMIC, residual carbon content was lower than 0.7% for all samples and relative standard deviation (RSD) varied from 1.5 to 14.1%. Certified reference materials (NIST 1515 apple leaves and NIST 1547 peach leaves) were used for checking accuracy and determined values for all metals were in agreement with certified values at a 95% confidence level. No statistical difference (ANOVA, 95% of confidence level) was observed for results obtained by FMIC, FMAWD, and MAWD. Limits of detection were lower when using FMIC in the range of 0.02-0.15 μg g(-1) for ICP OES and 0.001-0.01 μg g(-1) for ICP-MS, which were about 3 and 6 times lower than the values obtained by FMAWD and MAWD, respectively. It is important to point out that FMIC was a suitable sample preparation method for major, minor and trace metals by both determination techniques (ICP OES and ICP-MS). Additionally, since it allows lower LODs (because up to 3g of sample can be digested) and diluted acid solutions are used (without any further dilution), the use of ICP-MS is not mandatory.

  20. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS.

    PubMed

    Balcaen, Lieve; Bolea-Fernandez, Eduardo; Resano, Martín; Vanhaecke, Frank

    2014-01-27

    Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O2 and NH3/He have been compared as reaction gases. While the use of O2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti(+) ions into Ti(NH3)6(+) cluster ions by using NH3/He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L(-1) (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF-ICP-MS. As a proof-of-concept, the newly developed method was successfully applied to the determination of Ti in serum samples obtained from individuals with and without Ti-based implants. All results were found to be in good agreement with those obtained by means of SF-ICP-MS. The typical basal Ti level in human serum was found to be <1 μg L(-1), while values in the range of 2-6 μg L(-1) were observed for implanted patients.

  1. Determination of naturally-occurring actinides and their progeny in fresh water using ICP-MS and batch separation

    SciTech Connect

    Crain, J.S.; Alvarado, J.A.; Kiely, J.T.

    1995-12-01

    The determination of naturally-occurring actinides (including progeny such as {sup 230}Th) in fresh water is of significance in limnology, hydrology, and environmental monitoring. In many instances, these determinations require multiple analyses and a combination of radiometric and elemental measurement techniques (e.g., alpha spectrometry and thermal ionization mass spectrometry). In this work, we will describe the use of a single technique, inductively coupled plasma-mass spectrometry (ICP-MS), for these determinations. We will also describe the batch separation chemistry used to facilitate these determinations in ground and surface water, where natural analyte concentrations run between 1 {mu}g/L and 1 {mu}g/L.

  2. Analysis of IAEA Environmental Samples for Plutonium and Uranium by ICP/MS in Support Of International Safeguards

    SciTech Connect

    Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.; Garofoli, Stephanie J.

    2008-05-01

    A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

  3. Laser ablation ICP-MS analysis on nano-powder pellets and applications to granite bulk rock analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shitou; Karius, Volker; Wörner, Gerhard

    2017-04-01

    Granites are a ubiquitous component of the continental crust and knowing their precise trace element signatures is essential in understanding the origins and evolution of the continental crust. ICP-MS bulk analysis of granite is generally conducted on solution after acid-digestion. However this technique has several deficiencies related to the difficulty of completely dissolving accessary minerals such as zircon and the instability/adsorption of high valence trace elements (Nb, Ta et al.) in acid solutions. The development of a nano-powder pellet technique by using wet milling procedure, and its combination with laser ablation ICP-MS has been proposed to overcome these problems. In this study, we produced nano-powders from a series of granite rock standards by wet milling in agate using a high power planetary ball mill instrument. The procedure was tested and optimized by modifying parameters (ball to powder ratio, water to powder ratio, milling power etc.). Characterization of nano-powders was conducted by various techniques including electron microprobe (EMP), secondary electron imaging, polarizing microscope, and laser particle size analyzer (LPSA) and laser scanning confocal microscope (LSCM). Particle sizes range from a few nm to 5 μm with a small secondary mode at around 10 to 20 μm that probably represent particle aggregates rather than remaining crystal grains after milling. Pellets of 5 mm in diameter were pressed into molds of cellulose at 1.75 *103 N/cm2. Surface roughness of the pellets was measured by LSCM and gave a Ra of 0.494 μm, which is an order higher than the surface of polished ATGH-G reference glass surface (Ra: 0.048 μm), but sufficient for laser ablation. Sources of contamination either from abrading agate balls or from ultrapure water were evaluated and quantified. The homogeneity of powder pellets down to less than 5 μm size was documented based on EMPA element mapping and statistical analyses of LA-ICP-MS in discrete spot and line

  4. A novel absolute quantitative imaging strategy of iron, copper and zinc in brain tissues by Isotope Dilution Laser Ablation ICP-MS.

    PubMed

    Feng, Liuxing; Wang, Jun; Li, Hongmei; Luo, Xinzheng; Li, Jiao

    2017-09-01

    Isotope Dilution Laser Ablation ICP-MS (ID-LA-ICP-MS), because of its impressive spatial resolution capacity and precise means for quantification, is one of the most promising tools for in-situ quantitative imaging of trace elements in biological samples. In the ID-LA-ICP-MS strategy for tissue section, the tissue must be maintained intact during the whole sample preparation process. Therefore, how to homogeneously distribute enriched isotope spike on tissue section and how to confirm isotope equilibration between sample and spike are two important challenges. In this study, we reported a novel quantitative imaging strategy for biological thin section based on ID-LA-ICP-MS. To distribute the enriched isotope spikes on tissue section homogeneously, a "border" was constructed to make spike droplet stay on the tissue for isotope exchange. Laser ablation and isotope exchange parameters were also investigated to obtain optimal ID-LA-ICP-MS conditions. The prepared homogeneous in-house standard was used to validate the ID-LA-ICP-MS approach and good agreement with the bulk analysis was achieved. On this basis, quantitative imaging of Fe, Cu and Zn in real mouse brain of Alzheimer's Disease (AD) were measured by the improved methodology. Assessment of the method for real sample was undertaken by comparison of the LA-ICP-MS data with that obtained by micro-XRF. Moreover, comparative analysis of elements distribution and immunohistochemical markers in AD mouse brain was also carried out. The similar distributional patterns demonstrated that the proposed methodology is potential to investigate the correlation of biomarker heterogeneity and elements distribution, and may be useful to understand such complex brain mechanisms in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Allanite from the El Muerto Pegmatite, Oaxaca, Mexico: A Potential New Standard for 232Th-208Pb Dating by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Price, J.; Crowley, J. L.; Solari, L.; Prol-Ledesma, R.

    2012-12-01

    Allanite dating may be important to studies addressing tectonomagmatic evolution, provenance of monocyclic sediment, and mineral weathering. Obtaining accurate allanite ages by SIMS has been challenging and time-consuming due to the mineral's extreme chemical variability which often prevents finding adequately matrix-matched standards. Isotopic measurements by LA-ICP-MS minimize the need for standards of nearly identical composition to the unknown allanite being analyzed, and it is done relatively rapidly. Dating by LA-ICP-MS requires high quality standards for isotopic fractionation corrections. However, readily accessible and well characterized allanite standards are scarce. We investigated gemstone allanite from the El Muerto pegmatite, Oaxaca, Mexico, as a potential new geochronology standard for 232Th-208Pb allanite dating by LA-ICP-MS. Compositional homogeneity was thoroughly investigated by scanning and backscatter electron microscopy, cathodoluminescence, quantitative and qualitative energy dispersive x-ray spectroscopy, electron microprobe, and LA-ICP-MS. The possibility of metamictization was investigated by extensive X-ray diffraction analyses. The El Muerto allanite was U-Pb dated by ID-TIMS, with common Pb ratios determined from cogenetic K-feldspar by ID-TIMS and LA-MC-ICP-MS. Future work includes Th-Pb dating by ID-TIMS. The samples investigated are homogeneous with respect to major and trace elements. Major element compositional results are generally in agreement with published values, and no metamictization was identified despite the allanite being nearly 1 Ga. The only limitation of the El Muerto allanite is that it contains small, generally <100 μm, scarce inclusions of quartz, calciothorite, albite, calcite, and biotite. However, these grains are easily recognized and avoided during LA-ICP-MS analyses. Based on these results, the El Muerto allanite has the potential to serve as a standard for LA-ICP-MS dating.

  6. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  7. [Determination of Sb and Bi in 24 international geological reference materials by using pressurized acid digestion-ICP-MS].

    PubMed

    Hu, Zhao-chu; Gao, Shan; Liu, Xiao-ming; Yuan, Hong-lin; Liu, Ye; Diwu, Chun-rong

    2007-12-01

    The authors studied in detail the memory effect of Bi, Sb, As and Te in ICP-MS. The produced memory effects of these element were in the order of Bi>Sb>Te>As. Bi was seriously adsorbed by the polypropylene sample storing bottle and the sample introduction system in the low nitric acid medium (0.01%-1% HNO3). The washout effect of 0.1% HF was found to be better than those of 6% HNO3 and 0.1% HClO4. Under the given experiment conditions, the instrumental limit of detection was 0.001 and 0.0001 ng x mL(-1) for Sb and Bi, respectively. The authors report the determination of Sb and Bi in 24 international geological reference materials by using pressurized acid digestion-ICP-MS (including AGV-2, BHVO-2, BCR-2, etc.). Most of the results were found to be in reasonable agreement with the reported values in the literature. The authors' determined values of Sb for GSR-1 (granite; 0.30 microg x g(-1)) and JP-1 (peridotite; 0.045 microg x g(-1)) are obviously higher than those reported values. This is attributed to the efficient pressurized acid digestion, which is generally much more efficient than conventional wet digestions for insoluble minerals.

  8. Determination of traces of 237Np in environmental samples by ICP-MS after separation using TOA extraction chromatography.

    PubMed

    Ji, Y Q; Li, J Y; Luo, S G; Wu, T; Liu, J L

    2001-09-01

    A simple, rapid, cost-efficient, and robust method for separation of 237Np with an extraction chromatographic column (TOA: tri-n-octylamine on Teflon powder) is outlined in detail and further improved for direct ICP-MS analysis. The column efficiently retained 237Np in 2 mol L(-1) HNO3 medium and all of the 237Np was easily eluted with 0.02 mol L(-1) oxalic acid in 0.16 mol L(-1) HNO3 at 95 degrees C. The separated solutions were free from most matrix elements and were aspirated into the ICP-MS directly. The decontamination factor for 238U is more than 10(4). The instrumental detection limit for 237Np was 0.46 pg mL(-1), which corresponds to 1.2 x 10(-5) Bq mL(-1). The method is more rapid than traditional radiometric techniques. It is also considered to be more suitable for environmental monitoring than existing methods based on TOA.

  9. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    PubMed

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  10. Separation of Silver Nanoparticles with Different Coatings by Capillary Electrophoresis Coupled to ICP-MS in Single Particle Mode.

    PubMed

    Mozhayeva, Darya; Engelhard, Carsten

    2017-08-25

    The possibility to separate mixtures of Ag nanoparticles (NPs) with similar sizes but different surface coatings using capillary electrophoresis coupled to single particle inductively coupled mass-spectrometry (CE-SP-ICP-MS) was investigated. In two-component mixtures it was possible to separate 40 nm sized polyvinylpirrolidone (PVP) and citrate-coated, 40 nm sized polyethylene glycol (PEG) and citrate-coated, and 60 nm sized PVP and citrate-coated NPs. The separation of a more complex mixture containing NPs with the different coatings and sizes was successful, and each component, namely 20 nm, 40 nm, 60 nm sized citrate-coated and 40 nm, 60 nm sized PVP-coated NPs, could be distinguished. The theoretically expected migration order was confirmed by experimental results with selected Ag NPs. Based on the experimental observations a separation mechanism that considers the effect of stable vs. displaceable coatings during NP migration in CE is suggested. The ICP-MS was equipped with a prototype data acquisition system (µsDAQ) that provided 5 µs time resolution.

  11. Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.

    2008-01-01

    Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.

  12. Evaluation of nebulizer performance within the ICP-MS measurement system for analysis of SRS radiological waste tank simulated solutions

    SciTech Connect

    Jones, V.D.

    1998-12-31

    High level radioactive waste tanks at the Savannah River Site are high in salt content. The average Total Dissolved Solids (TDS) content is approximately 25%. For ICP-MS optimum signal stability and to reduce blockage of nebulizers and sampling orifices, it is usual to limit analyte solutions to a TDS content of nominally < 0.2%. Dilution to this level to reduce the matrix effect may push some analytes of interest below detectable levels. Five commercially available nebulizers were evaluated in a field study as part of the ICP-MS measurement system for their performance in a high salt matrix. The nebulizers surveyed were a meinhard concentric, cross-flow, micro-concentric (MCN), V-groove, and a direct injection nebulizer (DIN). Analytes spiked into non-radioactive diluted salt solutions ranging from nominal 0.25--1.0% TDS were repetitively analyzed with the goal of determining stability of response signal and magnitude of any signal loss/suppression resulting from the diluted salt matrix. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency.

  13. Rapid speciation and quantification of selenium compounds by HPLC-ICP MS using multiple standards labelled with different isotopes.

    PubMed

    Ohta, Yuki; Suzuki, Noriyuki; Kobayashi, Yayoi; Hirano, Seishiro

    2011-09-01

    Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS) is now commonly used to investigate metabolic and toxicological aspects of some metals and metalloids. We have developed a rapid method for simultaneous identification and quantification of metabolites of selenium (Se) compounds using multiple standards labelled with different isotopes. A mixture of the labelled standards was spiked in a selenised garlic extract and the sample was subjected to speciation analysis by HPLC-ICP MS. The selenised garlic contains γ-glutamyl-methylselenocysteine, methylselenocysteine, and selenomethionine and the concentrations of those Se compounds were 723.8, 414.8, and 310.7 ng Se ml(-1), respectively. The isotopically labelled standards were also applied to the speciation of Se in rat urine. Selenate, methylselenonic acid, selenosugar, and trimethyselenium ions were found to be excreted by the present speciation procedure. Multiple standards labelled with different stable isotopes enable high-throughput identification and quantitative measurements of Se metabolites.

  14. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  15. Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing metrological traceability: a review since 2000.

    PubMed

    Markiewicz, Barbara; Komorowicz, Izabela; Sajnóg, Adam; Belter, Magdalena; Barałkiewicz, Danuta

    2015-01-01

    Chromium holds a special position among living organisms because depending on its species it can be either essential or toxic. Cr(VI) even at very low concentrations is harmful and carcinogenic, while Cr(III) is a necessary microelement for cellular metabolism. Therefore, a simple analysis of Cr concentration in collected samples will not be able to distinguish these differences effectively: for a proper chemical analysis we need to perform a reliable detection and quantification of Cr species. Separation and detection of chromium can be accomplished with high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS) in a one-step. Our review assembles articles published since 2000 regarding chromium speciation in water samples with the use of HPLC/ICP-MS. It addresses the following issues: chromium chemistry, the possibilities of dealing with interferences, metrological aspects, analytical performance and speciated isotope dilution mass spectrometry (SIDMS) which is a definitive measurement method. The authors would like to advocate this hyphenated advanced technique as well as the metrological approach in speciation analysis of chromium. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Study of tungstate-protein interaction in human serum by LC-ICP-MS and MALDI-TOF.

    PubMed

    Rodríguez-Fariñas, Nuria; Gomez-Gomez, M Milagros; Camara-Rica, Carmen

    2008-01-01

    Oral administration of sodium tungstate is an effective treatment for type 1 and 2 diabetes in animal models; it does not incur significant side effects, and it may constitute an alternative to insulin. However, the mechanism by which tungstate exerts its observed metabolic effects in vivo is still not completely understood. In this work, serum-containing proteins which bind tungstate have been characterized. Size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) with a Phenomenex Bio-Sep-S 2000 column and 20 mM HEPES and 150 mM NaCl at pH 7.4 as the mobile phase was chosen as the most appropriate methodology to screen for tungsten-protein complexes. When human serum was incubated with tungstate, three analytical peaks were observed, one related to tungstate-albumin binding, one to free tungstate, and one to an unknown protein binding (MW higher than 300 kDa). Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of the tungsten-containing fractions collected from SEC-ICP-MS chromatograms, after desalting and preconcentration processes, confirmed the association of tungstate with albumin and the other unknown protein. [figure: see text

  17. [Determination of thirty three elements in lung cancer tissues of patients with lung cancer by microwave digestion-ICP-MS].

    PubMed

    Zhang, Lin-Lin; Ma, Qian-Li; Huang, Yun-Chao; Wu, Guo-Ping; Wei, Fu-Sheng

    2009-12-01

    A method for determining 33 elements in lung tissues of patients with lung cancer was developed by using vacuum freeze-drying microwave digestion-ICP-MS. The lung tissue samples were treated by vacuum freeze-drying equipment. After microwave digestion in HNO3-H2O2 solution system, the samples were diluted with the method of constant volume. Under the optimized conditions the samples were analyzed by ICP-MS. The double internal standard elements Rh and Re were used to compensate for matrix suppression effect and sensitivity drift. The analytical results showed that the detection limits of the 33 elements were 0.01-0.45 ng x mL(-1). The national standard reference material GBW(E)080193 bovine liver was analyzed by the described method and the measured element values accorded with the standard values or the reference values. The relative standard deviation (RSD) of the method was 2.1%-14.3%. The recovery rates of the studied elements were 90.1%-117.5%. The contents of 33 elements in lung cancer tissues, paracancerous lung tissues and benign lung tissues of 6 patients with lung cancer were determined by the method. It was indicated that the method is rapid, simple and accurate for determining multi-elements in human lung tissue and other biological samples.

  18. [Determination of trace Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS].

    PubMed

    Wang, Jing-yu; Zhu, Hong-da; Ouyang, Li; Liu, Ya-qiong; Wang, Xiao-yan; Huang, Zhuo; Wang, Nai-fen; Liu, Hu-sheng

    2004-09-01

    This paper studied the trace elements Cs, Th and U in ten kinds of human autopsy tissues by ICP-MS. The instrumental operating conditions were optimized for the measurement of Cs, Th and U. Rhodium (Rh) was used as an internal standard element to compensate matrix effect. Detection limits for Th, U and Cs were 5.7-17.8 pg x mL(-1). The recoveries for spiking liver samples were 96%-107%, and their RSDs were 4.8%-8.9%. Reference materials of NIST SRM 8414 Bovine and NIST SRM 1486 Bone Meal were analyzed by the described method, and the analytical results agreed well with the reference values. Human autopsy tissues samples were digested by mixed acid (HNO3 + HClO4). The determination of Cs, Th and U in lung, liver, bone, heart, stomach, spleen, muscle, kidney, thyroid gland and intestinum tenue was performed by ICP-MS without separation and enrichment procedures. The obtained results indicated that this method is rapid, sensitive and accurate; the distribution of the three elements is different from one to another human organ sample; the main organ targets for Th and U are lungs and kidneys; and a coordinated variation of Cs, Th and U concentration in lungs was found in the samples collected from Hebei and Sichuan provinces.

