Science.gov

Sample records for quadrupole ion storage

  1. Multifactorial optimization approach for the determination of polycyclic aromatic hydrocarbons in river sediments by gas chromatography-quadrupole ion trap selected ion storage mass spectrometry.

    PubMed

    Leite, Natalicio Ferreira; Peralta-Zamora, Patricio; Grassi, Marco Tadeu

    2008-05-30

    A procedure for the determination of very low polycyclic aromatic hydrocarbons (PAHs) concentrations in sediment samples has been developed by gas chromatography-quadrupole ion trap mass spectrometry (GC-QIT MS) after extraction with dichloromethane and purification by using silica gel cleanup. Identification and quantification of analytes were based on the selected ion storage (SIS) strategy using deuterated PAHs as internal standards. In order to search out the main factors affecting the SIS mass spectrometry efficiency, four MS parameters, including target total ion count (TTIC), waveform amplitude (WA), transfer line (XLT) and ion trap temperatures (ITT) were subjected to a complete multifactorial design. The most relevant parameters obtained (TTIC and WA) were optimized by a rotatable and orthogonal composite design. Optimum values for these parameters were selected for the development of the method involving PAH determination in sediment samples. The optimized method exhibited a range of 111-760% higher signal-to-noise (S/N) ratios for PAHs in comparison with the method operated by the default conditions, demonstrating that the multifactorial optimization contributed to substantially improve the sensitivity of the GC-QIT MS determination. The accuracy of the method was verified by analyzing NWRI EC-3 certified reference material (Lake Ontario sediment). The selectivity, sensitivity (limits of quantification were in the range of 0.02-11.0 ng g(-1)), accuracy (recoveries >or=77%) and precision (RSD

  2. Improving IRMPD in a quadrupole ion trap.

    PubMed

    Newsome, G Asher; Glish, Gary L

    2009-06-01

    A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 x 10(-3) Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5-10 ms at a bath gas pressure of 3.3 x 10(-4) Torr and in 3-25 ms at 1.0 x 10(-3) Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.

  3. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  4. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  5. Space charge induced nonlinear effects in quadrupole ion traps.

    PubMed

    Guo, Dan; Wang, Yuzhuo; Xiong, Xingchuang; Zhang, Hua; Zhang, Xiaohua; Yuan, Tao; Fang, Xiang; Xu, Wei

    2014-03-01

    A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an "ocean wave" shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

  6. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  7. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  8. Electrostatic quadrupoles for heavy-ion fusion

    SciTech Connect

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed.

  9. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  10. Ion cloud model for a linear quadrupole ion trap.

    PubMed

    Douglas, Don J; Konenkov, Nikolai V

    2012-01-01

    If large numbers of ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies of ions to decrease. Ions then appear at higher apparent masses when resonantly ejected for mass analysis. In principle, to calculate mass shifts requires calculating the positions of all ions, interacting with each other, at all times, with a self-consistent space charge field. Here, we propose a simpler model for the ion cloud in the case where mass shifts and frequency shifts are relatively small (ca 0.2% and 0.4%, respectively), the trapping field is much stronger (ca × 10(2)) than the space charge field and space charge only causes small perturbations to the ion motion. The self-consistent field problem need not be considered. As test ions move with times long compared to a cycle of the trapping field, the motion of individual ions can be ignored. Static positions of the ions in the cloud are used. To generate an ion cloud, trajectories of N (ca 10,000) ions are calculated for random times between 10 and 100 cycles of the trapping radio frequency field. The ions are then distributed axially randomly in a trap four times the field radius, r(0) in length. The potential and electric field from the ion cloud are calculated from the ion positions. Near the trap center (distances r< 1r(0)), the potential and electric fields from space charge are not cylindrically symmetric, but are quite symmetric for greater values of r. Trajectories of test ions, oscillation frequencies and mass shifts can then be calculated in the trapping field, including the space charge field. Mass shifts are in good agreement with experiments for reasonable values of the initial positions and speeds of the ions. Agreement with earlier analytical models for the ion cloud, based on a uniform occupation of phase space, or a thermal (Boltzmann) distribution of ions trapped in the effective potential [D. Douglas and N.V. Konenkov, Rapid Commun. Mass Spectrom. 26, 2105 (2012)] is

  11. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  12. Ion collision crosssection measurements in quadrupole ion traps using a time-frequency analysis method.

    PubMed

    He, Muyi; Guo, Dan; Chen, Yu; Xiong, Xingchuang; Fang, Xiang; Xu, Wei

    2014-12-01

    In this study, a method for measuring ion collision crosssections (CCSs) was proposed through time-frequency analysis of ion trajectories in quadrupole ion traps. A linear ion trap with added high-order electric fields was designed and simulated. With the presence of high-order electric fields and ion-neutral collisions, ion secular motion frequency within the quadrupole ion trap will be a function of ion motion amplitude, thus a function of time and ion CCS. A direct relationship was then established between ion CCS and ion motion frequency with respect to time, which could be obtained through time-frequency analysis of ion trajectories (or ion motion induced image currents). To confirm the proposed theory, realistic ion trajectory simulations were performed, where the CCSs of bradykinin, angiotensin I and II, and ubiquitin ions were calculated from simulated ion trajectories. As an example, differentiation of isomeric ubiquitin ions was also demonstrated in the simulations. PMID:25319271

  13. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  14. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  15. "Fast excitation" CID in a quadrupole ion trap mass spectrometer.

    PubMed

    Murrell, J; Despeyroux, D; Lammert, S A; Stephenson, J L; Goeringer, D E

    2003-07-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.

  16. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  17. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  18. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    PubMed Central

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport. PMID:22247650

  19. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  20. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  1. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  2. Purification of Radioactive Ion Beams by Photodetachment in a RF Quadrupole Ion Beam Cooler

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Galindo-Uribarri, Alfredo {nmn}; Lewis, Thomas L.

    2009-01-01

    A highly efficient method for suppressing isobar contaminants in negative radioactive ion beams by photodetachment is demonstrated. A laser beam having the appropriate photon energy is used to selectively neutralize the contaminants. The efficiency of photodetachment can be substantially improved when the laser-ion interaction takes place inside a radio frequency quadrupole ion cooler. In off-line experiments with ion beams of stable isotopes, more than 99.9% suppression of Co{sup -}, S{sup -}, and O{sup -} ions has been demonstrated while under the identical conditions only 22% reduction in Ni{sup -} and no reduction in Cl{sup -} and F{sup -} ions were observed. This technique is being developed for on-line purification of a number of interesting radioactive beams, such as {sup 56}Ni, {sup 17,18}F, and {sup 33,36}Cl.

  3. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  4. Performance of quadrupole and sextupole magnets for the Advanced Photon Source storage ring

    SciTech Connect

    Kim, S.H.; Doose, C.L.; Kim, K.; Thompson, K.M.; Turner, L.R.

    1993-10-01

    From the magnetic measurement data of several production quadrupole and sextupole magnets for the storage ring of the Advanced Photon Source, the excitation efficiencies and systematic and random multipole coefficients of the magnets are summarized. The designs of the magnets, which are constrained due to the geometry of the vacuum chamber have rotation symmetries of 180{degrees} and 120{degrees}. The production data meet the allowed tolerances of a few parts in 10{sup {minus}4} for the storage ring.

  5. Resonance excitation of ions stored in a quadrupole ion trap. Part IV. Theory of quadrupolar excitation

    NASA Astrophysics Data System (ADS)

    Alfred, Roland L.; Londry, Frank A.; March, Raymond E.

    1993-06-01

    A new theoretical treatment is presented for quadrupolar resonance excitation of ions stored in a quadrupole ion trap. When the ratio of the tickle voltage amplitude to that of the drive potential is small, the equation of ion motion can be expressed in the form of a perturbation series. Exact and approximate solutions to the first-order perturbation eqations are presented. Ion trajectories calculated from these solutions are compared with those calculated by numerical integration. The resonance conditions were found to correspond to a series of angular frequencies given by [omega]u,n = n + [beta]u - [infinity] < n < [infinity]. Some of these, [beta]z[Omega], (1 + [beta]z)[Omega](1 - [beta]z)[Omega] [beta],[Omega], had been observed previously in simulation studies.

  6. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Kaplan, Desmond A; Hartmer, Ralf; Speir, J Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A

    2008-01-01

    Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

  7. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  8. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  9. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  10. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study.

    PubMed

    Jiang, Ting; He, Miyi; Guo, Dan; Zhai, Yanbing; Xu, Wei

    2016-04-28

    Previously, we have demonstrated the feasibility of measuring ion collision cross sections (CCSs) within a quadrupole ion trap by performing time-frequency analyses of simulated ion trajectories. In this study, an improved time-frequency analysis method, the filter diagonalization method (FDM), was applied for data analyses. Using the FDM, high resolution could be achieved in both time- and frequency-domains when calculating ion time-frequency curves. Owing to this high-resolution nature, ion-neutral collision induced ion motion frequency shifts were observed, which further cause the intermodulation of ion trajectories and thus accelerate image current attenuation. Therefore, ion trap operation parameters, such as the ion number, high-order field percentage and buffer gas pressure, were optimized for ion CCS measurements. Under optimized conditions, simulation results show that a resolving power from 30 to more than 200 could be achieved for ion CCS measurements. PMID:27066889

  11. Accelerated simulation study of space charge effects in quadrupole ion traps using GPU techniques.

    PubMed

    Xiong, Xingchuang; Xu, Wei; Fang, Xiang; Deng, Yulin; Ouyang, Zheng

    2012-10-01

    Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 10(5) ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.

  12. Broad spectrum drug screening using liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Stone, Judy

    2010-01-01

    Centrifuged urine, internal standard (promazine), and ammonium formate buffer are mixed in an autosampler vial to achieve a 10-fold dilution of the specimen. Without additional pretreatment, 10 microL of the sample is injected onto a C18 reverse phase column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray atmospheric pressure ionization. Pseudomolecular drug ions are analyzed by a hybrid triple quadrupole linear ion trap mass spectrometer operated with a 264-drug selected ion monitoring (SRM) acquisition method that includes an information-dependant acquisition (IDA) algorithm. PMID:20077072

  13. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  14. Improving Negative Ion Beam Quality and Purity with a RF Quadrupole Cooler

    SciTech Connect

    Liu, Y.

    2011-09-26

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negative ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  15. Improving Negative Ion Beam Quality And Purity With A RF Quadrupole Cooler

    SciTech Connect

    Liu, Yuan

    2011-01-01

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negation ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  16. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  17. Dynamics Of Ions In A Radio-Frequency Quadrupole Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Williams, Angelyn P.; Maleki, Lutfollah

    1994-01-01

    Report describes computer-simulation study of motions of various numbers of ions in Paul trap. Study part of continuing effort to understand motions of trapped charged particles (atoms, ions, molecules, or dust particles). Motions characterized in terms of heating by radio-frequency fields, formation of crystallike structures in cold clouds of trapped particles, and other phenomena important in operation of radio-frequency traps in frequency standards.

  18. A compact radio frequency quadrupole for ion bunching in the WITCH experiment

    NASA Astrophysics Data System (ADS)

    Traykov, E.; Beck, M.; Breitenfeldt, M.; Delahaye, P.; De Leebeeck, V.; Friedag, P.; Herlert, A.; Geeraert, N.; Heirman, W.; Lønne, P.-I.; Mader, J.; Roccia, S.; Soti, G.; Tandecki, M.; Timmermans, M.; Thiboud, J.; Van Gorp, S.; Wauters, F.; Weinheimer, C.; Zákoucký, D.; Severijns, N.

    2011-08-01

    During the last several years the WITCH (Weak Interaction Trap for CHarged particles) experimental setup at ISOLDE has undergone various upgrades aiming at improvement of general performance. An essential innovation, a compact Radio Frequency Quadrupole (RFQ) ion cooler and buncher device, was designed and successfully commissioned as a part of the off-line tuning system of WITCH. The RFQ is coupled to the existing surface ionization ion source providing high intensity ion bunches (up to 107 ions per bunch) towards the pulsed drift tube and the Penning traps of WITCH. This achievement allows for loading and tuning of the Penning traps in the domain of space charge limits and grants off-line operation independently of the REX-ISOLDE ion source. The current upgrade allows for a more thorough and frequent testing with bunched stable ion beams of high intensities, which will be used for studying various systematic effects involved in experiments with radioactive ions.

  19. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    NASA Astrophysics Data System (ADS)

    Pavlovic, Márius; Griesmayer, Erich; Seemann, Rolf

    2005-06-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  20. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  1. Lithium-Ion Cell Storage Study

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalkrishna M.

    2000-01-01

    This viewgraph presentation reviews the issues concerning storage of lithium ion batteries. The presentation outlines tests used to establish a best long term storage for the lithium ion cells. Another objective of the study was to determine the preferred solstice condition for the lithium ion chemistry (polymer and liquid electrolyte). It also compared voltage clamped with trickle charge storage. The tests and results are reviewed

  2. Effects of line shifts and the ion quadrupole contribution of spectral line asymmetries.

    SciTech Connect

    Gunderson, M. A.; Delamater, N. D.; Kilcrease, D. P.; Haynes, D. A.

    2002-01-01

    Line asymmetries and the corresponding shift of spectral lines due to the electron penetration of the radiator orbitals and the ion quadrupole contribution become more significant with increasing principal quantum number and increasing electron density. The mean field static shift due to electron penetration of the orbitals gives rise to an overall shift of the line to lower energy and a significant asymmetry near line center, but does not generate much redhlue far wing asymmetry. The ion quadrupole contribution results in a small blue shift of the spectral line and a small change in asymmetry near line center, but it gives rise to a significant redhlue wing asymmetry in the far wings of the line. Experimental data fiom recent spherical implosion experiments on OMEGA shows evidence of the mean field static shift and may also show the effects of level interactions between the Ar Lyman -{gamma}, -{delta}, -{var_epsilon} lines and also the Ar He -{gamma}, -{delta} lines.

  3. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya

    2007-12-01

    We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  4. A new technique for unbiased external ion accumulation in a quadrupole two-dimensional ion trap for electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Belov, M E; Nikolaev, E N; Alving, K; Smith, R D

    2001-01-01

    External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.

  5. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described. PMID:12216729

  6. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    PubMed

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene. PMID:24559353

  7. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  8. Efficient Isobar Suppression by Photodetachment in a RF Quadrupole Ion Cooler

    SciTech Connect

    Liu, Yuan; Havener, Charles C; Lewis, Thomas L.; Galindo-Uribarri, Alfredo {nmn}; Beene, James R

    2009-01-01

    A highly efficient method for suppressing isobar contaminants in negative radioactive ion beams by photodetachment is demonstrated. A laser beam having the appropriate photon energy is used to selectively neutralize the contaminant if the electron affinity of the contaminant is lower than the electron affinity of the desired radioactive ions. The photodetachment efficiency can be dramatically increased when the laser-ion interaction is made inside a radio frequency quadrupole ion beam cooler where the ion residence time can be a few milliseconds. In off-line experiments with ion beams of stable isotopes, more than 99.9% suppression of S- and O- ions by photodetachment has been obtained. These ions would be the contaminants of desired beams of Cl- and F-, respectively. Under similar conditions no reduction in Cl- and F- ions was observed. The off-line results demonstrate the potential of this technique for on-line purification of a number of interesting radioactive beams and possible applications in accelerator mass spectrometry.

  9. Intense ion beam transport in magnetic quadrupoles: Experiments on electron and gas effects

    SciTech Connect

    Seidl, P.A.; Molvik, A.W.; Bieniosek, F.M.; Cohen, R.H.; Faltens, A.; Friedman, A.; Kireef Covo, M.; Lund, S.M.; Prost, L.; Vay, J-L.

    2004-12-03

    Heavy-ion induction linacs for inertial fusion energy and high-energy density physics have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. We have measured electron and gas emission from 1 MeV K{sup +} incident on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach values >100, whereas gas desorption coefficients are near 10{sup 4}. Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. We also discuss the results of beam transport (of 0.03-0.18 A K{sup +}) through four pulsed room-temperature magnetic quadrupoles in the HCX at LBNL. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. A coordinated theory and computational effort has made significant progress towards a self-consistent model of positive-ion beam and electron dynamics. We are beginning to compare experimental and theoretical results.

  10. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  11. Advanced Quadrupole Ion Trap Instrumentation for Low Level Vehicle Emissions Measurements

    SciTech Connect

    McLuckey, S.A.

    1997-01-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amendable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methy-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. All of the ions with potential to serve as parent ions in a tandem mass spectrometry experiment were found to yield parent-to-product conversion efficiencies greater than 75%. The flexibility afforded to the ion trap by use of tailored wave-forms applied to the end-caps allows parallel monitoring schemes to be devised that provide many of the advantages of tandem mass spectrometry without major loss in measurement rate. A large loss in measurement rate would ordinarily result from the use of conventional tandem mass spectrometry experiments carried out in series for a large number of targeted components. These results have demonstrated that the ion trap has an excellent combination of

  12. Anion binding properties of human serum albumin from halide ion quadrupole relaxation.

    PubMed

    Norne, J E; Hjalmarsson, S G; Lindman, B; Zeppezauer, M

    1975-07-29

    The nuclear magnetic quadrupole relaxation enhancement of 35Cl-, 81Br-, and 12I- anions on binding to human serum albumin has been studied under conditions of variable protein and anion concentration and also in the presence of simple inorganic, amphiphilic, and complex anions which compete with the halide ions for the protein anion binding sites. Two classes of anion binding sites with greatly different binding constans were identified. Experiments at variable halide ion concentration were employed to determin the Cl- and I- binding constants. By means of 35 Cl nuclear magnetic resonance (NMR) the relative affinity for different anions was determined by competition experiments for both the strong and the weak anion binding sites. Anion binding follows the sequence SO42- smaller than F- smaller than CH3COO- smaller than Ci- smaller Br- smaller than NO3- smaller than I- smaller than ClO4- smaller than SCN- smaller than Pt(CN)42- smaller than Au(CN)2- smaller than CH3(CH2)11OSO3- for the high affinity sites, and the sequence SO42- congruent to F- congruent to Cl- smaller CH3COO- smaller than NO3- smaller than Br- smaller than I- smaller than ClO4- smaller than SCN- for the low affinity sites. These series are nearly identical with the well-known lyotropic series. Consequently, those effects of anions on proteins described by the lyotropic series can be correlated with the affinities of the anions for binding to the protein. The data suggest that the physical nature of the interaction is the same for both types of biding sites, and that the differences in affinity between different binding sites must be explained in terms of tertiary structure. Analogous experiments performed using 127I- quadrupole relaxation gave results very similar to those obtained with 35Cl-. A comparison between the Cl-, Br- and I- ions revealed that, as a result of the increasing affinity for the weak anion binding sites in the series Cl- smaller than Br- smaller than I-, Cl- is much more

  13. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    SciTech Connect

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-15

    We explore the potential of the electric quadrupole transitions 7s {sup 2}S{sub 1/2}-6d {sup 2}D{sub 3/2}, 6d {sup 2}D{sub 5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive {sup A}Ra{sup +} candidates, with A= 223-229, are identified. In particular, we show that the transition 7s {sup 2}S{sub 1/2} (F=2,m{sub F}=0)-6d {sup 2}D{sub 3/2} (F=0,m{sub F}=0) at 828 nm in {sup 223}Ra{sup +}, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10{sup -17}. With more experimental effort, the {sup 223,225,226}Ra{sup +} clocks could be pushed to a projected performance reaching the 10{sup -18} level.

  14. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NASA Astrophysics Data System (ADS)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-01

    We explore the potential of the electric quadrupole transitions 7s2S1/2-6d2D3/2, 6d2D5/2 in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive ARa+ candidates, with A= 223-229, are identified. In particular, we show that the transition 7s2S1/2(F=2,mF=0)-6d2D3/2(F=0,mF=0) at 828 nm in Ra223+, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10-17. With more experimental effort, the Ra223,225,226+ clocks could be pushed to a projected performance reaching the 10-18 level.

  15. Multigenerational Broadband Collision-Induced Dissociation of Precursor Ions in a Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as "multigenerational collision-induced dissociation", the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2-0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to "multigenerational" product ion mass spectra.

  16. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  17. Interfacing an ion mobility spectrometry based explosive trace detector to a triple quadrupole mass spectrometer.

    PubMed

    Kozole, Joseph; Stairs, Jason R; Cho, Inho; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; DeBono, Reno; Kuja, Frank

    2011-11-15

    Hardware from a commercial-off-the-shelf (COTS) ion mobility spectrometry (IMS) based explosive trace detector (ETD) has been interfaced to an AB/SCIEX API 2000 triple quadrupole mass spectrometer. To interface the COTS IMS based ETD to the API 2000, the faraday plate of the IMS instrument and the curtain plate of the mass spectrometer were removed from their respective systems and replaced by a custom faraday plate, which was fabricated with a hole for passing the ion beam to the mass spectrometer, and a custom interface flange, which was designed to attach the IMS instrument onto the mass spectrometer. Additionally, the mass spectrometer was modified to increase the electric field strength and decrease the pressure in the differentially pumped interface, causing a decrease in the effect of collisional focusing and permitting a mobility spectrum to be measured using the mass spectrometer. The utility of the COTS-ETD/API 2000 configuration for the characterization of the gas phase ion chemistry of COTS-ETD equipment was established by obtaining mass and tandem mass spectra in the continuous ion flow and selected mobility monitoring operating modes and by obtaining mass-selected ion mobility spectra for the explosive standard 2,4,6 trinitrotoluene (TNT). This analysis confirmed that the product ion for TNT is [TNT - H](-), the predominant collision-induced dissociation pathway for [TNT- H](-) is the loss of NO and NO(2), and the reduced mobility value for [TNT - H](-) is 1.54 cm(2)V(-1) s(-1). Moreover, this analysis was attained for sample amounts of 1 ng and with a resolving power of 37. The objective of the research is to advance the operational effectiveness of COTS IMS based ETD equipment by developing a platform that can facilitate the understanding of the ion chemistry intrinsic to the equipment.

  18. Storage Characteristics of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Blosiu, J. O.; Surampudi, S.

    2000-01-01

    Lithium ion cells are being developed under the NASA/Air Force Consortium for the upcoming aerospace missions. First among these missions are the Mars 2001 Lander and Mars 2003 Lander and Rover missions. Apart from the usual needs of high specific energy, energy density and long cycle life, a critical performance characteristic for the Mars missions is low temperature performance. The batteries need to perform well at -20 C, with at least 70% of the rated capacity realizable at moderate discharge rates (C/5). Several modifications have been made to the lithium ion chemistry, mainly with respect to the electrolyte, both at JPL' and elsewhere to achieve this. Another key requirement for the battery is its storageability during pre-cruise and cruise periods. For the Mars programs, the cruise period is relatively short, about 12 months, compared to the Outer Planets missions (3-8 years). Yet, the initial results of our storage studies reveal that the cells do sustain noticeable permanent degradation under certain storage conditions, typically of 10% over two months duration at ambient temperatures, attributed to impedance buildup. The build up of the cell impedance or the decay in the cell capacity is affected by various storage parameters, i.e., storage temperature, storage duration, storage mode (open circuit, on buss or cycling at low rates) and state of charge. Our preliminary studies indicate that low storage temperatures and states of charge are preferable. In some cases, we have observed permanent capacity losses of approx. 10% over eight-week storage at 40 C, compared to approx. 0-2% at O C. Also, we are attempting to determine the impact of cell chemistry and design upon the storageability of Li ion cells.

  19. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  20. Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase.

    PubMed

    Xu, Wei; Li, Linfan; Zhou, Xiaoyu; Ouyang, Zheng

    2014-05-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations.

  1. Ion Sponge: A 3-Dimentional Array of Quadrupole Ion Traps for Trapping and Mass-Selectively Processing Ions in Gas Phase

    PubMed Central

    2015-01-01

    In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations. PMID:24758328

  2. Developments of multiplexed and miniature two-dimensional quadrupole ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.

    Quadrupole ion trap mass spectrometry (QIT MS) is a powerful and commonly-employed method for the specific analysis of mass, composition, and structure of gas-phase ionic chemical species. Useful for a wide variety of tasks, applications of ion traps include environmental monitoring, surface analysis (including depth profiling and imaging), ion thermochemical property elucidation, protein and DNA sequencing, and high-resolution chemical separations (through ion soft-landing). Though the principles of QIT MS have been known for over half a century, innovations in instrumentation and applications continue. As new needs for specific and sensitive chemical analysis arise, so also do new and more efficient analytical devices and methods of analysis. Such a trend is exemplified through the construction of a dual-source QIT mass spectrometer (described herein) capable of multi-source chemical analyses for the purposes of enhanced proteomic sequence coverage and for the strictly-controlled comparison of the structural differences in ion populations generated by different ionization techniques. Furthermore, as mass spectrometry becomes increasingly commonplace outside the bounds of the analytical laboratory, demand for capable researcher equipment is also increasing. Advances in instrument performance, such as can be had through enhanced power efficiency and the enabling of chemical analysis of high mass-to-charge ratio (m/z) species (e.g., proteins), will open new doors to in situ chemical analysis hand-portable mass spectrometers. Hence, research into new mass analyzer designs and methods of fabrication using stereolithography apparatus (SLA) for the purpose of creating enhanced-performance mass spectrometers are accordingly described in the text of this dissertation.

  3. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Stone, Judy

    2016-01-01

    Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs. PMID:26660183

  4. Locking of the intrinsic angular momentum in the capture of quadrupole diatoms by ions

    NASA Astrophysics Data System (ADS)

    Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.

    2010-04-01

    The capture dynamics of rotationally polarised homonuclear diatoms in low-energy collisions with ions is studied theoretically. The interaction potential includes charge-quadrupole and charge-induced dipole terms. The former, taken in the perturbed rotor approximation, exhibits an R -3 anisotropic dependence and causes an only gradual locking of the intrinsic angular momentum of the diatom to the collision axis. As a result, the capture occurs in a regime of incomplete locking, and the passage over centrifugal barriers is accompanied by considerable gyroscopic effects. The j-specific capture cross-sections for rotationally-aligned diatoms show a marked dependence on the polarisation state which is not described by the conventional adiabatic channel model. The latter, however, provides a fair approximation for the cross-sections of unpolarised diatoms. These features are due to a considerable angle of rotation of the collision axis before the barrier is reached and to a small angle of rotation during the passage across the barrier. The numerically determined, scaled, capture cross-sections are represented by an approximate analytical expression that interpolates between two limiting cases, very small (adiabatic channel model) and very large (fly-wheel model) gyroscopic effects of the rotating diatom.

  5. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion. PMID:27250388

  6. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  7. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  8. Energy-resolved depth profiling of metal-polymer interfaces using dynamic quadrupole secondary ion mass spectrometry.

    PubMed

    Téllez, Helena; Vadillo, José M; Laserna, J Javier

    2009-08-01

    Quadrupole secondary ion mass spectrometry (qSIMS) characterization of a metallized polypropylene film used in the manufacturing of capacitors has been performed. Ar(+) primary ions were used to preserve the oxidation state of the surface. The sample exhibits an incomplete metallization that made it difficult to determine the exact location of the metal-polymer interface due to the simultaneous contribution of ions with identical m/z values from the metallic and the polymer layers. Energy filtering by means of a 45 degrees electrostatic analyzer allowed resolution of the metal-polymer interface by selecting a suitable kinetic energy corresponding to the ions generated in the metallized layer but not from the polymer. Under these conditions, selective analyses of isobaric interferences such as (27)Al(+) and (27)C(2)H(3) (+) or (43)AlO(+) and (43)C(3)H(7) (+) have been successfully performed.

  9. Trapping of Intact, Singly-Charged, Bovine Serum Albumin Ions Injected from the Atmosphere with a 10-cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap

    SciTech Connect

    Koizumi, Hideya; Whitten, William B; Reilly, Pete

    2008-12-01

    High-resolution real-time particle mass measurements have not been achievable because the enormous amount of kinetic energy imparted to the particles upon expansion into vacuum competes with and overwhelms the forces applied to the charged particles within the mass spectrometer. It is possible to reduce the kinetic energy of a collimated particulate ion beam through collisions with a buffer gas while radially constraining their motion using a quadrupole guide or trap over a limited mass range. Controlling the pressure drop of the final expansion into a quadrupole trap permits a much broader mass range at the cost of sacrificing collimation. To achieve high-resolution mass analysis of massive particulate ions, an efficient trap with a large tolerance for radial divergence of the injected ions was developed that permits trapping a large range of ions for on-demand injection into an awaiting mass analyzer. The design specifications required that frequency of the trapping potential be adjustable to cover a large mass range and the trap radius be increased to increase the tolerance to divergent ion injection. The large-radius linear quadrupole ion trap was demonstrated by trapping singly-charged bovine serum albumin ions for on-demand injection into a mass analyzer. Additionally, this work demonstrates the ability to measure an electrophoretic mobility cross section (or ion mobility) of singly-charged intact proteins in the low-pressure regime. This work represents a large step toward the goal of high-resolution analysis of intact proteins, RNA, DNA, and viruses.

  10. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  11. Multipole storage assisted dissociation, a novel in-source dissociation technique for electrospray ionization generated ions.

    PubMed

    Sannes-Lowery, K; Griffey, R H; Kruppa, G H; Speir, J P; Hofstadler, S A

    1998-01-01

    In this work we present a novel in-source dissociation scheme referred to as multipole storage assisted dissociation (MSAD) for electrospray ionization (ESI) generated ions in which dissociation is effected by employing extended ion accumulation intervals in a high pressure rf-only hexapole assembly prior to mass analysis. Following an extended ion accumulation interval in which ions are confined in the rf-only hexapole, ions are gated out of the hexapole, trapped, and mass analyzed in the trapped ion cell of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The accumulation region is comprised of an rf-only hexapole ion guide which separates two electrodes, a biased skimmer cone, and an auxiliary 'gate' electrode at the low pressure end of the hexapole. This technique should be applicable to other mass spectrometry platforms compatible with pulsed ionization sources including quadrupole ion traps, and time-of-flight mass analyzers. This concept is demonstrated with the dissociation of a small protein in which selective fragmentation is observed at labile amino acid linkages producing primarily y-type fragment ions.

  12. New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer.

    PubMed

    Kang, Hyuk; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2014-08-01

    A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained. This simple and powerful method is applicable to any type of double-resonance spectroscopy in a cold quadrupole ion trap and was applied to UV-UV hole-burning spectroscopy of protonated adenine dimer. It was found that protonated adenine dimer has multiple conformers/tautomers, each with multiple excited states with drastically different excited state dynamics.

  13. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  14. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    PubMed

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application.

  15. Theoretical calculations for mass resolution of a quadrupole ion trap reflectron time-of-flight mass spectrometer.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Park, Chang Joon; Kim, Nam Joon

    2010-02-01

    We have developed a theoretical method of predicting the mass resolution for a quadrupole ion trap reflectron time-of-flight (QIT-reTOF) mass spectrometer as a function of the spatial and velocity distributions of ions, voltages applied to the electrodes, and dimensions of the instrument. The flight times of ions were calculated using theoretical equations derived with an assumption of uniform electric fields inside the QIT and with the analytical description of the potential including the monopole, dipole, and quadrupole components. The mass resolution was then estimated from the flight-time spread of the ions with finite spatial and velocity distributions inside the QIT. The feasibility of the theoretical method was confirmed by the reasonable agreement of the theoretical resolution with the experimental one measured by varying the extraction voltage of the QIT or the deceleration voltage of the reflectron. We found that the theoretical resolution estimated with the assumption of the uniform electric fields inside the QIT reproduced the experimental one better than that with the analytical description of the potential. The possible applications of this theoretical method include the optimization of the experimental parameters of a given QIT-reTOF mass spectrometer and the design of new instruments with higher mass resolution.

  16. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE PAGESBeta

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  17. Development of a quadrupole-based Secondary-Ion Mass Spectrometry (SIMS) system at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Aron, Paul R.; Liff, Dale R.

    1990-01-01

    The design, construction, and initial use of an ion microprobe to carry out secondary ion mass spectrometry (SIMS) of solid samples is reported. The system is composed of a differentially pumped custom-made UHV (Ultra High Vacuum) chamber, a quadrupole mass spectrometer and a telefocus A-DIDA ion gun with the capability of producing beams of Cesium, as well as inert and reactive gases. The computer control and acquisition of the data were designed and implemented using a personal computer with plug-in boards, and external circuitry built as required to suit the system needs. The software is being developed by using a FORTH-like language. Initial tests aimed at characterizing the system, as well as preliminary surface and depth-profiling studies are presently underway.

  18. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses.

    PubMed

    Anderson, Kim A; Szelewski, Michael J; Wilson, Glenn; Quimby, Bruce D; Hoffman, Peter D

    2015-11-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC-EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC-EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC-EI/MS/MS have a large linear range of 1-10,000pgμl(-1) and detection limits of <2pgμl(-1). Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAH isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r(2) values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02±0.84pgμl(-1) with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26pgμl(-1) and only two analytes above 2.0pgμl(-1); acenaphthalene (2.33pgμl(-1)) and dibenzo[a,e]pyrene (6.44pgμl(-1)).

  19. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses

    PubMed Central

    Anderson, Kim A.; Szelewski, Michael J.; Wilson, Glenn; Quimby, Bruce D.; Hoffman, Peter D.

    2015-01-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC–EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9 mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC–EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC–EI/MS/MS have a large linear range of 1–10,000 pg μl−1 and detection limits of <2 pg μl−1. Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAHs isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r2 values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02 ± 0.84 pg μl−1 with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26 pg μl−1 and only two analytes above 2.0 pg μl−1; acenaphthalene (2.33 pg μl−1) and dibenzo[a,e]pyrene (6.44 pg μl−1). PMID:26454790

  20. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses.

    PubMed

    Anderson, Kim A; Szelewski, Michael J; Wilson, Glenn; Quimby, Bruce D; Hoffman, Peter D

    2015-11-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC-EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC-EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC-EI/MS/MS have a large linear range of 1-10,000pgμl(-1) and detection limits of <2pgμl(-1). Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAH isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r(2) values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02±0.84pgμl(-1) with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26pgμl(-1) and only two analytes above 2.0pgμl(-1); acenaphthalene (2.33pgμl(-1)) and dibenzo[a,e]pyrene (6.44pgμl(-1)). PMID:26454790

  1. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  2. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  3. A high gradient superconducting quadrupole for a low charge state ion linac

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-07-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described.

  4. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  5. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  6. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  7. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    PubMed

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. PMID:22444537

  8. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    PubMed

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  9. Direct Determination of the Magnetic Quadrupole Contribution to the Lyman-{alpha}{sub 1} Transition in a Hydrogenlike Ion

    SciTech Connect

    Weber, G.; Stoehlker, Th.; Braeuning, H.; Hess, S.; Kozhuharov, C.; Spillmann, U.; Surzhykov, A.; Maertin, R.; Winters, D. F. A.; Brandau, C.; Fritzsche, S.; Geyer, S.; Hagmann, S.; Petridis, N.; Reuschl, R.; Trotsenko, S.

    2010-12-10

    We report the observation of an interference between the electric dipole (E1) and the magnetic quadrupole (M2) amplitudes for the linear polarization of the Ly-{alpha}{sub 1} (2p{sub 3/2}{yields}1s{sub 1/2}) radiation of hydrogenlike uranium. This multipole mixing arises from the coupling of the ion to different multipole components of the radiation field. Our observation indicates a significant depolarization of the Ly-{alpha}{sub 1} radiation due to the E1-M2 amplitude mixing. It proves that a combined measurement of the linear polarization and of the angular distribution enables a very precise determination of the ratio of the E1 and the M2 transition amplitudes and the corresponding transition rates without any assumptions concerning the population mechanism for the 2p{sub 3/2} state.

  10. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  11. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  12. Paired-ion electrospray ionization--triple quadrupole tandem mass spectrometry for quantification of anionic surfactants in waters.

    PubMed

    Santos, Inês C; Guo, Hongyue; Mesquita, Raquel B R; Rangel, António O S S; Armstrong, Daniel W; Schug, Kevin A

    2015-10-01

    A new paired ion electrospray ionization tandem mass spectrometry method for determination of anionic surfactants in water samples was developed. In this method, dicationic ion-pairing reagents were complexed with monoanionic analytes to facilitate analyte detection in positive mode electrospray ionization - mass spectrometry. Single ion monitoring and selected reaction monitoring on a triple quadrupole instrument were performed and compared. Four dicationic reagents were tested for the determination of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBS), and stearic acid (SA), among other common anions. The obtained limits of detection were compared with those from previous literature. Solid phase extraction using a C18 cartridge was performed in order to eliminate matrix interferences. A literature review was compiled for the methods published between 2010 and 2015 for determination of anionic surfactants. The optimized method was more sensitive than previously developed methods with LOD values of 2.35, 35.4, 37.0, 1.68, and 0.675 pg for SDS, SA, DBS, PFOS, and PFOA, respectively. The developed method was effectively applied for the determination of anionic surfactants in different water samples such as bottled drinking water, cooking water, tap water, and wastewater.

  13. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Derkits, David; Wiseman, Alex; Snead, Russell F; Dows, Martina; Harge, Jasmine; Lamp, Jared A; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments. PMID:26483183

  14. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP.

  15. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP. PMID:24913870

  16. Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates.

    PubMed

    Yun, Young Soo; Park, Kyu-Young; Lee, Byoungju; Cho, Se Youn; Park, Young-Uk; Hong, Sung Ju; Kim, Byung Hoon; Gwon, Hyeokjo; Kim, Haegyeom; Lee, Sungho; Park, Yung Woo; Jin, Hyoung-Joon; Kang, Kisuk

    2015-11-18

    Pyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.

  17. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    PubMed Central

    Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.

    2015-01-01

    A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different

  18. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix ( Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  19. An electrostatic quadrupole doublet focusing system for MeV heavy ions in MeV-SIMS

    NASA Astrophysics Data System (ADS)

    Seki, T.; Shitomoto, S.; Nakagawa, S.; Aoki, T.; Matsuo, J.

    2013-11-01

    The importance of imaging mass spectrometry (MS) for visualizing the spatial distribution of molecular species in biological tissues and cells is growing. In conventional SIMS with keV-energy ion beams, elastic collisions occur between projectiles and atoms in constituent molecules. The collisions produce fragments, making acquisition of molecular information difficult. In contrast, MeV-energy ion beams excite electrons near the surface and enhance the ionization of high-mass molecules, hence, fragment suppressed SIMS spectrum of ionized molecules can be obtained. This work is a further step on our previous report on the successful development of a MeV secondary ion mass spectrometry (MeV-SIMS) for biological samples. We have developed an electrostatic quadrupole doublet (EQ doublet) focusing system, made of two separate lenses, Q1 and Q2, to focus the MeV heavy ion beam and reduce measurement time. A primary beam of 6 MeV Cu4+ was focused with this EQ doublet. We applied 1120 V to the Q1 lens and 1430 V to the Q2 lens, and the current density increased by a factor of about 60. Using this arrangement, we obtained an MeV-SIMS image of 100 × 100 pixels of cholesterol-OH+ of cerebellum (m/z = 369.3) over a 4 mm × 4 mm field of view, with a pixel size of 40 μm within 5 min, showing that our EQ doublet reduces the measurement time of current imaging by a factor of about 30.

  20. A generic multiple reaction monitoring based approach for plant flavonoids profiling using a triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix (Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  1. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ∼1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  2. Electron-ion merged-beam experiments at heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan

    2015-05-01

    In the past two decades, the electron-ion merged-beams technique has extensively been exploited at heavy-ion storage rings equipped with electron coolers for spectroscopic studies of highly charged ions as well as for measuring absolute cross sections and rate coefficients for electron-ion recombination and electron-impact ionization of multiply charged atoms ions. Some recent results are highlighted and future perspectives are pointed out, in particular, in view of novel experimental possibilities at the FAIR facility in Darmstadt and at the Cryogenic Storage Ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg.

  3. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  4. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  5. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  6. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  7. Secondary batteries with multivalent ions for energy storage.

    PubMed

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  8. Triterpenoid saponins profiling by adducts-targeted neutral loss triggered enhanced resolution and product ion scanning using triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-03-28

    Triterpenoid saponins (TSs) are a unique class of high molecular weight glycosides and have been frequently used in cosmetic and phytotherapy industry. There is a great need to comprehensively profile these plant metabolites for studying their functions. In the present study, a novel adducts targeted neutral loss (NL), triggered enhanced resolution (ER) and enhanced product ion (EPI) scanning approach were described for TSs profiling using a triple quadrupole linear ion trap mass spectrometry. This approach circumvented the disadvantages of poor glycosidic bond cleavage of TSs by monitoring the NH3 (NL17) and HCOOH (NL46) loss of their abundant ammonium and formate adducts, respectively. The sugar-loss independent NL scanning served as a sensitive survey scan and triggered information-dependent ER and EPI scans to increase peak assignment confidence. NL17 was superior to NL46 for TSs characterization due to the better fragmentation of ammonium adducts than formate adducts. For those TSs undetectable by NL17, precursor ion (PI) scan for sapogenin fragments could be used to screen out non-adducted TSs. The NL/PI-ER-EPI approach was applied for TSs profiling in Astragali Radix, a famous medicinal and nutritional plant widely used in Asian countries and United States. In total, 136 TSs were detected while previous research using high resolution mass spectrometry based full scan only detected 22 TSs in this herb.

  9. Separation of polychlorinated dibenzo-p-dioxins/furans, non-ortho/mono/di/tri/tetra-ortho-polychlorinated biphenyls, and polybrominated diphenyl ethers groups of compounds prior to their determination with large volume injection gas chromatography-Quadrupole ion storage tandem mass spectrometry.

    PubMed

    Roszko, Marek; Szymczyk, Krystyna; Jędrzejczak, Renata

    2013-10-17

    Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are important environmental contaminants. Their maximum legally allowable levels in food and environment are in the low pg g(-1) range. Therefore some highly selective and sensitive analytical methods must be used to determine them. Prior to final determination by GC/MS the cleaned-up samples have to be split into some fractions in view of large differences in concentrations of various analytes and existence of numerous chromatographic co-elutions (which in any case cannot be fully avoided). The aim of this study was to: (i) develop a robust, time-saving analytical method to isolate, clean-up and fractionate PCBs, PBDEs and PCDD/Fs prior to their determination with gas chromatography/ion trap mass spectrometry; (ii) assess method performance using laboratory validation data and some certified reference materials; (iii) use the developed method to assess PCB/PBDE/PCDD/F levels in samples of commercially available food. A combination of alumina, florisil, modified silica gel and two carbon columns were used for sample cleanup and fractionation. Separate fractions containing dioxins/furans, PBDE, non-ortho, mono-ortho and di-/tri-/tetra-ortho PCBs were obtained. The method statistical parameters were compatible with 1883/2006 EC Regulation (80-120%, RSD below 15%). The method performance was successfully used to evaluation of some real life food samples.

  10. Characterization of column packing materials in high-performance liquid chromatography by charge-detection quadrupole ion trap mass spectrometry.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Chen, Rui; Zhang, Yiming; Peng, Wen-Ping; Nie, Zongxiu; Chang, Huan-Cheng; Liu, Huwei; Chen, Yi

    2011-07-01

    This article reports an application of charge-detection quadrupole ion trap mass spectrometry (CD-ITMS) to characterize the column packing materials in high-performance liquid chromatography (HPLC). Both the mean mass and the mass distribution of the packing materials are obtained and used to calculate the specific surface area of unbonded silica, the carbon load of the bonded silica, and their particle size distributions. The obtained specific surface areas and carbon loads are consistent with those measured independently by nitrogen sorption and elemental analysis respectively, whereas the derived size distributions show better resolution than that measured by a laser particle size analyzer. Furthermore, we evaluate the uniformity of particle size, which is the key parameter for column efficiency of the liquid chromatography by analyzing the mass distribution of the packing materials at the top and bottom of the column. A broader mass distribution, which yields decreased column efficiency, is observed for the column top because of the excessive use of the column. Our results suggest that CD-ITMS can serve as an alternative means for the characterization of the packing materials in HPLC and is potentially useful for column quality control.

  11. A Quadrupole Ion Trap Mass Spectrometer for Quantitative Analysis of Nitrogen-Purged Compartments within the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Griffin, Timothy P.; Helms, William R.; Yost, Richard A.; Steinrock, T. (Technical Monitor)

    2001-01-01

    To enter orbit, the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the Shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sensors around the Space Shuttle. As part of this project, numerous mass analyzer technologies are being investigated. Presented here are the preliminary results for one such technology, quadrupole ion trap mass spectrometry (QITMS). A compact QITMS system has been developed in-house at the University of Florida for monitoring trace levels of four primary gases, hydrogen, helium, oxygen, and argon, all in a nitrogen background. Since commercially available QITMS systems are incapable of mass analysis at m/z(exp 2), the home-built system is preferred for the evaluation of QITMS technology.

  12. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry.

    PubMed

    He, Zeying; Xu, Yaping; Wang, Lu; Peng, Yi; Luo, Ming; Cheng, Haiyan; Liu, Xiaowei

    2016-04-01

    In this paper, a wide scope screening method of pesticides in wine was established using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF MS) and liquid chromatography/quadrupole linear ion trap mass spectrometry (LC-QqLIT MS). Information dependent acquisition (IDA) experiments are used to obtain both MS and MS/MS information for LC-QTOF MS analysis. For LC-QqLIT MS analysis, MS/MS spectra of target pesticides were simultaneously acquired using Enhanced Product Ion (EPI) mode at very low concentrations to increase the confidence in analytical results of multiple reaction monitoring (MRM) by library searching. Method validation was carried out using 50 pesticides commonly used in vineyards. The LOQs, linearity, repeatability were determined and good enough for quantification. The screening and quantification results obtained using LC-QTOF MS and LC-QqLIT MS were compared. Contaminants were screened against libraries containing over 2800 compounds based on accurate mass, isotopic patterns, and MS/MS spectra searching to extend the scope of this methodology to non-target screening. PMID:26593613

  13. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry.

    PubMed

    He, Zeying; Xu, Yaping; Wang, Lu; Peng, Yi; Luo, Ming; Cheng, Haiyan; Liu, Xiaowei

    2016-04-01

    In this paper, a wide scope screening method of pesticides in wine was established using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF MS) and liquid chromatography/quadrupole linear ion trap mass spectrometry (LC-QqLIT MS). Information dependent acquisition (IDA) experiments are used to obtain both MS and MS/MS information for LC-QTOF MS analysis. For LC-QqLIT MS analysis, MS/MS spectra of target pesticides were simultaneously acquired using Enhanced Product Ion (EPI) mode at very low concentrations to increase the confidence in analytical results of multiple reaction monitoring (MRM) by library searching. Method validation was carried out using 50 pesticides commonly used in vineyards. The LOQs, linearity, repeatability were determined and good enough for quantification. The screening and quantification results obtained using LC-QTOF MS and LC-QqLIT MS were compared. Contaminants were screened against libraries containing over 2800 compounds based on accurate mass, isotopic patterns, and MS/MS spectra searching to extend the scope of this methodology to non-target screening.

  14. Secondary batteries with multivalent ions for energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg-1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  15. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  16. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  17. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  18. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks.

    PubMed

    Wu, Haiyan; Guo, Mengmeng; Tan, Zhijun; Cheng, Haiyan; Li, Zhaoxin; Zhai, Yuxiu

    2014-09-01

    A liquid chromatography quadrupole linear ion trap mass spectrometry method with fast polarity switching and a scheduled multiple reaction monitoring algorithm mode was developed for multiclass screening and identification of lipophilic marine biotoxins in bivalve molluscs. A major advantage of the method is that it can detect members of all six groups of lipophilic marine biotoxins [okadaic acid (OA), yessotoxins (YTX), azaspiracids (AZA), pectenotoxins (PTX), cyclic imines (CI), and brevetoxins (PbTx)], thereby allowing quantification and high confidence identification from a single liquid chromatography tandem mass spectrometry (LC-MS/MS) injection. An enhanced product ion (EPI) library was constructed after triggered collection of data via information-dependent acquisition (IDA) of EPI spectra from standard samples. A separation method for identifying 17 target toxins in a single analysis within 12min was developed and tested. Different solid phase extraction sorbents, the matrix effect (for oyster, scallop, and mussel samples), and stability of the standards also were evaluated. Matrix-matched calibration was used for quantification of the toxins. The limits of detection were 0.12-13.6μg/kg, and the limits of quantification were 0.39-45.4μg/kg. The method was used to analyze 120 shellfish samples collected from farming areas along the coast of China, and 7% of the samples were found to be contaminated with toxins. The library search identified PbTx-3, YTX, OA, PTX2, AZA1, AZA2, and desmethylspirolide C (SPX1). Overall, the method exhibited excellent sensitivity and reproducibility, and it will have broad applications in the monitoring of lipophilic marine biotoxins.

  19. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks.

    PubMed

    Wu, Haiyan; Guo, Mengmeng; Tan, Zhijun; Cheng, Haiyan; Li, Zhaoxin; Zhai, Yuxiu

    2014-09-01

    A liquid chromatography quadrupole linear ion trap mass spectrometry method with fast polarity switching and a scheduled multiple reaction monitoring algorithm mode was developed for multiclass screening and identification of lipophilic marine biotoxins in bivalve molluscs. A major advantage of the method is that it can detect members of all six groups of lipophilic marine biotoxins [okadaic acid (OA), yessotoxins (YTX), azaspiracids (AZA), pectenotoxins (PTX), cyclic imines (CI), and brevetoxins (PbTx)], thereby allowing quantification and high confidence identification from a single liquid chromatography tandem mass spectrometry (LC-MS/MS) injection. An enhanced product ion (EPI) library was constructed after triggered collection of data via information-dependent acquisition (IDA) of EPI spectra from standard samples. A separation method for identifying 17 target toxins in a single analysis within 12min was developed and tested. Different solid phase extraction sorbents, the matrix effect (for oyster, scallop, and mussel samples), and stability of the standards also were evaluated. Matrix-matched calibration was used for quantification of the toxins. The limits of detection were 0.12-13.6μg/kg, and the limits of quantification were 0.39-45.4μg/kg. The method was used to analyze 120 shellfish samples collected from farming areas along the coast of China, and 7% of the samples were found to be contaminated with toxins. The library search identified PbTx-3, YTX, OA, PTX2, AZA1, AZA2, and desmethylspirolide C (SPX1). Overall, the method exhibited excellent sensitivity and reproducibility, and it will have broad applications in the monitoring of lipophilic marine biotoxins. PMID:25086754

  20. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Vallverdú-Queralt, Anna; Jáuregui, Olga; Medina-Remón, Alexander; Andrés-Lacueva, Cristina; Lamuela-Raventós, Rosa M

    2010-10-30

    Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC/ESI-LTQ-Orbitrap-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high-resolution system (LTQ-Orbitrap) using accurate mass measurements in MS, MS(2) and MS(3) modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples.

  1. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  2. Multiple Coulomb ordered strings of ions in a storage ring.

    PubMed

    Hasse, R W

    2001-04-01

    We explain that the anomalous frequency shifts of very close masses obtained in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other are captured into a single string if their thermal clouds overlap and give up their identity.

  3. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  4. Spatial location of the space charge effect in individual ion clouds using monodisperse dried microparticulate injection with a twin quadrupole inductively coupled plasma mass spectrometer.

    PubMed

    Allen, L A; Leach, J J; Houk, R S

    1997-07-01

    Pulses of analyte and matrix ions from individual drops are measured simultaneously using a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS). The sample solution is introduced by monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li(+) signal appears. At higher matrix concentrations (1000 to at least 1500 ppm), a dip in the leading edge of the Li(+) signal develops. These changes in the shapes of the Li(+) pulses are attributed to space charge effects in the extraction system and ion optics of the mass spectrometer. A qualitative depiction for this behavior is proposed, in which the Li(+) ions are deflected out of the preferred ion path and then refocused by the ion optics. Part of the Li(+) ion cloud is driven ahead of the Pb(+) cloud, and part is trapped behind the Pb(+) cloud. The result is a shoulder on the leading edge of the Li(+) signal. With the Pb matrix present, the shapes of the analyte ion pulses are sensitive to the voltages applied to the first two ion lenses, especially the extractor lens. This observation shows that the part of the matrix effect that occurs in the ion optics takes place mainly in the first two lenses.

  5. Ultra Cold Photoelectron Beams for Ion Storage Rings

    SciTech Connect

    Orlov, D. A.; Krantz, C.; Shornikov, A.; Lestinsky, M.; Hoffmann, J.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Terekhov, A. S.