  19. [Determination of U, Th and Tl in fourteen Chinese traditional medicines by microwave digestion-ICP-MS].

    PubMed

    Sun, Wei-Min; Xue, Da-Fang; Li, Hong; Liu, Hui; Teng, Wen-Feng

    2009-01-01

    Fourteen Chinese traditional medicines were digested by microwave digestion, which are generally applied to treat tumor in clinic, and the contents of U, Th and Tl in the fourteen Chinese traditional medicines were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the results show that the change ranges of the elements contents were: 0.005 153-0.1534 microg x g(-1) for U; 0.03501-0.4628 microg x g(-1) for Th; 0.00143-1.600 microg x g(-1) for Tl. The contents of U, Th and Tl in the fourteen Chinese traditional medicines were low, and not with one accord. The determination results of the fourteen Chinese traditional medicines were analyzed by SPSS 11.5, and the results show that there were not significant deviations(p>0.05) of the contents of U, Th and Tl between the medicine of treating the toxifying disease with poisonous agents and the medicines of heat-clearing. The study indicates that inductively coupled plasma mass spectrometry (ICP-MS) is a quick, accurate, sensitive method to determine the contents of U, Th and Tl in Chinese traditional medicine, and the results of this study provide reference data for using Chinese traditional medicine safely in clinic and developing Chinese traditional medicine.

  20. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site.

  1. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-10

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  2. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  3. Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life.

    PubMed

    Kivel, Niko; Schumann, Dorothea; Günther-Leopold, Ines

    2013-03-01

    In many scientific fields, the half-life of radionuclides plays an important role. The accurate knowledge of this parameter has direct impact on, e.g., age determination of archeological artifacts and of the elemental synthesis in the universe. In order to derive the half-life of a long-lived radionuclide, the activity and the absolute number of atoms have to be analyzed. Whereas conventional radiation measurement methods are typically applied for activity determinations, the latter can be determined with high accuracy by mass spectrometric techniques. Over the past years, the half-lives of several radionuclides have been specified by means of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) complementary to the earlier reported values mainly derived by accelerator mass spectrometry. The present paper discusses all critical aspects (amount of material, radiochemical sample preparation, interference correction, isotope dilution mass spectrometry, calculation of measurement uncertainty) for a precise analysis of the number of atoms by MC-ICP-MS exemplified for the recently published half-life determination of 60Fe (Rugel et al, Phys Rev Lett 103:072502, 2009).

  4. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Puchyr, R F; Bass, D A; Gajewski, R; Calvin, M; Marquardt, W; Urek, K; Druyan, M E; Quig, D

    1998-06-01

    The preparation of hair for the determination of elements is a critical component of the analysis procedure. Open-beaker, closed-vessel microwave, and flowthrough microwave digestion are methods that have been used for sample preparation and are discussed. A new digestion method for use with inductively coupled plasma-mass spectrometry (ICP-MS) has been developed. The method uses 0.2 g of hair and 3 mL of concentrated nitric acid in an atmospheric pressure-low-temperature microwave digestion (APLTMD) system. This preparation method is useful in handling a large numbers of samples per day and may be adapted to hair sample weights ranging from 0.08 to 0.3 g. After digestion, samples are analyzed by ICP-MS to determine the concentration of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Rb, Sr, Zr, Mo, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, Pt, Au, Hg, Tl, Pb, Bi, Th, and U. Benefits of the APLTMD include reduced contamination and sample handling, and increased precision, reliability, and sample throughput.

  5. Determination of gallium originated from a gallium-based anticancer drug in human urine using ICP-MS.

    PubMed

    Filatova, Darya G; Seregina, Irina F; Foteeva, Lidia S; Pukhov, Vladimir V; Timerbaev, Andrei R; Bolshov, Mikhail A

    2011-05-01

    Urine analysis gives an insight into the excretion of the administered drug which is related to its reactivity and toxicity. In this work, the capability of inductively coupled plasma mass spectrometry (ICP-MS) to measure ultratrace metal levels was utilized for rapid assaying of gallium originating from the novel gallium anticancer drug, tris(8-quinolinolato)gallium(III) (GaQ(3)), in human urine. Sample dilution with 1% (v/v) HNO(3) as the only required pre-treatment was shown to prevent contamination of the sample introduction system and to reduce polyatomic interferences from sample components. The origin of the blank signal at masses of gallium isotopes, 71 and 69, was investigated using high-resolution ICP-MS and attributed, respectively, to the formation of (36)Ar(35)Cl(+) and (40)Ar(31)P(+) ions and, tentatively, to a triplet of doubly charged ions of Ba, La, and Ce. The accuracy and precision performance was tested by evaluating a set of parameters for analytical method validation. The developed assay has been applied for the determination of gallium in urine samples spiked with GaQ(3). The achieved recoveries (95-102%) and quantification limit of 0.2 μg L(-1) emphasize the practical applicability of the presented analytical approach to monitor renal elimination of GaQ(3) at all dose levels in clinical trials that are currently in progress.

  6. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction.

    PubMed

    Zhu, Siqi; Chen, Beibei; He, Man; Huang, Tong; Hu, Bin

    2017-08-15

    In this paper, Fe3O4@SiO2@γ-mercaptopropyltrimethoxysilane (γ-MPTS) magnetic nanoparticles was prepared and a new method of magnetic solid phase extraction (MSPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of mercury including inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and phenylmercury (PhHg(+)) in environmental water, wastewater, tap water and fish samples. A rapid separation of three target mercury species was achieved in 8min by employing relatively high ratio of methanol in HPLC mobile phase. Various parameters affecting Fe3O4@SiO2@γ-MPTS-based MSPE of target mercury species have been investigated. Under the optimized conditions, the limits of detection for Hg(2+), MeHg(+) and PhHg(+) were in the range of 0.49-0.74ngL(-1). The intra- and inter-day relative standard deviations (n=5) were less than 9.0% and 12%, respectively. The developed MSPE-HPLC-ICP-MS method was validated by the speciation of mercury in the Certified Reference Material of DORM-2 dogfish as well as real-world samples including environmental water, wastewater, tap water and fish samples, and it has the advantages of simple operation, rapid separation, high sensitivity, high enrichment factor and is suitable for the analysis of mercury species in samples with complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Elemental fingerprinting of soils using ICP-MS and multivariate statistics: a study for and by forensic chemistry majors.

    PubMed

    Reidy, Lorlyn; Bu, Kaixuan; Godfrey, Murrell; Cizdziel, James V

    2013-12-10

    Students in an instrumental analysis course with a forensic emphasis were presented with a mock scenario in which soil was collected from a murder suspect's car mat, from the crime scene, from adjacent areas, and from more distant locations. Students were then asked to conduct a comparative analysis using the soil's elemental distribution fingerprints. The soil was collected from Lafayette County, Mississippi, USA and categorized as sandy loam. Eight student groups determined twenty-two elements (Li, Be, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cs, Ba, Pb, U) in seven samples of soil and one sample of sediment by microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Data were combined and evaluated using multivariate statistical analyses. All eight student groups correctly classified their unknown among the different locations. Students learn, however, that whereas their results suggest that the elemental fingerprinting approach can be used to distinguish soils from different land-use areas and geographic locations, applying the methodology in forensic investigations is more complicated and has potential pitfalls. Overall, the inquiry-based pedagogy enthused the students and provided learning opportunities in analytical chemistry, including sample preparation, ICP-MS, figures-of-merit, and multivariate statistics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Development of a method for assessing the relative contribution of waterborne and dietary exposure to zinc bioaccumulation in Daphnia magna by using isotopically enriched tracers and ICP-MS detection.

    PubMed

    Balcaen, Lieve I L; De Schamphelaere, Karel A C; Janssen, Colin R; Moens, Luc; Vanhaecke, Frank

    2008-01-01

    In order to study the effect of anthropogenic substances on freshwater and marine ecosystems and to develop methods to derive water-quality criteria, ecotoxicological testing is required. While toxicity assessments are traditionally based on dissolved metal concentrations, assuming that toxicity is caused by waterborne metal only, it was recently pointed out that also the dietary exposure route should be carefully considered and interpreted in regulatory assessments of zinc. In this context, the aim of this experimental study was to develop a method which allows the uptake of waterborne and dietary zinc by Daphnia magna and the interaction between both exposure routes to be studied. Therefore, the setup of a dual isotopic tracer study was required. During several days, daphnids were exposed to 67Zn and 68Zn via the dietary and the waterborne routes, respectively, and after several time intervals the daphnids were sampled and subjected to isotopic analysis by means of inductively coupled plasma mass spectrometry (ICP-MS). In order to obtain reliable and accurate results for zinc, special care was taken to prevent contamination and to deal with the spectral interferences traditionally hindering the determination of zinc. The figures of merit of both a quadrupole-based ICP-MS instrument equipped with a dynamic reaction cell, and a sector field ICP-MS unit were studied, and it was concluded that by using a sector field mass spectrometer operated at medium mass resolution all interferences could be overcome adequately. Although the set-up of the exposure experiments seems to be rather simple at first sight, it was shown in this work that several (dynamic) variables can have an influence on the results obtained and on the subsequent data interpretation. The importance of these confounding factors was examined, and on the basis of preliminary calculations it became clear that not only the isotopic composition of the daphnids has to be studied--adequate monitoring of the

  9. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients.

    PubMed

    Loeschner, Katrin; Harrington, Chris F; Kearney, Jacque-Lucca; Langton, David J; Larsen, Erik H

    2015-06-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF(4)) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate metal protein binding and the size and composition of wear metal particles present in serum and hip aspirates from MoM hip replacement patients. A well-established HPLC anion exchange chromatography (AEC) separation system coupled to ICP-MS was used to confirm the metal-protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF(4) of the wear particles in hip aspirates. In the serum samples, AF(4) -ICP-MS suggested that Cr was associated with transferrin (Tf) and Co with albumin (Alb) and an unidentified species; AEC-ICP-MS confirmed these associations and also indicated an association of Cr with Alb. In the hip aspirate sample, AF(4)-ICP-MS suggested that Cr was associated with Alb and Tf and that Co was associated with Alb and two unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF(4) with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes of the Cr-, Co- and Mo-containing wear particles in a hip aspirate sample were in the range 40-150 nm. Off-line spICP-MS was used to confirm these

  10. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    SciTech Connect

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.; Eiden, Gregory C.; Harilal, Sivanandan S.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conducted by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.

  11. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  12. Determination of Ti, Zr, Nb, V, W and Mo in seawater by a new online-preconcentration method and subsequent ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Poehle, Sandra; Schmidt, Katja; Koschinsky, Andrea

    2015-04-01

    We present a new method for the determination of Ti, Zr, Nb, V, W and Mo in seawater by adapting the online-preconcentration procedure with the system SeaFAST and subsequent analysis by ICP-MS to these metals. The trace elements Ti, Zr, Nb and W are present in seawater in ultratrace concentrations in the range of pmol kg-1, whereas Mo and V, which are biologically essential elements, are present in the concentration range of nmol kg-1. The online-preconcentration system we used consists of an autosampler, a sample loop, a preconcentration column and two valves controlling the sample loop and the preconcentration processes. The pre-packed preconcentration column contains a chelating resin with two functional groups, ethylenediamine triacetic acid (EDTriA) and iminodiacetic acid (IDA), immobilized on a polymer backbone. The preconcentration process was optimized for loading the sample and subsequent rinsing to remove residues of seawater matrix prior to elution with the optimized elution acid (0.5 M HNO3-0.002 M HF). We used acidified North Sea seawater (0.02 M HCl-0.002 M HF) for the method development. Samples and calibration standards were loaded onto the preconcentration column and after elution directly transferred to the quadrupole ICP-MS and measured immediately. Best results were achieved with matrix-matched calibration standards (0.6 M NaCl-0.02 M HCl-0.002 M HF) simulating acidified seawater samples. Titanium, Zr, Nb and W are measured simultaneously in one run, whereas V and Mo are determined simultaneously in a separate run. Low procedure blanks were calculated for Ti, Zr, Nb, W (635, 14.5, 1.35, 10.2 pmol kg-1) and for V and Mo, 9.79 and 5.61 nmol kg-1, respectively. Very good spike recoveries achieved with spiked North Sea water demonstrate the applicability for all six elements. Analysis of the seawater standard NASS-6 gave recoveries of 97-99% (0.9-2.2% standard deviation, SD) for Mo and V. We also provide Zr, Nb and W data for this reference standard

  13. Detrital zircon LASS-ICP-MS petrochronologic depth profiling for determining source-to-sink relationships in the Central Alps.

    NASA Astrophysics Data System (ADS)

    Anfinson, O. A.; Stockli, D. F.; Stockli, L.; Malusa', M. G.

    2015-12-01

    Laser Ablation-Split Stream Depth Profiling (LASS-DP) ICP-MS petrochronology of detrital zircon (DZ) from Oligocene-Miocene strata in the Molasse and Northern Apennines showcases, in the light of the well-constrained depositional history of these successions, the advantages of this novel approach compared to traditional single and split-stream detrital zircon techniques in elucidating sediment provenance and source-to-sink relationships. While DZ U-Pb data from Oligocene-Miocene strata deposited in both the Molasse and Northern Apennines document shifts in the relative abundance of Cadomian, Caledonian, Variscan and Alpine aged detrital zircon, the source regions remain ambiguous due to non-diagnostic crystallization ages, leading to minimal zircon age variability. In contrast, DZ LASS-DP-ICP-MS petrochronology allows for the simultaneous recovery of multiple U-Pb ages and corresponding geochemical data, and thus dramatically increases our ability to resolve the petrogenetic history of individual DZ grains. The technique shows the immense power of determining the growth history of single DZ grains (rim to core relationships) and identifying/resolving the presence and age of thin magmatic/metamorphic overgrowths. Rupelian turbidites in the Apenninic foredeep exhibit a DZ population with consistent <5 mm Cretaceous metamorphic overgrowths that would likely not be resolved as a coherent population in polished sections. LASS-DP ICP-MS analysis of Caledonian and Variscan detrital zircon populations from the Molasse Basin show a distinct shift in rim-core age pairs in individual zircons that point to the erosion of different source during progressive Alpine unroofing. The geochemical data confirm a crustally derived magmatic source for the majority of the detrital zircon grains within the basin. While this technique, in comparison to traditional polished mounts, might underrepresent older core ages, this slight bias is clearly offset by the better definition and

  14. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS.

    PubMed

    Voss, Monica; Nunes, Matheus A G; Corazza, Gabriela; Flores, Erico M M; Müller, Edson I; Dressler, Valderi L

    2017-08-01

    A calibration strategy using porous nylon disks and reference solutions is proposed for the first time for matrix matching and determination of As, Ba, Cd, Cr, Pb, Sr and Zn in polymers by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Polymer samples commonly used in contact with food were analyzed. The procedure consists on the use of porous nylon disks as support for a dried droplet reference solution. Calibration in the range of 0.50-190μgg(-1) for Ba, Cd, Cr, Pb, Sr and Zn and from 0.30-9.0μgg(-1) for As was used. Laser and ICP-MS instrument conditions were evaluated in order to achieve the best signal-to-background ratio. The radiofrequency power and carrier gas flow rate were fixed at 1300W and 1.25Lmin(-1), respectively. Spot size, repetition rate, scan line speed and laser fluency were set to 100µm, 20Hz, 100µms(-1) and 17.9Jcm(-2), respectively, as the established conditions for analysis of standards and samples. By using these conditions, limits of detection, estimated considering B+3s (where B is the value of the blank and s is the standard deviation of 10 measurements of the blank), ranged from 0.09μgg(-1) ((208)Pb) to 1.09 ((53)Cr) and 0.05μgg(-1) ((208)Pb) to 2.10 ((53)Cr) for calibration with and without (13)C as internal standard (IS). In spite to the use of nylon for matrix matching of different polymeric matrices, the normalization with (13)C as IS was also evaluated. The precision of the method is relatively good (RSD<20%), and the accuracy of the method, evaluated by analysis of certified reference materials (CRM) and by comparison with results obtained from solution analysis by ICP-MS after sample decomposition by microwave induced combustion (MIC) is relatively good. The suitability of the proposed method resulted in direct and reliable analyses of polymer samples with a simplified or unnecessary sample preparation step. In addition, the calibration with dried droplet reference solutions may be considered a

  15. Combining Dispersed Particle Extraction with Dried-Droplet Laser Ablation ICP-MS for Determining Platinum in Airborne Particulate Matter.

    PubMed

    Nischkauer, Winfried; Izmer, Andrei; Neouze, Marie-Alexandra; Vanhaecke, Frank; Limbeck, Andreas

    2017-07-01

    A combination of analyte pre-concentration using dispersed particle extraction (DPE) and dried-droplet laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was developed with the aim to quantify Pt and Pd in urban particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5). The PM2.5 aerosol was collected on cellulose ester filters during a sampling period of three days, with sampling intervals of 4 h only. Each of the filters was chemically digested, and the resulting solution was pre-concentrated using DPE. Droplets taken from the pre-concentrated sample were deposited on polymeric disks and dried. These dry spots were then analyzed by means of LA-ICP-MS. This approach allowed ICP-MS analysis of solutions with high content of dissolved sorbent particles coming from the DPE procedure. Furthermore, spectral interferences arising from sample-inherent matrix elements as well as solvent-related interferences could be removed by the proposed approach. The method was validated by determining the Pt concentration in Bureau Communautaire de Référence certified reference material (BCR CRM) 723 road dust certified reference material and a good agreement with the certified value was obtained. The temporal variation of Pt during the three-day sampling period is discussed, with respect to automotive traffic. The daily average of Pt measured in the air corresponds to typical values observed in urban areas in Central Europe. Although the pre-concentration of palladium is feasible with dispersed particle extraction, the method detection limits achieved here did not allow to quantify this element in the CRM or in the PM2.5 samples. The source for these high method detection limits for palladium are blank values arising from the filter material as well as the digestion procedure of the PM2.5 samples. Instrumental sensitivity of the approach would, however, suggest that palladium quantification is possible, provided the abovementioned blank issues are

  16. The potential of on-line continuous leach ICP-MS analysis for linking trace elements to mineralogy

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; van Gaans, Pauline

    2014-05-01

    A set of five soil samples was subjected to an on-line continuous leach inductively coupled plasma mass spectrometry experiment, with progressively reactive solvents (0.01M CaCl2, 0.1 M HNO3, 1M HNO3, 4M HNO3) Each sample was packed in a quartz tube (Ø= 1 cm, length 2 cm) and diluted 1:1 with acid washed quartz to prevent clogging. The gas that was produced during the extraction was removed by leading the effluent into a small container, from where the sample was directly pumped into the ICP-MS. 115In was used as an internal standard. Continuous leach experiments have the advantage of real time (every 2 seconds) full elemental analysis. Mineral breakdown reactions can be monitored via the major elements. The trace elements associated with the minerals are monitored simultaneously, thus eliminating the uncertainties of host mineral-trace element combinations in traditional off-line sequential extractions. The continuous leach experimental data are correlated to XRD-results for mineralogy and total elemental concentrations. The soil samples used were collected from different sites in the Koiliaris River watershed, Crete, Greece 1). The selection of the sites was based on variability in bedrock (limestone, metamorphic and alluvial sediments) and current land use (grape farming, olive trees). Soils were sampled at two depths: at the surface and just above the bedrock. No large differences in the major elements between the two depths were measured. To provide background to the on-line sequential data, also total concentrations of the major elements were analysed by XRF and the mineralogy was analysed by XRD. The fraction <2mm was sieved and digested with HF, HClO4 and HNO3 for additional trace element analysis. 1) See related abstract Roskam et al., 2014: REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil, linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece.