    2009-08-04

    An ultra cold electron target with a cryogenic GaAs photocathode source, developed for the Heidelberg TSR, delivers electron currents up to a few mA with typical kinetic energies of few keV and provides unprecedented energy resolution below 1 meV for electron-ion recombination merged-beam experiments. For the new generation of low-energy electrostatic storage rings, cold electron beams from a photocathode source can bring additional benefits, improving the cooling efficiency of stored ions and making it possible to cool even heavy, slow molecules by electron beams of energies of only a few eV or even below.

  6. Differentiation of regioisomeric aromatic ketocarboxylic acids by positive mode atmospheric pressure chemical ionization collision-activated dissociation tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Amundson, Lucas M; Owen, Benjamin C; Gallardo, Vanessa A; Habicht, Steven C; Fu, Mingkun; Shea, Ryan C; Mossman, Allen B; Kenttämaa, Hilkka I

    2011-04-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS(n)) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  7. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  8. Improved analysis of melamine-formaldehyde resins by capillary zone electrophoresis-mass spectrometry using ion-trap and quadrupole-time-of-flight mass spectrometers.

    PubMed

    Vo, Thuy Diep Thanh; Himmelsbach, Markus; Haunschmidt, Manuela; Buchberger, Wolfgang; Schwarzinger, Clemens; Klampfl, Christian W

    2008-12-01

    An improved method based on capillary zone electrophoresis (CZE) coupled to either ion-trap (IT) mass spectrometry (MS) or quadrupole-time-of-flight (Q-TOF) MS for the analysis of melamine-formaldehyde condensates is presented. Employing a formic acid-based electrolyte containing 50% acetonitrile (ACN) and MS detection up to 13 compounds could be determined in lab-made resins, synthesized by mixing formaldehyde and melamine in different ratios ranging from 1:1.5 to 1:4. The use of a Q-TOF-MS for detection allowed the assignment of molecular formulas for all 13 substances with high accuracy.

  9. Quantification of Tryptic Peptides in Quadrupole Ion Trap Using High-Mass Signals Derived from Isotope-Coded N-Acetyl Dipeptide Tags

    NASA Astrophysics Data System (ADS)

    Seo, Jongcheol; Yoon, Hye-Joo; Shin, Seung Koo

    2011-09-01

    Isotope-labeled N-acetyl dipeptides (Ac-Xxx-Ala) are coupled to the primary amines of tryptic peptides and then analyzed by tandem mass spectrometry. Amide bond cleavage between Xxx and Ala provides both low- and high-mass isotope-coded signals for quantification of peptides. Especially, facile cleavage at the modified lysine side chain yields very strong high-mass quantitation signals in a noise-free region. Tagging tryptic peptides with isobaric N-acetyl dipeptides is a viable strategy for accurate quantification of proteins, which can be used with most quadrupole ion trap mass spectrometers carrying the 1/3 mass cut-off problem.

  10. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  11. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry.

    PubMed

    Kim, So-Hee; Cha, Eun-Ju; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2014-01-01

    Metal ion coordination ionspray (M(+) CIS) ionization is a powerful technique to enhance ionization efficiency and sensitivity. In this study, we developed and validated an analytical method for simultaneous ionization and analysis of 84 anabolic androgenic steroids (65 exogenous and 19 endogenous) using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry (LC-Ag(+) CIS/MS/MS). The concentrations of silver ions and organic solvents have been optimized to increase the amount of silver ion coordinated complexes. A combination of 25 μM of silver ions and methanol showed the best sensitivity. The validation results showed the intra- (0.8-9.2%) and inter-day (2.5-14.9%) precisions, limits of detection (0.0005-5.0 ng/mL), and matrix effect (71.8-100.3%) for the screening analysis. No significant ion suppression was observed. In addition, this method was successfully applied to analysis of positive samples from suspected abusers and useful for the detection of the trace levels of anabolic steroids in human urine samples.

  12. Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and postacquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer.

    PubMed

    Yao, Ming; Ma, Li; Duchoslav, Eva; Zhu, Mingshe

    2009-06-01

    Multiple ion monitoring (MIM)-dependent acquisition with a triple quadrupole-linear ion trap mass spectrometer (Q-trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM-EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)-EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM-EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4-ethylphenol in liver microsome incubations. Results showed that the MIM-EPI-based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high-throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage.

  13. The KACST Heavy-Ion Electrostatic Storage Ring

    SciTech Connect

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  14. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  15. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  16. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGESBeta

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  17. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  18. Magnetic measurement data of the 0.8-m prototype quadrupole magnets for the APS storage ring

    SciTech Connect

    Kim, S.H.

    1995-07-01

    From magnetic measurement data of the two 0.8-m prototype quadrupole magnets (P-SRQ-1 and P-SRQ-2) and the study of the geometries for the pole-end bevels and pole chamfers, the following conclusions have been made. Mechanical stability of the magnet poles has been achieved by modification of the weld procedures between two quadrants of the magnets. Stability of the magnet-pole positions was measured optically and was also concluded from the fact that the allowed coefficients, mainly sextupole and octupole terms, were independent of the magnet excitation currents. Unallowed multipole field coefficients for the second magnet, without correction of the magnet-pole positions, are smaller than for the first magnet. The field gradient integrals of the two magnets at 400A differ by less than 5 {times} 10{sup {minus}4} for r = 2.5 cm. This indicates that an acceptable magnet assembly procedure has been established. The 2-D calculations and ``body`` measurements for allowed coefficients after the main field, b{sub 5} and b{sub 9}, agree within 1.2 {times} 10{sup {minus}4} at r = 2.5 cm. This implies that the 2-D design geometry is basically correct and acceptable. As expected for a magnet with long and narrow poles, saturation effects of pole shims have been observed. In order to reduce fabrication cost for the end-plates, the geometries for the pole-end bevels and pole chamfers have been studied. By choosing a bevel angle of 61{degree}, instead of 45{degree}, it is possible to have acceptable allowed coefficients with dimensions of pole-chamfers up to 16.5 mm. This allows the design of the end-plate as one piece without removable pole-tip.

  19. Passive electronic dosimeters based on direct ion storage

    SciTech Connect

    Kahilainen, J.

    1995-12-31

    Using non-volatile semiconductor memories as dosimeters in radiation protection is made possible by the application of the so-called DIS (Direct Ion Storage) method, where the charge collected from a small volume of gas is directly stored in a non-volatile memory cell. This allows the construction of small and simple electronic passive dosimeters with features not available in conventional passive Film or TLD dosimeters. The basic design principles and properties of DIS dosimeters are presented and the application potential for the measurement of various categories of ionizing radiation is discussed.

  20. Path dependence of lithium ion cells aging under storage conditions

    NASA Astrophysics Data System (ADS)

    Su, Laisuo; Zhang, Jianbo; Huang, Jun; Ge, Hao; Li, Zhe; Xie, Fengchao; Liaw, Bor Yann

    2016-05-01

    This work investigates path dependence of lithium ion cells that are stored under static and non-static conditions. In the static storage tests, the levels of temperature and state of charge (SOC) are kept constant. The results of 12 tests from a combination of three temperatures and four SOCs show that, as expected, the cell ages faster at higher temperature and higher SOC. However, the cell aging mode, while consistent for all the evaluated temperatures, is different at 95% SOC from that at lower SOCs. In the non-static storage tests, the levels of temperature and SOC vary with time during the test process. The effect of the sequence of stress levels on cell aging is studied statistically using the statistical method of analysis of variation (ANOVA). It is found that cell capacity fade is path independent of both SOC and temperature, while cell resistance increase is path dependent on SOC and path independent of temperature. Finally, rate-based empirical aging models are adopted to fit the cell aging in the static storage tests. The aging model for capacity fade is demonstrated to be applicable to the non-static tests with errors between -3% and +3% for all the tested conditions over 180 days.

  1. Characterization of Compounds in Psoralea corylifolia Using High-Performance Liquid Chromatography Diode Array Detection, Time-of-Flight Mass Spectrometry and Quadrupole Ion Trap Mass Spectrometry.

    PubMed

    Tan, Guangguo; Yang, Tiehong; Miao, Huayan; Chen, Hao; Chai, Yifeng; Wu, Hong

    2015-10-01

    High-performance liquid chromatography with diode array detection (HPLC-DAD), time-of-flight mass spectrometry (HPLC-TOFMS) and quadrupole ion trap mass spectrometry (HPLC-QITMS) were used for separation and identification of multi-components in Psoralea corylifolia. Benefiting from combining the accurate mass measurement of HPLC-TOFMS to generate elemental compositions, the complementary multilevel structural information provided by HPLC-QITMS and the characteristic UV spectra obtained from HPLC-DAD, 24 components in P. corylifolia were identified. The five groups of isomers were differentiated based on the fragmentation behaviors in QITMS and UV spectra. It can be concluded that an effective method based on the combination of HPLC-DAD, HPLC-TOFMS and HPLC-QITMS for identification of chemical components in P. corylifolia was established. The results provide essential data for further pharmacological and clinical studies of P. corylifolia and facilitate the rapid quality control of the crude drug.

  2. Application of a static quadrupole deviator to the deposition of size-selected cluster ions from a laser vaporization source

    NASA Astrophysics Data System (ADS)

    Alayan, R.; Arnaud, L.; Bourgey, A.; Broyer, M.; Cottancin, E.; Huntzinger, J. R.; Lermé, J.; Vialle, J. L.; Pellarin, M.; Guiraud, G.

    2004-07-01

    An electrostatic quadrupole deviator is used to separate charged from neutral clusters produced by a laser vaporization source. Because of their rather constant velocity, this device which is basically an energy selector also acts as an efficient mass filter. We have simulated and studied its capability to generate beams of size-selected charged clusters. Typical beam currents of a few tens of pA allow the formation of two-dimensional cluster deposits within a few minutes. Platinum and indium clusters are deposited on electron microscopy grids coated with an amorphous carbon film. For low-density assemblies of particles in the nanometer range, size histograms are discussed in relation with the mass selectivity of the apparatus. An upper limit for the dispersion of selected cluster diameters is found to be of the order of ±8% which is at least five times better than the dispersion of neutral species.

  3. An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Chen, Guiying; Cheng, Zhongzhe; Zhang, Kerong; Jiang, Hongliang; Zhu, Mingshe

    2016-09-10

    The use of liquid chromatography (LC) coupled with triple quadrupole linear ion trap (Qtrap) mass spectrometry (MS) for both quantitative and qualitative analysis in drug metabolism and pharmacokinetic studies is of great interest. Here, a new Qtrap-based analytical methodology for simultaneous detection, structural characterization and semi-quantitation of in vitro oxidative metabolites and glutathione trapped reactive metabolites was reported. In the current study, combined multiple ion monitoring and multiple reaction monitoring were served as surveying scans to trigger product ion spectral acquisition of oxidative metabolites and glutathione adduct, respectively. Then, detection of metabolites and recovery of their MS/MS spectra were accomplished using multiple data mining approaches. Additionally, on-line ultraviolet (UV) detection was employed to determine relative concentrations of major metabolites. Analyses of metabolites of clozapine and nomifensine in rat liver microsomes not only revealed multiple oxidative metabolites and glutathione adducts, but also identified their major oxidative metabolism and bioactivation pathways. The results demonstrated that the LC/UV/MS method enabled Qtrap to perform the comprehensive profiling of oxidative metabolites and glutathione adducts in vitro. PMID:27497649

  4. An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Chen, Guiying; Cheng, Zhongzhe; Zhang, Kerong; Jiang, Hongliang; Zhu, Mingshe

    2016-09-10

    The use of liquid chromatography (LC) coupled with triple quadrupole linear ion trap (Qtrap) mass spectrometry (MS) for both quantitative and qualitative analysis in drug metabolism and pharmacokinetic studies is of great interest. Here, a new Qtrap-based analytical methodology for simultaneous detection, structural characterization and semi-quantitation of in vitro oxidative metabolites and glutathione trapped reactive metabolites was reported. In the current study, combined multiple ion monitoring and multiple reaction monitoring were served as surveying scans to trigger product ion spectral acquisition of oxidative metabolites and glutathione adduct, respectively. Then, detection of metabolites and recovery of their MS/MS spectra were accomplished using multiple data mining approaches. Additionally, on-line ultraviolet (UV) detection was employed to determine relative concentrations of major metabolites. Analyses of metabolites of clozapine and nomifensine in rat liver microsomes not only revealed multiple oxidative metabolites and glutathione adducts, but also identified their major oxidative metabolism and bioactivation pathways. The results demonstrated that the LC/UV/MS method enabled Qtrap to perform the comprehensive profiling of oxidative metabolites and glutathione adducts in vitro.

  5. Nanoionics: ion transport and electrochemical storage in confined systems.

    PubMed

    Maier, J

    2005-11-01

    The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically. PMID:16379070

  6. Dynamic Collision-Induced Dissociation (DCID) in a Quadrupole Ion Trap Using a Two-Frequency Excitation Waveform: II. Effects of Frequency Spacing and Scan Rate

    SciTech Connect

    Laskay, Unige A.; Collin, Olivier L.; Nichol, Brad; Jackson, Glen P.; Pasilis, Sofie P.; Duckworth, Doug C.

    2007-11-01

    Dynamic CID of selected precursor ions is achieved by the application of a two-frequency excitation waveform to the end-cap electrodes during the mass instability scan of a quadrupole ion trap mass spectrometer (QIT-MS). The time period normally allotted for resonance excitation and collisional cooling of the trapped ion are excluded and fragmentation instead takes place simultaneously with the mass acquisition scan. This new method permits a shorter scanning time when compared to conventional on-resonance CID. When the excitation waveform consists of two closely-spaced frequencies, the relative phase-relationship of the two frequencies plays a critical role in the fragmentation dynamics. However, at wider frequency spacings (>8 kHz) these phase effects are diminished, while maintaining the efficacy of closely-spaced excitation frequencies. The fragmentation efficiencies and energetics of n-butylbenzene and tetraalanine are studied under different experimental conditions and the results are compared at various scan rate parameters between 0.1 and 1.0 ms/Th. Although faster scan rates reduce the analysis time, the maximum observed fragmentation efficiencies rarely exceed 30%, compared to values in excess of 50% achieved at slower scan rates. The internal energies calculated from the simulations of n-butylbenzene at fast scan rates are ~4 eV for most experimental conditions, while at slow scan rates internal energies above 5.5 eV are observed for a wide range of conditions. Extensive ITSIM simulations support the observation that slowing the scan rate has a similar effect on fragmentation as widening the frequency spacing between the two excitation frequencies. Both approaches generally enhance CID efficiencies and make fragmentation less dependent upon the relative phase angle between the excitation waveform and the ion motion. This could be useful for optimizing the CID efficiencies for a wide range of precursor ion mass-to-charge ratios.

  7. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  8. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  9. Electrospray tandem quadrupole fragmentation of quinolone drugs and related ions. On the reversibility of water loss from protonated molecules.

    PubMed

    Neta, Pedatsur; Godugu, Bhaskar; Liang, Yuxue; Simón-Manso, Yamil; Yang, Xiaoyu; Stein, Stephen E

    2010-11-30

    Selected reaction monitoring (SRM) of quinolone drugs showed different sensitivities in aqueous solution vs. biological extract. The authors suggested formation of two singly protonated molecules with different behavior, one undergoing loss of H(2)O and the other loss of CO(2), so that SRM transitions might depend on the ratios of these forms generated by the electrospray. These surprising results prompted us to re-examine several quinolone drugs and some simpler compounds to further elucidate the mechanisms. We find that the relative contributions of loss of H(2)O vs. loss of CO(2) in tandem mass spectrometric (MS/MS) experiments depend not only on molecular structure and collision energy, but also, in certain cases, on the cone voltage. We further find that many product ions formed by loss of H(2)O can reattach a water molecule in the collision cell, whereas ions formed by loss of CO(2) do not. Since reattachment of H(2)O can occur after water loss in the cone region and prior to selection of the precursor ion, this effect leads to the dependence of MS/MS spectra on the cone voltage used in creating the precursor ion, which explains the formerly observed effect on SRM ratios. Our results support the earlier conclusion that varying amounts of two ions of the same m/z value are responsible for problems in the analysis of these drugs, but the origin is in dehydration/rehydration reactions. Thus, SRM transitions for certain complex compounds may be comparable only when monitored under equivalent ion-forming conditions, including the voltage used in the production of the protonated molecules in the electrospray ionization (ESI) source.

  10. Simultaneous identification and quantification of tetrodotoxin in fresh pufferfish and pufferfish-based products using immunoaffinity columns and liquid chromatography/quadrupole-linear ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Mengmeng; Wu, Haiyan; Jiang, Tao; Tan, Zhijun; Zhao, Chunxia; Zheng, Guanchao; Li, Zhaoxin; Zhai, Yuxiu

    2016-08-01

    In this study, we established a comprehensive method for simultaneous identification and quantification of tetrodotoxin (TTX) in fresh pufferfish tissues and pufferfish-based products using liquid chromatography/quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS). TTX was extracted by 1% acetic acid-methanol, and most of the lipids were then removed by freezing lipid precipitation, followed by purification and concentration using immunoaffinity columns (IACs). Matrix effects were substantially reduced due to the high specificity of the IACs, and thus, background interference was avoided. Quantitation analysis was therefore performed using an external calibration curve with standards prepared in mobile phase. The method was evaluated by fortifying samples at 1, 10, and 100 ng/g, respectively, and the recoveries ranged from 75.8%-107%, with a relative standard deviation of less than 15%. The TTX calibration curves were linear over the range of 1-1 000 μg/L, with a detection limit of 0.3 ng/g and a quantification limit of 1 ng/g. Using this method, samples can be further analyzed using an information-dependent acquisition (IDA) experiment, in the positive mode, from a single liquid chromatography-tandem mass spectrometry injection, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a standard sample with those from an enhanced product ion (EPI) library. The scheduled multiple reaction monitoring method enabled TTX to be screened for, and TTX was positively identified using the IDA and EPI spectra. This method was successfully applied to analyze a total of 206 samples of fresh pufferfish tissues and pufferfish-based products. The results from this study show that the proposed method can be used to quantify and identify TTX in a single run with excellent sensitivity and reproducibility, and is suitable for the analysis of complex matrix pufferfish samples.

  11. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    SciTech Connect

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.

  12. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zhang, Na; Zhao, Yunfang; Liu, Xiao; Jiang, Yong; Tu, Pengfei

    2016-01-15

    It is important to conduct large-scale detection, identification, and quantitation of metabolites in a given sample. Herein, a practical strategy was proposed to quantitatively compare the chemome between Cistanche deserticola (CD) and C. tubulosa (CT), which have been widely believed as the ideal edible and medicinal plants for conquering the deserts. The entire workflow was implemented on high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometer and consisted of three primary steps: (1) component detection and identification, various mass spectrometric approaches were applied to globally screen the chemical constituents, and structural elucidation was achieved by comparing with authentic compounds, analyzing MS(2) spectra, and referring to the literature along with accessible databases; (2) comprehensive relative quantitation, scheduled multiple reaction monitoring algorithm was introduced for relative quantitation of all detected ingredients; and (3) chemome comparison, the quantitative dataset was subjected for multivariate statistical analysis to carry out comparative study. A total of 513 metabolites were detected and relatively quantitated, and 379 ones were annotated. Betaine, Krebs cycle intermediates, phenylethanoid glycosides, and iridoids were picked out as the chemical markers being responsible for the discrimination of the chemical profiles between CD and CT. Above all, the quantitative chemome of CD and CT were exhaustively characterized and compared, which could advance their values concerning drug development, economics, and desertification control. The proposed strategy is expected as a reliable choice for widely targeted metabolomics of plants.

  13. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.

    PubMed

    Pareja, Lucía; Martínez-Bueno, M J; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, A R

    2011-07-29

    A multiresidue method was developed for the quantification and confirmation of 70 pesticides in paddy field water. After its filtration, water was injected directly in a liquid chromatograph coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). The list of target analytes included organophosphates, phenylureas, sulfonylureas, carbamates, conazoles, imidazolinones and others compounds widely used in different countries where rice is cropped. Detection and quantification limits achieved were in the range from 0.4 to 80 ng L(-1) and from 2 to 150 ng L(-1), respectively. Correlation coefficients for the calibration curves in the range 0.1-50 μg L(-1) were higher than 0.99 except for diazinon (0.1-25 μg L(-1)). Only 9 pesticides presented more than 20% of signal suppression/enhancement, no matrix effect was observed in the studied conditions for the rest of the target pesticides. The method developed was used to investigate the occurrence of pesticides in 59 water samples collected in paddy fields located in Spain and Uruguay. The study shows the presence of bensulfuron methyl, tricyclazole, carbendazim, imidacloprid, tebuconazole and quinclorac in a concentration range from 0.08 to 7.20 μg L(-1).

  14. HPLC/ESI-quadrupole ion trap mass spectrometry for characterization and direct quantification of amphoteric and nonionic surfactants in aqueous samples

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.

    2002-01-01

    An amphoteric (cocamidopropylbetaine, CAPB) and a nonionic (alcohol polyethoxylate, AE) surfactant were characterized by electrospray ionization quadrupole ion trap mass spectrometry (ESI-MS) as to their homologue distribution and ionization/fragmentation chemistry. Quantitative methods involving reversed-phase gradient HPLC and (+)ESI-MSn were developed to directly determine these surfactants in hydroponic plant growth medium that received simulated graywater. The predominant homologues, 12 C alkyl CAPB and 9 EO AE, were monitored to represent the total amount of the respective surfactants. The methods demonstrated dynamic linear ranges of 0.5-250 ng (r2 > 0.996) for CAPB and 8-560 ng (r2 > 0.998) for AE homologue mixture, corresponding to minimum quantification limits of 25 ppb CAPB and 0.4 ppm AE with 20-microL injections. This translated into an even lower limit for individual components due to the polydispersive nature of the surfactants. The procedure was successfully employed for the assessment of CAPB and AE biodegradation in a hydroponic plant growth system used as a graywater bioreactor.

  15. Quantitative determination of isoquinoline alkaloids and chlorogenic acid in Berberis species using ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Singh, Awantika; Bajpai, Vikas; Kumar, Sunil; Arya, Kamal Ram; Sharma, Kulwant Rai; Kumar, Brijesh

    2015-06-01

    Berberis species are well known and used extensively as medicinal plants in traditional medicine. They have many medicinal values attributable to the presence of alkaloids having different pharmacological activities. In this study, a method was developed and validated as per international conference on harmonization guidelines using ultra high performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry operated in the multiple reaction monitoring mode for nine bioactive compounds, including protoberberine alkaloids, aporphine alkaloids and chlorogenic acid. This method was applied in different plant parts of eight Berberis species to determine variations in content of nine bioactive compounds. The separation was achieved on an ACQUITY UPLC CSH™ C18 column using a gradient mobile phase at flow rate 0.3 mL/min. Calibration curves for all the nine analytes provided optimum linear detector response (with R(2) ≥0.9989) over the concentration range of 0.5-1000 ng/mL. The precision and accuracy were within RSDs ≤2.4 and ≤2.3%, respectively. The results indicated significant variation in the total contents of the nine compounds in Berberis species.

  16. Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry.

    PubMed

    Zrnčić, Mirta; Gros, Meritxell; Babić, Sandra; Kaštelan-Macan, Marija; Barcelo, Damia; Petrović, Mira

    2014-03-01

    A method based on ultra high performance liquid chromatography coupled to quadrupole linear ion trap mass spectrometry (UHPLC-QqLIT-MS) has been developed to investigate occurrence of 10 anthelmintic drugs from different structural groups (moxidectin, flubendazole, fenbendazole, levamisol, mebendazole, oxibendazole, albendazole, triclabendazole, febantel and praziquantel) in surface water. Analytes were pre-concentrated by solid phase extraction (SPE) using hydrophilic-lipophilic polymeric based sorbent. Quantification of investigated analytes was done using deuterated compounds as internal standards in order to minimize matrix effect. Analyte recoveries from spiked samples at two concentration levels were above 75% for most of the analytes. The main advantages of developed method are fast separation using UHPLC and therefore short analysis time, combined with good sensitivity which is demonstrated by low ngL(-1) detection limits. The developed method was applied for analysis of anthelmintics in the Llobregat River (NE Spain) and its main tributaries (rivers Anoia and Cardener). Eight out of ten anthelmintics were detected in all analyzed samples with the concentrations in low ngL(-1) level. The method fills the gap on analytical methodologies for determination of anthelmintic drugs in the environment.

  17. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Song, Yuelin; Song, Qingqing; Li, Jun; Zhang, Na; Zhao, Yunfang; Liu, Xiao; Jiang, Yong; Tu, Pengfei

    2016-01-15

    It is important to conduct large-scale detection, identification, and quantitation of metabolites in a given sample. Herein, a practical strategy was proposed to quantitatively compare the chemome between Cistanche deserticola (CD) and C. tubulosa (CT), which have been widely believed as the ideal edible and medicinal plants for conquering the deserts. The entire workflow was implemented on high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometer and consisted of three primary steps: (1) component detection and identification, various mass spectrometric approaches were applied to globally screen the chemical constituents, and structural elucidation was achieved by comparing with authentic compounds, analyzing MS(2) spectra, and referring to the literature along with accessible databases; (2) comprehensive relative quantitation, scheduled multiple reaction monitoring algorithm was introduced for relative quantitation of all detected ingredients; and (3) chemome comparison, the quantitative dataset was subjected for multivariate statistical analysis to carry out comparative study. A total of 513 metabolites were detected and relatively quantitated, and 379 ones were annotated. Betaine, Krebs cycle intermediates, phenylethanoid glycosides, and iridoids were picked out as the chemical markers being responsible for the discrimination of the chemical profiles between CD and CT. Above all, the quantitative chemome of CD and CT were exhaustively characterized and compared, which could advance their values concerning drug development, economics, and desertification control. The proposed strategy is expected as a reliable choice for widely targeted metabolomics of plants. PMID:26742897

  18. Simultaneous Qualitative Assessment and Quantitative Analysis of Metabolites (Phenolics, Nucleosides and Amino Acids) from the Roots of Fresh Gastrodia elata Using UPLC-ESI-Triple Quadrupole Ion MS and ESI- Linear Ion Trap High-Resolution MS

    PubMed Central

    Chen, Sha; Liu, Jun Qiu; Xiao, Hui; Zhang, Jun; Liu, An

    2016-01-01

    A sensitive, effective and optimized method, based on ultra performance liquid chromatography (UPLC) coupled with ESI-triple quadrupole ion MS and ESI-linear ion trap high-resolution MS, has been developed for the simultaneous quantitative and qualitative determination of phenolics, nucleosides and amino acids in the roots of fresh Gastrodia elata. Optimization of the analytical method provided higher separation efficiency and better peak resolution for the targeted compounds. The simultaneous separation protocols were also optimized by routinely using accurate mass measurements, within 5 ppm error, for each molecular ion and the subsequent fragment ions. In total, 31 compounds, including 23 phenolics, two nucleosides, four amino acids, one gastrodin and one other compound were identified or tentatively characterized. Mono-substituted parishin glucoside (9), methoxy mono-substituted parishin (13), methyl parishin (26), p-hydroxybenzyl di-substituted parishin (29), and p-hydroxybenzyl parishin (31) were tentatively identified as new compounds. Principal metabolite content analysis and the composition of eight representative G. elata cultivars of various species indicated that geographic insulation was the main contributor to clustering. PMID:26954012

  19. Simultaneous Qualitative Assessment and Quantitative Analysis of Metabolites (Phenolics, Nucleosides and Amino Acids) from the Roots of Fresh Gastrodia elata Using UPLC-ESI-Triple Quadrupole Ion MS and ESI- Linear Ion Trap High-Resolution MS.

    PubMed

    Chen, Sha; Liu, Jun Qiu; Xiao, Hui; Zhang, Jun; Liu, An

    2016-01-01

    A sensitive, effective and optimized method, based on ultra performance liquid chromatography (UPLC) coupled with ESI-triple quadrupole ion MS and ESI-linear ion trap high-resolution MS, has been developed for the simultaneous quantitative and qualitative determination of phenolics, nucleosides and amino acids in the roots of fresh Gastrodia elata. Optimization of the analytical method provided higher separation efficiency and better peak resolution for the targeted compounds. The simultaneous separation protocols were also optimized by routinely using accurate mass measurements, within 5 ppm error, for each molecular ion and the subsequent fragment ions. In total, 31 compounds, including 23 phenolics, two nucleosides, four amino acids, one gastrodin and one other compound were identified or tentatively characterized. Mono-substituted parishin glucoside (9), methoxy mono-substituted parishin (13), methyl parishin (26), p-hydroxybenzyl di-substituted parishin (29), and p-hydroxybenzyl parishin (31) were tentatively identified as new compounds. Principal metabolite content analysis and the composition of eight representative G. elata cultivars of various species indicated that geographic insulation was the main contributor to clustering.

  20. Quadrupole mass filter with means to generate a noise spectrum exclusive of the resonant frequency of the desired ions to deflect stable ions

    NASA Technical Reports Server (NTRS)

    Langmuir, R. V. (Inventor)

    1967-01-01

    A mass spectrometer for the separation or separate indication of ions of different specific electric charges is reported. The instrument uses a periodically varying electric field in its analyzing section to excite the injected ions into oscillations while traveling along their trajectories which are either stable or unstable depending on specific parameters. Only stable trajectory ions pass through the electric field to the collector for indication.

  1. [Simultaneous identification and detection of 16 anabolic steroid hormones in muscle using liquid chromatography oupled to quadrupole/linear ion trap mass spectrometry].

    PubMed

    Zhang, Hongwei'; Cai, Xue; Lin, Liming; Chen, Liangzhen; Liang, Chengzhu; Bao, Lei; Tang, Zhixu; Niu, Zengyuan; Wang, Fengmei

    2012-10-01

    A comprehensive method for simultaneous identification and detection of 16 anabolic steroid hormones (ASs, including andorgens, gestagens and their esters) in muscle samples was developed with liquid chromatography coupled to quadrupole/linear ion trap mass spectrometry (LC-Q/Trap-MS). The ASs in muscle samples were extracted with acetonitrile under ultrasonic assistance. The extract was defatted by n-hexane with liquid-liquid partitioning and followed by clean-up with NH2 solid phase extraction (SPE) cartridge. The separation of analytes was carried out on a CAPCELL PAK C18 MG II column (150 mm x 2.0 mm, 5.0 microm) using mobile phases of 0.1% (v/v) formic acid in acetonitrile and 0.1% (v/v) formic acid-5 mmol/L ammonium formate aqueous solution with gradient elution. A scheduled multiple reaction monitoring (sMRM) in positive mode as survey scan and an enhanced product ion (EPI) scan as dependent scan in an information-dependent acquisition (IDA) experiment was adopted in mass spectrometry acquisition. On-line lab-built MS/MS library and internal standards were employed for the identification and quantification. As a result, the 16 ASs showed good linearity with all correlation coefficients (r) no less than 0. 999 0 within the linear ranges. The limits of quantification (LOQs, S/N > or = 10) for the 16 ASs were in the range of 0.029-0.36 microg/kg. At the three spiked levels (0.5, 2.0 and 20 microg/kg), the overall recoveries ranged from 89.9% to 118% with the relative standard deviations (RSDs) no more than 16.2% under within--laboratory reproducibility conditions. The proposed method can be used to identify and detect the 16 ASs in a single run, which makes it effective in residue surveillance of anabolic hormones in muscle samples.

  2. Simultaneous determination of diclofenac, its human metabolites and microbial nitration/nitrosation transformation products in wastewaters by liquid chromatography/quadrupole-linear ion trap mass spectrometry.

    PubMed

    Osorio, Victoria; Imbert-Bouchard, Marta; Zonja, Bozo; Abad, José-Luis; Pérez, Sandra; Barceló, Damià

    2014-06-20

    An analytical method was developed and validated for the first determination of five major human metabolites of the non-steroidal anti-inflammatory drug diclofenac as well as two microbial transformation products in wastewater. The method was based on the extraction of diclofenac and the chemically synthetized compounds by solid-phase extraction (SPE), using a hydrophilic-lipophilic balanced polymer followed by liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). Quantitation was performed by the internal standard approach, to correct for matrix effects. The accuracy of the method was generally higher than 40% for raw and treated wastewater with a precision below 12%. In wastewater influent and effluent samples the detection limits for the majority of target compounds were 0.3-2.5ngL(-1) and 0.1-3.1ngL(-1), respectively. The method was applied to the analysis of influent and effluent wastewater samples from urban wastewater treatment plants. Moreover, to obtain an extra tool for confirmation and identification of the studied diclofenac-derived compounds, Information-Dependent Acquisition (IDA) experiments were performed, with selected reaction monitoring (SRM) as the survey scan and an enhanced product ion (EPI) scan as the dependent scan. Diclofenac and its major human metabolite, 4'-hydroxydiclofenac were detected in all samples at concentrations of 331-1150ngL(-1) and 585-6000ngL(-1), respectively. Neither microbial transformation product of diclofenac was detected in any of the influent samples analyzed, but in effluents, their concentrations ranged from 4 to 105ngL(-1).

  3. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  4. Gross properties of exotic nuclei investigated at storage rings and ion traps

    SciTech Connect

    Scheidenberger, C.; Bollen, G.; Bosch, F.; Casares, A.; Geissel, H.; Kholomeev, A.; Muenzenberg, G.; Weick, H.; Wollnik, H.

    2000-12-31

    Properties of exotic nuclei like atomic masses, decay modes, and half-lives can be ideally investigated in storage rings and ion traps. Some experiments can be carried out under conditions which prevail in hot stellar plasmas. The experimental potential of storage and cooling of exotic nuclei is illustrated with recent experimental results, and an outlook to future experiments is presented.

  5. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  6. Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.

    PubMed

    Pan, Su; Verhoeven, Kathryn; Lee, Jeehiun K

    2005-11-01

    The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) > G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN

  7. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou

    NASA Astrophysics Data System (ADS)

    Xia, J. W.; Zhan, W. L.; Wei, B. W.; Yuan, Y. J.; Song, M. T.; Zhang, W. Z.; Yang, X. D.; Yuan, P.; Gao, D. Q.; Zhao, H. W.; Yang, X. T.; Xiao, G. Q.; Man, K. T.; Dang, J. R.; Cai, X. H.; Wang, Y. F.; Tang, J. Y.; Qiao, W. M.; Rao, Y. N.; He, Y.; Mao, L. Z.; Zhou, Z. Z.

    2002-08-01

    HIRFL-CSR, a new ion Cooler-Storage-Ring (CSR) project, is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou (HIRFL). It consists of a main ring (CSRm) and an experimental ring (CSRe). From the HIRFL cyclotron system the heavy ions will be accumulated, cooled and accelerated in the CSRm, then extracted fast to produce radioactive ion beams (RIB) or highly charged heavy ions. Those secondary beams will be accepted and stored by the CSRe for many internal-target experiments with electron cooling.

  8. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang

    2009-01-01

    We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.

  9. A fast and sensitive resonant Schottky pick-up for heavy ion storage rings

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Hülsmann, P.; Litvinov, Yu. A.; Moritz, P.; Peschke, C.; Petri, P.; Sanjari, M. S.; Steck, M.; Weick, H.; Wu, J. X.; Zang, Y. D.; Zhang, S. H.; Zhao, T. C.

    2011-12-01

    A resonant pick-up for the detection of heavy ion Schottky noise was built into the ESR storage ring at GSI. A similar device will be installed at the cooler storage ring CSRe at IMP. Its purpose is a significant enhancement of the signal to noise ratio of Schottky spectra. A particular application of the new system is the measurement of circulating single ions. The resonator is based on a pillbox design. It is operated at air pressure, and is electromagnetically coupled to the vacuum tube of the storage ring via a cylinder-shaped ceramic gap. The resonant frequency can be changed by inserting plunger pistons. The resonator can easily be decoupled from the storage ring, if high beam impedances become a problem. The article describes the construction, electromagnetic properties of the pick-up as well as first experiments with heavy ion beams.

  10. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  11. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry.

    PubMed

    Bianco, Giuliana; Abate, Salvatore; Labella, Cristiana; Cataldi, Tommaso R I

    2009-04-01

    Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI-FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in-source ion trap collision-induced dissociation (CID) of the protonated molecules, [M+H](+). A retro-Diels-Alder (RDA) process along with ring-contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH(3)NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO(2) or CO. The uracil derivatives showed a loss of a ketene unit (CH(2)CO, 42 Da) from the protonated molecule along with the loss of H(2)O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N-acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. PMID:19260028

  12. Storage of ions from laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Knight, R. D.

    1981-01-01

    A method of storing large numbers of metal ions created in laser-produced plasmas is presented. The outer electrode of the electrostatic ion trap is designed to give a harmonic axial potential. The ions trapped by the technique included Be(+), C(+), Al(+), Fe(+), and Pb(+). The initial number of ions stored (2 x 10 to the 8th) appeared to be the trap maximum since increasing the laser power beyond 2-3 MW did not change the ion number. An initial rapid decay in the 30-50 msec range was generally followed by a long tail at the 10% level with times greater than 100 msec. The technique should be valuable for refractory elements which cannot be easily vaporized for electron impact ionization.

  13. Peptide profiling of Internet-obtained Cerebrolysin using high performance liquid chromatography - electrospray ionization ion trap and ultra high performance liquid chromatography - ion mobility - quadrupole time of flight mass spectrometry.

    PubMed

    Gevaert, Bert; D'Hondt, Matthias; Bracke, Nathalie; Yao, Han; Wynendaele, Evelien; Vissers, Johannes Petrus Cornelis; De Cecco, Martin; Claereboudt, Jan; De Spiegeleer, Bart

    2015-09-01

    Cerebrolysin, a parenteral peptide preparation produced by controlled digestion of porcine brain proteins, is an approved nootropic medicine in some countries. However, it is also easily and globally available on the Internet. Nevertheless, until now, its exact chemical composition was unknown. Using high performance liquid chromatography (HPLC) coupled to ion trap and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-ion mobility-time-of-flight mass spectrometry (Q-IM-TOF MS), combined with UniProt pig protein database search and PEAKS de novo sequencing, we identified 638 unique peptides in an Internet-obtained Cerebrolysin sample. The main components in this sample originate from tubulin alpha- and beta-chain, actin, and myelin basic protein. No fragments of known neurotrophic factors like glial cell-derived neurotrophic factor (GDNF), neurotrophin nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) were found, suggesting that the activities reported in the literature are likely the result of new, hitherto unknown cryptic peptides with nootropic properties. PMID:26017115

  14. Peptide profiling of Internet-obtained Cerebrolysin using high performance liquid chromatography - electrospray ionization ion trap and ultra high performance liquid chromatography - ion mobility - quadrupole time of flight mass spectrometry.

    PubMed

    Gevaert, Bert; D'Hondt, Matthias; Bracke, Nathalie; Yao, Han; Wynendaele, Evelien; Vissers, Johannes Petrus Cornelis; De Cecco, Martin; Claereboudt, Jan; De Spiegeleer, Bart

    2015-09-01

    Cerebrolysin, a parenteral peptide preparation produced by controlled digestion of porcine brain proteins, is an approved nootropic medicine in some countries. However, it is also easily and globally available on the Internet. Nevertheless, until now, its exact chemical composition was unknown. Using high performance liquid chromatography (HPLC) coupled to ion trap and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-ion mobility-time-of-flight mass spectrometry (Q-IM-TOF MS), combined with UniProt pig protein database search and PEAKS de novo sequencing, we identified 638 unique peptides in an Internet-obtained Cerebrolysin sample. The main components in this sample originate from tubulin alpha- and beta-chain, actin, and myelin basic protein. No fragments of known neurotrophic factors like glial cell-derived neurotrophic factor (GDNF), neurotrophin nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) were found, suggesting that the activities reported in the literature are likely the result of new, hitherto unknown cryptic peptides with nootropic properties.

  15. Storage and Aging Effects on Spherical Resorcinol-Formaldehyde Resin Ion Exchange Performance

    SciTech Connect

    Fiskum, Sandra K.; Arm, Stuart T.; Edwards, Matthew K.; Steele, Marilyn J.; Thomas, Kathie K.

    2007-09-10

    Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).( ) Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).( ) To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle—Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan( ) TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL

  16. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material. PMID:26726470

  17. Simultaneous determination of 18 preservative residues in vegetables by ultra high performance liquid chromatography coupled with triple quadrupole/linear ion trap mass spectrometry using a dispersive-SPE procedure.

    PubMed

    Zhou, Xue; Cao, Shurui; Li, Xianliang; Tang, Bobin; Ding, Xiaowen; Xi, Cunxian; Hu, Jiangtao; Chen, Zhiqiong

    2015-05-01

    A new method combining dispersive-solid phase purification procedure with ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry was developed for simultaneous determination of 18 preservative residues in vegetables. The new method not only had the advantages of dispersive-solid phase purification procedure such as high recoveries, easy operation, rapid analysis, little solvent usage and wide analysis range of preservatives, but also had the advantages of ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry to be operated in positive mode and negative mode simultaneously. The method was validated for the following representative matrices: radish (tuber), tomato (eggplant fruit), cabbage (leafy), cowpea (bean), cucumber (melon) and so on. Samples were extracted with hexane-ethyl acetate (1:2, v/v), and then detected by ultra high performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry after being cleaned up with dispersive-solid phase purification procedure. Significant matrix effects were compensated by using the matrix-matched calibration curves. 18 preservatives showed good linearity over the range of 5.0-100.0 μg/L with correlation coefficients of 0.9904-1.000. The limits of detections were in the range of 0.04-4.16 μg/kg and the limits of quantity were in the range of 0.13-13.85 μg/kg. The recoveries of 18 preservatives ranged from 76.0% to 120.0% with the spiked levels of 2, 4 and 10 μg/kg into homogenized vegetables, and the relative standard deviations (RSDs) ranged from 0.3% to 14.8%. Compared with the reported literatures, the method is more rapid, simple, highly sensitive, reliable and can meet testing requirements of 18 preservative residues in vegetables.

  18. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    SciTech Connect

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-30

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m{sub n}u<0.2 eV, it is necessary to control the ion momentum with a precision better than deltap/p<10{sup -5}, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(10{sup 18}) decays.

  19. Measuring neutrino mass with radioactive ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2009-12-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m ν <0.2 eV, it is necessary to control the ion momentum with a precision better than δ p/ p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least mathcal{O}(10^{18}) decays.

  20. Measuring neutrino mass with radioactive ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-01-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν < 0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p < 10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least Script O(1018) decays.

  1. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-01

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν<0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(1018) decays.

  2. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation.

    PubMed

    Xing, Yanyan; Meng, Wenting; Sun, Wanyang; Li, Dongxiang; Yu, Zhiguo; Tong, Ling; Zhao, Yunli

    2016-09-15

    A high-throughput method for simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba (RPA) was developed by coupling the modified QuEChERS method with ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry (UHPLC-QqLIT-MS). The 21 mycotoxins were extracted and cleaned up using QuEChERS-based procedure, then further separated on a C18 column and detected by a hybrid triple quadrupole linear ion trap mass spectrometer equipped with electrospray ionization source in the multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. Under this technique, 13 mycotoxins were detected using acetonitrile and water containing 0.1% formic acid as the mobile phase in positive mode while the other 8 mycotoxins were detected using acetonitrile and water containing 0.1% ammonia as the mobile phase in negative mode. The calibration curves of all analytes showed good linearity (r(2)>0.995) within test ranges. The limits of detection and quantification ranged from 0.031 to 5.4μg/kg and 0.20 to 22μg/kg, respectively. Additionally, recoveries were all above 75.3% with relative standard deviations within 15%. The method proposed herein with significant advantages including simple pretreatment, rapid determination as well as high sensitivity, accuracy and throughput would be a preferred candidate for the determination and quantification of multi-class mycotoxin contaminants in real samples. PMID:27500642

  3. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) prototype hardware studies

    SciTech Connect

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs.

  4. Fabricating high-density magnetic storage elements by low-dose ion beam irradiation

    SciTech Connect

    Neb, R.; Sebastian, T.; Pirro, P.; Hillebrands, B.; Pofahl, S.; Schaefer, R.; Reuscher, B.

    2012-09-10

    We fabricate magnetic storage elements by irradiating an antiferromagnetically coupled ferromagnetic/nonmagnetic/ferromagnetic trilayer by a low-dose ion beam. The irradiated areas become ferromagnetically coupled and are capable of storing information if their size is small enough. We employ Fe/Cr/Fe trilayers and a 30 keV focused Ga{sup +}-ion beam to demonstrate the working principle for a storage array with a bit density of 7 Gbit/in.{sup 2}. Micromagnetic simulations suggest that bit densities of at least two magnitudes of order larger should be possible.

  5. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  6. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  7. Feedback damper system for quadrupole oscillations after transition at RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brennan, J.M.; Schultheiss, C.

    2008-06-23

    The heavy ion beam at RHIC undergoes strong quadrupole oscillations just after it crosses transition, which leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed.

  8. Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations

    SciTech Connect

    Schmidt, E. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Fritzsche, S.; Hoffmann, J.; Jaroshevich, A. S.; Krantz, C.; Lestinsky, M.; Orlov, D. A.; Wolf, A.; Lukic, D.; Savin, D. W.

    2007-09-15

    The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p{sup 6}nln{sup '}l{sup '} dielectronic recombination (DR) resonances associated with 3s{yields}nl core excitations, 2s2p{sup 6}3snln{sup '}l{sup '} resonances associated with 2s{yields}nl (n=3,4) core excitations, and 2p{sup 5}3snln{sup '}l{sup '} resonances associated with 2p{yields}nl (n=3,...,{infinity}) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s{yields}3pn{sup '}l{sup '} and 3s{yields}3dn{sup '}l{sup '}(both n{sup '}=3,...,6) and 2p{sup 5}3s3ln{sup '}l{sup '} (n{sup '}=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.

  9. Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring

    NASA Astrophysics Data System (ADS)

    Kovalenko, O.; Dolinskii, O.; Litvinov, Yu A.; Maier, R.; Prasuhn, D.; Stöhlker, T.

    2015-11-01

    High energy storage ring (HESR) as a part of the future accelerator facility FAIR (Facility for Antiproton and Ion Research) will serve for a variety of internal target experiments with high-energy stored heavy ions (SPARC collaboration). Bare uranium is planned to be used as a primary beam. Since a storage time in some cases may be significant—up to half an hour—it is important to examine the high-order effects in the long-term beam dynamics. A new ion optics specifically for the heavy ion mode of the HESR is developed and is discussed in this paper. The subjects of an optics design, tune working point and a dynamic aperture are addressed. For that purpose nonlinear beam dynamics simulations are carried out. Also a flexibility of the HESR ion optical lattice is verified with regard to various experimental setups. Specifically, due to charge exchange reactions in the internal target, secondary beams, such as hydrogen-like and helium-like uranium ions, will be produced. Thus the possibility of separation of these secondary ions and the primary {{{U}}}92+ beam is presented with different internal target locations.

  10. Ion Storage with the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Pearson, Boise

    2002-01-01

    The matter antimatter reaction represents the densest form of energy storage/release known to modern physics: as such it offers one of the most compact sources of power for future deep space exploration. To take the first steps along this path, NASA-Marshall Space Flight Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a goal of maintaining 10(exp 12) particles for up to 18 days. Experiments have been performed with this hardware using normal matter (positive hydrogen ions) to assess the device's ability to hold charged particles. These ions are currently created using an electron gun method to ionize background gas; however, this technique is limited by the quantity that can be captured. To circumvent this issue, an ion source is currently being commissioned which will greatly increase the number of ions captured and more closely simulate actual operations expected at an antiproton production facility. Ions have been produced, stored for various time intervals, and then extracted against detectors to measure species, quantity and energy. Radio frequency stabilization has been tested as a method to prolong ion lifetime: results show an increase in the baseline 1/e lifetime of trapped particles from hours to days. Impurities in the residual background gas (typically carbon-containing species CH4, CO, CO2, etc.) present a continuing problem by reducing the trapped hydrogen population through the mechanism of ion charge exchange.

  11. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams

    SciTech Connect

    Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Chen, Xilin; Nie, Zimin; Gu, Meng; Saraf, Laxmikant V.; Exarhos, Gregory J.; Zhang, Jiguang; Liu, Jun

    2013-07-23

    Sodium ion (Na+) batteries have attracted increased attention for energy storage due to the natural abundance of sodium, but their development is hindered by the poor intercalation property of Na+ in electrodes. This paper reports a detailed study of high capacity, high rate sodium ion energy storage in high-surface-area nanocellular carbon foams (NCCF). The energy storage mechanism is surface-driven reactions between Na+ and oxygen-containing functional groups on the surface of NCCF. The surface reaction, rather than a Na+ bulk intercalation reaction, leads to high rate performance and cycling stability due to the enhanced reaction kinetics and the absence of electrode structure change. The NCCF makes more surface area and surface functional groups available for the Na+ reaction. It delivers 152 mAh/g capacity at the rate of 0.1 A/g and a capacity retention of 90% for over 1600 cycles.

  12. Responses of a direct ion storage dosimeter (DIS-1) to heavy charged particles.

    PubMed

    Yasuda, H

    2001-12-01

    The responses of a direct ion storage dosimeter (DIS-1) to energetic heavy charged particles were examined using (4)He, (12)C, (40)Ar and (56)Fe ion beams at the HIMAC at the National Institute of Radiological Sciences. The efficiency of the DIS-1 on the basis of absorbed dose was almost unity for the helium and carbon ions and was slightly decreased for the argon and iron ions. The linearity in the dose response and the angular independence for these heavy ions were fairly good. Although further studies are necessary, these results suggest that the DIS-1 would be a suitable passive dosimeter for measurements of absorbed dose in a field dominated by heavy charged particles such as the space environment. PMID:11741505

  13. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  14. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    PubMed

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-01

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. PMID:25653194

  15. An ion-beam injection line for the ELASR storage ring at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Almalki, M. H.; Alshammari, S. M.; Alrashdi, A. O.; Alamer, H. S.; Jabr, A. S.; Lanazi, A. Z.

    2016-01-01

    A versatile ion injector beam-line has been developed for the specific use in the multi-purpose low-energy, storage ring facility at the King Abdulaziz City for Sciences and Technology (KACST) in Riyadh, Saudi Arabia. It incorporates a purpose-developed, high-resolution mass analyzing magnet and it is thereby dedicated to provide the ELASR storage ring with beams of ions of specific mass. It is also intended to operate independently as a single-pass experiment. This versatile ion-injection line was constructed in a staged approach, in which an axial injection version was built first, commissioned and is currently operating. The injection line in its final design is now being assembled and commissioned at KACST.

  16. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    PubMed

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-01

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

  17. The double electrostatic ion ring experiment: a unique cryogenic electrostatic storage ring for merged ion-beams studies.

    PubMed

    Thomas, R D; Schmidt, H T; Andler, G; Björkhage, M; Blom, M; Brännholm, L; Bäckström, E; Danared, H; Das, S; Haag, N; Halldén, P; Hellberg, F; Holm, A I S; Johansson, H A B; Källberg, A; Källersjö, G; Larsson, M; Leontein, S; Liljeby, L; Löfgren, P; Malm, B; Mannervik, S; Masuda, M; Misra, D; Orbán, A; Paál, A; Reinhed, P; Rensfelt, K-G; Rosén, S; Schmidt, K; Seitz, F; Simonsson, A; Weimer, J; Zettergren, H; Cederquist, H

    2011-06-01

    We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate "rings" and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.

  18. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  19. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    SciTech Connect

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  20. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  1. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-06-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ~1,100 mAh g-1 at 30 mA g-1 and ~420 mAh g-1 at 30 A g-1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

  2. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance.

    PubMed

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  3. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  4. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  5. Micro-MoS2 with excellent reversible sodium-ion storage.

    PubMed

    Wang, Xuefeng; Li, Yejing; Guan, Zhaoruxin; Wang, Zhaoxiang; Chen, Liquan

    2015-04-20

    Low storage capacity and poor cycling stability are the main drawbacks of the electrode materials for sodium-ion (Na-ion) batteries, due to the large radius of the Na ion. Here we show that micro-structured molybdenum disulfide (MoS2 ) can exhibit high storage capacity and excellent cycling and rate performances as an anode material for Na-ion batteries by controlling its intercalation depth and optimizing the binder. The former method is to preserve the layered structure of MoS2 , whereas the latter maintains the integrity of the electrode during cycling. A reversible capacity of 90 mAh g(-1) is obtained on a potential plateau feature when less than 0.5 Na per formula unit is intercalated into micro-MoS2 . The fully discharged electrode with sodium alginate (NaAlg) binder delivers a high reversible capacity of 420 mAh g(-1) . Both cells show excellent cycling performance. These findings indicate that metal chalcogenides, for example, MoS2 , can be promising Na-storage materials if their operation potential range and the binder can be appropriately optimized.