  17. Determination of (236)U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS.

    PubMed

    Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S

    2002-11-01

    It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.

  18. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting

    NASA Astrophysics Data System (ADS)

    Chmeleff, Jérôme; von Blanckenburg, Friedhelm; Kossert, Karsten; Jakob, Dieter

    2010-01-01

    A new method was designed and used for determining the half-life of the isotope 10Be. The method is based on (1) accurate 10Be/ 9Be measurements of 9Be-spiked solutions of a 10Be-rich master solution using multicollector ICP mass spectrometry (MC-ICP-MS) and (2) liquid scintillation counting (LSC) using the CIEMAT/NIST method for determining the activity concentrations of the solutions whose 10Be concentrations were determined by mass spectrometry. Important requirements for the success of this approach (a) was the previous coating of glass ampoules filled for counting experiments with 9Be, thereby reducing the risk of the adsorptive loss of 10Be; (b) the removal of Boron from solutions to be measured by MC-ICP-MS by cation chromatography without the introduction of mass fractionation and (c) the accurate determination of the mass bias of 10Be/ 9Be measurements by ICP-MS which are always affected by the space-charge effect. The mass bias factor was determined to be 1.1862 ± 0.071 for 10Be/ 9Be from careful fitting and error propagation of ratios of measured Li, B, Si, Cr, Fe, Cu, Sr, Nd, Hf, Tl and U standard solutions of known composition under the same measurement conditions. Employing this factor, an absolute 10Be/ 9Be ratio of 1.464 ± 0.014 was determined for a first dilution of the 10Be-rich master solution. This solution is now available as an absolute Be ratio standard in AMS measurements. Finally, a half-life of (1.386 ± 0.016) My (standard uncertainty) was calculated. This value is much more precise than previous estimates and was derived from a fully independent set of experiments. In a parallel, fully independent study using the same master solution, Korschinek et al. [35] have determined a half-life of (1.388 ± 0.018) My. The combined half-life and uncertainty amounts to (1.387 ± 0.012) My. We suggest the use of this value in nuclear studies and in studies that make use of cosmogenic 10Be in environmental and geologic samples.

  19. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.

    PubMed Central

    Schütz, A; Bergdahl, I A; Ekholm, A; Skerfving, S

    1996-01-01

    OBJECTIVES: To test a simple procedure for preparing samples for measurement of lead in blood plasma (P-Pb) and whole blood (B-Pb) by inductively coupled plasma mass spectrometry (ICP-MS), to measure P-Pb and B-Pb in lead workers and controls, and to evaluate any differences in the relation between B-Pb and P-Pb between people. METHODS: P-Pb and B-Pb were measured by ICP-MS in 43 male lead smelter workers and seven controls without occupational exposure to lead. For analysis, plasma and whole blood were diluted 1 in 4 and 1 in 9, respectively, with a diluted ammonia solution containing Triton-X 100 and EDTA. The samples were handled under routine laboratory conditions, without clean room facilities. RESULTS: P-Pb was measured with good precision (CV = 5%) even at concentrations present in the controls. Freeze storage of the samples had no effect on the results. The detection limit was 0.015 microgram/l. The P-Pb was 0.15 (range 0.1-0.3) microgram/l in controls and 1.2 (0.3-3.6) micrograms/l in lead workers, although the corresponding B-Pbs were 40 (24-59) micrograms/l and 281 (60-530) micrograms/l (1 microgram Pb/I = 4.8 nmol/l). B-Pb was closely associated with P-Pb (r = 0.90). The association was evidently non-linear; the ratio B-Pb/P-Pb decreased with increasing P-Pb. CONCLUSIONS: By means of ICP-MS and a simple dilution procedure, P-Pb may be measured accurately and with good precision down to concentrations present in controls. Contamination of blood at sampling and analysis is no major problem. With increasing P-Pb, the percentage of lead in plasma increases. In studies of lead toxicity, P-Pb should be considered as a complement to current indicators of lead exposure and risk. PMID:9038796

  20. Simple and robust ICP-MS method for simultaneous determination of serum Co and Cr in routine clinical practice.

    PubMed

    Choi, Hyun-Jung; Lim, Seung-Jae; Park, Youn-Soo; Lee, Soo-Youn

    2015-01-15

    Chromium (Cr) and cobalt (Co) metal ions released from orthopedic prostheses, such as metal-on-metal (MoM) bearings, may be related to wear of the bearing surface. These ions may serve as indicators of the in vivo performance of MoM bearing surfaces. We developed a simple and sensitive assay suitable for the simultaneous measurement of serum Cr and Co using inductively coupled plasma-mass spectrometry (ICP-MS) in clinical routine laboratory practice to evaluate analytical performance and clinical utility. We evaluated the linearity, precision, and lower limit of quantification (LOQ) of an ICP-MS method to determine serum Cr and Co concentration in accordance with U.S. Food and Drug Administration guidance for bioanalytical method validation. This method was used to determine the serum Cr and Co levels of 236 clinical samples from 74 patients with MoM hip prosthesis and 51 healthy controls. The assay showed good linearity (0-20 μg/l, r(2)>0.999) and satisfactory accuracy for all tested concentrations of Cr and Co (%bias, -1.5% to 2.5%, -3.3% to 1.6%, respectively). The CVs for both metal ions were <10% for LOQ (0.02 μg/l Cr, 0.01 μg/l Co) and within 5% for other concentrations (intra- and inter-assay CV, 1.2-2.6 and 1.9-4.4% of Cr; 1.4-2.7 and 1.9-4.7% of Co). The serum Cr and Co concentrations (mean ± SD) were 0.60 ± 0.12 μg/l and 0.29 ± 0.15 μg/l in 51 healthy subjects. In 74 patients (185 serum samples) after HRA (median duration implanted, 48 months; range, 1-138 months), the concentrations of Cr and Co were 2.75 μg/l (range, 0.61-116.80 μg/l) and 1.49 μg/l (range, 0.12-127.80 μg/l), respectively. ICP-MS can simultaneously quantify serum Cr and Co levels with suitable analytical performance including a wide analytical range and very low LOQ. This assay will be very useful for evaluating the nutritional status of Cr and Co in healthy humans as well as monitoring the performance of orthopedic prostheses after hip resurfacing arthroplasty. Copyright

  1. Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Santos, Mirian C; Wagner, Martin; Wu, Bei; Scheider, Jessica; Oehlmann, Jörg; Cadore, Solange; Becker, J Sabine

    2009-12-15

    An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels. The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low microg g(-1) range.

  2. Evaluation of bromine and iodine content of milk whey proteins combining digestion by microwave-induced combustion and ICP-MS determination.

    PubMed

    da Silva, Sabrina Vieira; Picoloto, Rochele Sogari; Flores, Erico Marlon Moraes; Wagner, Roger; dos Santos Richards, Neila Silvia Pereira; Barin, Juliano Smanioto

    2016-01-01

    The bromine and iodine content of whey protein concentrate (WPC), hydrolysate (WPH), and isolate (WPI) was evaluated combining microwave-induced combustion (MIC) digestion with inductively coupled plasma mass spectrometry (ICP-MS) determination. MIC digestion allowed the decomposition of up to 500 mg of samples using diluted NH4OH solution (25 mmol L(-1)) for absorption of analytes, assuring the compatibility with ICP-MS determination. Accuracy was evaluated using milk powder certified reference material (NIST 8435) with good agreements for Br and I (102% and 105%, respectively). For Br and I, the limit of quantification obtained by ICP-MS was 7 and 281 times lower in comparison with ion chromatography determination, respectively. Iodine could be enriched in whey protein production and up to 70% of the tolerable upper intake level was found, thus revealing the need to monitor it in whey proteins. On the other hand, the concentration of Br was below its acceptable daily intake.

  3. A multi-parametric microarray for protein profiling: simultaneous analysis of 8 different cytochromes via differentially element tagged antibodies and laser ablation ICP-MS.

    PubMed

    Waentig, Larissa; Techritz, Sandra; Jakubowski, Norbert; Roos, Peter H

    2013-11-07

    The paper presents a new multi-parametric protein microarray embracing the multi-analyte capabilities of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The combination of high throughput reverse phase protein microarrays with element tagged antibodies and LA-ICP-MS makes it possible to detect and quantify many proteins or biomarkers in multiple samples simultaneously. A proof of concept experiment is performed for the analysis of cytochromes particularly of cytochrome P450 enzymes, which play an important role in the metabolism of xenobiotics such as toxicants and drugs. With the aid of the LA-ICP-MS based multi-parametric reverse phase protein microarray it was possible to analyse 8 cytochromes in 14 different proteomes in one run. The methodology shows excellent detection limits in the lower amol range and a very good linearity of R(2) ≥ 0.9996 which is a prerequisite for the development of further quantification strategies.

  4. Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer.

    PubMed

    Bristow, Tony; Constantine, Jill; Harrison, Mark; Cavoit, Fabien

    2008-04-01

    Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.

  5. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources

    USGS Publications Warehouse

    Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.

    2013-01-01

    Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.

  6. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  7. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. © The Author(s) 2016.

  8. Detection of gunshot residue in blowfly larvae and decomposing porcine tissue using inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Lagoo, Lisa; Schaeffer, Luther S; Szymanski, David W; Smith, Ruth Waddell

    2010-05-01

    Blowfly larvae and porcine tissue contaminated with gunshot residue (GSR) were collected during summer and winter months, over a 37-day and a 60-day sampling period, respectively. Wound samples were microwave-digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for the detection of antimony, barium, and lead. During summer, the 37-day sampling period encompassed all stages of decomposition, except skeletonization. The three elements were detected in larvae only on days 3 and 4 after death but were detected at significant levels in tissue samples throughout the entire sampling period. In winter, no significant decomposition was observed throughout the 60-day sampling. Although temperatures were too low for blowfly activity, the three elements were detected in the tissue samples at relatively constant, significant levels. Hence, GSR determination in tissue was more dependent on decomposition stage rather than time since death.

  9. Comprehensive Isotopic and Elemental Analysis of a Multi-Oxide Glass By Multicollector ICP-MS in Isotope Substitution Studies

    SciTech Connect

    v, Mitroshkov; JV, Ryan

    2016-04-07

    Multicollector ICP-MS was used to comprehensively analyze different types of isotopically-modified glass created in order to investigate the processes of glass corrosion in the water. The analytical methods were developed for the analyses of synthesized, isotopically-modified solid glass and the release of glass constituents upon contact with deionized water. To validate the methods, results from an acid digestion sample of the Analytical Reference Glass (ARG) showed good agreement when compared to data from multiple prior analyses on the same glass [Smith-1]. In this paper, we present the results of this comprehensive analysis from the acid digestion of six types of isotopically-modified glass and the release of glass constituents into water corrosion after one year of aqueous corrosion.

  10. Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC-ICP-MS.

    PubMed

    da Silva, Elidiane Gomes; Mataveli, Lidiane Raquel Verola; Arruda, Marco Aurélio Zezzi

    2013-06-15

    The HPLC (anion exchange)-ICP-MS technique was used for the identification (based on retention time of standards) and determination of four selenium species (selenite, selenate, selenomethionine and selenocystine) in plankton (BCR-414), Brazil nuts and urine samples. A recovery of 91% was attained for certified reference materials (BCR-414). Se(IV) was the predominant species in plankton, with the highest selenium concentration in the extract. The Brazil nuts showed only the organic species selenomethionine and selenocystine after water extraction, but after simulated gastrointestinal digestion, only selenomethionine was found as bioaccessible, corresponding to 74% of the total selenium (54.8±4.6 μg g(-1)). Analyses of the urine samples suggested the presence of selenocystine, and significant differences were observed between samples from men and women in terms of the concentration of this species after consumption of Brazil nuts (1 nut per day during 15 days).

  11. Uranium-lead dating of perovskite from the Afrikanda plutonic complex (Kola Peninsula, Russia) using LA-ICP-MS.

    NASA Astrophysics Data System (ADS)

    Reguir, E.; Camacho, A.; Yang, P.; Chakhmouradian, A. R.; Halden, N. M.

    2009-04-01

    Perovskite (CaTiO3) is a common early crystallizing accessory phase in a variety of alkaline rocks, and has been shown to contain enough U and Th for U-Pb dating. U and Pb analysis of perovskite has been primarily carried out using the SHRIMP or ID-TIMS techniques, and the resulting U-Pb dates commonly yield the emplacement age of the host rock. To our knowledge, only one U-Pb study of perovskite has been done using the LA-ICP-MS (Cox and Wilton, 2006). Some of the advantages of this method over the SHRIMP and ID-TIMS techniques include greater speed and lower cost of analysis. In this work, the U-Pb ages of perovskite from the Afrikanda plutonic complex (Russia) were obtained in situ using the LA-ICP-MS. The measured 238U/206Pb and 207Pb/206Pb ratios were corrected for time-dependent mass-bias using the well-calibrated zircon standard GJ-1 (608.5 ± 0.4 Ma; Jackson et al., 2004). On a Tera-Wasserburg diagram (Tera and Wasserburg, 1972) the analyses of perovskite from two magmatic phases (clinopyroxenite and carbonatite) plot in separate clusters. Although the variations in the 238U/206Pb and 207Pb/206Pb ratios within each group are small, there is enough dispersion between the two clusters to obtain a reasonably precise age of 375 ± 13 Ma (2; MSWD = 0.23), which strongly suggests that the carbonatitic rocks are broadly coeval with the clinopyroxenite. The only other isotopic study on the Afrikanda Complex was done on a clinopyroxenite using the Rb-Sr method and yielded a whole rock-mineral (perovskite, biotite, augite and apatite) isochron age of 364.0 ± 3.1 Ma (2; MSWD = 0.72). This age is within error of our U-Pb date, which demonstrates that LA-ICP-MS-based U-Pb dating of perovskite can serve as a reliable geochronological tool. References Cox, R.A. and Wilton, D.H.C. (2006) U-Pb dating of perovskite by LA-ICP-MS: An example from the Oka carbonatite, Quebec, Canada. Chem. Geol., 235, 21-32. Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004

  12. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS.

    PubMed

    Zhao, Daoli; Wang, Tingting; Nahan, Keaton; Guo, Xuefei; Zhang, Zhanping; Dong, Zhongyun; Chen, Shuna; Chou, Da-Tren; Hong, Daeho; Kumta, Prashant N; Heineman, William R

    2017-03-01

    The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H2 with an electrochemical H2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH)2, MgO, MgCO3 and Mg3(PO4)2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need

  13. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS.

    PubMed

    Ferrari, Raffaele; Talamini, Laura; Violatto, Martina Bruna; Giangregorio, Paola; Sponchioni, Mattia; Morbidelli, Massimo; Salmona, Mario; Bigini, Paolo; Moscatelli, Davide

    2017-01-03

    Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.

  14. [Determination of trace element silver in animal serum, tissues and organs by microwave digestion-ICP-MS].

    PubMed

    Yuan, Jun-Jie; Xie, You-Zhuan; Han, Chen; Sun, Wei; Zhang, Kai; Zhao, Jie; Lu, Xiao; Lu, Jian-Xi; Ren, Wei

    2014-09-01

    Nowadays, the silver is widely used in the biological field and its biological safety catches great attention. It is important to know the distribution of silver ions within the biological organism and the toxic threshold concentration in the tissue. Therefore, a highly sensitive method for measurement of trace amount of silver ion in the medical biological samples is needed. With its high sensitivity for detection of metal ions, inductively coupled plasma mass spectrometry (ICP-MS) method is well suited for quantification of trace amount of silver ion in such samples, but method development is still in its infancy. Consequently, a simple and convenient method for determination of trace amount of silver in the animal serum, tissues or organs was developed, in which the samples were subjected to the microwave digestion, followed by the ICP-MS analysis. To begin with, the samples of serum, muscle, bone marrow, bone, heart, liver, spleen, and kidney were sequently processed in 5 mL of HNO3 and 2 mL of H2O2 solution. Then the samples were completely digested by microwave with the power of 2 000 watts. The temperature was raised gradually by 3-step program. Moreover, the data achieved were reproducible and the method was time saving and especially for large amounts of sample processing. Then the digested solutions were diluted to constant volume. Finally, the concentration of 107Ag in the samples was analyzed by the method of ICP-MS under the optimized conditions. Element yttrium (Y) was used as the internal standard to compensate for matrix suppression effect and improve the accuracy of measurement. For one thing, the analytical results showed that the detection limit of the trace element 107Ag was 0.98 μg · kg(-1), and furthermore, the correlation coefficient of standard curve was 0.999 9. For another thing, the recovery rate of the silver element ranged from 98% to 107%, which was calculated according to measured quantity before adding standard, adding standard and

  15. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  16. Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hathorne, Ed C.; Felis, Thomas; James, Rachael H.; Thomas, Alex

    2011-03-01

    Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.

  17. Precise and Accurate Trace Element Analysis of Calcium Carbonate by LA-ICP-MS and its Application to Stalagmites

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Scholz, D.; Stoll, B.; Weis, U.; Yang, Q.; Andreae, M. O.