  6. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.

    PubMed

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F; Bettinger, Christopher J

    2013-12-24

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na(+)-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg(-1). Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg(-1). Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices.

  7. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  8. Intensity-sensitive and position-resolving cavity for heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Chen, X.; Sanjari, M. S.; Hülsmann, P.; Litvinov, Yu. A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th.; Walker, P. M.

    2016-08-01

    A heavy-ion storage ring can be adapted for use as an isochronous mass spectrometer if the ion velocity matches the transition energy of the ring. Due to the variety of stored ion species, the isochronous condition cannot be fulfilled for all the ions. In order to eliminate the measurement uncertainty stemming from the velocity spread, an intensity-sensitive and position-resolving cavity is proposed. In this paper we first briefly discuss the correction method for the anisochronism effect in the measurement with the cavity. Then we introduce a novel design, which is operated in the monopole mode and offset from the central beam orbit to one side. The geometrical parameters were optimized by analytic and numerical means in accordance with the beam dynamics of the future collector ring at FAIR. Afterwards, the electromagnetic properties of scaled prototypes were measured on a test bench. The results were in good agreement with the predictions.

  9. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  10. The cost of lithium is unlikely to upend the price of Li-ion storage systems

    NASA Astrophysics Data System (ADS)

    Ciez, Rebecca E.; Whitacre, J. F.

    2016-07-01

    As lithium ion batteries become more common in electric vehicles and other storage applications, concerns about the cost of their namesake material, and its impact on the cost of these batteries, will continue. However, examining the constituent materials of these devices shows that lithium is a relatively small contributor to both the battery mass and manufacturing cost. The use of more expensive lithium precursor materials results in less than 1% increases in the cost of lithium ion cells considered. Similarly, larger fluctuations in the global lithium price (from 0 to 25/kg from a baseline of 7.50 per kg of Li2CO3) do not change the cost of lithium ion cells by more than 10%. While this small cost increase will not have a substantial impact on consumers, it could affect the manufacturers of these lithium ion cells, who already operate with small profit margins.

  11. Physics with colder molecular ions: The Heidelberg Cryogenic Storage Ring CSR

    NASA Astrophysics Data System (ADS)

    Zajfman, D.; Wolf, A.; Schwalm, D.; Orlov, D. A.; Grieser, M.; von Hahn, R.; Welsch, C. P.; Crespo Lopez-Urrutia, J. R.; Schröter, C. D.; Urbain, X.; Ullrich, J.

    2005-01-01

    A novel cryogenic electrostatic storage ring is planned to be built at the Max-Planck Institute for Nuclear Physics in Heidelberg. The machine is expected to operate at low temperatures (~2K) and to store beams with kinetic energies between 20 to 300 keV. An electron target based on cooled photocathode technology will serve as a major tool for the study of reactions between molecular ions and electrons. Moreover, atomic beams can be merged and crossed with the stored ion beams allowing for atom molecular-ion collision studies at very low up to high relative energies. The proposed experimental program, centered around the physics of cold molecular ions, is shortly outlined.

  12. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.

    PubMed

    Xu, Yi-Jun; Liu, Xi; Cui, Guanglei; Zhu, Bo; Weinberg, Gisela; Schlögl, Robert; Maier, Joachim; Su, Dang Sheng

    2010-03-22

    A comparative study of the electrochemical performances of carbon nanotubes and tube-in-tube carbon nanotubes reveals a dependence effect of lithium-ion storage behavior on the detailed nanostructure of carbon nanotubes. In particular, the impurity that graphitic particles or graphene fragments inherently present in carbon nanotubes plays a crucial role in the lithium-ion storage capacity of the carbon nanotubes. Compared to acid-washed carbon nanotubes, the assembly of graphitic impurity fragments in the tube-in-tube structures hinders lithium-ion diffusion, thus drastically decreasing the rate performance of lithium-ion storage. Significantly, our results indicate that the lithium-ion storage capacity of carbon nanotubes as anode electrodes can be improved or controlled by optimizing the microstructure composition of impurity graphitic nanoparticles or graphene fragments in the matrix of the carbon nanotubes.

  13. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS.

    PubMed

    Orrego-Lagarón, Naiara; Vallverdú-Queralt, Anna; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-02-20

    Several biological activities (antioxidant, anti-inflammatory, anticarcinogenic) are attributed to naringenin (NAR)-a predominant flavonoid of citrus fruit and tomato-despite its low bioavailability after ingestion. NAR undergoes extensive metabolism when crossing the gastrointestinal tract, resulting in enteric, hepatic and microbial metabolites, some of them with recognized beneficial effects on human health. This study sought to provide new insights into the metabolism of NAR in regions of the gastrointestinal tract where it has been less studied: the stomach and colon. With this purpose, liquid chromatography coupled with an electrospray ionization hybrid linear ion trap quadrupole Orbitrap mass spectrometry technique (LC-ESI-LTQ-Orbitrap-MS) was used for an accurate identification of NAR metabolites, and liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) on a triple quadrupole was used for their identification and quantification. The combination of both analytical techniques provided a broader metabolic profile of NAR. As far as we know, this is the first in-depth metabolic profiling study of NAR in the stomach of mice. Three of the metabolites determined using the LC-LTQ-Orbitrap could not be identified by LC-ESI-MS/MS in stomach perfusion samples: apigenin, 3-(4-hydroxyphenyl) propionic acid and phloroglucinol. The number of colonic metabolites determined using the LTQ-Orbitrap-MS was more than twice the number identified by LC-ESI-MS/MS.

  14. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS.

    PubMed

    Orrego-Lagarón, Naiara; Vallverdú-Queralt, Anna; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-02-20

    Several biological activities (antioxidant, anti-inflammatory, anticarcinogenic) are attributed to naringenin (NAR)-a predominant flavonoid of citrus fruit and tomato-despite its low bioavailability after ingestion. NAR undergoes extensive metabolism when crossing the gastrointestinal tract, resulting in enteric, hepatic and microbial metabolites, some of them with recognized beneficial effects on human health. This study sought to provide new insights into the metabolism of NAR in regions of the gastrointestinal tract where it has been less studied: the stomach and colon. With this purpose, liquid chromatography coupled with an electrospray ionization hybrid linear ion trap quadrupole Orbitrap mass spectrometry technique (LC-ESI-LTQ-Orbitrap-MS) was used for an accurate identification of NAR metabolites, and liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) on a triple quadrupole was used for their identification and quantification. The combination of both analytical techniques provided a broader metabolic profile of NAR. As far as we know, this is the first in-depth metabolic profiling study of NAR in the stomach of mice. Three of the metabolites determined using the LC-LTQ-Orbitrap could not be identified by LC-ESI-MS/MS in stomach perfusion samples: apigenin, 3-(4-hydroxyphenyl) propionic acid and phloroglucinol. The number of colonic metabolites determined using the LTQ-Orbitrap-MS was more than twice the number identified by LC-ESI-MS/MS. PMID:26698229

  15. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering.

    PubMed

    Qiao, Xue; Li, Ru; Song, Wei; Miao, Wen-juan; Liu, Jia; Chen, Hu-biao; Guo, De-an; Ye, Min

    2016-04-01

    Structural identification of natural products by tandem mass spectrometry requires laborious spectral analysis. Herein, we report a targeted post-acquisition data processing strategy, key ion filtering (KIF), to analyze untargeted mass spectral data. This strategy includes four steps: (1) untargeted data acquisition by ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry (UHPLC/orbitrap-MS); (2) construction of a key ion database according to diagnostic MS/MS fragmentations and conservative substructures of natural compounds; (3) high-resolution key ion filtering of the acquired data to recognize substructures; and (4) structural identification of target compounds by analyzing their MS/MS spectra. The herbal medicine Huang-Qin (Scutellaria baicalensis Georgi) was used to illustrate this strategy. Its extract was separated within 20 min on a C18 column (1.8 μm, 2.1×150 mm) eluted with acetonitrile, methanol, and water containing 0.1% formic acid. The compounds were detected in the (-)-ESI mode, and their MS/MS spectra were recorded in the untargeted manner. Key ions were then filtered from the LC/MS data to recognize flavones, flavanones, O-/C-glycosides, and phenylethanoid glycosides. Finally, a total of 132 compounds were identified from Huang-Qin, and 59 of them were reported for the first time. This study provides an efficient data processing strategy to rapidly profile the chemical constituents of complicated herbal extracts.

  16. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  17. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries

    PubMed Central

    Wu, Xiaoyan; Jin, Shifeng; Zhang, Zhizhen; Jiang, Liwei; Mu, Linqin; Hu, Yong-Sheng; Li, Hong; Chen, Xiaolong; Armand, Michel; Chen, Liquan; Huang, Xuejie

    2015-01-01

    Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na+ ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries. PMID:26601260

  18. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries.

    PubMed

    Wu, Xiaoyan; Jin, Shifeng; Zhang, Zhizhen; Jiang, Liwei; Mu, Linqin; Hu, Yong-Sheng; Li, Hong; Chen, Xiaolong; Armand, Michel; Chen, Liquan; Huang, Xuejie

    2015-09-01

    Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na(+) ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries.

  19. Ion implantation effects in insulators and the long-term stability of radioactive waste storage materials

    NASA Astrophysics Data System (ADS)

    Dran, J. C.; Langevin, Y.; Maurette, M.; Petit, J. C.; Vassent, B.

    1981-05-01

    Most insulator materials so far proposed for storing high-level radioactive wastes, such as glass and and the constituent minerals of ceramics are nuclear track detectors. Lead ion implantation experiments show that such materials should be transformed into "giant" nuclear tracks, when the internal fluence of heavy recoils emitted during the α-decay of actinide elements stored in them exceeds a critical value, which corresponds to an equivalent storage period of a few thousand years for the wastes expected from a pressurized water reactor. In contrast, actinide bearing minerals are much more stable against α-recoil damage. As nuclear tracks are extremely chemical reactive, α-recoil damage is expected to shorten the lifetime of storage materials such as glass and ceramics against dissolution in ground waters. Fortunately new nuclear track concepts are already yielding guidelines for predicting and improving the long-term stability of storage materials. The results of the present studies also bear on the physics of ion implantation phenomena an insulator targets exposed to high fluences of low energy ions.

  20. Structural characterization of product ions of regulated veterinary drugs by electrospray ionization and quadrupole time-of-flight mass spectrometry (part 3) Anthelmintics, thyreostats, and flukicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Previously we have reported a liquid chromatography tandem mass spectrometry method for the identification and quantification of regulated veterinary drugs. The methods used three selected transition ions but most of these ions lacked structural characterization. The work presented here ...

  1. Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Calabrese, Giorgio; Gennaro, Maria Carla; Marengo, Emilio

    2013-01-15

    The study deals with the identification of the degradation products formed by simulated sunlight photoirradiation in a commercial beverage that contains Allura Red AC dye. An UHPLC-MS/MS method, that makes use of hybrid triple quadrupole/linear ion trap, was developed. In the identification step the software tool information dependent acquisition (IDA) was used to automatically obtain information about the species present and to build a multiple reaction monitoring (MRM) method with the MS/MS fragmentation pattern of the species considered. The results indicate that the identified degradation products are formed from side-reactions and/or interactions among the dye and other ingredients present in the beverage (ascorbic acid, citric acid, sucrose, aromas, strawberry juice, and extract of chamomile flowers). The presence of aromatic amine or amide functionalities in the chemical structures proposed for the degradation products might suggest potential hazards to consumer health.

  2. Redox-assisted Li+-storage in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qizhao, Huang; Qing, Wang

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. Project supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

  3. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage.

    PubMed

    Thangadurai, Venkataraman; Pinzaru, Dana; Narayanan, Sumaletha; Baral, Ashok Kumar

    2015-01-15

    Lithium ion batteries are the most promising energy storage system on the market today; however, safety issues associated with the use of flammable organic polymer-based electrolytes with poor electrochemical and chemical stabilities prevent this technology from reaching maturity. Solid lithium ion electrolytes (SLIEs) are being considered as potential replacements for the organic electrolytes to develop all-solid-state Li ion batteries. Out of the recently discovered SLIEs, the garnet-related structured Li-stuffed metal oxides are the most promising electrolytes due to their high total (bulk + grain boundary) Li ion conductivity, high electrochemical stability window (∼6 V versus Li(+)/Li at room temperature), and chemical stability against reaction with an elemental Li anode and high-voltage metal oxide Li cathodes. This Perspective discusses the structural-chemical composition-ionic conductivity relationship of Li-stuffed garnets, followed by a discussion on the Li ion conduction mechanism, as well as the electrochemical and chemical stability of these materials. The performance of a number of all-solid-state batteries employing garnet-type Li ion electrolytes is also discussed.

  4. Automated beam based alignment of the ALS quadrupoles

    SciTech Connect

    Portmann, G.; Robin, D.; Schachinger, L.

    1995-04-01

    Knowing the electrical offset of the storage ring beam position monitors (BPM) to an adjacent quadrupole magnetic center is important in order to correct the orbit in the ring. The authors describe a simple, fast and reliable technique to measure the BPM electrical centers relative to the quadrupole magnetic centers. By varying individual quadrupole magnets and observing the effects on the orbit they were able to measure the BPM offsets in half the horizontal and vertical BPMs (48) in the ALS. These offsets were measured to an accuracy of better than 50{mu}m. The technique is completely automated and takes less than 3 hours for the whole ring.

  5. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry.

    PubMed

    Liao, Chia-Ding; Wong, Jon W; Zhang, Kai; Yang, Paul; Wittenberg, James B; Trucksess, Mary W; Hayward, Douglas G; Lee, Nathaniel S; Chang, James S

    2015-09-23

    Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of < ± 2.0 ppm at 70,000 full width at half maximum (FWHM) mass resolution (RFWHM). The limits of quantitation were matrix- and mycotoxin-dependent, ranging from 0.02 to 11.6 μg/kg. Mean recoveries and standard deviations for mycotoxins from acetonitrile/water extraction at their relevant fortification levels were 91 ± 10, 94 ± 10, 98 ± 12, 91 ± 13, 99 ± 15, and 93 ± 17% for corn, rice, wheat, almond, peanut, and pistachio, respectively. Nineteen mycotoxins with concentrations ranging from 0.3 (aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM < ± 5 ppm by identifying the precursor and product ions in full-scan MS and data-dependent MS/MS modes. This method demonstrates a new analytical approach for monitoring mycotoxins in finished grain and nut products. PMID:25531669

  6. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry.

    PubMed

    Liao, Chia-Ding; Wong, Jon W; Zhang, Kai; Yang, Paul; Wittenberg, James B; Trucksess, Mary W; Hayward, Douglas G; Lee, Nathaniel S; Chang, James S

    2015-09-23

    Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of < ± 2.0 ppm at 70,000 full width at half maximum (FWHM) mass resolution (RFWHM). The limits of quantitation were matrix- and mycotoxin-dependent, ranging from 0.02 to 11.6 μg/kg. Mean recoveries and standard deviations for mycotoxins from acetonitrile/water extraction at their relevant fortification levels were 91 ± 10, 94 ± 10, 98 ± 12, 91 ± 13, 99 ± 15, and 93 ± 17% for corn, rice, wheat, almond, peanut, and pistachio, respectively. Nineteen mycotoxins with concentrations ranging from 0.3 (aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM < ± 5 ppm by identifying the precursor and product ions in full-scan MS and data-dependent MS/MS modes. This method demonstrates a new analytical approach for monitoring mycotoxins in finished grain and nut products.

  7. This-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates

    SciTech Connect

    Ford, Michael J; Kertesz, Vilmos; Van Berkel, Gary J

    2005-01-01

    The direct analysis of separated rhodamine dyes on reversed-phase C{sub 8} thin-layer chromatography plates using a surface sampling/electrospray emitter probe coupled with a triple-quadrupole linear ion trap mass spectrometer is presented. This report represents continuing work to advance the performance metrics and utility of this basic surface sampling electrospray mass spectrometry system for the analysis of thin-layer chromatography plates. Experimental results examining the role of sampling probe spray end configuration on liquid aspiration rate and gas-phase ion signal generated are discussed. The detection figures-of-merit afforded by full-scan, automated product ion and selected reaction monitoring modes of operation were examined. The effect of different eluting solvents on mass spectrum signal levels with the reversed-phase C{sub 8} plate was investigated. The combined effect of eluting solvent flow-rate and development lane surface scan rate on preservation of chromatographic resolution was also studied. Analysis of chromatographically separated red pen ink extracts from eight different pens using selected reaction monitoring demonstrated the potential of this surface sampling electrospray mass spectrometry system for targeted compound analysis with real samples.

  8. Rapid separation and identification of furocoumarins in Angelica dahurica by high-performance liquid chromatography with diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry.

    PubMed

    Zhang, Hai; Gong, Chungui; Lv, Lei; Xu, Yuanjie; Zhao, Liang; Zhu, Zhenyu; Chai, Yifeng; Zhang, Guoqing

    2009-07-01

    High-performance liquid chromatography with diode-array detection (HPLC/DAD), time-of-flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation, identification and structural analysis of furocoumarins in Angelica dahurica. Two furocoumarins (imperatorin and isoimperatorin) in Angelica dahurica extract were identified unambiguously by comparing their relative retention times, characteristic ultraviolet information and accurate mass measurement. A formula database of known furocoumarins in Angelica dahurica was established, against which the other 21 furocoumarins were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to distinguish the isomers, multi-stage mass spectrometry (MSn, ion trap mass spectrometry) was used. General fragmentation behavior of the furocoumarins in the ion trap mass spectrometer was studied by the two furocoumarin standards, and their fragmentation rules in MS(n) spectra were summarized. These deduced fragmentation rules of furocoumarins were successfully implemented in distinguishing the three groups of isomers in Angelica dahurica by HPLC/QITMS. By using the three different analytical techniques, 23 furocoumarins in Angelica dahurica were tentatively identified within 30 min. Finally, HPLC/TOFMS fingerprints of Angelica dahurica were established by which it can be concluded that a rapid and effective method based on the three analytical techniques for identification of chemical components was established. This can provide help for further quality control of Angelica dahurica and pharmacology mechanism study of furocoumarins in Angelica dahurica.

  9. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  10. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    PubMed

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  11. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries.

    PubMed

    Yoo, EunJoo; Kim, Jedeok; Hosono, Eiji; Zhou, Hao-shen; Kudo, Tetsuichi; Honma, Itaru

    2008-08-01

    The lithium storage properties of graphene nanosheet (GNS) materials as high capacity anode materials for rechargeable lithium secondary batteries (LIB) were investigated. Graphite is a practical anode material used for LIB, because of its capability for reversible lithium ion intercalation in the layered crystals, and the structural similarities of GNS to graphite may provide another type of intercalation anode compound. While the accommodation of lithium in these layered compounds is influenced by the layer spacing between the graphene nanosheets, control of the intergraphene sheet distance through interacting molecules such as carbon nanotubes (CNT) or fullerenes (C60) might be crucial for enhancement of the storage capacity. The specific capacity of GNS was found to be 540 mAh/g, which is much larger than that of graphite, and this was increased up to 730 mAh/g and 784 mAh/g, respectively, by the incorporation of macromolecules of CNT and C60 to the GNS.

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  15. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  16. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  17. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  18. A hybrid liquid chromatography-mass spectrometry strategy in a forensic laboratory for opioid, cocaine and amphetamine classes in human urine using a hybrid linear ion trap-triple quadrupole mass spectrometer.

    PubMed

    Dowling, Geraldine; Regan, Liam; Tierney, Julie; Nangle, Michael

    2010-10-29

    A rapid method has been developed to analyse morphine, codeine, morphine-3-glucuronide, 6-monoacetylmorphine, cocaine, benzoylegonine, buprenorphine, dihydrocodeine, cocaethylene, 3,4-methylenedioxyamphetamine, ketamine, 3,4-methylenedioxymethamphetamine, pseudoephedrine, lignocaine, benzylpiperazine, methamphetamine, amphetamine, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine and methadone in human urine. Urine samples were diluted with methanol:water (1:1, v/v) and sample aliquots were analysed by hybrid linear ion trap-triple quadrupole mass spectrometry with a runtime of 12.5 min. Multiple reaction monitoring (MRM) as survey scan and an enhanced product ion (EPI) scan as dependent scan were performed in an information-dependent acquisition (IDA) experiment. Finally, drug identification and confirmation was carried out by library search with a developed in-house MS/MS library based on EPI spectra at a collision energy spread of 35±15 in positive mode and MRM ratios. The method was validated in urine, according to the criteria defined in Commission Decision 2002/657/EC. At least two MRM transitions for each substance were monitored in addition to EPI spectra and deuterated analytes were used as internal standards for quantitation. The reporting level was 0.05 μg mL(-1) for the range of analytes tested. The regression coefficients (r(2)) for the calibration curves (0-4 μg mL(-1)) in the study were ≥0.98. The method proved to be simple and time efficient and was implemented as an analytical strategy for the illicit drug monitoring of opioids, cocaines and amphetamines in criminal samples from crime offenders, abusers or victims in the Republic of Ireland. To the best of our knowledge there are no hybrid LC-MS applications using MRM mode and product ion spectra in the linear ion trap mode for opioids, cocaines or amphetamines with validation data in urine. PMID:20855077

  19. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  20. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  1. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    PubMed Central

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  2. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  3. Resonant neutral-particle emission in collisions of electrons with peptide ions in a storage ring.

    PubMed

    Tanabe, T; Noda, K; Saito, M; Lee, S; Ito, Y; Takagi, H

    2003-05-16

    Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging beam technique for singly protonated peptides (angiotensin I, II, and III). A strong neutral-particle emission at around 6.5 eV was found in addition to neutrals from recombination at low energies. The rates of the high-energy peak greatly decreased with a slight decrease in the number of amino-acid residues from angiotensin I to III. These results suggest that some peptide bonds were selectively cleaved.

  4. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  5. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-06-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  6. MeV ion-beam analysis of optical data storage films

    NASA Technical Reports Server (NTRS)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  7. Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets

    SciTech Connect

    Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R.

    2008-05-01

    This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

  8. Development of Lithium-ion Battery as Energy Storage for Mobile Power Sources Applications

    NASA Astrophysics Data System (ADS)

    Sulaiman, Mohd Ali; Hasan, Hasimah

    2009-09-01

    In view of the need to protect the global environment and save energy, there has been strong demand for the development of lithium-ion battery technology as a energy storage system, especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium-ion battery development is toward the high power and energy density, cheaper in price and high safety standard. In our laboratory, the research and development of lithium-ion battery technology was mainly focus to develop high power density performance of cathode material, which is focusing to the Li-metal-oxide system, LiMO2, where M=Co, Ni, Mn and its combination. The nano particle size material, which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition, we also developed variety of sizes of lithium-ion battery prototype, including (i) small size for electronic gadgets such as mobile phone and PDA applications, (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC, SIRIM Berhad will be discussed in this paper.

  9. Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2003-01-01

    In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.

  10. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  11. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  12. Linac quadrupole connections

    SciTech Connect

    Stiening, R.

    1984-07-12

    Linac type QC and QCH quadrupoles are mounted on the accelerator with their power connection side facing the injector. The connections are on the top of the magnet. The correct polarity for magnets is shown. The magnetic centers of all magnets are measured. If the magnetic center is above the geometric center, the distance delta y is positive. If the magnetic center is to the right of the geometric center, the distance delta x is positive.

  13. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    PubMed

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  14. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  15. Gas phase reaction of substituted isoquinolines to carboxylic acids in ion trap and triple quadrupole mass spectrometers after electrospray ionization and collision-induced dissociation.

    PubMed

    Thevis, Mario; Kohler, Maxie; Schlörer, Nils; Schänzer, Wilhelm

    2008-01-01

    Within the mass spectrometric study of bisubstituted isoquinolines that possess great potential as prolylhydroxylase inhibitor drug candidates (e.g., FG-2216), unusually favored gas-phase formations of carboxylic acids after collisional activation were observed. The protonated molecule of [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid was dissociated, yielding the 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyleneamide cation. Subsequent dissociation caused the nominal elimination of 11 u that resulted from the loss of HCN and concomitant addition of oxygen to the product ion, which formed the protonated 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid. The preference of this structure under mass spectrometric conditions was substantiated by tandem mass spectrometry analyses using the corresponding methyl ester (1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyl ester) that eliminated methylene (-14 u) upon collisional activation. Moreover, the major product ion of 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, which resulted from the loss of water in MS3 experiments, restored the precursor ion structure by re-addition of H2O. Evidences for these phenomena were obtained by chemical synthesis of proposed gas-phase intermediates, H/D exchange experiments, high-resolution/high accuracy mass spectrometry at MSn level, and "ping-pong" analyses (MS7, in which the precursor ion was dissociated and the respective product ion isolated to regenerate the precursor ion for repeated dissociation. Based on these results, dissociation pathways for [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid were suggested that can be further utilized for the characterization of structurally related compounds or metabolic products in clinical, forensic, or doping control analysis.

  16. Mechanism of Formation of the Major Estradiol Product Ions Following Collisional Activation of the Molecular Anion in a Tandem Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wooding, Kerry M.; Barkley, Robert M.; Hankin, Joseph A.; Johnson, Christopher A.; Bradford, Andrew P.; Santoro, Nanette; Murphy, Robert C.

    2013-10-01

    The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M - H]- m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.

  17. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  18. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    PubMed

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  19. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry.

    PubMed

    Vaclavik, Lukas; Krynitsky, Alexander J; Rader, Jeanne I

    2014-01-31

    In this study, an ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry (UHPLC-Q-orbitrap MS) method was developed and validated for simultaneous determination of 96 pharmaceuticals, plant toxins, and other plant secondary metabolites in herbal dietary supplements. Target analytes were extracted from samples using the QuEChERS (quick easy cheap effective rugged safe) procedure. The instrument was operated in full MS-data dependent tandem mass spectrometry (full MS-dd-MS/MS) acquisition mode which enabled collection of quantitative high resolution (HR) full mass spectral data and confirmatory HR MS/MS data in a single run. The method provided excellent selectivity in both full MS and dd-MS/MS mode. Under optimized collision energy settings, product ion spectra containing both precursor and two or more product ions were obtained for most of the analytes. Limits of detection (LODs) and limits of quantification (LOQs) for the method differed significantly for the examined matrices. LODs≤10μg kg(-1) and LOQs≤50μg kg(-1) were obtained for 48 to 81% of target compounds across five different matrices. With the exception of highly polar analytes, the optimized QuEChERS extraction procedure provided acceptable recoveries in the range 70%-120%. The precision of the method, characterized as the relative standard deviation (RSD, n=5), was ≤25% and ≤18% at spiking concentrations of 50μg kg(-1) and 500μg kg(-1), respectively. Because of variations in matrix effects in extracts of herbal dietary supplements that differed in composition, the method of standard additions and an approach based on dilution of matrix components followed by quantification using solvent standards were applied for quantification. The procedure was used to examine commercial dietary supplements for the 96 analytes of interest. To the best of our knowledge, this is the first report of an integrated analysis and quantification of this wide range of compounds.

  20. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry.

    PubMed

    Vaclavik, Lukas; Krynitsky, Alexander J; Rader, Jeanne I

    2014-01-31

    In this study, an ultra-high performance liquid chromatography-quadrupole-orbital ion trap mass spectrometry (UHPLC-Q-orbitrap MS) method was developed and validated for simultaneous determination of 96 pharmaceuticals, plant toxins, and other plant secondary metabolites in herbal dietary supplements. Target analytes were extracted from samples using the QuEChERS (quick easy cheap effective rugged safe) procedure. The instrument was operated in full MS-data dependent tandem mass spectrometry (full MS-dd-MS/MS) acquisition mode which enabled collection of quantitative high resolution (HR) full mass spectral data and confirmatory HR MS/MS data in a single run. The method provided excellent selectivity in both full MS and dd-MS/MS mode. Under optimized collision energy settings, product ion spectra containing both precursor and two or more product ions were obtained for most of the analytes. Limits of detection (LODs) and limits of quantification (LOQs) for the method differed significantly for the examined matrices. LODs≤10μg kg(-1) and LOQs≤50μg kg(-1) were obtained for 48 to 81% of target compounds across five different matrices. With the exception of highly polar analytes, the optimized QuEChERS extraction procedure provided acceptable recoveries in the range 70%-120%. The precision of the method, characterized as the relative standard deviation (RSD, n=5), was ≤25% and ≤18% at spiking concentrations of 50μg kg(-1) and 500μg kg(-1), respectively. Because of variations in matrix effects in extracts of herbal dietary supplements that differed in composition, the method of standard additions and an approach based on dilution of matrix components followed by quantification using solvent standards were applied for quantification. The procedure was used to examine commercial dietary supplements for the 96 analytes of interest. To the best of our knowledge, this is the first report of an integrated analysis and quantification of this wide range of compounds

  1. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10/sup 14/ 350 keV Ar/cm/sup 2/ + 1 x 10/sup 15/ 500 keV Ne/cm/sup 2/ is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity.

  2. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  3. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  4. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.

    PubMed

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  5. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    SciTech Connect

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  6. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  7. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.

    PubMed

    Webster, Stephen; Godun, Rachel; King, Steven; Huang, Guilong; Walton, Barney; Tsatourian, Veronika; Margolis, Helen; Lea, Stephen; Gill, Patrick

    2010-03-01

    We report on precision laser spectroscopy of the 2S(1/2)(F = 0)-2D(3/2) (F = 2, m(F) = 0) clock transition in a single ion of 171Yb+. The absolute value of the transition frequency, determined using an optical frequency comb referenced to a hydrogen maser, is 688358979309310 +/- 9 Hz. This corresponds to a fractional frequency uncertainty of 1.3 x 10(-14).

  8. Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry.

    PubMed

    Yassin, Ghada H; Grun, Christian; Koek, Jean H; Assaf, Khaleel I; Kuhnert, Nikolai

    2014-11-01

    Ultra performance liquid chromatography (UPLC) when coupled to ion mobility (IMS)/orthogonal acceleration time of flight mass spectrometry is a suitable technique for analyzing complex mixtures such as the black tea thearubigins. With the aid of this advanced instrumental analysis, we were able to separate and identify different isomeric components in the complex mixture which could previously not be differentiated by a conventional high performance liquid chromatography/tandem mass spectrometry. In this study, the difference between isomeric structures theasinensins, proanthocyanidins B-type and rutin (quercetin-3O-rutinoside) were studied, and these are present abundantly in many botanical sources. The differentiation between these structures was accomplished according to their acquired mobility drift times differing from the traditional investigations in mass spectrometry, where calculation of theoretical collisional cross sections allowed assignment of the individual isomeric structures. The present work demonstrates UPLC-IMS-MS as an efficient technology for isolating and separating isobaric and isomeric structures existing in complex mixtures discriminating between them according to their characteristic fragment ions and mobility drift times. Therefore, a rational assignment of isomeric structures in many phenolic secondary metabolites based on the ion mobility data might be useful in mass spectrometry-based structure analysis in the future.

  9. Determination of sulfonamide antibiotics and metabolites in liver, muscle and kidney samples by pressurized liquid extraction or ultrasound-assisted extraction followed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry (HPLC-QqLIT-MS/MS).

    PubMed

    Hoff, Rodrigo Barcellos; Pizzolato, Tânia Mara; Peralba, Maria do Carmo Ruaro; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-03-01

    Sulfonamides are widely used in human and veterinary medicine. The presence of sulfonamides residues in food is an issue of great concern. Throughout the present work, a method for the targeted analysis of 16 sulfonamides and metabolites residue in liver of several species has been developed and validated. Extraction and clean-up has been statistically optimized using central composite design experiments. Two extraction methods have been developed, validated and compared: i) pressurized liquid extraction, in which samples were defatted with hexane and subsequently extracted with acetonitrile and ii) ultrasound-assisted extraction with acetonitrile and further liquid-liquid extraction with hexane. Extracts have been analyzed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry. Validation procedure has been based on the Commission Decision 2002/657/EC and included the assessment of parameters such as decision limit (CCα), detection capability (CCβ), sensitivity, selectivity, accuracy and precision. Method׳s performance has been satisfactory, with CCα values within the range of 111.2-161.4 µg kg(-1), limits of detection of 10 µg kg(-1) and accuracy values around 100% for all compounds.

  10. Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia.

    PubMed

    Petrović, Mira; Škrbić, Biljana; Živančev, Jelena; Ferrando-Climent, Laura; Barcelo, Damia

    2014-01-15

    The aim of the work was to study the occurrence of pharmaceuticals in waste, surface, underground, and drinking water samples collected in Serbia. A multi-residue method for the analysis of 81 pharmaceutical drugs from different therapeutic classes in the various types of water was applied. Twenty-five composite water samples were prepared using solid-phase extraction and the presence of 81 pharmaceutical compounds in the extracts was analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap (UPLC-QqLIT-MS/MS). Forty seven compounds of 81 drugs were found in four different types of analyzed water. The highest concentrations of ibuprofen of 20.1 μg L(-1), 10,11-epoxycarbamazepine of 16.2 μg L(-1), 2-hydroxycarbamazepine of 15.9 μg L(-1) and acetaminophen of 15.7 μg L(-1) were found in municipal waste water sample. Results revealed the presence of salicylic acid in 41.67% of water samples, carbamazepine in 36.11%, propranolol and irbesartan in 30.56%. The obtained results were discussed in relation to the relevant data available in literature. This is the first attempt to assess the occurrence of these 81 pharmaceutical residues in water samples in Serbia.

  11. Chemometrics for comprehensive analysis of nucleobases, nucleosides, and nucleotides in Siraitiae Fructus by hydrophilic interaction ultra high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry.

    PubMed

    Zhou, Guisheng; Wang, Mengyue; Xu, Renjie; Li, Xiao-Bo

    2015-10-01

    A rapid and sensitive hydrophilic interaction ultra high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry method was validated for the simultaneous determination of 20 nucleobases, nucleosides, and nucleotides (within 3.5 min), and then was employed to test the functional food of Luo-Han-Guo samples. The analysis showed that the Luo-Han-Guo was rich in guanosine and uridine, but contained trace levels of the other target compounds. Chemometrics methods were employed to identify 40 batches of Luo-Han-Guo samples from different cultivated forms, regions and varieties. Unsupervised hierarchical cluster analysis and principal component analysis were used to classify Luo-Han-Guo samples based on the level of the 20 target compounds, and the supervised learning method of counter propagation artificial neural network was utilized to further separate clusters and validate the established model. As a result, the samples could be clustered into three primary groups, in which correlation with cultivated varieties was observed. The present strategy could be applied to the investigation of other edible plants containing nucleobases, nucleosides, or nucleotides. PMID:26249158

  12. Rapid identification of betacyanins from Amaranthus tricolor, Gomphrena globosa, and Hylocereus polyrhizus by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS).

    PubMed

    Cai, Yi-Zhong; Xing, Jie; Sun, Mei; Corke, Harold

    2006-09-01

    Natural betacyanins have attracted great attention as food colorants and potential antioxidants. Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) is a new and powerful technique for the identification of low molecular weight compounds. This study is the first to employ MALDI-QIT-TOF MS to rapidly identify, within a few minutes, a great number of betacyanins in crude extracts from Amaranthus tricolor seedlings, Gomphrena globosa flowers, and Hylocereus polyrhizus fruits. The fresh crude extract samples without any purification were directly used for MALDI-QIT-TOF MS analysis with 2,5-dihydroxybenzoic acid as a matrix. The MS2 and MS3 spectrometric data acquired could provide important characteristic information for structural elucidation of the betacyanins. Fourteen free and acylated betacyanins, belonging to amaranthin-type, betanin-type, and gomphrenin-type betacyanins, respectively, were identified. However, the related isomers should be differentiated with the aid of HPLC.

  13. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  14. Dissociative recombination measurements of NH{sup +} using an ion storage ring

    SciTech Connect

    Novotný, O.; Savin, D. W.; Berg, M.; Bing, D.; Buhr, H.; Grieser, M.; Grussie, F.; Krantz, C.; Mendes, M. B.; Nordhorn, C.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.

    2014-09-10

    We have investigated dissociative recombination (DR) of NH{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged-beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data, we have extracted a cross section, which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from T {sub pl} = 10 to 18,000 K. We show that the NH{sup +} DR rate coefficient data in current astrochemical models are underestimated by up to a factor of approximately nine. Our new data will result in predicted NH{sup +} abundances lower than those calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH{sup +} in interstellar clouds.

  15. Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications

    PubMed Central

    Liu, Meinan; Yan, Cheng; Zhang, Yuegang

    2015-01-01

    Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500 ~ 800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh·g−1) and rate capability. Even at a current density of 1 A·g−1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh·g−1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications. PMID:25659574

  16. Photodissociation of an Internally Cold Beam of CH^{+} Ions in a Cryogenic Storage Ring.

    PubMed

    O'Connor, A P; Becker, A; Blaum, K; Breitenfeldt, C; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; von Hahn, R; Hechtfischer, U; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lohmann, S; Meyer, C; Mishra, P M; Novotný, O; Repnow, R; Saurabh, S; Schwalm, D; Spruck, K; Sunil Kumar, S; Vogel, S; Wolf, A

    2016-03-18

    We have studied the photodissociation of CH^{+} in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH^{+} beams with a kinetic energy of ∼60  keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J=0-2 of CH^{+}, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J, and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH^{+} to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions. PMID:27035300

  17. Photodissociation of an Internally Cold Beam of CH+ Ions in a Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    O'Connor, A. P.; Becker, A.; Blaum, K.; Breitenfeldt, C.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; von Hahn, R.; Hechtfischer, U.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lohmann, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; Repnow, R.; Saurabh, S.; Schwalm, D.; Spruck, K.; Sunil Kumar, S.; Vogel, S.; Wolf, A.

    2016-03-01

    We have studied the photodissociation of CH+ in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH+ beams with a kinetic energy of ˜60 keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J =0 - 2 of CH+, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J , and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH+ to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions.

  18. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  19. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.

    PubMed

    Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun

    2016-09-01

    Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.

  20. Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance.

    PubMed

    Yang, Xu; Zhang, Rongyu; Chen, Nan; Meng, Xing; Yang, Peilei; Wang, Chunzhong; Zhang, Yaoqing; Wei, Yingjin; Chen, Gang; Du, Fei

    2016-01-22

    Sodium-ion batteries (SIBs) have attracted much interest as a low-cost and environmentally benign energy storage system, but more attention is justifiably required to address the major technical issues relating to the anode materials to deliver high reversible capacity, superior rate capability, and stable cyclability. A SnSe/reduced graphene oxide (RGO) nanocomposite has been prepared by a facile ball-milling method, and its structural, morphological, and electrochemical properties have been characterized and compared with those of the bare SnSe material. Although the redox behavior of SnSe remains nearly unchanged upon the incorporation of RGO, its electrochemical performance is significantly enhanced, as reflected by a high specific capacity of 590 mA h g(-1) at 0.050 A g(-1) , a rate capability of 260 mA h g(-1) at 10 A g(-1) , and long-term stability over 120 cycles. This improvement may be attributed to the high electronic conductivity of RGO, which also serves as a matrix to buffer changes in volume and maintain the mechanical integrity of the electrode during (de)sodiation processes. In view of its excellent Na(+) storage performance, this SnSe/RGO nanocomposite has potential as an anode material for SIBs.

  1. Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance.

    PubMed

    Yang, Xu; Zhang, Rongyu; Chen, Nan; Meng, Xing; Yang, Peilei; Wang, Chunzhong; Zhang, Yaoqing; Wei, Yingjin; Chen, Gang; Du, Fei

    2016-01-22

    Sodium-ion batteries (SIBs) have attracted much interest as a low-cost and environmentally benign energy storage system, but more attention is justifiably required to address the major technical issues relating to the anode materials to deliver high reversible capacity, superior rate capability, and stable cyclability. A SnSe/reduced graphene oxide (RGO) nanocomposite has been prepared by a facile ball-milling method, and its structural, morphological, and electrochemical properties have been characterized and compared with those of the bare SnSe material. Although the redox behavior of SnSe remains nearly unchanged upon the incorporation of RGO, its electrochemical performance is significantly enhanced, as reflected by a high specific capacity of 590 mA h g(-1) at 0.050 A g(-1) , a rate capability of 260 mA h g(-1) at 10 A g(-1) , and long-term stability over 120 cycles. This improvement may be attributed to the high electronic conductivity of RGO, which also serves as a matrix to buffer changes in volume and maintain the mechanical integrity of the electrode during (de)sodiation processes. In view of its excellent Na(+) storage performance, this SnSe/RGO nanocomposite has potential as an anode material for SIBs. PMID:26680235

  2. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    SciTech Connect

    Not Available

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  3. Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance

    SciTech Connect

    Fang, Zhen Wang, Qin; Wang, Xiaoqing; Fan, Fan; Wang, Chenyan; Zhang, Xiaojun

    2013-11-15

    Graphical abstract: - Highlights: • Uniform hierarchical SnS microspheres via solvothermal reaction. • The formation process was investigated in detail. • The obtained hierarchical SnS microspheres exhibit superior capacity (1650 mAh g{sup −1}) when used as lithium battery for the hierarchical microsphere structure. - Abstract: Hierarchical SnS microspheres have been successfully synthesized by a mild solvothermal process using poly(vinylpyrrolidone) as surfactant in this work. The morphology and composition of the microspheres were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of reaction parameters, such as sulfur sources, reaction temperature and the concentration of PVP, on the final morphology of the products are investigated. On the basis of time-dependent experiments, the growth mechanism has also been proposed. The specific surface area of the 3D hierarchitectured SnS microspheres were investigated by using nitrogen adsorption and desorption isotherms. Lithium ion storage performances of the synthesized materials as anodes for Lithium-ion battery were investigated in detail and it exhibits excellent electrochemical properties.

  4. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  5. Identification of sulfoglycolipids from the alga Porphyridium purpureum by matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometry.

    PubMed

    Naumann, Ivonne; Darsow, Kai H; Walter, Christian; Lange, Harald A; Buchholz, Rainer

    2007-01-01

    Sulfoglycolipids, isolated from different phototrophic organisms, particularly plants and algae, have already been identified as bioactive compounds. In addition to their antiviral activity their influence on the immune response in mammalian cells is the focus of many studies. For the first time it has been possible to investigate purified sulfoquinovosyldiacylglycerols (SQDGs) from the microalga Porphyridium purpureum by matrix-assisted laser desorption/ionisation (MALDI) in the negative ion reflectron mode. Thereby, different solid and ionic liquid matrices have been tested to improve signal intensity during the laser ionisation. By using the MALDI Trap time-of-flight (ToF) multiple-stage (MS(n)) hybrid mass spectrometer the fatty acid compositions of the SQDGs were analysed by MS, and confirmed by MS(2) and MS(3) experiments. Thereby, hexadecanoic acid (C16:0), octadecadienoic acid (C18:2), eicosatetraenoic acid (C20:4), and eicosapentaenoic acid (C20:5) were detected in the purified fraction of SQDGs. The localisation of hexadecanoic acid (C16:0) at the sn-2 position, and unsaturated fatty acids at the sn-1 position of the SQDGs, determined by specific enzymatic hydrolysis, marks a procaryotic biosynthesis of SQDGs in the eucaryotic alga cells.

  6. Analysis of veterinary drug residues in shrimp: a multi-class method by liquid chromatography-quadrupole ion trap mass spectrometry.

    PubMed

    Li, Hui; Kijak, Philip James; Turnipseed, Sherri B; Cui, Wei

    2006-05-19

    A liquid chromatography-mass spectrometry (LC-MS) method was developed to screen and confirm veterinary drug residues in raw shrimp meat. This method simultaneously monitors 18 drugs of different classes, including oxytetracycline (OTC), sulfonamides, quinolones, cationic dyes, and toltrazuril sulfone (TOLS). The homogenized shrimp meat is extracted with 5% trichloroacetic acid. The extract is further cleaned using polymer-based SPE. A 50 mm phenyl column separates the analytes, prior to analysis with an ion trap mass spectrometer interfaced with an atmospheric pressure chemical ionization source. This method is able to confirm oxytetracycline residues at 200 ng/g, toltrazuril sulfone at 50 ng/g, sulfaquinoxaline at 20 ng/g, and the other 15 drugs at 10 ng/g or lower levels. An estimate of the level of residues can also be made so that only confirmed samples above action levels will be sent for quantitation. The method is validated with both fortified and incurred samples, using multiple shrimp species as well. This multi-class method can provide a means to simultaneously monitor for a wide range of illegal drug residues in shrimp. PMID:16597519

  7. First determination of C 60 and C 70 fullerenes and N-methylfulleropyrrolidine C 60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Farré, Marinella; Pérez, Sandra; Gajda-Schrantz, Krisztina; Osorio, Victoria; Kantiani, Lina; Ginebreda, Antoni; Barceló, Damià

    2010-03-01

    SummaryThe increasing use and production of carbon-based nanoparticles demands for new analytical approaches able to achieve sensitivities in the low ng/L range in order to assess their presence in environmental samples. This paper describes development, optimization and validation of a novel method for the analysis of C 60 and, C 70 fullerenes and N-methylfulleropyrrolidine C 60 in the environment. The method relies on ultrasonication extraction from suspended solids in wastewater, followed by liquid chromatography (LC) coupled to a hybrid triple quadrupole linear ion trap mass spectrometry (QqLIT-MS) for trace quantification. Recoveries obtained were generally higher than 60% for both surface water and wastewaters. The overall variability of the method was below 15%, for the three fullerenes and all tested matrices: ultra-pure water, surface water and wastewater. For the effluents of wastewater treatment plants the method quantification limits (MQL) ranged from 0.2 to 1 ng/L. The precision of the method, calculated as relative standard deviation (RSD), ranged from 1% to 2% and from 5% to 9% for intra and inter-day analysis, respectively. The developed analytical method was applied to the analysis of fullerenes in the effluents of 22 wastewater treatment plants in Catalonia (NE of Spain). 50% of the analyzed samples contained fullerenes, nine of them in the μg/L concentration range. This work constitutes the first report on the occurrence of fullerenes in suspended solids of wastewater effluents highlighting the need of nanotechnologies residues assessment for risk evaluation of nanoparticles in the environment.

  8. Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: evaluation of green parameters.

    PubMed

    Vázquez, M M Parrilla; Vázquez, P Parrilla; Galera, M Martínez; Moreno, A Uclés

    2014-08-22

    Two dispersive liquid-liquid microextraction (DLLME) approaches including temperature-controlled ionic liquid dispersive liquid-liquid microextraction (TCIL-DLLME) and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) were compared for the extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, lufenuron and flufenoxuron) from wastewater samples prior to their determination by high-performance liquid chromatography with a hybrid triple quadrupole-linear ion trap-mass spectrometer (LC-QqLIT-MS/MS). Influential parameters affecting extraction efficiency were systematically studied and optimized and the most significant green parameters were quantified and compared. The best results were obtained using the US-IL-DLLME procedure, which employed the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) and methanol (MeOH) as extraction and disperser solvent, respectively. US-IL-DLLME procedure was fast, easy, low environmental toxicity and, it was also able to successfully extract all selected benzoylureas. This method was extensively validated with satisfactory results: limits of detection and quantification were in the range 0.5-1.0 ng L(-1) and 1.5-3.5 ng L(-1), respectively, whereas recovery rates ranged from 89 to 103% and the relative standard deviations were lower than 13.4%. The applicability of the method was assessed with the analysis of effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of teflubenzuron at mean concentration levels of 11.3 ng L(-1). US-IL-DLLME sample treatment in combination with LC-QqLIT-MS/MS has demonstrated to be a sensitive, selective and efficient method to determine benzoylurea insecticides in wastewaters at ultra-trace levels.

  9. Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: evaluation of green parameters.

    PubMed

    Vázquez, M M Parrilla; Vázquez, P Parrilla; Galera, M Martínez; Moreno, A Uclés

    2014-08-22

    Two dispersive liquid-liquid microextraction (DLLME) approaches including temperature-controlled ionic liquid dispersive liquid-liquid microextraction (TCIL-DLLME) and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) were compared for the extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, lufenuron and flufenoxuron) from wastewater samples prior to their determination by high-performance liquid chromatography with a hybrid triple quadrupole-linear ion trap-mass spectrometer (LC-QqLIT-MS/MS). Influential parameters affecting extraction efficiency were systematically studied and optimized and the most significant green parameters were quantified and compared. The best results were obtained using the US-IL-DLLME procedure, which employed the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) and methanol (MeOH) as extraction and disperser solvent, respectively. US-IL-DLLME procedure was fast, easy, low environmental toxicity and, it was also able to successfully extract all selected benzoylureas. This method was extensively validated with satisfactory results: limits of detection and quantification were in the range 0.5-1.0 ng L(-1) and 1.5-3.5 ng L(-1), respectively, whereas recovery rates ranged from 89 to 103% and the relative standard deviations were lower than 13.4%. The applicability of the method was assessed with the analysis of effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of teflubenzuron at mean concentration levels of 11.3 ng L(-1). US-IL-DLLME sample treatment in combination with LC-QqLIT-MS/MS has demonstrated to be a sensitive, selective and efficient method to determine benzoylurea insecticides in wastewaters at ultra-trace levels. PMID:24993054

  10. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  11. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  12. Identification of N-Oxide and Sulfoxide Functionalities in Protonated Drug Metabolites by Using Ion-Molecule Reactions Followed by Collisionally Activated Dissociation in a Linear Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Sheng, Huaming; Tang, Weijuan; Yerabolu, Ravikiran; Max, Joann; Kotha, Raghavendhar R; Riedeman, James S; Nash, John J; Zhang, Minli; Kenttämaa, Hilkka I

    2016-01-15

    The in vivo oxidation of sulfur and nitrogen atoms in many drugs into sulfoxide and N-oxide functionalities is a common biotransformation process. Unfortunately, the unambiguous identification of these metabolites can be challenging. In the present study, ion-molecule reactions of tris(dimethylamino)borane followed by collisionally activated dissociation (CAD) in an ion trap mass spectrometer are demonstrated to allow the identification of N-oxide and sulfoxide functionalities in protonated polyfunctional drug metabolites. Only ions with N-oxide or sulfoxide functionality formed diagnostic adducts that had lost dimethyl amine (DMA). This was demonstrated even for an analyte that contains a substantially more basic functionality than the functional group of interest. CAD of the diagnostic product ions (M) resulted mainly in type A (M - DMA) and B fragment ions (M - HO-B(N(CH3)2)2) for N-oxides, but sulfoxides also formed diagnostic C ions (M - O═BN(CH3)2), thus allowing differentiation of the functionalities. Some protonated analytes yielded abundant TDMAB adducts that had lost two DMA molecules instead of just one. This provides information on the environment of the N-oxide and sulfoxide functionalities. Quantum chemical calculations were performed to explore the mechanisms of the above-mentioned reactions. The method can be implemented on HPLC for real drug analysis. PMID:26651970

  13. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.

  14. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  15. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage.

    PubMed

    Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V

    2014-09-01

    We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.

  16. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage.

    PubMed

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S; Noda, Suguru; Lee, Seung Woo

    2016-02-14

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ∼210 mA h gCS(-1), with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ∼155 mA h gelectrode(-1) with no obvious capacity fading up to 10,000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices. PMID:26809548

  17. Perforated Metal Oxide-Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties.

    PubMed

    Choi, Seung Ho; Lee, Jong-Heun; Kang, Yun Chan

    2015-10-27

    Metal oxide-carbon nanotube (CNT) composite microspheres with a novel structure were fabricated using a one-step spray pyrolysis process. Metal oxide-CNT composite microspheres with a uniform distribution of void nanospheres were prepared from a colloidal spray solution containing CNTs, metal salts, and polystyrene (PS) nanobeads. Perforated SnO2-CNT composite microspheres with a uniform distribution of void nanospheres showed excellent lithium storage properties as anode materials for lithium-ion batteries. Bare SnO2 microspheres and SnO2-CNT composite microspheres with perforated and filled structures had a discharge capacity of 450, 1108, and 590 mA h g(-1) for the 250th cycle at a current density of 1.5 A g(-1), and the corresponding capacity retention compared to the second cycle was 41, 98, and 55%, respectively. The synergetic combination of void nanospheres and flexible CNTs improved the electrochemical properties of SnO2. This effective and innovative strategy could be used for the preparation of perforated metal oxide-CNT composites with complex elemental compositions for many applications. PMID:26355350

  18. DISSOCIATIVE RECOMBINATION MEASUREMENTS OF HCl{sup +} USING AN ION STORAGE RING

    SciTech Connect

    Novotný, O.; Stützel, J.; Savin, D. W.; Becker, A.; Buhr, H.; Domesle, C.; Grieser, M.; Krantz, C.; Kreckel, H.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.; Spruck, K.