    2011-12-01

    Interest in high-spatial-resolution in-situ micro-analysis of calcium carbonates (e.g., speleothems, corals, ostracods) has increased substantially in recent years, because these samples provide important information on past climate variability. The most commonly used method is LA-ICP-MS, which combines the advantages of low detection limits (ng/g range) with high spatial resolution (10 - 100 μm). Most studies apply low mass resolution ICP-MS, and the synthetic NIST 610 and 612 silicate glasses for instrumental calibration. However, there are several drawbacks of this procedure: (1) the NIST glasses have not been certified for micro-analytical purposes, (2) molecules and doubly charged ions may interfere with the mass lines of interest, and (3) the silicate matrix is quite different from the carbonate matrix. We have, therefore, systematically investigated these points by using the low (300) and medium (4000) mass resolution modes of the Thermo Element2 ICP-MS, application of different laser ablation systems (193 nm and 213 nm wavelengths, respectively) and reference materials of different matrix (NIST silicate glass, calcium carbonate, natural geological). Recently, Jochum et al. (2011) investigated the use of the NIST glasses in micro-analysis and provided both new reference values and the corresponding uncertainties at 95 % confidence level following ISO guidelines. These values differ significantly (by as much as 10 %) from the most commonly used values of Pearce et al. (1997). Our study demonstrates that many mass lines are affected by interferences in low mass resolution mode, such as the 24Mg line, which is interfered by 48Ca++ in carbonate samples, the 67Zn line, which is interfered with 27Al40Ar+ in silicate glasses, and 31P, which may be affected by 15N16O+and 14N17O+. In addition, a "gas blank" correction is insufficient in case of a significant increase of Ca and C molecules during ablation of calcium carbonate samples. These mass lines should

  18. Determination of Sb(III) and Sb(V) by HPLC-Online isotopic dilution-ICP MS.

    PubMed

    Fontanella, Maria Chiara; Beone, Gian Maria

    2016-01-01

    This work provides a method with application of valid techniques to extract and determinate inorganic species of antimony (Sb) for water. The procedure involves•the simultaneous accumulation of Sb(III) and Sb(V) on passive samplers like Diffusive Gradient in Thin Films (DGT) with iron (Fe) oxide gel, eliminating the risk of speciation changes due to transport and storage;•application of less concentrated acid (50 mM Na2EDTA) for elution and preservation of Sb species from DGT resin;•subsequent analytical determination of inorganic species with High Performance Liquid Chromatography-Isotopic Dilution-Inductively Coupled Plasma Mass Spectrometer (HPLC-ID-ICP MS) based on determination of the isotope ratio ((123)Sb/(121)Sb) of isotopes in the samples after spiking with 123Sb enriched standard solution, reducing the effect of signal drift and matrix effect on the final value.

  19. Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements.

    PubMed

    Filipiak-Szok, Anna; Kurzawa, Marzanna; Szłyk, Edward

    2015-04-01

    The potentially toxic metals content was determined in selected plants, used in Traditional Chinese Medicine (Angelica sinensis, Bacopa monnieri, Bupleurum sinensis, Curcuma longa, Cola accuminata, Emblica officinalis, Garcinia cambogia, Mucuna pruriens, Ocimum sanctum, Panax ginseng, Pueraria lobata, Salvia miltiorrhiza, Schisandra sinensis, Scutellaria baicalensis, Siraitia grosvenorii, Terminalia arjuna and Terminalia chebula), and some European herbs (Echinacea purpurea, Hypericum perforatum, Vitis vinifera). Samples were mineralized in a closed microwave system using HNO3 and the concentrations of Cd, Pb, Al, As, Ba, Ni and Sb were determined by ICP-MS method. Some relevant aspects of potential toxicity of metallic elements and their compounds were also discussed. Results of metal content analysis in dietary supplements available on Polish market, containing studied plants, are presented as well. The results were analyzed by principal component analysis (PCA) and cluster analysis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.

    2017-01-01

    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  1. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland.

    PubMed

    Falandysz, J; Szymczyk, K; Ichihashi, H; Bielawski, L; Gucia, M; Frankowska, A; Yamasaki, S

    2001-06-01

    Thirty-eight elements, including toxic cadmium, lead, mercury, silver and thallium, were determined in 18 species of wild edible mushrooms collected from several sites in Pomorskie Voivodeship in northern Poland in 1994. Elements were determined by double focused high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), after wet digestion of the dried samples with concentrated nitric acid in closed PTFE vessels using a microwave oven. K, P and Mg were present at levels of mg/g dry matter; Na, Zn, Ca, Fe, Cu, Mn, Rb, Ag, Cd, Hg, Pb, Cs, Sr, Al and Si were present at microg/g levels, while Tl, In, Bi, Th, U, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, La, Lu and Ba were present at ng/g levels.

  2. Instrumental improvement of the XYZ-translation system for a Perkin-Elmer Sciex Elan 500 ICP-MS

    NASA Astrophysics Data System (ADS)

    Klinkenberg, Huub; Beeren, Ton; van Borm, Werner; Mevissen, Bert; van Dongen, Cees

    1993-02-01

    A Perkin-Elmer Sciex Elan 500 ICP-MS is equipped with a translation system with which the torch box can be positioned manually by means of three knobs. In the course of our work, it was felt that this positioning was difficult to perform and hardly reproducible. It was decided to modify the system by changing the manual controls using an electronic control device. Three d.c. servo-motors were built into the Elan 500, driving the torch box in the X-, Y-and Z-directions. For each axis, the displacement is measured and displayed on a digital voltmeter. The analytical performance of the XYZ-translation system is illustrated by means of maximizing ion count rate while minimizing the influence of oxide- and doubly charged ions. Finally, the XYZ-translation system was completely incorporated into the Elan 500.

  3. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS.

    PubMed

    Drescher, Daniela; Giesen, Charlotte; Traub, Heike; Panne, Ulrich; Kneipp, Janina; Jakubowski, Norbert

    2012-11-20

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized for spatially resolved bioimaging of the distribution of silver and gold nanoparticles in individual fibroblast cells upon different incubation experiments. High spatial resolution was achieved by optimization of scan speed, ablation frequency, and laser energy. Nanoparticles are visualized with respect to cellular substructures and are found to accumulate in the perinuclear region with increasing incubation time. On the basis of matrix-matched calibration, we developed a method for quantification of the number of metal nanoparticles at the single-cell level. The results provide insight into nanoparticle/cell interactions and have implications for the development of analytical methods in tissue diagnostics and therapeutics.

  4. Determination of 241Am in Urine Using Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS)

    PubMed Central

    Xiao, Ge; Saunders, David; Jones, Robert L.; Caldwell, Kathleen L.

    2016-01-01

    Quantification of 241Am in urine at low levels is important for assessment of individuals’ or populations’ accidental, environmental, or terrorism-related internal contamination, but no convenient, precise method has been established to rapidly determine these low levels. Here we report a new analytical method to measure 241Am as developed and validated at the Centers for Disease Control and Prevention (CDC) by means of the selective retention of Am from urine directly on DGA resin, followed by SF-ICP-MS detection. The method provides rapid results with a Limit of Detection (LOD) of 0.22 pg/L (0.028 Bq/L), which is lower than 1/3 of the C/P CDG for 241Am at 5 days post-exposure. The results obtained by this method closely agree with CDC values as measured by Liquid Scintillation Counting, and with National Institute of Standards Technology (NIST) Certified Reference Materials (CRM) target values. PMID:27375308

  5. A new HG/LT-GC/ICP-MS multi-element speciation technique for real samples in different matrices.

    PubMed

    Grüter, U M; Kresimon, J; Hirner, A V

    2000-09-01

    An improved speciation technique is presented for metal(loid)organic compounds, enabling identification and quantification of species from twelve elements: germanium, arsenic, selenium, molybdenum, tin, antimony, tellurium, iodine, tungsten, mercury, lead and bismuth. At this time it is possible to identify 29 species with boiling points between -88.5 degrees C and 250 C in gaseous, liquid and solid samples in a few minutes. This study shows as an example results from measurements of soil samples from municipal waste deposits. The HG/LT-GC/ICP-MS-(hydride generation/low temperature-gas chromatography/inductively coupled plasma-mass spectrometry) apparatus contains a home-built gas chromatograph that enables satisfactory separation of various species with a boiling point difference of > or = 14 degrees C. The absolute detection limits for the elements mentioned above were below 0.7 pg.

  6. Beryllium in urine by ICP-MS: a comparison of low level exposed workers and unexposed persons.

    PubMed

    Morton, Jackie; Leese, Elizabeth; Cotton, Richard; Warren, Nicholas; Cocker, John

    2011-08-01

    To develop a sensitive and reproducible method for urinary beryllium and to use this method to establish levels in workers at an aluminium smelter and in unexposed persons. A method was developed for urinary beryllium using a Thermo ICP-MS Series 1, which was used to determine beryllium concentrations in urine from 62 people with no known occupational exposure to beryllium and 167 workers with potential exposure to beryllium at an aluminium smelter, where beryllium exists as an impurity in the bauxite ore. The analytical method has a detection limit (based on three times the background equivalent concentration of the blank) for beryllium in urine of 6 ng/L. The mean and 90th percentiles of urinary beryllium for workers were 19.5 and 42.0 ng/L and compared with 11.6 and 20.0 ng/L in people not occupationally exposed to beryllium. Statistical analysis using mixed effects models showed that workers had 47% (in 135 paired samples) higher levels of urinary beryllium at the end of the working week compared to the start of week and that the workers who smoked also had significantly higher levels of urinary beryllium compared to those that did not smoke. There was also a statistically significant difference between workers and controls in urinary beryllium concentrations not corrected for creatinine. A sensitive and reliable analytical method was developed for urinary beryllium by ICP-MS. The workers in this study were exposed to beryllium at very low levels.

  7. Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(III) metallodrug-DNA interactions.

    PubMed

    Foteeva, Lidia S; Matczuk, Magdalena; Pawlak, Katarzyna; Aleksenko, Svetlana S; Nosenko, Sergey V; Karandashev, Vasily K; Jarosz, Maciej; Timerbaev, Andrei R

    2017-03-01

    Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.e., in the capillary filled with an oligonucleotide-containing electrolyte). To further characterize the binding kinetics, a drug-oligonucleotide mixture was incubated for a different period of time, followed by ultrafiltration separation into two different in molecular weight fractions (>3 and <3 kDa). The time-dependent distribution profiles of the Ru drug were then assessed by CE-inductively coupled plasma mass spectrometry (ICP-MS), revealing that at least two DNA adducts exist at equilibrium conditions. Using standalone ICP-MS, dominant equilibrium amount of the bound ruthenium was found to occur in a fraction of 5-10 kDa, which includes the oligonucleotide (ca. 6 kDa). Importantly, in all three assays, the drug was used for the first time in in-vitro studies, not in the intact form but as its active species released from the transferrin adduct at simulated cancer cytosolic conditions. This circumstance makes the established analytical platform promising to provide a detailed view on metallodrug targeting, including other possible biomolecules and ex vivo samples.

  8. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds.

    PubMed

    Hsieh, Yu-Jhe; Jiang, Shiuh-Jen

    2012-03-07

    Speciation of arsenic in seaweeds was carried out using ion chromatography (IC) for separation and inductively coupled mass spectrometry (ICP-MS) for detection. The arsenic species studied were arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC). Chromatographic separation of all the species was achieved in <9 min in gradient elution mode using (NH(4))(2)CO(3) and methanol at pH 8.5. The outlet of the IC column was directly connected to the nebulizer of ICP-MS for the determination of arsenic. The speciation of arsenic has been carried out in several seaweed samples. A microwave-assisted extraction method was used for the extraction of arsenic species from seaweed samples. With a mixture of mobile phase A and methanol as extractant, the extraction efficiency was >84%, and the recoveries from spiked samples were in the range of 90-106%. The unknown compounds detected in different seaweeds were identified by coupling IC directly with electrospray ionization-mass spectrometry (ESI-MS). Two arsenosugars and tetramethylarsonium ion (TETRA) were identified in different seaweeds. A fat-soluble arsenolipid compound was identified in the extract of certified reference material BCR-279 Ulva lactuca when 1% HNO(3) was used as the extractant. The precision between sample replicates was >9% for all determinations. The limits of detection were in the range of 0.006-0.015 μg L(-1) for various arsenic species based on peak height.

  10. Laser ablation ICP-MS measurements of trace metals in Douglas-fir: a preliminary analysis with submonthly temporal resolution

    NASA Astrophysics Data System (ADS)

    Wilkins, D. E.; Kohn, M. J.; Hinz, E.

    2008-12-01

    Tree-ring cores were collected from a long-lived Douglas-fir (Pseudotsuga menziesii) at Double Springs Pass in the Lost River Range of central Idaho. The tree-rings were dated to 16XX - a minimum age as the pith was not reached during coring because of internal decay. Three sections of the core - with date ranges of 1642-67, 1823-61, and 1971-2005 - were removed for laser ablation ICP-MS analysis. Samples were analyzed by using an Element2 high resolution ICP-MS operating with mass resolution (m/ Δm) of 400, and a New Wave Nd-YAG 213 nm laser system, with a spot size of 40 μm, a repetition rate of 20 Hz, and a fluence of 9-10 J/cm2. Intensities of Ca, Fe, Co, Ni, Cu, Zn, As, Sr, and Ba were collected in continuous traverses with a scan speed of 20 μm/sec, providing an effective spatial resolution of ~40 μm (~2s/analysis), or roughly a 1 to 2 week temporal resolution. Late wood ablated significantly better than early wood, leading to a clear annual signal in background-corrected intensities. Strong correlations occur among Ca-Sr±Ba, which generally exhibit low-amplitude variations, and among Ni-Cu- Zn, which generally exhibit high-amplitude variations. For some annual cycles, all data vary sympathetically, but in others the maxima in Ni-Cu-Zn vs. Ca-Sr are offset by several months. Most importantly, some elements, especially Co and As, exhibit long-term, possibly decadal variations, that may relate to climate factors such as the Pacific Decadal Oscillation. These data hold promise both for chemo-dendrochronology in wood that lacks obvious tree rings, and for characterizing climate variability in the late Holocene.

  11. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    PubMed

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  12. Determination of toxic elements in coal by ICP-MS after digestion using microwave-induced combustion.

    PubMed

    Antes, Fabiane G; Duarte, Fábio A; Mesko, Márcia F; Nunes, Matheus A G; Pereira, Vanda A; Müller, Edson I; Dressler, Valderi L; Flores, Erico M M

    2010-12-15

    A microwave-induced combustion (MIC) procedure was applied for coal digestion for subsequent determination of As, Cd and Pb by inductively coupled plasma mass spectrometry (ICP-MS) and Hg using cold vapor (CV) generation coupled to ICP-MS. Pellets of coal (500 mg) were combusted using 20 bar of oxygen and ammonium nitrate as aid for ignition. The use of nitric acid as absorbing solution (1.7, 3.5, 5.0, 7.0 and 14 mol L(-1)) was evaluated. For coal samples with higher ash content, better results were found using 7.0 mol L(-1) HNO(3) and an additional reflux step of 5 min after combustion step. For coal samples with ash content lower than 8%, 5.0 mol L(-1) nitric acid was suitable to the absorption of all analytes. Accuracy was evaluated using certified reference material (CRM) of coal and spikes. Agreement with certified values and recoveries was better than 95 and 97%, respectively, for all the analytes. For comparison of results, a procedure recommended by the American Society of Testing and Materials (ASTM) was used. Additionally, a conventional microwave-assisted digestion (MAD) in pressurized vessels was also performed. Using ASTM procedure, analyte losses were observed and a relatively long time was necessary for digestion (>6h). By comparison with MAD procedure, higher sample mass can be digested using MIC allowing better limits of detection. Additionally, the use of concentrated acids was not necessary that is an important aspect in order to obtain low blank levels and lower limits of detection, respectively. The residual carbon content in digests obtained by MAD and MIC was about 15% and <1%, respectively, showing the better digestion efficiency of MIC procedure. Using MIC it was possible to digest completely and simultaneously up to eight samples in only 25 min with relatively lower generation of laboratory effluents.

  13. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    SciTech Connect

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.

  14. Determination of trace elements in human liver biopsy samples by ICP-MS and TXRF: hepatic steatosis and nickel accumulation.

    PubMed

    Varga, Imre; Szebeni, Agnes; Szoboszlai, Norbert; Kovács, Béla

    2005-10-01

    Human liver biopsy samples, collected from 52 individuals, were analysed by inductively coupled plasma-mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TXRF) spectrometry in a retrospective study (i.e. patient selection and liver biopsy were not for the purpose of element analysis). The freeze-dried samples (typically 0.5-2 mg dry weight) were digested in a laboratory microwave digestion system and solutions with a final volume of 1 mL were prepared. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Rb, and Pb were determined by use of a Thermo Elemental X7 ICP-MS spectrometer. TXRF measurements were performed with an Atomika Extra IIA spectrometer. Yttrium was employed as an internal standard, prepared by dissolution of 5N-purity yttria (Y(2)O(3)) in our laboratory. The accuracy was tested by analysis of NIST 1577a Bovine Liver certified reference material. The concentrations of Fe, Cu, Zn, and Rb determined in human liver biopsy samples were in good agreement with data published by other authors. The distribution of nickel in the samples was surprisingly uneven-nickel concentrations ranged from 0.7 to 12 microg g(-1) (dry weight) in 38 samples and in several samples were extremely high, 36-693 microg g(-1). Analysis of replicate procedural blanks and control measurements were performed to prevent misinterpretation of the data. For patients with steatosis (n=14) Ni concentrations were consistently high except for two who had levels close to those measured for the normal group. As far as we are aware no previous literature data are available on the association of steatosis with high concentration of nickel in human liver biopsies taken from living patients.

  15. Multielement analysis of micro-volume biological samples by ICP-MS with highly efficient sample introduction system.

    PubMed

    Takasaki, Yuka; Inagaki, Kazumi; Sabarudin, Akhmad; Fujii, Shin-Ichiro; Iwahata, Daigo; Takatsu, Akiko; Chiba, Koichi; Umemura, Tomonari

    2011-12-15

    A method for multielement analysis of micro-volume biological sample by inductively coupled plasma mass spectrometry (ICP-MS) with a highly efficient sample introduction system was presented. The sample introduction system was the combination of (1) an inert loop injection unit and (2) a high performance concentric nebulizer (HPCN) coupled with a temperature controllable cyclone chamber. The loop injection unit could introduce 20 μL samples into the carrier liquid flow of 10 μL min(-1) producing a stable signal for 100s without any dilution. The injection loop is continuously washed with 0.1M HNO(3) carrier solution during the measurement, thereby much improving sample throughput. The HPCN is a triple tube concentric nebulizer, which can generate fine aerosols and provide a stable and highly measurement sensitivity in ICP-MS at a liquid flow rate less than 10 μL min(-1). With the combination of the chamber heating at 60°C, the sensitivity obtained with the proposed sample introduction system at the liquid flow rate of 10 μL min(-1) was almost the same as that with a common concentric nebulizer and cyclone chamber system at the liquid flow rate of 1 mL min(-1), though the sample consumption rate of the HPCN was two orders of the magnitude lower than that of the common nebulizer. The validation of the proposed system was performed by analyzing the NIST SRM 1577b Bovine Liver. The observed values for 12 elements such as Na, P, S, K, Ca, Mn, Fe, Co, Cu, Zn, Mo, Cd were in good agreement with their certified values and information value. Satisfactory analytical results for 14 elements such as Na, Mg, P, S, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Y, Ba in Escherichia coli sample were also obtained. The proposed sample introduction system was quite effective in the cases when only micro-volume of biological sample is available.

  16. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS.

    PubMed

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Horacek, M; Prohaska, T

    2008-01-01

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, The Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.

  17. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    PubMed Central

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  18. The performance of single and multi-collector ICP-MS instruments for fast and reliable (34)S/(32)S isotope ratio measurements.

    PubMed

    Hanousek, Ondrej; Brunner, Marion; Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-11-14

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3-0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%).

  19. EXTRACTION AND DETECTION OF A NEW ARSINE SULFIDE CONTAINING ARSENOSUGAR IN MOLLUSCS BY IC-ICP-MS AND IC-ESI-MS/MS

    EPA Science Inventory

    Using IC-ICP-MS and IC-ESI-MS/MS, an unknown arsenical compound in mollusks has been identified as a new arsine sulfide containing analog of a known arsenosugar and is referred to as As(498). This species has been observed in four separate shellfish species following a mild metha...

  20. Trace Elements in Ivory Coast Tektites, Microtektites, and Fallback Particles of the Lake Bosumtwi Impact Crater, Ghana: A LA-ICP-MS Study

    NASA Astrophysics Data System (ADS)

    Luetke, S.; Deutsch, A.; Berndt, J.; Langenhorst, F.

    2008-03-01

    LA-ICP-MS trace element data of Ivory Coast tektites, microtektites, and glassy fallback particles indicate a soil contribution to the precursor materials of the tektites. A variable Ni/Co ratio seems to be characteristic of the fallback particles.

  1. DETECTION AND QUANTIFICATION OF A THIO-ARSENOSUGAR IN MARINE MOLLUSKS BY IC-ICP-MS WITH AN EMPHASIS ON THE INTERACTION OF ARSENOSUGARS WITH SULFIDE

    EPA Science Inventory

    Arsenosugars can make up a significant portion of the total arsenic in shellfish. These arsenosugars can be present in their oxide or sulfide form. IC-ICP-MS and IC-ESI-MS/MS data will be presented that indicates the presence of As(328-S) and As(328) in three species of marine ...

  2. DETECTION AND QUANTIFICATION OF A THIO-ARSENOSUGAR IN MARINE MOLLUSKS BY IC-ICP-MS WITH AN EMPHASIS ON THE INTERACTION OF ARSENOSUGARS WITH SULFIDE

    EPA Science Inventory

    Arsenosugars can make up a significant portion of the total arsenic in shellfish. These arsenosugars can be present in their oxide or sulfide form. IC-ICP-MS and IC-ESI-MS/MS data will be presented that indicates the presence of As(328-S) and As(328) in three species of marine ...

  3. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values.

  4. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  5. Influence of femtosecond laser ablation system parameters on the characteristics of induced particles: implications for LA-ICP-MS analysis of natural monazite

    NASA Astrophysics Data System (ADS)

    D'Abzac, F.; Seydoux-Guillaume, A.; Chmeleff, J.; Datas, L.; Poitrasson, F.

    2010-12-01

    The characteristics of Infra Red femtosecond laser-induced aerosols are studied for monazite (Moacyr) ablation, in order to evaluate optimal conditions for Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analysis. Various parameters are tested within wide ranges in order to cover near all of the usual LA-ICP-MS settings: pulse energy (E0), pulse width (τ), ablation time (t), transport length (l), nature of the carrier gas. In order to study the influence of laser wavelength on LA-ICP-MS analysis, a third harmonic generator was used to convert the fundamental λ=800nm into a λ=266nm laser emission. Acquisition protocol is the same as in d’Abzac et al. (2010)1. Data are compared with a UV-nanosecond (λ=193nm) laser ablation system using a similar ICP-MS model. Transmission Electron Microscopy (TEM) reveals that particles morphologies and chemical compositions are not affected by any parameter. Melt droplets are observed only using argon. Electronic Low Pressure Impaction (ELPI) data show that the quantity of aerosol produced is affected by all parameters. Little changes on size distribution are noted with changing settings. Detectable variations are induced during crater deepening (poor evacuation of large particles), the transport length (deposition of smallest particles) and the use of helium (shift to smaller sizes). UV-ns-LA-ICP-MS results show signal intensities similar to IR-fs-LA-ICP-MS, but a deviation of 206Pb/238U ratio with t increased by a factor of ~33. Based on recent ID-TIMS values of 206Pb/238U ratio in Moacyr2, accuracy is increased by ~22% from UV-ns to IR-fs system and repeatability is improved by 2%. Optimal LA-ICP-MS settings are given relatively to the present analytical results and the previous studies dealing with the same system1, 3. Pulse width must remain under 500fs to avoid plasma shielding and thermal diffusion, ablation time should be limited to prevent high crater depths and poor aerosols wash out, transport length must be

  6. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  7. Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation.

    PubMed

    Telgmann, Lena; Nguyen, Michael Thanh Khoa; Shen, Li; Yargeau, Viviane; Hintelmann, Holger; Metcalfe, Chris D

    2016-07-01

    Silver nanoparticles (AgNPs) are used in a large number of consumer products due to their antimicrobial and antifungal properties, and these materials may be discharged into municipal wastewater. Wastewater treatment, including advanced oxidation processes (AOPs), may modify the forms of silver in wastewater before they are discharged into surface waters. In addition, little is known about the changes in AgNPs that occur in natural waters under different environmental conditions. In this project, we utilized single particle ICP-MS (spICP-MS) and dynamic light scattering (DLS) analytical techniques to evaluate changes in the number and size of AgNPs in laboratory experiments with milliQ water under different environmental conditions, as well as during ozonation. Changes in the number and size of AgNPs determined by spICP-MS were evidence of altered stability of the nanoparticles. Increased rates of dissolution occurred under extremes of pH. Lower temperature decreased the rate of dissolution of AgNP relative to the dissolution in treatments at room temperature. The addition of chloride resulted in the loss of AgNPs from suspension due to agglomeration and precipitation. Ozonation led to a rapid decline in the number and size of AgNPs, as indicated by both spICP-MS and DLS analysis. An increase in the concentration of dissolved silver in the ozone treatments was evidence that changes in particle size were a result of oxidative dissolution of AgNPs to silver ion. Graphical abstract Single particle ICP-MS is used to evaluate dissolution of silver nanoparticles under different environmental conditions, including water treatment by ozonation.

  8. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system.

    PubMed

    Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue

    2017-02-01

    Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).

  9. Application of 10(13) ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation MC-ICP-MS.

    PubMed

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2017-10-09

    Boron isotope ratios (δ(11) B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10(13) ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10(13) ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-) MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA (10) B ion beam is reduced to < 0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ(11) B measurements for solution samples containing as little as 0.8 ng total boron. For in-situ microanalyses with LA-MC-ICP-MS, the external precision of (11) B/(10) B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥ 10 replicate spot analyses. 10(13) ohm amplifier technology is demonstrated to offer advantages for the determination of δ(11) B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10(13) ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. This article is protected by copyright. All rights reserved.

  10. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  11. Fast and accurate determination of K, Ca, and Mg in human serum by sector field ICP-MS.

    PubMed

    Yu, Lee L; Davis, W Clay; Nuevo Ordonez, Yoana; Long, Stephen E

    2013-11-01

    Electrolytes in serum are important biomarkers for skeletal and cellular health. The levels of electrolytes are monitored by measuring the Ca, Mg, K, and Na in blood serum. Many reference methods have been developed for the determination of Ca, Mg, and K in clinical measurements; however, isotope dilution thermal ionization mass spectrometry (ID-TIMS) has traditionally been the primary reference method serving as an anchor for traceability and accuracy to these secondary reference methods. The sample matrix must be separated before ID-TIMS measurements, which is a slow and tedious process that hindered the adoption of the technique in routine clinical measurements. We have developed a fast and accurate method for the determination of Ca, Mg, and K in serum by taking advantage of the higher mass resolution capability of the modern sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Each serum sample was spiked with a mixture containing enriched (44)Ca, (26)Mg, and (41)K, and the (42)Ca(+):(44)Ca(+), (24)Mg(+):(26)Mg(+), and (39)K(+):(41)K(+) ratios were measured. The Ca and Mg ratios were measured in medium resolution mode (m/Δm ≈ 4 500), and the K ratio in high resolution mode (m/Δm ≈ 10 000). Residual (40)Ar(1)H(+) interference was still observed but the deleterious effects of the interference were minimized by measuring the sample at K > 100 ng g(-1). The interferences of Sr(++) at the two Ca isotopes were less than 0.25 % of the analyte signal, and they were corrected with the (88)Sr(+) intensity by using the Sr(++):Sr(+) ratio. The sample preparation involved only simple dilutions, and the measurement using this sample preparation approach is known as dilution-and-shoot (DNS). The DNS approach was validated with samples prepared via the traditional acid digestion approach followed by ID-SF-ICP-MS measurement. DNS and digested samples of SRM 956c were measured with ID-SF-ICP-MS for quality assurance, and the results (mean

  12. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  13. Refining LA-ICP-MS techniques for the exploration of ultra-thin layers in Alpine and Polar ice

    NASA Astrophysics Data System (ADS)

    Spaulding, Nicole; Bohleber, Pascal; Mayewski, Paul; Wagenbach, Dietmar; Kurbatov, Andrei; Sneed, Sharon; Handley, Mike; Erhardt, Tobias

    2015-04-01

    Laser ablation inductively coupled plasma mass spectrometry, (LA)-ICP-MS, offers minimally destructive ice core impurity analysis at unsurpassed sub-mm depth resolution. As such it is uniquely suited for exploring the closely spaced layers of ice cores collected in low accumulation sites or in regions of compressed and thinned ice. Here we present an updated characterization of the LA system developed at the University of Maine Climate Change Institute's Keck Laser Ice Facility, as determined through 1) experimentation with sticks of frozen distilled water and 2) exploitation of the exceptionally thin layers within a new ice core drilled at the Alpine glacier saddle Colle Gnifetti (4450m asl, Monte Rosa, Swiss-Italian Alps) and the variety of high-density chemical data collected from it. Colle Gnifetti (CG) is characterized by low net accumulation rates and strong vertical shear, which causes its annual layers to rapidly thin below the cm-resolution of conventional ice core analysis techniques. To best utilize its unique archive, LA measurements of Ca and Na were directly compared to those from continuous flow analysis. Through this comparison, we demonstrate that LA captures low frequency trends similar to traditional melting techniques while also emphasizing the benefits of its increased resolution. The resolution was itself verified through experimental determination of peak decay times, where peaks were created by spiking frozen distilled water at known interval with high concentration riverine water standards. Using ion chromatography and liquid-based ICP-MS measurements of discrete meltwater samples from CG we were also able to explore high-resolution profiles of S as measured by LA. The ability to resolve S at sub-mm resolution (a capability not yet demonstrated for LA analysis of ice cores) may allow more accurate determination of the character and timing of volcanic eruptions. We illustrate this finding using an exemplary S-anomaly, potentially of volcanic

  14. Measurement of very low amounts of arsenic in soils and waters: is ICP-MS the indispensable analytical tool?

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan Jose; Perez-Sirvent, Carmen; Hernandez-Cordoba, Manuel

    2017-04-01

    The toxicity of arsenic and its wide distribution in the nature needs nowadays not to be emphasized, and the convenience of reliable analytical tools for arsenic determination at very low levels is clear. Leaving aside atomic fluorescence spectrometers specifically designed for this purpose, the task is currently carried out by using inductively coupled plasma mass spectrometry (ICP-MS), a powerful but expensive technique that is not available in all laboratories. However, as the recent literature clearly shows, a similar or even better analytical performance for the determination of several elements can be achieved by replacing the ICP-MS instrument by an AAS spectrometer (which is commonly present in any laboratory and involves low acquisition and maintenance costs) provided that a simple microextraction step is used to preconcentrate the sample. This communication reports the optimization and results obtained with a new analytical procedure based on this idea and focused to the determination of very low concentrations of arsenic in waters and extracts from soils and sediments. The procedure is based on a micro-solid phase extraction process for the separation and preconcentration of arsenic that uses magnetic particles covered with silver nanoparticles functionalized with the sodium salt of 2-mercaptoethane-sulphonate (MESNa). This composite is obtained in an easy way in the laboratory. After the sample is treated with a low amount (only a few milligrams) of the magnetic material, the solid phase is separated by means of a magnetic field, and then introduced into an electrothermal atomizer (ETAAS) for arsenic determination. The preconcentration factor is close to 200 with a detection limit below 0.1 µg L-1 arsenic. Speciation of As(III) and As(V) can be achieved by means of two extractions carried out at different acidity. The results for total arsenic are verified using certified reference materials. The authors are grateful to the Comunidad Autonóma de la

  15. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies.

    PubMed

    Poto, Luisa; Gabrieli, Jacopo; Crowhurst, Simon; Agostinelli, Claudio; Spolaor, Andrea; Cairns, Warren R L; Cozzi, Giulio; Barbante, Carlo

    2015-01-01

    Ombrotrophic peatlands are remarkable repositories of high-quality climatic signals because their only source of nutrients is precipitation. Although several analytical techniques are available for analysing inorganic components in peat samples, they generally provide only low-resolution data sets. Here we present a new analytical approach for producing high-resolution data on main and trace elements from ombrotrophic peat cores. Analyses were carried out on a 7-m-long peat core collected from Danta di Cadore, North-Eastern Italy (46° 34' 16″ N, 12° 29' 58″ E). Ca, Ti, Cr, Fe, Cu, Zn, Ga, Sr, Y, Cd, Ba and Pb were detected at a resolution of 2.5 mm with a non-destructive X-ray fluorescence core scanner (XRF-CS). Calibration and quantification of the XRF-CS intensities was obtained using collision reaction cell inductively coupled plasma quadruple mass spectrometry (CRC-ICP-QMS). CRC-ICP-QMS measurements were carried out on discrete samples at a resolution of 1 cm, after dissolution of 150-mg aliquots with 9 ml HNO3 and 1 ml HF at 220 °C in a microwave system. We compare qualitative XRF-CS and quantitative CRC-ICP-MS data and, however the several sources of variability of the data, develop a robust statistical approach to determine the R (2) and the coefficient of a simple regression model together with confidence intervals. Perfect positive correlations were estimated for Cd, Cr, Pb, Sr, Ti and Zn; high positive correlations for Ba (0.8954), Y (0.7378), Fe (0.7349) and Cu (0.7028); while moderate positive correlations for Ga (0.5951) and Ca (0.5435). With our results, we demonstrate that XRF scanning techniques can be used, together with other well-established geochemical techniques (such as ICP-MS), to produce high-resolution (up to 2.5 mm) quantitative data from ombrotrophic peat bog cores.

  16. LA-ICP-MS analysis of isolated phosphatic grains indicates selective rare earth element enrichment during reworking and transport processes

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2016-04-01

    Rare earth elements (REE) are a commonly used proxy to reconstruct water chemistry and oxygen saturation during the formation history of authigenic and biogenic phosphates in marine environments. In the modern ocean REE exhibit a distinct pattern with enrichment of heavy REE and strong depletion in Cerium. Studies of ancient phosphates and carbonates, however, showed that this 'modern' pattern is only rarely present in the geological past. Consequently, the wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry had to have been radically different in the earth's past. A wealth of studies has already shown that both early and late diagenesis can strongly affect REE signatures in phosphates and severely alter primary marine signals. However, no previous research was conducted on how alteration processes occurring prior to final deposition affect marine phosphates. Herein we present a dataset of multiple LA-ICP-MS measurements of REE signatures in isolated phosphate and carbonate grains deposited in a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene "Monterey event". The phosphates are represented by authigenic, biogenic and detrital grains emplaced in bioclastic grain- to packstones dominated by bryozoan and echinoderm fragments, as well as abundant benthic and planktic foraminifers. The results of 39 grain specific LA-ICP-MS measurements in three discrete rock samples reveals four markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Considering grain shape and REE patterns together indicate that authigenic, detrital and biogenic phosphates have distinct REE patterns irrespective of the sample. Our results show that the observed REE patterns in phosphates only broadly reflect

  17. Trace elemental analysis of glass and paint samples of forensic interest by ICP-MS using laser ablation solid sample introduction

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Trejos, Tatiana; Hobbs, Andria; Furton, Kenneth G.

    2003-09-01

    The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially "non-destructive" sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty

  18. Simultaneous quantification of tumor uptake for targeted and non-targeted liposomes and their encapsulated contents by ICP-MS

    PubMed Central

    Cheng, Zhiliang; Zaki, Ajlan Al; Hui, James Z; Tsourkas, Andrew

    2012-01-01

    Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually. PMID:22882145

  19. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.

    PubMed

    Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G

    2007-03-01

    Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.

  20. Characterization of saline groundwater at Horonobe, Hokkaido, Japan by SEC-UV-ICP-MS: speciation of uranium and iodine.

    PubMed

    Kozai, Naofumi; Ohnuki, Toshihiko; Iwatsuki, Teruki

    2013-03-15

    The saline groundwater collected at a depth of about 500 m in Horonobe, Japan, where an underground research laboratory (URL) has been built, is rich in saline (Na 4900 ppm, Cl 7600 ppm), iodine (42 ppm), and methane gas. We analyzed the colloids and ions of this groundwater mainly by employing a size exclusion chromatography (SEC) coupled on-line to ultraviolet-visible (UV-Vis) detection and inductively coupled plasma mass spectrometry (ICP-MS) technique and focused on the speciation of uranium and iodine, both of which are of particular importance for radioactive waste disposal. For this purpose, the groundwater sample was introduced to SEC columns after being passed through a 0.45 μm filter but without further pretreatment, such as isolation of colloids. The chromatographic profiles obtained with two different SEC columns were compared. This study revealed that uranium present in the groundwater at several tens of ppt was associated with low molecular weight silica species with neutral charge. The silica species were virtually free of metal elements such as Na, K, Mg, Ca, and Al. This study also found that almost all of the iodine in the groundwater was iodide (I(-)). The groundwater contained an unidentified organic colloid that was not a carrier for the radioactive waste-relevant elements Se, Sr, I, Cs, Th, and U. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  2. Examination of element concentrations in groundwater by ICP-MS for monitoring of pre-earthquake activities.

    PubMed

    Mehmet, Yaman; Sasmaz, Ahmet

    2013-01-01

    This study presents the results of hydrogeochemical studies carried out in Zeytun thermal springs in Kahramanmaras, located South Middle Anatolia-Turkey. More than 90 thermal water samples were collected on a regular basis from 2006 to 2008 to measure element concentrations as a monitor of earthquake precursors. Water samples were analyzed using ICP-MS. The observed B, Ba, Br and Ge concentrations for 16 months are in ranges of 79-422, 103-167, 28-93 and 0.3-1.2 microg x L(-1), respectively. Chloride concentrations for these periods are in range of 7-21 mg x L(-1). The data identify some element anomalies before earthquakes. These anomalies are characterized by decreases up to 158% in Ba and Cl concentrations. The occurrence of these anomalies can be attributed to stress/strain induced pressure changes in the subsurface water systems. It can be suggested that the thermal springs in the fault line area are ideal sites for precursors of earthquakes.

  3. Flexible Automation System for Determination of Elemental Composition of Incrustations in Clogged Biliary Endoprostheses Using ICP-MS.