    2013-11-01

    We have measured dissociative recombination (DR) of HCl{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T = 10 to 5000 K. We show that the previously used HCl{sup +} DR data underestimate the plasma rate coefficient by a factor of 1.5 at T = 10 K and overestimate it by a factor of three at T = 300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.

  19. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties

    PubMed Central

    Jiao, Yucong; Han, Dandan; Ding, Yi; Zhang, Xianfeng; Guo, Guannan; Hu, Jianhua; Yang, Dong; Dong, Angang

    2015-01-01

    Three-dimensional superlattices consisting of nanoparticles represent a new class of condensed materials with collective properties arising from coupling interactions between close-packed nanoparticles. Despite recent advances in self-assembly of nanoparticle superlattices, the constituent materials have been limited to those that are attainable as monodisperse nanoparticles. In addition, self-assembled nanoparticle superlattices are generally weakly coupled due to the surface-coating ligands. Here we report the fabrication of three-dimensionally interconnected nanoparticle superlattices with face-centered cubic symmetry without the presynthesis of the constituent nanoparticles. We show that mesoporous carbon frameworks derived from self-assembled supercrystals can be used as a robust matrix for the growth of nanoparticle superlattices with diverse compositions. The resulting interconnected nanoparticle superlattices embedded in a carbon matrix are particularly suitable for energy storage applications. We demonstrate this by incorporating tin oxide nanoparticle superlattices as anode materials for lithium-ion batteries, and the resulting electrochemical performance is attributable to their unique architectures. PMID:25739732

  20. Can we differentiate alpine groundwater storages regarding volume and residence time by recession observations, ion composition and tracer balance?

    NASA Astrophysics Data System (ADS)

    Floriancic, Marius; Smoorenburg, Maarten; Margreth, Michael; Naef, Felix

    2015-04-01

    Research on how catchments store and release water is essential to improve flood and low flow prediction in (un)gauged watersheds. Despite their importance for catchment scale assessments on runoff generation, knowledge on storage properties and residence times is still limited. Here we present some approaches to separate different storage types regarding their residence time and a quantification of the volumes of these storages based on a dataset of winter recession observation in the alpine Poschiavino headwater area. This spatially highly resolved dataset of discharge, electric conductivity and ion composition from a watershed with strongly contrasting storage properties, allowed separating three main contributing sources: continuous discharge from bedrock cracks, strongly delayed discharge from thick sediment deposits and fractured rock and rapid discharge from shallow layers. The gradients of the recession curves, the variation of electric conductivity in the river network and calculated tracer balance were used to separate contribution from different sources. Additionally contribution from sedimentary rocks and crystalline layers could be separated based on the variation of ion composition in the water samples. We derived recession curves for a period of four months for the separated storages in different parts of the catchment allowing estimation of the contributed volumes in this time period. Finally the spatial distribution of the storage types could be mapped throughout the catchment based on information like geo(morpho)logical maps, aerial photographs, DEM and field observations. We found significant variation comparing the discharged volume and specific discharge throughout the winter season in the different subcatchments. Constant discharge from bedrock cracks is similar in all catchment parts. Storage in the shallow deposits depleted quickly. High winter discharge could be attributed to thick quaternary deposits contributing during the whole

  1. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  2. Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage

    PubMed Central

    Hong, Zhensheng; Zhou, Kaiqiang; Huang, Zhigao; Wei, Mingdeng

    2015-01-01

    A major obstacle in realizing Na-ion batteries (NIBs) is the absence of suitable anode materials. Herein, we firstly report the anatase TiO2 mesocages constructed by crystallographically oriented nanoparticle subunits as a high performance anode for NIBs. The mesocages with tunable microstructures, high surface area (204 m2 g−1) and uniform mesoporous structure were firstly prepared by a general synthesis method under the assist of sodium dodecyl sulfate (SDS). It’s notable that the TiO2 mesocages exhibit a large reversible capacity and good rate capability. A stable capacity of 93 mAhg−1 can be retained after 500 cycles at 10 C in the range of 0.01–2.5 V, indicating high rate performance and good cycling stability. This could be due to the uniform architecture of iso-oriented mesocage structure with few grain boundaries and nanoporous nature, allowing fast electron and ion transport, and providing more active sites as well as freedom for volume change during Na-ion insertion. CV measurements demonstrate that the sodium-ion storage process of anatase mesocages is mainly controlled by pseudocapacitive behavior, which is different from the lithium-ion storage and further facilitates the high rate capability. PMID:26145511

  3. Recombination of W19 + ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    NASA Astrophysics Data System (ADS)

    Badnell, N. R.; Spruck, K.; Krantz, C.; Novotný, O.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.

    2016-05-01

    Experimentally measured and theoretically calculated rate coefficients for the recombination of W19 +([Kr ] 4 d10 4 f9 ) ions with free electrons (forming W18 +) are presented. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances as already found previously for the neighboring charge-state ions W18 + and W20 +. In the temperature range where W19 + is expected to form in a collisionally ionized plasma, the experimentally derived recombination rate coefficient deviates by up to a factor of about 20 from the theoretical rate coefficient obtained from the Atomic Data and Analysis Structure database. The present calculations, which employ a Breit-Wigner redistributive partitioning of autoionizing widths for dielectronic recombination via multi-electron resonances, reproduce the experimental findings over the entire temperature range.

  4. Mini-proceedings of the workshop on heavy ion physics and instrumentation for a 15-Tm booster and storage ring

    SciTech Connect

    Not Available

    1986-11-01

    The goal of this workshop was to probe in depth a few of the areas of possible physics made possible by the availability of an intermediate energy heavy-ion physics facility. There was a special emphasis on physics that would be possible only with a storage/cooler ring. Topics discussed were nuclei far from stability, quantum electrodynamics, giant resonances and photonuclear reactions, and high energy gamma-ray production. Individual papers in this meeting were abstracted separately.

  5. Microwave-assisted hydrothermal synthesis of porous SnO{sub 2} nanotubes and their lithium ion storage properties

    SciTech Connect

    Wang, H.E.; Xi, L.J.; Ma, R.G.; Lu, Z.G.; Chung, C.Y.; Bello, I.; Zapien, J.A.

    2012-06-15

    Porous SnO{sub 2} nanotubes have been synthesized by a rapid microwave-assisted hydrothermal process followed by annealing in air. The detailed morphological and structural studies indicate that the SnO{sub 2} tubes typically have diameters from 200 to 400 nm, lengths from 0.5 to 1.5 {mu}m and wall thicknesses from 50 to 100 nm. The SnO{sub 2} nanotubes are self-assembled by interconnected nanocrystals with sizes {approx}8 nm resulting in a specific surface area of {approx}54 m{sup 2} g{sup -1}. The pristine SnO{sub 2} nanotubes are used to fabricate lithium half cells to evaluate their lithium ion storage properties. The porous SnO{sub 2} nanotubes are characteristic with high lithium ion storage capacity, that is found to be 1258, 951, 757, 603, 458, and 288 mAh g{sup -1}, at 0.1, 0.2, 0.5, 1, 2, and 4C, respectively. The enhanced electrochemical properties of the SnO{sub 2} nanotubes can be ascribed to their unique geometry and porous structures. - Graphical abstract: Porous SnO{sub 2} nanotubes are synthesized by a fast microwave-assisted hydrothermal process and exhibit high lithium ion storage properties due to their unique geometry and porous characteristics. Highlights: Black-Right-Pointing-Pointer A microwave-assisted hydrothermal method was used to prepare porous SnO{sub 2} nanotubes. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes have abundant mesopores on their tube walls. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes possess high lithium ion storage properties. Black-Right-Pointing-Pointer Our results may promote the development of high-performance anode materials.

  6. OPERATIONAL MEASUREMENT OF COUPLING BY SKEW QUADRUPOLE MODULATION.

    SciTech Connect

    LUO.Y.CAMERON,P.LEE,R.ET AL.

    2004-07-05

    The measurement and correction of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of the skew quadrupole families the two eigentune modulations are precisely measured with a high resolution phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation direction are determined. The residual linear coupling could be corrected according the measurement. We report the results from the dedicated beam studies carried on at RHIC injection, store and on the ramp. A capability of measuring coupling on the ramp opens possibility of continuous coupling corrections during acceleration.

  7. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    PubMed Central

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133

  8. Rapid, high performance method for the determination of vitamin K(1), menaquinone-4 and vitamin K(1) 2,3-epoxide in human serum and plasma using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry.

    PubMed

    Gentili, Alessandra; Cafolla, Arturo; Gasperi, Tecla; Bellante, Simona; Caretti, Fulvia; Curini, Roberta; Fernández, Virginia Pérez

    2014-04-18

    Unlike the other fat-soluble vitamins, vitamin K circulates in the human bloodstream at very low levels because of a low intake in the diet. Mammals have developed an efficient recycling system, known as vitamin K-epoxide cycle, which involve quinone, hydroquinone and epoxide forms of the vitamin. Phylloquinone (K(1)) is the main homologue, while menaquinone-4 (MK-4) is both a member of the vitamin K(2) family and metabolite of K(1) in extra-hepatic tissues. Notwithstanding the recent advances, many aspects of the complex vitamin K physiology still remain to be investigated. Therefore, there is a critical need to develop more reliable analytical methods for determining the vitamin K and its metabolites in biological fluids and tissues. Nevertheless, relatively low concentrations, unavailability of some authentic standards and occurrence of interfering lipids make this a challenging task. The method proposed in the present paper can directly and accurately estimate K(1), K(1) 2,3-epoxide (K(1)O), and MK-4 in human serum and plasma at concentrations in the ng/L-μg/L range, using labelled internal standards and a quadrupole linear ion trap instrument operated in multiple reaction monitoring (MRM) mode. High sensitivity was achieved by removing signal "endogenous suppressors" and making the composition of the non-aqueous mobile phase suitable to support the positive atmospheric pressure chemical ionization of the analytes. An excellent selectivity resulted from the combination of some factors: the MRM acquisition, the adoption of an identification point system, an extraction optimized to remove most of the lipids and a tandem-C18 column-system necessary to separate isobaric interferences from analytes. The method was validated according to the Food and Drug Administration (FDA) guidelines and its accuracy was assessed by analysing 9 samples from the Vitamin K External Quality Assessment Scheme (KEQAS). Its feasibility in evaluating vitamin K status in human serum was

  9. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument.

    PubMed

    Loos, Robert; Tavazzi, Simona; Paracchini, Bruno; Canuti, Elisabetta; Weissteiner, Christof

    2013-07-01

    Water-soluble polar organic contaminants are discharged by rivers, cities, and ships into the oceans. Little is known on the fate, pollution effects, and thresholds of toxic chemical mixtures in the marine environment. A new trace analytical method was developed for the multi-compound analysis of polar organic chemical contaminants in marine waters. The method is based on automated solid-phase extraction (SPE) of one-liter water samples followed by ultrahigh-pressure liquid chromatography triple-quadrupole linear ion-trap mass spectrometry (UHPLC-QTRAP(®) MS). Marine water samples from the open Adriatic Sea taken 16 km offshore from Venice (Italy) were analyzed. Method limits of quantification (LOQs) in the low picogram per liter (pg/l) concentration range were achieved. Among the 67 target chemicals analyzed, 45 substances could be detected above the LOQ. The chemicals detected at the highest concentrations were caffeine (up to 367 ng/l), nitrophenol (36 ng/l), 2,4-dinitrophenol (34 ng/l), 5-methyl-1H-benzotriazole (18.5 ng/l), sucralose (11 ng/l), 1H-benzotriazole (9.2 ng/l), terbuthylazine (9 ng/l), alachlor (7.7 ng/l), atrazine-desisopropyl (6.6 ng/l), diethyltoluamide (DEET) (5.0 ng/l), terbuthylazine-desethyl (4.3 ng/l), metolachlor (2.8 ng/l), perfluorooctanoic acid (PFOA) (2.5 ng/l), perfluoropentanoic acid (PFPeA) (2.3 ng/l), linuron (2.3 ng/l), perfluorohexanoic acid (PFHxA) (2.2 ng/l), diuron (2.0 ng/l), perfluorohexane sulfonate (PFHxS) (1.6 ng/l), simazine (1.6 ng/l), atrazine (1.5 ng/l), and perfluorooctane sulfonate (PFOS) (1.3 ng/l). Higher concentrations were detected during summer due to increased levels of tourist activity during this period.

  10. Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties

    PubMed Central

    Fan, Lishuang; Li, Bingjiang; Zhang, Naiqing; Sun, Kening

    2015-01-01

    Novel hierarchical carbon nanohorns (CNHs) carried iron fluoride nanocomposites have been constructed by direct growth of FeF3·0.33H2O nanoparticles on CNHs. In the FeF3·0.33H2O@CNHs nanocomposite, the mesopore CNHs play the role as conductive matrix and robust carrier to support the FeF3·0.33H2O nanoparticles. The intimate conductive contact between the two components can build up an express way of electron transfer for rapid Li+ insertion/extraction. The CNHs can not only suppress the growth and agglomeration of FeF3·0.33H2O during the crystallization process, but also sever as an “elastic confinement” to support FeF3·0.33H2O. As was to be expected, the hierarchical FeF3·0.33H2O@CNHs nanocomposite exhibits impressive rate capability and excellent cycle performance. Markedly, the nanocomposite proves stable, ultrahigh rate lithium ion storage properties of 81 mAh g−1 at charge/discharge rate of 50 C (a discharge/charge process only takes 72 s). The integration of high electron conductivity, confined nano sized FeF3·0.33H2O (~5 nm), hierarchical mesopores CNHs and the “elastic confinement” support, the FeF3·0.33H2O@CNHs nanocomposite demonstrates excellent ultrahigh rate capability and good cycling properties. PMID:26173994

  11. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    PubMed

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  12. Heavy Ion Storage Ring for Atomic Physics (HISTRAP) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1989-05-01

    HISTRAP (Heavy Ion Storage Ring for Atomic Physics) is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of /similar to/15 cm, and requires a vacuum of 10/sup -12/ Torr to decelerate highly charged, very heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling 1/16 of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diam components, with 316LN stainless-steel flanges. Prior to assembly, these components were vacuum fired at 950 /sup 0/C at a pressure of 10/sup -4/ Torr. The test stand is bakable in situ at 300 /sup 0/C. Pumping is achieved with two 750 l/s titanium sublimator pumps and one 60 l/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -4/ partial pressure residual gas analyser. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved.

  13. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1988-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of about 15 cm, and requires a vacuum of 10/sup -12/ Torr in order to decelerate highly-charged very-heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling one-sixteenth of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diameter components, with 316LN stainless steel flanges. Prior to assembly, these components were vacuum fired at 950/degree/C at a pressure of 10/sup -4/ Torr. The test stand is bakeable in situ at 300/degree/C. Pumping is achieved with two 750-L/s titanium sublimator pumps and one 60-L/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -14/ PP RGA. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved. 7 refs., 5 figs.

  14. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties

    NASA Astrophysics Data System (ADS)

    Chen, Chang; Liu, Borui; Ru, Qiang; Ma, Shaomeng; An, Bonan; Hou, Xianhua; Hu, Shejun

    2016-09-01

    Cubic Spinel MnCo2O4/graphene sheets (MCO/GS) nanocomposites are synthesized by a facile hydrothermal method with a subsequent annealing process. Nano-sized MnCo2O4 particles are evenly embedded in paper-like graphene sheets, possessing a unique nanoparticles-on-sheets hybrid nanostructure, with particle size around 20-50 nm. Owing to the special nanoparticles-on-sheets structures, MCO/GS nanocomposites have an outstanding electrochemical performance for rechargeable energy storage devices. As an anode material for lithium-ion batteries, MCO/GS electrodes exhibit high reversible discharge capacities (1350.4 mAh g-1 at the initial rate of 100 mA g-1), excellent rate capability (462.1 mAh g-1 at a current rate of 4000 mA g-1) and outstanding cycling performance (584.3 mAh g-1 at 2000 mA g-1 after 250 cycles). Meanwhile, as an anode material for sodium-ion batteries, MCO/GS electrodes also exhibit comparably promising electrochemical characteristics. Greatly improved electrochemical properties can be assigned to the special advantageous nanostructures. Besides, the existence of graphene sheets is beneficial to the transportation of ions/electrons during battery operation. The outstanding electrochemical performance demonstrates that the lithium/sodium storage capability of MCO/GS nanocomposites is highly promising for high-capacity batteries.

  15. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  16. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  17. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  18. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  19. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage.

    PubMed

    Kim, Jong Guk; Nam, Sang Hoon; Lee, Sang Ho; Choi, Sung Mook; Kim, Won Bae

    2011-03-01

    We report a novel architecture of SnO(2) nanorod-planted graphite particles for an efficient Li ion storage material that can be prepared by a simple catalyst-assisted hydrothermal process. Rectangular-shaped SnO(2) nanorods are highly crystalline with a tetragonal rutile phase and distributed uniformly over the surface of micrometer-sized graphite particles. In addition, the size dimensions of grown SnO(2) nanorods can be controlled by varying the synthesis conditions. The diameter can be engineered to a sub-100 nm range, and the length can be controlled to up to several hundred nanometers. Significantly, the SnO(2) nanorod-planted graphite demonstrates an initial Li ion storage capacity of about 1010 mAh g(-1) during the first cycle. Also, these SnO(2)-graphite composites show high Coulombic efficiency and cycle stability in comparison with SnO(2) nanomaterials that are not combined with graphite. The enhanced electrochemical properties of SnO(2) nanorod-planted graphite, as compared with bare SnO(2) materials, inspire better design of composite materials with effective nanostructural configurations for advanced electrodes in lithium ion batteries. PMID:21344871

  20. Window frame or superferric magnet design for low B(3T) heavy ion storage ring study

    NASA Astrophysics Data System (ADS)

    Danby, G.; Devito, B.; Jackson, J.; Keohane, G.; Lee, Y.; Phillips, R.; Plate, S.; Repeta, L.; Skaritka, J.; Smith, L.

    Double magnets share common laminations without magnetic coupling. Single layer coils of rectangular conductor are dry wound on extruded bore tubes. Magnet construction requires no molding or prestress. Absence of superconducting (SC) magnetization fields in the aperture results in very large dynamic range. The coil is wound continuously across the modplane to give unusually large dynamic aperture. Above approx. 2.2 T saturation is corrected by simple sextupole windings with no inductive coupling to the dipole. Ultrastable design requires no internal quench protection. A quadrupole pair of novel design gives excellent field quality to B . 2 T without corrections, with no SC magnetization. Experience shows magnets are accurate enough for the assembly to take place at its final location. No training is required. Test procedures (measurements with search coils or with the beam) and cooldown properties are discussed.

  1. First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage

    NASA Astrophysics Data System (ADS)

    Li, S. N.; Liu, J. B.; Liu, B. X.

    2016-07-01

    The development of competitive Na- and Mg-ion batteries (NIBs and MIBs) with performance comparable to Li-ion batteries is hindered by the major challenge of finding advanced electrode materials. In this work, nanostructured TiS2 electrodes including nanosheets, nanoribbons and nanotubes are shown by first principles calculations to achieve improved Na and Mg ion diffusion as compared with the bulk phase. Comparative studies between Li, Na, and Mg reveal that the diffusion kinetics of Na ions would especially benefit from the nanostructure design of TiS2. More specifically, the Na ion diffusivity turns out to be considerably higher than Li ion diffusivity, which is opposite to that observed in bulk TiS2. However, in the case of Mg ions, fast diffusion is still beyond attainment since a relatively high degree of interaction is expected between Mg and the S atoms. Edge-induced modifications of diffusion properties appear in both Na and Mg ions, while the mobility of Li ions along the ribbon edges may not be as appealing. Effects of the curvature of nanotubes on the adsorption strength and ion conductivity are also explored. Our results highlight the nanostructure design as a rich playground for exploring electrodes in NIBs and MIBs.

  2. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  3. Study on capacity fading of 18650 type LiCoO2-based lithium ion batteries during storage

    NASA Astrophysics Data System (ADS)

    Zheng, Liu-Qun; Li, Shu-Jun; Zhang, Deng-Feng; Lin, Hai-Jun; Miao, Yan-Yue; Chen, Shou-Wei; Liu, Hai-Bin

    2015-05-01

    The capacity fading of LiCoO2-based lithium ion batteries during storage was studied. The discharging capacity fading is attributed to the decreasing in the charging capacity at the constant current stage. After 300 cycles, the ratio of the charging capacity of batteries at the constant current stage to the total charging capacity decreases from 87.2 to 71.2%. The bounce-back voltage is closely related to the internal resistance when the battery is discharged to the cut-off voltage of 3.0 V. Batteries were disassembled in the fully discharged state, and then a assembled again in order to deeply understand the causes of the capacity fading of the cathode and anode. The results shows that the SEI film thickness increasing, breaking or repairing process at the anode could be responsible for the high bounce-back voltage, the increase of the internal resistance and the capacity fading during storage.

  4. Detection of the quadrupole hyperfine structure in HCNH(+)

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Yoder, J. T.

    1992-01-01

    We report the first measurement of the electric quadrupole hyperfine structure of HCNH(+). The J = 1-0 transition of this interstellar molecular ion was observed toward the cold, dark cloud TMC-1, using the NRAO 12 m telescope at 74 GHz. The three hyperfine components of this transition were clearly detected and resolved, enabling the first experimental determination of the quadrupole coupling constant eqQ of HCNH(+). The value of this constant is calculated to be eqQ = -0.49 +/- 0.07 MHz. The column density of HCNH(+) toward TMC-1 was found to be N(tot) about 2.8 x 10 exp 13/sq cm, corresponding to a fractional abundance relative to H2 of f about 3 x 10 exp -9. This abundance is at least one order of magnitude higher than the predictions of ion-molecule chemistry. Detection of the hyperfine structure clearly establishes the presence of HCNH(+) in interstellar space.

  5. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    SciTech Connect

    Yuri, Yosuke

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  6. Mechanistic studies of multipole storage assisted dissociation.

    PubMed

    Håkansson, K; Axelsson, J; Palmblad, M; Håkansson, P

    2000-03-01

    The degree and onset of fragmentation in multipole storage assisted dissociation (MSAD) have been investigated as functions of several hexapole parameters. Strict studies of hexapole charge density (number of ions injected) and hexapole storage time were made possible by placing a pulsed shutter in front of the entrance to the mass spectrometer. The results obtained show that the charge density is the most critical parameter, but also dependencies on storage time, radio-frequency (rf) -amplitude, and pressure are seen. From these data, and from simulations of the ion trajectories inside the hexapole, a mechanism for MSAD, similar to the ones for sustained off-resonance irradiation (SORI), and for low energy collisionally induced dissociation in the collision multipole of a triple quadrupole mass spectrometer, is proposed. It is believed that, at higher charge densities, ions are pushed to larger hexapole radii where the electric potential created by the rf field is higher, forcing the ions to oscillate radially to higher amplitudes and thereby reach higher (but still relatively low) kinetic energies. Multiple collisions with residual gas molecules at these elevated energies then heat up the molecules to their dissociation threshold. Further support for this mechanism is obtained from a comparison of MSAD and SORI spectra which are almost identical in appearance.

  7. Iron Telluride-Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties.

    PubMed

    Cho, Jung Sang; Lee, Seung Yeon; Lee, Jung-Kul; Kang, Yun Chan

    2016-08-24

    Transition-metal telluride materials are studied as the anode materials for Na-ion batteries (NIBs). The FeTe2-reduced graphene oxide (rGO) hybrid powders (first target material) are prepared via spray pyrolysis and subsequent tellurization. The H2Te gas treatment transforms the Fe3O4-rGO powders to FeTe2-rGO hybrid powders with FeTe2 nanocrystals (various sizes <100 nm) embedded within the rGO. The FeTe2-rGO hybrid powders contain 5 wt % rGO. The Na-ion storage mechanism for FeTe2 in NIBs is described by FeTe2 + 4Na(+) + 4e(-)↔Fe + 2Na2Te. The FeTe2-rGO hybrid discharge process forms metallic Fe nanocrystals and Na2Te by a conversion reaction of FeTe2 with Na ions. The discharge capacities of the FeTe2-rGO hybrid powders for the first and 80th cycles are 493 and 293 mA h g(-1), respectively. The discharge capacities of the bare FeTe2 powders for the first and 80th cycles are 462 and 83 mA h g(-1), respectively. The FeTe2-rGO hybrid powders have superior Na-ion storage properties compared to bare FeTe2 powders owing to their high structural stability and electrical conductivity. PMID:27488678

  8. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  9. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  10. Analytic formula for quadrupole-quadrupole matrix elements

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.

    1990-12-01

    An analytic formula is reported for general matrix elements of the microscopic quadrupole-quadrupole operator in the U(3)-boson approximation. The complete infinite-dimensional basis of A-fermion wave functions is compatible with the harmonic-oscillator shell model and consists of np-nh configurations, with spurious center-of-mass excitations removed, which are symmetry adapted to the Elliott U(3) and symplectic Sp(3,R) models. The formula expresses the general Q2.Q2 matrix element with respect to this complete orthonormal basis as a Racah SU(3) U coefficient times a closed-shell matrix element. An oscillator closed-shell matrix element of Q2.Q2 is a square root of a rational function of the integer quantum numbers of the U(3) basis.

  11. Sodium-Ion Storage Properties of FeS-Reduced Graphene Oxide Composite Powder with a Crumpled Structure.

    PubMed

    Lee, Seung Yeon; Kang, Yun Chan

    2016-02-18

    The sodium-ion storage properties of FeS-reduced graphene oxide (rGO) and Fe3O4 -rGO composite powders with crumpled structures have been studied. The Fe3 O4 -rGO composite powder, prepared by one-pot spray pyrolysis, could be transformed to an FeS-rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4 -rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS-rGO and Fe3O4 -rGO composite powders were 740 and 442 mA h g(-1), and their initial charge capacities were 530 and 165 mA h g(-1), respectively. The discharge capacities of the FeS-rGO and Fe3O4 -rGO composite powders at the 50th cycle were 547 and 150 mA h g(-1), respectively. The FeS-rGO composite powder showed superior sodium-ion storage performance compared to the Fe3O4 -rGO composite powder.