    PubMed

    Fleischer, Heidi; Ramani, Kinjal; Blitti, Koffi; Roddelkopf, Thomas; Warkentin, Mareike; Behrend, Detlef; Thurow, Kerstin

    2017-08-01

    Automation systems are well established in industries and life science laboratories, especially in bioscreening and high-throughput applications. An increasing demand of automation solutions can be seen in the field of analytical measurement in chemical synthesis, quality control, and medical and pharmaceutical fields, as well as research and development. In this study, an automation solution was developed and optimized for the investigation of new biliary endoprostheses (stents), which should reduce clogging after implantation in the human body. The material inside the stents (incrustations) has to be controlled regularly and under identical conditions. The elemental composition is one criterion to be monitored in stent development. The manual procedure was transferred to an automated process including sample preparation, elemental analysis using inductively coupled plasma mass spectrometry (ICP-MS), and data evaluation. Due to safety issues, microwave-assisted acid digestion was executed outside of the automation system. The performance of the automated process was determined and validated. The measurement results and the processing times were compared for both the manual and the automated procedure. Finally, real samples of stent incrustations and pig bile were analyzed using the automation system.

  4. Hair Mercury Levels Detection in Fishermen from Sicily (Italy) by ICP-MS Method after Microwave-Assisted Digestion

    PubMed Central

    Giangrosso, Giuseppe; Cammilleri, Gaetano; Macaluso, Andrea; Vella, Antonio; D'Orazio, Nicolantonio; Graci, Stefania; Lo Dico, Gianluigi Maria; Galvano, Fabio; Giangrosso, Margherita; Ferrantelli, Vincenzo

    2016-01-01

    A number of ninety-six hair samples from Sicilian fishermen were examined for total mercury detection by an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The mercury levels obtained were compared with mercury levels of 96 hair samples from a control group, in order to assess potential exposure to heavy metals of Sicilian fishermen due to fish consumption and closeness to industrial activities. Furthermore, the mercury levels obtained from hair samples were sorted by sampling area in order to verify the possible risks linked to the different locations. The overall mean concentration in the hair of the population of fishermen was 6.45 ± 7.03 μg g−1, with a highest value in a fisherman of Sciacca (16.48 μg g−1). Hair mercury concentration in fishermen group was significantly higher than in control group (p < 0.01). There was no significant difference in hair total mercury concentrations between sampling areas (p > 0.05). The results of this study indicate a greater risk of exposure to mercury in Sicilian fishermen, in comparison to the control population, due to the high consumption of fish and the close relationship with sources of exposure (ports, dumps, etc.). PMID:27127456

  5. Evaluation of trace metal content by ICP-MS using closed vessel microwave digestion in fresh water fish.

    PubMed

    Jarapala, Sreenivasa Rao; Kandlakunta, Bhaskarachary; Thingnganing, Longvah

    2014-01-01

    The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS). Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO.

  6. Trace isotope analysis of Ricinus communis seed core for provenance determination by laser ablation-ICP-MS.

    PubMed

    Bagas, Christina K; Scadding, Rachel L; Scadding, Cameron J; Watling, R John; Roberts, Warren; Ovenden, Simon P B

    2017-01-01

    The castor bean plant, Ricinus communis, grows wild throughout many regions of Australia. The seeds of the plant contain the schedule 1 chemical agent ricin, a type II ribosomal inhibiting protein. Currently there are limited analytical techniques that can be applied in analysis of the seeds to establish attribution. In this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the analysis of seeds collected from 68 plants across 38 locations around Australia. Of the 92 elemental isotopes measured, fifteen ((24)Mg, (27)Al, (44)Ca, (53)Cr, (55)Mn, (57)Fe, (60)Ni, (65)Cu, (66)Zn, (75)As, (85)Rb, (88)Sr, (98)Mo, (138)Ba and (202)Hg) yielded data that were relevant to all collection sites. Data were further analysed using multivariate statistical analysis which facilitated the potential for the identification of unique provenance isotopes. Furthermore, this analysis indicated that (59)Co was present at significant levels in Victorian and Sydney specimens only. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Determination of specific DNA sequences and their hybridisation processes by elemental labelling followed by SEC-ICP-MS detection.

    PubMed

    López-Fernández, Lucía; Blanco-González, Elisa; Bettmer, Jörg

    2014-07-07

    Detection of specific DNA sequences is nowadays an important tool in many scientific areas such as forensic science or clinical diagnosis. Although numerous approaches have been suggested for this challenging analysis, certain limitations still remain. In order to overcome these disadvantages, novel and alternative methodologies are required. In this work, we present a strategy based on elemental (lanthanide) labelling of DNA probes followed by size-exclusion chromatography (SEC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS) for monitoring and determining complementary oligonucleotide sequences (oligonucleotide targets) and for visualising the corresponding hybridisation processes. The synthesis and characterisation of the DNA probes are described in detail. SEC was found to be suitable to discriminate between the DNA probe and the hybridised product. Using labelling of different probes with different lanthanides, multiplexed detection of the sought DNA sequences was possible as demonstrated here on three DNA probes (derivatised with Eu, Tb, and Ho, respectively). The achievable detection limits were in the range between 5 and 11 fmol absolute.

  8. Using Cluster Analysis and ICP-MS to Identify Groups of Ecstasy Tablets in Sao Paulo State, Brazil.

    PubMed

    Maione, Camila; de Oliveira Souza, Vanessa Cristina; Togni, Loraine Rezende; da Costa, José Luiz; Campiglia, Andres Dobal; Barbosa, Fernando; Barbosa, Rommel Melgaço

    2017-02-15

    The variations found in the elemental composition in ecstasy samples result in spectral profiles with useful information for data analysis, and cluster analysis of these profiles can help uncover different categories of the drug. We provide a cluster analysis of ecstasy tablets based on their elemental composition. Twenty-five elements were determined by ICP-MS in tablets apprehended by Sao Paulo's State Police, Brazil. We employ the K-means clustering algorithm along with C4.5 decision tree to help us interpret the clustering results. We found a better number of two clusters within the data, which can refer to the approximated number of sources of the drug which supply the cities of seizures. The C4.5 model was capable of differentiating the ecstasy samples from the two clusters with high prediction accuracy using the leave-one-out cross-validation. The model used only Nd, Ni, and Pb concentration values in the classification of the samples. © 2017 American Academy of Forensic Sciences.

  9. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  10. Evaluation of Trace Metal Content by ICP-MS Using Closed Vessel Microwave Digestion in Fresh Water Fish

    PubMed Central

    Jarapala, Sreenivasa Rao; Kandlakunta, Bhaskarachary; Thingnganing, Longvah

    2014-01-01

    The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS). Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO. PMID:24744789

  11. Trace elements in pyrite from the Petropavlovsk gold-porphyry deposit (Polar Urals): Results of LA-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Vikentiev, I. V.; Abramova, V. D.; Ivanova, Yu. N.; Tyukova, E. E.; Kovalchuk, E. V.; Bortnikov, N. S.

    2016-09-01

    The first study of the pyrite composition from gold deposit in the Urals by the LA-ICP-MS method has been carried out. In the pyrite high contents of Au (up to 49 ppm), Ag (105 ppm), and other micronutrients (As (417 ppm), Ag (105 ppm), Co (2825 ppm), Ni (75 ppm), Cu (1442 ppm), and Zn (19 ppm)) were detected. Furthermore, an increase in the concentrations of trace elements from early to later generations of pyrite (from Py-1 to Py-3) Au, Ag, Te, Sn, Te, and Bi and depletion of Co, As, and Ni have been revealed. Gold is mainly concentrated in the pyrite of the second generation (Py-2) and occurs mostly as an "invisible" form with prevalence of nano-sized particles of native Au, similar in composition to electrum AuAg, as well as Au- and Au-Ag tellurides. The presence in the pyrite of admixtures of Cu, Co, Ni, Pb, As, and Te, possibly favors the entrance of Au into it (up to 5-50 ppm), while in common pyrite, poor in the mentioned impurities, the gold content is <1 ppm.

  12. Determination of 232Th in seawater by ICP-MS after preconcentration and separation using a chelating resin.

    PubMed

    Takata, Hyoe; Zheng, Jian; Tagami, Keiko; Aono, Tatsuo; Uchida, Shigeo

    2011-09-30

    This article describes an analytical method for the separation, preconcentration and determination of (232)Th in seawater samples at sub-ng/L levels using a NOBIAS CHELATE PA1 resin and a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). The resin showed excellent adsorption of (232)Th at a low pH of 2.4 ± 0.4 in a relatively small volume (200 mL) of seawater. (232)Th adsorbed on the resin was easily eluted using 5 mL of 0.8M HNO(3). An enrichment factor of 40 was achieved for (232)Th analysis. Ethylenediamine-tetraacetic acid disodium salt dehydrate (EDTA) was used to investigate the effect of (232)Th-binding organic ligand on the retention of (232)Th on the chelating resin. Results obtained using acidified samples (pH of 2.4 ± 0.4) showed EDTA had no significant effect on (232)Th recovery, indicating that at this low pH, (232)Th was dissociated from the (232)Th-binding organic ligand and quantitatively retained on the NOBIAS CHELATE PA1 resin. The developed analytical method was characterized by a separation and preconcentration taking approximately 4h and a low detection limit of 0.0038 ng/L for (232)Th, and was successfully applied to the determination of (232)Th in seawater samples collected from coastal areas, Japan. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS)

    NASA Astrophysics Data System (ADS)

    Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre

    2006-03-01

    High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.

  14. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  15. Reference values for trace and ultratrace elements in human serum determined by double-focusing ICP-MS.

    PubMed

    Muñiz, C S; Fernández-Martin, J L; Marchante-Gayón, J M; García Alonso, J I; Cannata-Andía, J B; Sanz-Medel, A

    2001-01-01

    Reference values for trace and ultratrace elements concentrations in healthy human serum, measured by double-focusing inductively coupled plasma-mass spectrometry (ICP-MS), are presented. Blood donors from Asturias (Spain) were selected as the reference population (n=59). Blood samples were collected, after donation, taking the necessary precautions to avoid contamination. All subjects analyzed had normal renal function and nutritional status, as shown from their creatinine and albumin levels. A total number of 14 elements (Al, Ca, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Mo, Cd, Pb, and U) were monitored almost simultaneously. Serum samples were diluted 1+4 with ultrapure water and matrix interferences were corrected using Sc, Ga, Y, and Tl as internal standards. Fe, Cu, and Zn were also determined by isotope dilution analysis (IDA). Reference trace element concentrations intervals observed containing 95% of the reference distribution after excluding outliers are presented. Fourteen serum samples from hemodialysis patients were also analyzed for comparison. High levels of Al, Cr, Sr, Mo, Mn, Pb, U, Co, and Cu and low levels of Fe, Zn, and Rb were found in the serum samples from hemodialysis patients compared to the corresponding reference values observed in this work.

  16. A rapid method for quantification of 242Pu in urine using extraction chromatography and ICP-MS

    SciTech Connect

    Gallardo, Athena Marie; Than, Chit; Wong, Carolyn; Sudowe, Ralf

    2017-01-01

    Occupational exposure to plutonium is generally monitored through analysis of urine samples. Typically, plutonium is separated from the sample and other actinides, and the concentration is determined using alpha spectroscopy. Current methods for separations and analysis are lengthy and require long count times. A new method for monitoring occupational exposure levels of plutonium has been developed, which requires fewer steps and overall less time than the alpha spectroscopy method. In this method, the urine is acidified, and a 239Pu internal standard is added. The urine is digested in a microwave oven, and plutonium is separated using an Eichrom TRU Resin column. The plutonium is eluted, and the eluant is injected directly into the Inductively Coupled Plasma–Mass Spectrometer (ICP-MS). Compared to a direct “dilute and shoot” method, a 30-fold improvement in sensitivity is achieved. This method was validated by analyzing several batches of spiked samples. Based on these analyses, a combined standard uncertainty plot, which relates uncertainty to concentration, was produced. As a result, the MDA95 was calculated to be 7.0 × 10–7 μg L–1, and the Lc95 was calculated to be 3.5 × 10–7 μg L–1 for this method.

  17. A rapid method for quantification of 242Pu in urine using extraction chromatography and ICP-MS

    DOE PAGES

    Gallardo, Athena Marie; Than, Chit; Wong, Carolyn; ...

    2017-01-01

    Occupational exposure to plutonium is generally monitored through analysis of urine samples. Typically, plutonium is separated from the sample and other actinides, and the concentration is determined using alpha spectroscopy. Current methods for separations and analysis are lengthy and require long count times. A new method for monitoring occupational exposure levels of plutonium has been developed, which requires fewer steps and overall less time than the alpha spectroscopy method. In this method, the urine is acidified, and a 239Pu internal standard is added. The urine is digested in a microwave oven, and plutonium is separated using an Eichrom TRU Resinmore » column. The plutonium is eluted, and the eluant is injected directly into the Inductively Coupled Plasma–Mass Spectrometer (ICP-MS). Compared to a direct “dilute and shoot” method, a 30-fold improvement in sensitivity is achieved. This method was validated by analyzing several batches of spiked samples. Based on these analyses, a combined standard uncertainty plot, which relates uncertainty to concentration, was produced. As a result, the MDA95 was calculated to be 7.0 × 10–7 μg L–1, and the Lc95 was calculated to be 3.5 × 10–7 μg L–1 for this method.« less

  18. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    PubMed

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  19. The quantitative analysis of sugar maple tree rings by laser ablation in conjunction with ICP-MS

    SciTech Connect

    Watmough, S.A.; Hutchinson, T.C.; Evans, R.D.

    1998-09-01

    This study reports on the quantitative analysis of sugar maple (Acer saccharum Marsh.) tree rings by laser-ablation ICP-MS (LAS). Differences in ablation were corrected using {sup 13}C as an internal standard. Spatial variation in element distribution within individual tree rings was low, allowing individual tree rings to be used as calibration standards. The relative standard deviation (RSD) for element concentrations within tree rings were 15% for Mg, 15% for Ca, 9% for K, and 16% for Pb. This variation is likely due to element distribution and not the ablation process; the RSD for {sup 13}C was < 4%. Tree cores were taken from three sugar maple trees adjacent to a major highway, 24 km east of Toronto. Concentrations of Ca, Mg, and K generally declined from pith to cambium, a feature commonly observed in tree boles. Peaks in Pb concentration between 3 and 5 mg Pb kg{sup {minus}1}, were found in tree rings formed between 1940 and 1970, although there was considerable year-to-year variation within each tree, and the timing and magnitude of the Pb peaks differed between trees. Lead concentrations decreased in wood formed after 1970 so that by the 1980s, Pb concentrations were around 1 mg kg{sup {minus}1}, reflecting changes in Pb deposition into the woodland.

  20. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS).

    PubMed

    Hare, Dominic J; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2017-01-22

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures.

  1. Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics.

    PubMed

    Chudzinska, M; Baralkiewicz, D

    2010-01-01

    In our study the mineral content of 55 honey samples, which represented three different types of honey: honeydew, buckwheat and rape honey from different areas in Poland, was evaluated. Determination of 13 elements (Al, B, Ba, Ca, Cd, Cu, K, Mg, Mn, Na, Ni, Pb, Zn) was performed using inductively coupled plasma-mass spectrometry. We tried to prove that the analysis of quality and quantity of honey elements could be used to define honey origin by using ICP-MS as a technique for simultaneous determination of elements. Chemometric methods, such as CA and PCA, were applied to classify honey according to mineral content. CA showed three clusters corresponding to the three botanical origins of honey. PCA permitted the reduction of 13 variables to four principal components explaining 77.19% of the total variance. The first most important principal component was strongly associated with the value of K, Al, Ni and Cd. This study revealed that CA and PCA analysis appear useful tools for differentiation of honey samples authenticity using the profile of mineral content and they highlighted the relationship between the elements distribution and honey type.

  2. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS

    USGS Publications Warehouse

    Tomascak, P.B.; Tera, F.; Helz, R.T.; Walker, R.J.

    1999-01-01

    We report measurements of the isotopic composition of lithium in basalts using a multicollector magnetic sector plasma-source mass spectrometer (MC-ICP-MS). This is the first application of this analytical technique to Li isotope determination. External precision of multiple replicate and duplicate measurements for a variety of sample types averages ??1.1??? (2?? population). The method allows for the rapid (???8 min/sample) analysis of small samples (???40 ng Li) relative to commonly used thermal ionization methods. The technique has been applied to a suite of samples from Kilauea Iki lava lake, Hawaii. The samples range from olivine-rich cumulitic lava to SiO2 - and K2O-enriched differentiated liquids, and have ??7Li (per mil deviation of sample 7Li/6Li relative to the L-SVEC standard) of +3.0 to +4.8. The data indicate a lack of per mil-level Li isotope fractionation as a result of crystal-liquid fractionation at temperatures greater than 1050??C. This conclusion has been tacitly assumed but never demonstrated, and is important to the interpretation of Li isotope results from such geochemically complex environments as island arcs. Copyright ?? 1999 Elsevier Science Ltd.

  3. Multielemental analysis of purpleback flying squad using high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS).

    PubMed

    Ichihashi, H; Kohno, H; Kannan, K; Tsumura, A; Yamasaki, S I

    2001-08-01

    Forty-four elements were analyzed in 21 tissues of purpleback flying squid, Sthenoteuthis oualaniensis, by high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS) and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Greater concentrations of V, Fe, Co, Ni, Cu, Ag, Cd, Pb, and Bi were found in liver, pancreas, and ink sac than in other tissues. Ink sac concentrated remarkable levels of Ca and Sr in addition to the above-mentioned elements. Several alkalis, alkaline earth, and rare earth elements preferentially accumulated in muscle. Among the hard tissues, accumulation of V and U in beak, Ni, Zn, and Cd in gladius and Cr in skin was prominent. K, Rb, Cs, Pb, Bi and some transition elements (V, Co, Cu, Zn, Ag, Cd) were significantly (p < 0.05) higher in the livers of adult than in juvenile squids. Sodium, alkaline earth, and rare earth elements were higher in the livers of juveniles than in adult squids.

  4. [Investigation of elemental concentration and extraction rate of polysaccharides from Liuwei Dihuang prescription" by ICP-MS].

    PubMed

    Hu, Jun-huan; Liu, Wei; Zhong, Hai-jie; Li, Jia-chun; Qian, Jun; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao Wei

    2015-02-01

    A method was established for the simultaneous analysis of 25 trace elements and heavy metals in polysccharides from Liuwei Dihuang prescription, including Li, Be, B, Ti, Mg, Al, V, Cr, Mn, Co, Fe, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb, Ba, Hg, Tl, Pb, Bi. The different rate of elemental extraction in Al, Fe, Mg, B, Ti, Mn, Zn, Sr, Ba was made in water and different concentration of alcohol. The samples, digested via microwave, calibrated by internal standard elements such as Ge and In, with bush branches and leaves as the controlled reference standard, were inlet into ICP-MS to analyze the contents of the 24 trace elements and heavy metals. The detection limits of the 24 elements were in the range of 0.007-2.225 µg · L(-1), while the RSD was below ≤ 4. 0%, with their recovery ranging from 84. 1% to 116%. Big different of the elemental extraction rates could be found by using different ethanol solutions. The method is simple, rapid and accurate, and can be used for the quality control of trace elements and heavy metals in Liuwei Dihuang polysccharides. With the aid of the obtained result, we may increase the extraction of necessary element while making an attempt at multi-element speciation in polysccharides from Liuwei Dihuang.

  5. Measurements of rare isotopes of U and Th by MC-ICP-MS using a 1013 ohm resistor

    NASA Astrophysics Data System (ADS)

    Pythoud, M.; Edwards, R. L.; Cheng, H.; Lu, Y.; Zhang, P.; Nissen, J.; Berry, A. E.

    2016-12-01

    We have tested a 1013 ohm resistor on a Thermo-Scientific Neptune Plus, a multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS), for the measurement of rare isotopes of uranium (U) and thorium (Th). In nature, the isotopic disequilibrium among U-series nuclides provides the potential to date materials and time processes over the last 700,000 years. Using gravimetric standards and a Minnesota stalagmite, we demonstrate the reproducibility of δ234U and 230Th dates with uncertainties at the 1-‰ to sub-‰ level (2σ), with relatively small samples. Compared to traditional secondary electron multiplier (SEM) techniques, measurement times decrease from > 1 hour to < 5 min for U and from tens of min to < 2 min for Th, with comparable or better precision. The characteristics of the new amplifier design and typical instrumental conditions allow for 234U and 230Th sample loads as small as 1-2 pg, a reduction in sample size close to an order of magnitude over cup measurements with 1011 ohm resistors. The main sources of error include the amplifier noise, uncertainty in the characterization of the tailing effect, and in some cases, counting statistics. Importantly, our overall characterization suggests that this new method forms the basis for future and further improvements on instrumental precision.

  6. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  7. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    PubMed Central

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  9. Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS.

    PubMed

    Rodríguez-Seijo, Andrés; Arenas-Lago, Daniel; Andrade, María Luisa; Vega, Flora A

    2015-05-01

    Lead pollution was evaluated in 17 urban soils from parks and gardens in the city of Vigo (NW Spain). The Pb isotope ratios ((207)Pb/(206)Pb, (208)Pb/(204)Pb, (206)Pb/(204)Pb and (208)Pb/(206)Pb) were determined after being measured by MC-ICP-MS. The association of the isotopes ((204)Pb, (206)Pb, (207)Pb and (208)Pb) with the different components of the soil was studied using TOF-SIMS. The isotopic ranges obtained for the samples were between 1.116 and 1.203 ((206)Pb/(207)Pb), 2.044-2.143 ((208)Pb/(206)Pb), 37.206-38.608 ((208)Pb/(204)Pb), 15.5482-15.6569 ((207)Pb/(204)Pb) and 17.357-18.826 ((206)Pb/(204)Pb). The application of the three-end-member model indicates that the Pb derived from petrol is the main source of Pb in the soils (43.51% on average), followed by natural or geogenic Pb (39.12%) and industrial emissions (17.37%). The emissions derived from coal combustion do not appear to influence the content of Pb in the soil. TOF-SIMS images show that the Pb mainly interacts with organic matter. This technique contributes to the understanding of the association of anthropogenic Pb with the components of the soil, as well as the particle size of these associations, thus allowing the possible sources of Pb to be identified.

  10. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  11. [Determination of 11 kinds of inorganic elements in Cortex Spondiacis by microwave digestion/ICP-MS method].

    PubMed

    Luo, Wen; Ma, Jin-Jing; Zhang, Long-Wang; Chen, Cong; Ye, Yan-Qing

    2012-09-01

    The present research aimed to establish a kind of simple and rapid method to detect metal elements in Cortex Spondiacis were determined by microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS). The sample was digested with HNO3-H2O2 acids system. The operation would be simplified and the blank value would be decreased with the above acids systems. Instead of using concent rated acid, this experiment not only can leave out the process of drying or dilution and save time, and extend the life of the instrument, but also eliminates the errors of the inconsistency between digestion solutions and standard solutions. The experimental results showed that Cortex Spondiacis is rich in beneficial elements such as potassium, calcium, magnesium, iron, sodium, and nickel. And the content of harmful elements of the drug, such as mercury, lead, cadmi um and arsenic, is under the national rule, which have some medicinal value. Under the optimum working conditions of the instrument, the detection limits were all smaller than 0.052 1 microg x L(-1), the recovery ratios by standard addition were in the range of 90.8%-113.8% and the RSD was smaller than 5.10% for all elements. Precision and accuracy of determining results are satisfactory. This results are reliable. These results are reliable. The method can meet the need for simultaneity determination of high content element and trace element in Cortex Spondiacis.

  12. Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS.

    PubMed

    Manousakas, M; Papaefthymiou, H; Eleftheriadis, K; Katsanou, K

    2014-09-15

    The elemental composition of water-soluble and acid-soluble fractions of PM2.5 samples from two different Greek cities (Patras and Megalopolis) was investigated. Patras and Megalopolis represent different environments. Specifically, Patras is an urban environment with proximity to a large port, while Megalopolis is a small city located close to lignite power plants. Both cities can serve as a representative example of European cities with similar characteristics. The concentration of 14 elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Fe, Sr, Ti, V and Zn) was determined in each fraction by ICP-MS. Microwave assisted digestion was used to digest the samples using a mixture of HNO3 and HF. For the determination of the water soluble fraction, water was chosen as the simplest and most universal extraction solvent. For the validation of the extraction procedure, the recoveries were tested on two certified reference materials (NIST SRM 1648 Urban Particulate Matter and NIST 1649a Urban Dust). Results showed that Zn has the highest total concentration (273 and 186 ng/m(3)) and Co the lowest (0.48 and 0.23 ng/m(3)) for Patras and Megalopolis samples, respectively. Nickel with 65% for Patras and As with 49% for Megalopolis displayed the highest solubility, whereas Fe (10%) and Ti (2%) the lowest ones, respectively.

  13. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    PubMed

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL(-1) for honey and 0.00041-0.095μgL(-1) for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  15. REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; Nikolaidis, Nikolaos

    2014-05-01

    The Koiliaris River CZO watershed is situated 25 km east from the city of Chania, Crete, Greece. The total surface area of the watershed is 130 km2 with a total length of 36 km and a maximum altitude difference of 2120 m. The outcropping rocks at higher altitudes are Plattenkalke nappe topped by the Trypali nappe, which are mainly bedded- and recrystallized brecciated un-bedded limestones and contain large karstic sinkholes. The Trypali nappe is topped by the Western Crete phyllites and is comprised of quartz and micaceous minerals. At lower elevation neogene marls and marly limestones and recent alluvial sand and conglomerate deposits are dominating. The hydrology at the Koiliaris River watershed is dominated by spring outflow at the limestone- fluvial sediment boundaries at lower elevation (<200 m), (largely) dry rivers through the limestone nappes and one ephemeral river on the top of the phyllites. The springs at lower altitudes are fed by rain and the snow melt from the karstic aquifers. Stylos spring is the main water supply for the Koiliaris River while other tributaries are mainly in karstic areas and flow is limited. Throughout the watershed at 5 locations soil samples were taken at two different depths and water samples in various springs and rivers were collected and REE were analysed. Progressively reactive solvents (0.01M CaCl, 0.1M HNO3, 1M HNO3, 4M HNO3) were pumped through the sample column, and then directly into the ICP-MS. All the major and the rare earth elements (REE) were continuously measured. The REE concentrations are normalized to NASC and are mineral specific. The mineral specific REE profiles can be linked to the REE profiles measured in the springs and rivers in the watershed.

  16. Minimization of sample volume with air-segmented sample injection and the simultaneous determination of trace elements by ICP-MS.

    PubMed

    Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2008-05-01

    The application of inductively coupled plasma mass spectrometry (ICP-MS) to forensic chemistry was studied. The developed method, air-segmented sample injection (ASSI) coupled with ICP-MS, allowed the determination of about 25 elements at the sub-ppb level with only 0.2 ml of a sample solution. The optimum sample flow rate was found to be 0.4 ml min(-1), along with a sample suction time of 30 s. The proposed method was validated by determining trace elements in river-water certified reference material (SLRS-4) issued by National Research Council Canada. The analytical results of the proposed method were in good agreement with the certified values. This method was successfully applied to a human hair sample, the volume of which was 3 ml.

  17. [Effect of the chelator Zn-DTPA on the excretion of lead in lead intoxication mice detected with ICP-MS].

    PubMed

    Li, Chen; Lu, Kai-zhi; Zhou, Qi; Wang, Qiong; Zeng, Yu-liang; Yin, Hong-jun; He, Xuan-hui; Tian, Ying; Dong, Jun-Xing

    2014-11-01

    To study the lead excretion effect of the chelator Zn-DTPA on the lead intoxication mice, inductively coupled plasma mass spectrometry (ICP-MS) was applied to detect the lead content of biological samples. The acute lead intoxication mice model was established by injecting lead acetate intraperitoneally with the dose of 1 mg. Zn-DTPA was administered intraperitoneally to mice once daily for five consecutive days 4 h after intoxication. Control group, model group, combination of Zn-DTPA and Ca-DTPA group were evaluated at the same time. The urine was collected every day. The mice were sacrificed in batches in the 2rd, 4th, 6th day. Biological samples including urine, whole blood, femur and brain were prepared and nitrated. Lead concentration was detected by ICP-MS. The result showed that Zn-DTPA could increase lead content in urine markedly and reduce lead content in blood, femur and brain.

  18. Analysis of inorganic and organic constituents of myrrh resin by GC-MS and ICP-MS: An emphasis on medicinal assets.

    PubMed

    Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman

    2017-07-01

    The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.

  19. Advances in Quantitative Analyses and Reference Materials Related to Laser Ablation ICP-MS: A Look at Methods and New Directions

    NASA Astrophysics Data System (ADS)

    Koenig, A. E.; Ridley, W. I.

    2009-12-01

    The role of laser ablation ICP-MS (LA-ICP-MS) continues to expand both in geological sciences and other fields. As the technique continues to gain popularity, so too does the need for good reference materials and methods development and validation. Matrix matched reference materials (RMs) are required for calibration and quality control of LA-ICP-MS analyses. New advances in technology such as <200nm lasers and femtosecond lasers have reduced the dependence on matrix matching to some degree, but general matrix matching is still preferred. Much work has revolved around the available RMs such as the NIST 61x silicate glasses and several series of basaltic composition glasses such as the USGS natural basaltic glasses BCR-2g and synthetic basaltic glasses, the GS series (e.g. GSD-1g). While many quantitative hurdles have been recognized by analogous techniques such as EPMA and SIMS, some of these hurdles have not been fully addressed or validated for some cases of LA-ICP-MS. Trace element mapping by LA-ICP-MS is rapidly becoming more widespread for samples. Here relative differences in raw signal can be easily and rapidly obtained. However as too often is the case the magnitude of the relative differences in raw intensity are a function of different ablation yields, sample density or other factors. Methods of quantification for trace element mapping will be presented. The USGS has been developing microanalytical RMs intended for LA-ICP-MS for several years. The widely popular basaltic rock powders BCR-2, BIR-1 and BHVO-2 have all been successfully converted to homogeneous glasses suitable for LA-ICP-MS and have been in use by many workers. The newer synthetic basaltic glass GS series consists of 4 glasses of basaltic composition artificially doped at nominal concentrations of almost of trace elements at 400, 40, 4 and < 1 ppm. Additional developments in non-silcate or basaltic materials include the previously released MASS-1 Cu, Fe, Zn sulfide calibration RM (Wilson et

  20. A non-element-enriched, non-lyophilized candidate rat serum reference material prepared for once use in determination of inorganic elements by ICP-MS.

    PubMed

    Li, Xiang-Yun; Lian, Hong-Zhen; Mao, Li; Chen, Yi-Jun; Hu, Xin; Qiao, Jun-qin; Sheng, Dong

    2009-06-15

    A practice about preparing a once-used native state candidate rat serum reference material has been described for inductively coupled plasma atomic emission spectrometry (ICP-MS) determination of inorganic elements in biological matrices, which is independently packed, easy to use, non-lyophilized, without element-spiking, and with stable quality. Various dispersing and storing factors influencing the serum quality have been investigated including container material, sampling volume, packing mode and storage time. The contents of twelve main elements in the rat serum have been not only evaluated by ICP-MS but also verified by other analytical techniques. The probation of this unconventional candidate serum reference material by different laboratories has given very similar contents of 12 main trace elements in the serum, and proven its applicability to support quality assurance of biological sample analyses.

  1. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  2. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL(-1)NH4OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg(-1), respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg(-1)) was higher than I (0.150-2.28μgg(-1)) for all the evaluated samples.

  3. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  4. Detection of Selenoproteins by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP MS) in Immobilized pH Gradient (IPG) Strips.

    PubMed

    Sonet, Jordan; Mounicou, Sandra; Chavatte, Laurent

    2018-01-01

    In contrast to other trace elements that are cofactors of enzymes and removed from proteins under denaturing conditions, Se is covalently bound to proteins when incorporated into selenoproteins, since it is a component of selenocysteine aminoacid. It implies that selenoproteins can undergo several biochemical separation methods in stringent and chaotropic conditions and still maintain the presence of selenium in the primary sequence. This feature has been used to develop a method for the detection of trace levels of human selenoproteins in cell extracts without the use of radioactive isotopes. The selenoproteins are separated as a function of their isoelectric point (pI) using iso-electrofocusing (IEF) electrophoretic strips and detected by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). This method, therefore referred to as IEF-LA-ICP MS, allowed the detection of several selenoproteins in human cell lines, including Gpx1, Gpx4, TXNRD1, TXNRD2, and SELENOF.

  5. Metabolite and mineral profiling of "Violetto di Niscemi" and "Spinoso di Menfi" globe artichokes by (1)H-NMR and ICP-MS.

    PubMed

    Albergamo, Ambrogina; Rotondo, Archimede; Salvo, Andrea; Pellizzeri, Vito; Bua, Daniel G; Maggio, Antonella; Cicero, Nicola; Dugo, Giacomo

    2017-05-01

    Globe artichoke has been long considered a nutraceutical food for its valuable content of bioactive compounds. However, beside a well-known polyphenol profile, poor information is available about its metabolite and mineral composition. The aim of this study was to investigate edible parts of Sicilian artichokes, 'Spinoso di Menfi' and 'Violetto di Niscemi', by (1)H NMR and ICP-MS for elucidating these compositional aspects. Although bracts and hearts of both artichokes shared a very similar metabolite pattern, 'Spinoso di Menfi' showed a higher number of metabolites, such as amino acids and polyphenols, than 'Violetto di Niscemi'. 'Spinoso di Menfi' was also marked by higher levels of macro- and microelements when compared to 'Violetto di Niscemi'. Also, artichoke heart demonstrated to accumulate higher mineral levels than bracts. (1)H NMR and ICP-MS successfully profiled metabolites and metals in such plant food, partially covering the lack of literature data about 'Spinoso di Menfi' and 'Violetto di Niscemi' artichokes.

  6. Simultaneous in situ determination of U-Pb and Sm-Nd isotopes in monazite by laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, Dylan J.; Fisher, Christopher M.; Hanchar, John M.; Crowley, James L.; Ayers, John C.

    2014-06-01

    are presented for in situ simultaneous determination of U-Pb and Sm-Nd isotopes in monazite using the Laser Ablation Split-Stream (LASS) method. This method uses a laser ablation system coupled to a magnetic-sector inductively coupled plasma mass spectrometer (HR) (ICP-MS) for measuring U-Pb isotopes and a multicollector (MC) ICP-MS for measuring Sm-Nd isotopes. Ablated material is split using a Y-connector and transported simultaneously to both mass spectrometers. In addition to Sm and Nd isotopes, the MC-ICP-MS is configured to also acquire Ce, Nd, Sm, Eu, and Gd elemental abundances. This approach provides age, tracer isotope, and trace element data in the same ablation volume, reducing sampling problems associated with fine-scale zoning in accessory minerals and minimizing the material needed for ablation. Precision and accuracy of the U-Pb method (and the precision of the Sm-Nd method) is demonstrated with results from well-characterized monazite reference materials. The LASS results agree within uncertainty with the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U-Pb dates. The accuracy of the Sm-Nd method is assessed by comparing the LA-MC-ICP-MS results with ID-TIMS determinations on a well-characterized, in-house monazite reference material. The LASS method is then applied to monazite from the Birch Creek Pluton in the White Mountains of California as a case study to illustrate the utility of this method for solving geologic problems. The U-Pb ages and Sm-Nd isotopic data from the LASS method support the conclusions drawn from previous results that monazite can record timing and information about the source region(s) of hydrothermal fluids.

  7. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    PubMed Central

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  8. Investigation of Small-Scale Age Inversions in Stalagmites Using in Situ 230Th/U-Dating By Laser Ablation-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Lin, Y.; Scholz, D.; Weis, U.; Stoll, B.; Andreae, M. O.

    2014-12-01

    Post-depositional U loss or addition in stalagmites lead to increasing/decreasing (230Th/238U) activity ratios and thus to older/younger 230Th/U-ages, respectively. In order to determine potential small-scale age inversions, we determined 230Th, 234U, and 238U isotope abundances in a stalagmite from the Hüttenbläserschachthöhle, western Germany, applying a high-spatial-resolution in-situ LA-MC-ICP-MS technique. This sample has the advantage that - because of its aragonitic composition - the U content is high (several µg g-1) and that large-scale age inversions have been previously detected by solution MC-ICP-MS. Due to the low intensity of 230Th (20 - 80 cps), we carefully optimized the operating parameters of the 213 nm Nd:YAG laser, such as scan speed (4 µm s-1), ablation time (1000 s), spot size (110 µm), and pulse repetition rate (20 Hz). We obtained a repeatability (RSE) of about 0.6 % - 0.9 % for 230Th/238U. The isotope ratios were corrected for instrumental biases using an external carbonate reference material (i.e., a flowstone in secular equilibrium). Including all sources of analytical uncertainty, we obtain a total age error (2 SE) of ca. 8 ka for a 215 ka old sample. Repeated dating of the same layers of the stalagmite yields a reproducibility of ca. 4 %. The LA-MC-ICPMS ages agree with the solution MC-ICP-MS ages within the analytical uncertainty. The high spatial resolution enables to detect small, but significant age inversions, which could not be detected by solution MC-ICP-MS. These inversions can be explained by diagenesis of speleothem CaCO3, which may play an important role for the alteration of speleothem ages.

  9. A multi-element ICP-MS survey method as an alternative to the heavy metals limit test for pharmaceutical materials.

    PubMed

    Wang, T; Wu, J; Hartman, R; Jia, X; Egan, R S

    2000-10-01

    A multi-element inductively coupled plasma-mass spectrometry (ICP-MS) survey method has been demonstrated as an alternative to the antiquated 'heavy metals limit test' prescribed by United States Pharmacopoeia (USP), European Pharmacopoeia (EP), and British Pharmacopoeia (BP), for drug substances, intermediates, and raw materials. The survey method is simple, fast, sensitive, semi-quantitative to quantitative, and includes all the elements which can be analyzed by atomic spectroscopy.

  10. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a 'standard' instrument setup.

    PubMed

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for 'off-line' analyses or complicated sample introduction systems involving several pumps and valves for 'on-line' analyses. As an alternative, the following method offers a simple method for 'on-line' analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: •Simple and convenient analyses of seawater requiring no changes to the 'standard' sample introduction system except from a resin-filled micro-column connected to the sample tube. The 'standard' sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and•Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME.

  11. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    USGS Publications Warehouse

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  12. A method for the routine determination of methylmercury in marine tissue by GC isotope dilution-ICP-MS.

    PubMed

    Valdersnes, Stig; Maage, Amund; Fliegel, Daniel; Julshamn, Kåre

    2012-01-01

    Currently, there is no legal limit for methyl mercury (MeHg) in food; thus, no standardized method for the determination of MeHg in seafood exists within the European jurisdiction. In anticipation of a future legislative limit an inductively coupled plasma isotope dilution mass spectrometry (GC-ICP-ID-MS) method was developed in collaboration with the European Standardization Organization (CEN). The method comprises spiking the tissue sample with Me201Hg, followed by decomposition with tetramethylammonium hydroxide, pH adjustment and derivatization with sodium tetraethylborate, and finally organic extraction of the derivatized MeHg in a hexane phase. Subsequently, the sample is analyzed via GC-ICP-MS and the result calculated using the ID equation. The working range of the method was 0.0005-1.321 mg/kg MeHg in marine tissue, with an internal reproducibility (RSD) of 12-1%. The method was validated based on statistical measures, such as the z-scores, using the commercially available reference materials from National Institute of Standards and Technology Standard Reference Material (NIST SRM) 1566b, NIST SRM 2977 and National Research Council of Canada (NRCC) TORT 2, NRCC, DORM 3, NRCC DOLT 4, and European Reference Material (ERM) CE 464. Z-scores for all standard reference materials, except for NIST SRM 1566b, were better than 11.51. The wide range of marine tissues used during the validation ensures that the method will be applicable for measuring of MeHg in seafood matrixes of all kinds.

  13. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-07-01

    Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.

  14. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Shu, Xiaoyan; Kong, Weijun; Yang, Meihua

    2016-12-01

    Contents of twenty elements (Mg, K, Ca, Na, Fe, Al, Zn, Ba, Mn, Cu, Mo, Cr, Ni, As, Se, Cd, Hg, Tl, Pb and V) in two medical and edible plant species, Alpinia oxyphylla and Morinda officinalis were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS) method after microwave digestion with HNO3-H2O2 (6:1, v/v) as the digestion solvent. Certified standard reference material Poplar leaf was used to assess the accuracy of the method. The greatest contents of Mg, K, Ca, Al, Fe and Na were found in dried Alpinia oxyphylla and Morinda officinalis samples. The contents of five heavy metals including Pb, Cd, As, Hg and Cu in Alpinia oxyphylla did not exceed the limits. The contents of Pb in 76.67% samples and Cd in two batches of Morinda officinalis samples exceeded the limits set by Chinese Pharmacopeia. The contents of the selected elements in different parts (leaves, stems, roots and fruits) of Alpinia oxyphylla varied considerably. The highest concentrations of Mg, Ca, Mn and Se were found in the leaves of Alpinia oxyphylla, at the same time, while, the contents of 9 elements including Cd, Cr, Cu, As, Pb in the roots were the highest. The transfer ratios of selected elements from both species of herbs into their decoctions were reduced. Especially for the heavy metals, the transfer ratios were below 30% except As (79.73%) in Morinda officinalis. The results showed that decoction of the samples may reduce the intake of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative study on macro- and micro-elements concentration in Nicotiana tabacum and Faba siliquis plants by ICP-MS

    NASA Astrophysics Data System (ADS)

    Balazs, Zoltan; Voica, Cezara; Dehelean, Adriana; Magdas, Dana Alina; Ristoiu, Dumitru

    2015-12-01

    Plants are important components of ecosystems as they transfer elements from abiotic into biotic environments. The concentration of macro and micro-elements in tobacco leaves (Nicotiana tabacum) and bean (Faba siliquis) was analyzed using ICP-MS technique. The results obtained indicated that the mean concentration of Mg, P, K and Ca in tobacco leaves was 0.965, 0.812, 4.412 and 2.694 g.kg-1, respectively, while in bean samples were 0.899, 2.024, 6.725 and 1.387 g.kg-1, respectively. Mn concentration ranged from 156.835 mg.kg-1 to 234.593 mg.kg-1 in tobacco leaves and from 116.174 mg.kg-1 to 440.423 mg.kg-1 in bean samples. The results for Cu and Zn were between 7.262 mg.kg-1 and 105.738 mg.kg-1, 68.549 mg.kg-1 and 113.720 mg.kg-1 (tobacco leaves); and 6.830 mg.kg-1 and 46.034 mg.kg-1, 50.166 mg.kg-1 and 77.242 mg.kg-1 (bean samples), respectively. In analyzed samples, Pb, Cd and As concentrations ranged between <0.001-0.717 mg.kg-1, 0.046 mg.kg-1 -6.218 mg.kg-1, <0.001-0.381 mg.kg-1. The paper discusses the transfer of metal ions (Mn, As, Cd, Cu, Pb and Zn, respectively) from soil to these plants in terms of transfer factors (TF).

  16. ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Carter, Lukas M.

    Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or

  17. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination.

    PubMed

    Jia, Xiaoyu; Gong, Dirong; Wang, Jiani; Huang, Fuyi; Duan, Taicheng; Zhang, Xian

    2016-11-01

    A new specific phosphine modified polymer microsphere (PPMs) was designed and used as the core adsorbent to comprehensively enrich both inorganic and organic arsenic species in environmental waters by on line solid-phase extraction (SPE). Avoiding any redox reagent, all the four arsenic species have been quantitatively retained on the home made mini-column with large number of positively charged adsorption groups, and then eluted rapidly (within seconds) with a mixed solution of ammonium nitrate and ammonium dihydrogen phosphate. The trace separation and determination of As(III), DMA, MMA and As(V) species have been simultaneously achieved by high performance liquid chromatography hyphenated to inductively coupled plasma spectrometry (HPLC-ICP-MS) technique. This work has developed a versatile tri-n-butylphosphine functionalized polymer microsphere for an efficient and reliable on-line of simultaneous preconcentration and detection of inorganic and organic arsenic speciation. Under the optimized experimental conditions, the enrichment factors obtained for As(III) and DMA with 25mL sample solution were 28, while for MMA and As(V) reached 30. The low detection limits of 1.2ngL(-1), 0.96ngL(-1), 0.82ngL(-1) and 0.91ngL(-1), with the relative standard deviations (RSDs) of 3.9%, 5.6%, 3.2% and 4.5% were obtained for As(III), DMA, MMA and As(V), respectively. The developed method was validated by analyzing Certified Reference Materials GSBZ 07-3171-2014, promising for routine monitoring of arsenic species in lake water, river water and seawater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Measurement of the Density of Engineered Silver Nanoparticles Using Centrifugal FFF-TEM and Single Particle ICP-MS.

    PubMed

    Tadjiki, Soheyl; Montaño, Manuel David; Assemi, Shoeleh; Barber, Angela; Ranville, James; Beckett, Ronald

    2017-06-06

    A methodology has been developed to measure nanoparticle mass and density, by combining centrifugal field-flow fractionation (CeFFF; more commonly called sedimentation FFF or SdFFF) and transmission electron microscopy (TEM). Particle effective mass obtained from CeFFF retention data and particle size obtained from the TEM images were used to calculate the nanoparticle density. The method was initially applied to measure the density of monodispersed polystyrene latex nanoparticles. Measured densities for latex nanoparticles of 160-300 nm in diameter were in the range of 1041-1063 kg m(-3) with standard deviations of 0.6-1.1%. Densities of engineered silver nanoparticles with nominal diameters of 30, 60, 75, and 100 nm were measured using this methodology. For all four silver nanoparticle samples, the measured densities were 18-24% lower than the nominal density of metallic silver, with an overall mean value of 7900 ± 675 kg m(-3). Density values calculated using nanoparticle mass values obtained from single particle inductively coupled plasma-mass spectrometry (spICP-MS) measurements, corroborated the CeFFF-TEM results. The difference in the density of the silver nanoparticles compared to that of bulk silver suggests that the synthesis process could impart 20-37% porosity in silver nanoparticles. The data has important implications in the fields of nanomaterial, nanomedicine and nanotoxicology, where assumption of the bulk density for nanoparticles can result in erroneous estimation of parameters such as mass, size, porosity, and dosage. The presented methodology provides a straightforward and reproducible means for measurement of the density and porosity of engineered nanoparticles with a wide range of density and size.

  19. U-Th dating of vein calcite by LA-MC-ICP-MS: preliminary results from geothermal systems

    NASA Astrophysics Data System (ADS)

    McGee, L. E.; Reich, M.; Rodriguez, V.; Leisen, M.; Barra, F.

    2014-12-01

    The measurement of U-series isotopes in precipitated minerals such as calcite holds various challenges, including low U and Th concentrations (in the ppb-ppt range), and the presence of detrital 232Th which can lead to age overestimations. Additionally, as yet there does not exist a calcite standard reference material for inter-laboratory accuracy and precision comparison, with most laboratories using their own in-house standard material and focussing largely on application to paleoclimate studies (e.g. corals and speleothems). In actively deforming regions, high-pressure hydrothermal fluids play an important role in faulting and vein formation, and commonly fault rupture is followed by rapid sealing through mineral precipitation. Therefore, precise dating of vein growth is of special importance to our understanding of the complex interplay between seismic events and fluid flow in the upper crust, and opens up a new field of study using U-Th techniques. The ability to accurately date fault-filling calcite within such settings has the power to elucidate the connection between structure and fluid flow in the development of geothermal systems, and provide valuable information on the longevity of the heat/water source, in addition to regional magmatic history. We are developing U-Th measurements and ages of vein calcite from geothermal systems using a Neptune Plus MC-ICP-MS (with 5 CDDs and 3 SEMs) coupled to an excimer 193nm Photon Machines laser. We will be comparing our results with an 189ka in-house flowstone calcite standard previously dated by TIMS, as well as developing a geothermal calcite standard.

  20. Variability of selected trace elements of different meat cuts determined by ICP-MS and DRC-ICPMS.

    PubMed

    Gerber, N; Brogioli, R; Hattendorf, B; Scheeder, M R L; Wenk, C; Günther, D

    2009-01-01

    The aim of this study was to determine the levels of cadmium, lead, iron, zinc, selenium, manganese, copper and molybdenum in different cuts of beef, pork, lamb, chicken and foal collected from supermarkets and butcheries in Switzerland. The concentrations of manganese, copper, molybdenum, zinc, iron, selenium, cadmium and lead were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Mean values and their respective coefficients of variation were calculated from the measured concentrations. The concentrations found for cadmium and lead ranged from 0.6 to 3.9 μg/100 g and 1.0 to 2.1 μg/100 g, respectively. Concentrations ranged between 0.5 and 3.3 mg/100 g for iron, 0.7 and 5.1 mg/100 g for zinc, 9 and 44 μg/100 g for selenium, 3.1 and 16.7 μg/100 g for manganese, 0.3 and 132 μg/100 g for copper and 0.9 and 3.2 μg/100 g for molybdenum. Differences found for the concentrations in meat from different species as well as between the individual meat cuts were notable for iron, zinc, selenium and copper. Manganese concentrations were found to vary unsystematically within muscles and species. Molybdenum concentrations were higher in chicken meat in comparison with the mammalian meats. The highest coefficients of variation were found for manganese (13% to 142%) and copper (13% to 224%), while the lowest was found for zinc (4% to 45%). In conclusion, in order to provide an accurate overview and to be able to calculate reliable dietary intakes, it is important to include the variability in food composition data.

  1. A PIXE and ICP-MS analysis of metallic atmospheric contaminants in tree bark tissues, a basis for biomonitoring uses.

    PubMed

    Ayrault, Sophie; El Alaoui-Faris, Fatima Ezzahra; Asta, Juliette; Tissut, Michel; Daudin, Laurent; Mariet, Clarisse; Ravanel, Patrick; Gaudry, André; Cherkaoui, Rajaa

    2007-05-01

    The qualitative and quantitative metallic content of tree barks of Argania spinosa (L.) Skeels were studied. Argania spinosa is an endemic species in Morocco. This tree is adapted to semi-arid climates and exposed to specific conditions of relative humidity, temperature, wind, and particle transport. Three sites were sampled in Morocco: the large town of Rabat, the harbor of Agadir, and Aït Baha, a countryside location exposed to continuous desert wind. The methodologies included (1) in situ microanalysis with proton-induced X-ray emission (PIXE) and (2) trace element determinations by mass spectrometry with inductively coupled plasma (ICP-MS) associated with extraction procedures. Both methods allowed detection of elements coming from different bark compartments. The profile of airborne contaminants in the barks was typical of the sampling sites. The level of lead in barks sampled in Rabat reached 100 ng cm(-2), or higher, while it varied between 3 and 35 ng cm(-2) in Aït Baha. The in situ study of the microscopic structure of the bark provided the location of major and minor elements at various depths inside the bark. A differential between free deposit on the bark surface and penetrated content was found for the major and trace elements. The free deposit on the bark surface was suspected to be mostly the result of recent contamination. Part of the contaminants spread out on the surface penetrated the superficial suber. This long-term accumulation affected mostly Pb. In deeper levels, airborne elements at low concentrations and elements resulting from root uptake were concurrently present and resulted in a complex situation, as noted for zinc.

  2. Determination of trace elements in rape honey and its corresponding rape flower and stem by ICP-MS.

    PubMed

    Chen, Hui; Wang, Zhi-Bin; Chang, Qiao-Ying; Wang, Wei; Fan, Chun-Lin; Pang, Guo-Fang

    2014-02-01

    The determination of 10 trace elements including Na, Mg, P, K, Ca, Mn, Zn, Rb, Sr and Ba, in rape honey and its corresponding rape flower and stem gathered from nine sampling sites was carried out by inductively coupled plasma mass spectrometry (ICP-MS). The contents of K, P, Ca, Mg and Na were obviously higher than Zn, Rb, Mn, Sr and Ba in rape honey, rape flower and rape stem. For the first five elements, K had the highest content, followed by P, Ca, Mg and Na. However, the order of content for latter five elements was not the same in different matrixes. The contents of K, P and Ca were all higher than 1 000 mg x kg(-1) in rape flower and rape stem, while the contents of P, Ca, Mn, Zn and Rb in rape flower were slightly higher than in rape stem. It can be concluded that rape flower showed slightly higher concentrating ability for trace elements than rape stem. Based on these results, radar chart was firstly applied to research the relationship of 10 elements in rape honey and its corresponding rape flower and stem. The aim of the present work was to study the possibility of using trace elements contents in rape flower to trace the geographical and botanical origin of honey instead of rape honey. It can be found from the radar charts that the stars of rape honey, rape flower and rape stem were similar to each other. This research not only provides the basic data of trace elements in comparative study of rape honey, but also gives scientific basis for tracing the origin of rape honey according to the trace elements in corresponding rape flower that replaces those of rape honey.

  3. Impact history of the Chelyabinsk meteorite: Electron microprobe and LA-ICP-MS study of sulfides and metals

    NASA Astrophysics Data System (ADS)

    Andronikov, A. V.; Andronikova, I. E.; Hill, D. H.

    2015-12-01

    Electron microprobe and LA-ICP-MS study of sulfides and metals from two fragments of the LL5 Chelyabinsk meteorite were conducted. The fragments are impact breccias, one fragment contains both chondritic and shock vein lithologies, and the other contains shock-darkened chondritic clasts and vesicular impact melts. The chondritic lithology and shock veins display very similar opaque mineral compositions. The mineral compositions in the impact-melt breccias are distinctly different. The brecciated state of the Chelyabinsk meteorite suggests strong involvement of shock-related processes during the evolution of the parent body. Multiple heavy impact events occurred on the parent asteroid and on the Chelyabinsk meteoroid itself over the time period from ca. 4.5 Ga until ca. 1.2 Ma. The shock veins were produced in situ on the parent body. The impact-melt breccias could have formed because of the dramatic impact to the parent LL-chondrite body that could be partly disintegrated. The fragment containing shock-darkened chondritic clasts and vesicular impact melt lithologies preserves a record of melting, volatilization, partial degassing, and quenching of the molten material. The abundance and size (up to 1 mm) of the vesicles suggest that the impact melt must have been buried at some depth after formation. After impact and subsequent melting occurred, the impact-induced pressure on the shallow asteroid interior was released that caused "boiling" of volatiles and generation of S-rich bubbles. Such an impact excavated down to depths of the body generating multiple fragments with complicated histories. These fragments reaccumulated into a gravitational aggregate and formed the parental meteoroid for the Chelyabinsk meteorite.

  4. Determination of the strontium isotope ratio by ICP-MS ginseng as a tracer of regional origin.

    PubMed

    Choi, Sung-Min; Lee, Hae-Suk; Lee, Gae-Ho; Han, Jae-Kil

    2008-06-01

    This study presents the inductively coupled plasma mass spectrometry (ICP-MS) as a method for tracing the regional origin of ginseng. The results of the analysis of 15 Korean ginsengs from three different regions and of 15 Chinese ginsengs from three different regions reveal that the Sr isotope ratios (87)Sr/(86)Sr of the ginsengs differed according to their origin. For pretreatment, the ginseng samples were dried, and were dissolved through microwave digestion, then were each made to amount to 6ml with 11.9M HCl. Rb was then separated from Sr to enable an interference-free measurement through cation exchange chromatography. Six millilitres of the ginseng sample were injected in the column, and 60ml of 11.9M HCl was passed through the column at a 1mlmin(-1) flow rate to separate Rb from Sr. After Rb was eluted completely, 60ml of 5.0M HCl was passed at a 1mlmin(-1) flow rate to collect Sr. In the Sr collection step, the first 10ml portion of 30ml eluate was discarded, and the next 10ml portion was taken and was diluted with de-ionized water at a ratio of 1:3, for analysis purposes. The results of the analysis of 30 ginseng samples revealed that the Chinese ginsengs have an (87)Sr/(86)Sr ratio range of 0.672-0.701, and the Korean ginsengs 0.705-0.714. The Korean ginsengs, therefore, have a higher (87)Sr/(86)Sr ratio range than the Chinese ginsengs. Of the Korean ginsengs, (87)Sr/(86)Sr ratio range of ginsengs from Punggi, Geumsan and Hongcheon are about 0.706-0.709, 0.705-0.706, and 0.710-0.714, respectively. Copyrigh