  12. Penning traps with unitary architecture for storage of highly charged ions.

    PubMed

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  13. Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage.

    PubMed

    Bruce, Peter G

    2006-03-21

    Ion-polyether complexes are the solid state analogues of crown ether and cryptand complexes. They represent a fascinating class of coordination compounds in their own right, with the ability to support ionic conductivity and the potential to be used as electrolytes in all-solid-state rechargeable lithium batteries. Here the recent discovery of ionic conductivity in crystalline ion-polyether complexes, when for 30 years such materials were considered to be insulators, is described, along with their closely related structural chemistry.

  14. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    DOE PAGESBeta

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-04-21

    Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less

  15. Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-04-01

    The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ~0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (~0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

  16. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    PubMed Central

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; Engelhard, Mark H.; Wang, Bingbing; Gunaratne, K. Don D.; Johnson, David C.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia

    2016-01-01

    The rational design of improved electrode–electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage. PMID:27097686

  17. Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing.

    PubMed

    Prabhakaran, Venkateshkumar; Mehdi, B Layla; Ditto, Jeffrey J; Engelhard, Mark H; Wang, Bingbing; Gunaratne, K Don D; Johnson, David C; Browning, Nigel D; Johnson, Grant E; Laskin, Julia

    2016-04-21

    The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 μg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

  18. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  19. Application of a quadrupole mass filter to laser ionization mass spectrometry: synchronization between the laser pulse and the mass scan

    NASA Astrophysics Data System (ADS)

    Kuzuya, M.; Ohoka, Y.; Katoh, H.; Sakanashi, H.

    1998-01-01

    A quadrupole-based laser ionization mass spectrometry system was developed by combining a commercial quadrupole mass filter with a laser microprobe instrument, which employs a pulse generator that synchronizes the laser pulse with the quadrupole mass scan to detect the pulsed ion signals generated by laser induced ionization. Mass spectra were measured for several solid samples of pure metals (Al,Cu), metal alloys (Inconel 601, brass), and ceramics (BN). Reproducible spectra, with relative standard deviations of the ion signals less than 1%, were obtained with this system. Moreover, isotope abundance ratios were measured and compared with the natural abundance ratios.

  20. Resonance of the Macromotion of Ions Trapped in a RF Trap by the Subharmonic Oscillation

    NASA Astrophysics Data System (ADS)

    Yoda, Jun; Sugiyama, Kazuhiko

    1992-11-01

    Yb+ ions were trapped in an uncompensated rf trap with light buffer gas and then the storage time, as well as the total number of the trapped ions, was determined by the rf resonance method. When the ratio of the frequency of the trapping field to that of the macromotion of the trapped ions was an integer, the total number and the storage time were smaller and shorter, respectively, than those obtained when the ratio was a half-integer. A theoretical calculation shows that this effect, called the subharmonic oscillation, is caused by excitation of the macromotion of the trapped ions by the leaked trapping rf field, in the case in which the ion trap has an octupole besides a quadrupole potential.

  1. Storage Stability in Reversion Mutation of a Rice Line Devoid of LOX-1, 2 Acquired by Ion Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Jiang, Jiayue; Wu, Jinhua; Wu, Yuejin; Song, Mei; Wang, Xiangqin; Liu, Binmei; Yu, Zengliang

    2009-02-01

    The effect of absence of lipoxygenase isoenzyme (LOX) on storage stability was investigated. Rice mutant 1297 without lipoxygenase isoenzyme-1 LOX-1 or lipoxygenase isoenzyme-2 (LOX-2) generated by ion beam irradiation from Wanjian2090 and reversion mutant RM1297 with LOX-1 and LOX-2 were subjected to an accelerated-aging experiment. Shanyou63 (with LOX-1 and LOX-2) served as control. Results showed that the germination and dehydrogenase activity decreased while the electrical conductivity and free fatty acid content increased in all varieties with accelerated aging. In 1297 that lacked LOX-1 and 2, there were slight changes in germination, dehydrogenase activity, membrane permeability and free fatty acid content during the thirty-day accelerated-aging experiment. But in varieties with LOX-1 and LOX-2, significant changes were observed, suggesting that LOX-1, 2 might be a definite factor which influenced seed lifespan. This study also indicates that ion beam irradiation may be used as mutagen to generate mutant and reversion mutants for biological study and could become a new direction in ion beam application.

  2. Development and testing of 100 kW/1 min Li-ion battery systems for energy storage applications

    NASA Astrophysics Data System (ADS)

    Clark, N. H.; Doughty, D. H.

    Two 100 kW min -1 (1.67 kW h -1) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h -1 and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

  3. Hierarchical Porous ZnMn2 O4 Hollow Nanotubes with Enhanced Lithium Storage toward Lithium-Ion Batteries.

    PubMed

    Zhang, Longhai; Zhu, Siqi; Cao, Hui; Hou, Linrui; Yuan, Changzhou

    2015-07-20

    We have purposefully developed a smart template-engaged methodology to efficiently fabricate well-defined ternary spinel ZnMn2 O4 hollow nanotubes (NTs). The procedure involves coating carbon nanotubes (CNTs) with ZnMn2 O4 nanosheets (NSs), followed by heating at high temperature in air to oxidize the CNT template. Physicochemical characterization demonstrated that the formed ZnMn2 O4 NTs with a diameter of approximately 100 nm were composed of assembled NSs and/or nanoparticles (NPs) as building blocks and possessed numerous nanopores of several nanometers in the sidewall of the NTs. In favor of the intrinsic structural advantages, the resulting ZnMn2 O4 NTs exhibited superior electrochemical lithium-storage performance with a large capacity, good rate behavior, and excellent cyclability when evaluated as promising anodes for lithium-ion batteries (LIBs). The remarkable electrochemical performance was rationally ascribed to the appealing one-dimensional (1D) porous hollow tubular architecture with nanoscale subunits and mesopores in the sidewalls, which decreased the diffusion length for the Li(+) ions, improved the kinetic process, and enhanced the structural integrity with sufficient void space to tolerate the volume variation during Li(+) -ion insertion/extraction. These results highlight the promising application of 1D ZnMn2 O4 NTs as anodes for high-performance LIBs. PMID:26079938

  4. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.

    PubMed

    Liu, Xiaolin; Yang, Jun; Hou, Wenhua; Wang, Jiulin; Nuli, Yanna

    2015-08-24

    Herein, MoO2 nanoplates have been facilely prepared through a hydrothermal process by using MoO3 microbelts as the intercalation host. The obtained MoO2 nanoplates manifest excellent electrochemical properties when the discharge cutoff voltage is simply set at 1.0 V to preclude the occurrence of conversion reactions. Its initial reversible capacity reaches 251 mAh g(-1), which is larger than that of Li4Ti5O12 , at a current rate of 0.2 C. The average capacity decay is only 0.0465 mAh g(-1) per cycle, with a coulombic efficiency of 99.5% (from the 50th cycle onward) for 2000 cycles at 1 C. Moreover, this MoO2 electrode demonstrates an outstanding high power performance. When the current rate is increased from 0.2 to 50 C, about 54% of the capacity is retained. The superior electrochemical performance can be attributed to the metallic conductivity of MoO2, short Li(+) diffusion distance in the nanoplates, and reversible crystalline phase conversion of the addition-type reaction of MoO2. The prepared MoO2 nanoplates may hopefully replace their currently used analogues, such as Li4Ti5O12 , in high power lithium-ion batteries.

  5. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  6. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage.

    PubMed

    Li, Wei-Jie; Chou, Shu-Lei; Wang, Jia-Zhao; Liu, Hua-Kun; Dou, Shi-Xue

    2013-01-01

    Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g(-1), but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 mA h g(-1) for sodium ion batteries (SIBs), with capacity retention of 76.6% over 10 cycles. Our results suggest that the simply mixed commercial red phosphorus and CNTs would be a promising anode candidate for SIBs with a high capacity and low cost.

  7. Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media

    SciTech Connect

    Toney, Michael F

    2003-07-31

    The authors describe the use of ion beam induced crosslinking to harden the organic matrix material of self-assembled arrays of monodisperse (4 nm) FePt nanoparticles, providing diamondlike carbon barriers to inhibit agglomeration of the nanoparticles under heat treatment. Such stabilization is necessary for the particles to survive the > 500 C annealing required for growth of the fct L 1{sub 0} phase of FePt, whose magnetic anisotropy is necessary for application of such arrays for high density perpendicular recording. Selective area irradiation of continuous nanoparticle coatings, using ion beams patterned over a full disk by stencil mask or with ion projection optics, followed by dissolution of the unexposed coating, is proposed as a means of fabricating extended bit patterns consisting of isolated islands of FePt nanoparticles, with characteristic dimensions of tens of nanometers.

  8. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  9. Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage

    SciTech Connect

    Ji, Liwen; Gu, Meng; Shao, Yuyan; Li, Xiaolin; Engelhard, Mark H.; Arey, Bruce W.; Wang, Wei; Nie, Zimin; Xiao, Jie; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2014-05-14

    Porous carbon nanofiber (CNF)-supported tin-antimony (SnSb) alloys is synthesized and applied as sodium ion battery anode. The chemistry and morphology of the solid electrolyte interphase (SEI) film and its correlation with the electrode performance are studied. The addition of fluoroethylene carbonate (FEC) in electrolyte significantly reduces electrolyte decomposition and creates a very thin and uniform SEI layer on the cycled electrode surface which could promote the kinetics of Na-ion migration/transportation, leading to excellent electrochemical performance.

  10. Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage.

    PubMed

    Bruce, Peter G

    2006-03-21

    Ion-polyether complexes are the solid state analogues of crown ether and cryptand complexes. They represent a fascinating class of coordination compounds in their own right, with the ability to support ionic conductivity and the potential to be used as electrolytes in all-solid-state rechargeable lithium batteries. Here the recent discovery of ionic conductivity in crystalline ion-polyether complexes, when for 30 years such materials were considered to be insulators, is described, along with their closely related structural chemistry. PMID:16518503

  11. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    NASA Astrophysics Data System (ADS)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  12. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  13. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  14. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  15. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance.

    PubMed

    Li, Xifei; Hu, Yuhai; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2013-12-21

    How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g(-1). This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications.

  16. Ultra-fast aqueous Li-ion redox energy storage from vanadium oxide-carbon nanotube yarn electrodes

    NASA Astrophysics Data System (ADS)

    Smithyman, Jesse; Do, Quyet H.; Zeng, Changchun; Liang, Zhiyong

    2015-03-01

    Half-cell electrochemical characterizations were conducted on carbon nanotube-vanadium oxide (CNT-VOx) yarn electrodes in an 8 M LiCl aqueous electrolyte. A supercritical fluid deposition and in-situ oxidation process was utilized to deposit nanoscale coatings of vanadium oxide on carbon nanotube (CNT) surfaces throughout the porous structure of CNT yarns. The high surface area, interconnected pore structure and high electrical conductivity of the CNT yarn enabled extraordinary rate capabilities from the high capacity Li/VOx system. High-rate cyclic voltammetry scans, requiring current densities of hundreds of amperes per gram of electrode mass, produced rectangular voltammograms with distinguishable redox peaks from Li-ion intercalation/deintercalation. Capacitances of over 150 F g-1 were achieved at a scan rate of 5 V s-1 over a 1.2 V potential window resulting in an energy density of >32 Wh kg-1 (>30 Wh L-1) for the yarn electrode. The charge storage also showed good reversibility when cycled over this large potential window, maintaining 90% of the capacitance after 100 cycles at a scan rate of 2 V s-1. Electrochemical impedance spectroscopy shows the frequency dependent behavior is distinctly lacking of the characteristic responses from the rate-limiting processes associated with faradaic charge storage in VOx.

  17. Green energy storage materials: advanced nanostructured materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok Mani; Chandrasekar, M. S.; Mitra, Sagar

    2011-06-01

    The projected doubling of world energy consumption in the next fifty years requires certain measures to meet this demand. The ideal energy provider is reliable, efficient, with low emissions source - wind, solar, etc. The low carbon footprint of renewables is an added benefit, which makes them especially attractive during this era of environmental consciousness. Unfortunately, the intermittent nature of energy from these renewables is not suitable for the commercial and residential grid application, unless the power delivery is 24/7, with minimum fluctuation. This requires intervention of efficient electrical energy storage technology to make power generation from renewable practical. The progress to higher energy and power density especially for battery technology will push material to the edge of stability and yet these materials must be rendered safe, stable and with reliable operation throughout their long life. A major challenge for chemical energy storage is developing the ability to store more energy while maintaining stable electrode-electrolyte interface. A structural transformation occurs during charge-discharge cycle, accompanied by a volume change, degrading the microstructure over-time. The need to mitigate this volume and structural change accompanying charge-discharge cycle necessitates going to nanostructured and multifunctional materials that have the potential of dramatically enhancing the energy density and power density.

  18. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery.

    PubMed

    Li, Xiuwan; Yang, Zhibo; Fu, Yujun; Qiao, Li; Li, Dan; Yue, Hongwei; He, Deyan

    2015-02-24

    Germanium is a highly promising anode material for lithium-ion batteries as a consequence of its large theoretical specific capacity, good electrical conductivity, and fast lithium ion diffusivity. In this work, Co3O4 nanowire array fabricated on nickel foam was designed as a nanostructured current collector for Ge anode. By limiting the voltage cutoff window in an appropriate range, the obtained Ge anode exhibits excellent lithium storage performance in half- and full-cells, which can be mainly attributed to the designed nanostructured current collector with good conductivity, enough buffering space for the volume change, and shortened ionic transport length. More importantly, the assembled Ge/LiCoO2 full-cell shows a high energy density of 475 Wh/kg and a high power density of 6587 W/kg. A high capacity of 1184 mA h g(-1) for Ge anode was maintained at a current density of 5000 mA g(-1) after 150 cycles.

  19. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process.

    PubMed

    Park, Gi Dae; Lee, Jong-Heun; Kang, Yun Chan

    2016-06-01

    SnSe nanoplates with thin and uniform morphology are prepared by one-pot spray pyrolysis, and are examined as anode materials for Na-ion batteries. During the spray pyrolysis process, metallic Se and Sn are prepared from SeO2 and SnO2, respectively, under a reducing atmosphere. Metallic Sn and metalloid Se, with melting points of 232 and 221 °C, respectively, form a melted Sn-Se mixture, which reacts exothermally to form SnSe nanocrystals. Several of these nanocrystals are grown simultaneously forming a micron-sized powder. Complete elimination of the excess amount of metalloid Se, by forming H2Se gas, results in aggregation-free SnSe nanoplates. The aspect ratio of these nanoplates is as high as 11.3. The discharge capacities for the SnSe nanoplates, prepared from spray solutions containing 100, 400, and 800% of the stoichiometric SeO2 content needed to form SnSe, are 407, 558, and 211 mA h g(-1), respectively, after 50 cycles at a constant current density of 0.3 A g(-1); their capacity retentions calculated from the second cycle onwards are 77, 100, and 60%, respectively. The phase pure SnSe nanoplates with a high aspect ratio show good cycling and rate performances for Na-ion storage. PMID:27240748

  20. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  1. Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

    NASA Astrophysics Data System (ADS)

    Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2015-12-01

    The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.

  2. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.

    PubMed

    Grützke, Martin; Krüger, Steffen; Kraft, Vadim; Vortmann, Britta; Rothermel, Sergej; Winter, Martin; Nowak, Sascha

    2015-10-26

    Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months. The tinplate cans underwent fast corrosion as a result of either residual charge in the active battery material, which could not fully be discharged because of contact loss to the current collector, or redox reactions between the tinplate surface and metal parts of the shredded material. The headspace compositions of the containers were investigated at room temperature and 150 °C using headspace-gas chromatography-mass spectrometry (HS-GC-MS). Samples of the waste material were also collected using microwave-assisted extraction and the extracts were analyzed over a period of 20 months using ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS). LiPF6 was identified as a conducting salt, whereas dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate were the main solvent components. Cyclohexylbenzene was also detected, which is an additive for overcharge protection. Diethyl carbonate, fluoride, difluorophosphate and several ionic and non-ionic alkyl (fluoro)phosphates were also identified. Importantly, dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were quantified using HS-GC-MS through the use of an internal standard. DMFP, DEFP, and related compounds are known as chemical warfare agents, and the presence of these materials is of great interest. In the case of this study, these hazardous materials are present but in manageable low concentrations. Nonetheless, the presence of such compounds and their potential release during an accident that may occur during shredding or recycling of large amounts of LIB waste should be considered.

  3. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.

    PubMed

    Grützke, Martin; Krüger, Steffen; Kraft, Vadim; Vortmann, Britta; Rothermel, Sergej; Winter, Martin; Nowak, Sascha

    2015-10-26

    Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months. The tinplate cans underwent fast corrosion as a result of either residual charge in the active battery material, which could not fully be discharged because of contact loss to the current collector, or redox reactions between the tinplate surface and metal parts of the shredded material. The headspace compositions of the containers were investigated at room temperature and 150 °C using headspace-gas chromatography-mass spectrometry (HS-GC-MS). Samples of the waste material were also collected using microwave-assisted extraction and the extracts were analyzed over a period of 20 months using ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS). LiPF6 was identified as a conducting salt, whereas dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate were the main solvent components. Cyclohexylbenzene was also detected, which is an additive for overcharge protection. Diethyl carbonate, fluoride, difluorophosphate and several ionic and non-ionic alkyl (fluoro)phosphates were also identified. Importantly, dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were quantified using HS-GC-MS through the use of an internal standard. DMFP, DEFP, and related compounds are known as chemical warfare agents, and the presence of these materials is of great interest. In the case of this study, these hazardous materials are present but in manageable low concentrations. Nonetheless, the presence of such compounds and their potential release during an accident that may occur during shredding or recycling of large amounts of LIB waste should be considered. PMID

  4. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  5. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications

    NASA Astrophysics Data System (ADS)

    Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D.

    2012-09-01

    An approach to making large format economical energy storage devices based on a sodium-interactive set of electrodes in a neutral pH aqueous electrolyte is described. The economics of materials and manufacturing are examined, followed by a description of an asymmetric/hybrid device that has λ-MnO2 positive electrode material and low cost activated carbon as the negative electrode material. Data presented include materials characterization of the active materials, cyclic voltammetry, galvanostatic charge/discharge cycling, and application-specific performance of an 80 V, 2.4 kW h pack. The results indicate that this set of electrochemical couples is stable, low cost, requires minimal battery management control electronics, and therefore has potential for use in stationary applications where device energy density is not a concern.

  6. Autonomously Calibrating a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Bornstein, Benjamin J.

    2009-01-01

    A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

  7. Ion parking during ion/ion reactions in electrodynamic ion traps.

    PubMed

    McLuckey, Scott A; Reid, Gavin E; Wells, J Mitchell

    2002-01-15

    Under appropriate ion density conditions, it is possible to selectively inhibit rates of ion/ion reactions in a quadrupole ion trap via the application of oscillatory voltages to one or more electrodes of the ion trap. The phenomenon is demonstrated using dipolar resonance excitation applied to the end-cap electrodes of a three-dimensional quadrupole ion trap. The application of a resonance excitation voltage tuned to inhibit the ion/ion reaction rate of a specific range of ion mass-to-charge ratios is referred to as "ion parking". The bases for rate inhibition are (i) an increase in the relative velocity of the ion/ion reaction pair, which reduces the cross section for ion/ion capture and, at least in some cases, (ii) reduction in the time of physical overlap of positively charged and negatively charged ion clouds. The efficiency and specificity of the ion parking experiment is highly dependent upon ion densities, trapping conditions, ion charge states, and resonance excitation conditions. The ion parking experiment is illustrated herein along with applications to the concentration of ions originally present over a range of charge states into a selected charge state and in the selection of a particular ion from a set of ions derived from a simple protein mixture.

  8. Perfect 2-d quadrupole fields from permanent magnets

    SciTech Connect

    Lee, E.P.; Vella, M.

    1996-04-01

    Consider the 13-beam channel array shown in Figure 1. It is asserted that, under mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 beam channel boxes. An identical quadrupole field (for {bar H}, not {bar B}) is also centered in each of the 4 boxes containing 4 magnetic wedges located near the center of the system. An iron yoke ({mu} = {infinity}) with the displayed zig-zag shape provides a boundary condition (H{sub {parallel}} = 0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array can be readily drawn for any number of beams. The quadrupole gradient in the beam channels is B{prime} = M{sub o}/2b, where M{sub o} is the remnant field of the magnetic wedges, and the channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing one beam, has diameter 2{radical}2 b (viewed from 45{degree} tilt) so its area is 8 b{sup 2}. A significant advantage of this design over those using dipolar blocks is the large fraction of cross section devoted to beam channels (50% vs 25%). Application to a heavy ion fusion driver is discussed.

  9. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  10. Ultrathin Li3VO4 Nanoribbon/Graphene Sandwich-Like Nanostructures with Ultrahigh Lithium ion Storage Properties

    SciTech Connect

    Lu, Pei-Jun; Liu, Jun N.; Liang, Shuquan; Liu, Jun; Wang, W. J.; Lei, Ming; Tang, Shasha; Yang, Qian

    2015-03-01

    Two-dimensional (2D) "graphene-like" inorganic materials, because of the short lithium ion diffusion path and unique 2D carrier pathways, become a new research focus of the lithium storages. Some "graphene-like" binary compounds, such as, MnO2, MoS2 and VO2 ultrathin nanosheets, have been synthesized by a peeling method, which also exhibit enhanced lithium storage performances. However, it still remains a great challenge to synthesize widely-used lithium-containing ternary oxides with "graphene-like" nanostructures, because the lithium-containing ternary oxides, unlike ternary layered double hydroxides (LDH), are very hard to be directly peeled. Herein, we successfully synthesized ultrathin Li3VO4 nanoribbons with a thickness of about 3 nm by transformation from ultrathin V2O5•xH2O nanoribbons, moreover, we achieved the preparation of ultrathin Li3VO4 nanoribbon@graphene sandwich-like nanostructures (LVO/G) through a layer-by-layer assembly method. The unique sandwich-like nanostructures shows not only a high specific reversible capacitance (up to 452.5 mA h•g-1 after 200 cycles) but also an excellent cycling performance (with more than 299.2 mA h•g-1 of the capacity at 10 C after 1000 cycles) as well as very high rate capability. Such template strategy, using "graphene-like" binary inorganic nanosheets as templates to synthesize lithium-containing ternary oxide nanosheets, may be extended to prepare other ternary oxides with "graphene-like" nanostructures

  11. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage.

    PubMed

    Hu, Shan; Chen, Wen; Uchaker, Evan; Zhou, Jing; Cao, Guozhong

    2015-12-01

    MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100-150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m(2)  g(-1) . The MoS2 @C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2 . The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g(-1) and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g(-1) , as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2 @C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2 , and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass- and charge-transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge-transfer reaction and the diffusivity of the MoS2 @C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li-ion battery market. PMID:26515375

  12. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage.

    PubMed

    Hu, Shan; Chen, Wen; Uchaker, Evan; Zhou, Jing; Cao, Guozhong

    2015-12-01

    MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100-150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m(2)  g(-1) . The MoS2 @C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2 . The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g(-1) and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g(-1) , as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2 @C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2 , and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass- and charge-transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge-transfer reaction and the diffusivity of the MoS2 @C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li-ion battery market.

  13. Structural characterization of product ions by electrospray ionization and quadrupole time-of-flight mass spectrometry to support regulatory analysis of veterinary drug residues in foods Part 2: Benzimidazoles nitromidaz.....

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Analysis for identification and quantification of regulated veterinary drug residues in foods are usually achieved by liquid chromatography coupled to tandem mass spectrometry. The instrument method requires the selection of characteristic ions, but structure elucidation is seldom perform...

  14. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    PubMed

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  15. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Park, Gi Dae; Lee, Jong-Heun; Kang, Yun Chan

    2016-06-01

    SnSe nanoplates with thin and uniform morphology are prepared by one-pot spray pyrolysis, and are examined as anode materials for Na-ion batteries. During the spray pyrolysis process, metallic Se and Sn are prepared from SeO2 and SnO2, respectively, under a reducing atmosphere. Metallic Sn and metalloid Se, with melting points of 232 and 221 °C, respectively, form a melted Sn-Se mixture, which reacts exothermally to form SnSe nanocrystals. Several of these nanocrystals are grown simultaneously forming a micron-sized powder. Complete elimination of the excess amount of metalloid Se, by forming H2Se gas, results in aggregation-free SnSe nanoplates. The aspect ratio of these nanoplates is as high as 11.3. The discharge capacities for the SnSe nanoplates, prepared from spray solutions containing 100, 400, and 800% of the stoichiometric SeO2 content needed to form SnSe, are 407, 558, and 211 mA h g-1, respectively, after 50 cycles at a constant current density of 0.3 A g-1 their capacity retentions calculated from the second cycle onwards are 77, 100, and 60%, respectively. The phase pure SnSe nanoplates with a high aspect ratio show good cycling and rate performances for Na-ion storage.SnSe nanoplates with thin and uniform morphology are prepared by one-pot spray pyrolysis, and are examined as anode materials for Na-ion batteries. During the spray pyrolysis process, metallic Se and Sn are prepared from SeO2 and SnO2, respectively, under a reducing atmosphere. Metallic Sn and metalloid Se, with melting points of 232 and 221 °C, respectively, form a melted Sn-Se mixture, which reacts exothermally to form SnSe nanocrystals. Several of these nanocrystals are grown simultaneously forming a micron-sized powder. Complete elimination of the excess amount of metalloid Se, by forming H2Se gas, results in aggregation-free SnSe nanoplates. The aspect ratio of these nanoplates is as high as 11.3. The discharge capacities for the SnSe nanoplates, prepared from spray solutions

  16. Trapping mode dipolar DC collisional activation in the RF-only ion guide of a linear ion trap/time-of-flight instrument for gaseous bio-ion declustering.

    PubMed

    Webb, Ian K; Gao, Yang; Londry, Frank A; McLuckey, Scott A

    2013-09-01

    The application of dipolar direct current (DDC) to the radio frequency-only ion guide (Q0) of a hybrid quadrupole/time-of-flight mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collisional activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge (m/z) range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of noncovalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer CA. The key experimental variables in the DDC experiment are the DDC voltage (VDDC), VRF , and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper m/z limit for ion storage. The VDDC/VRF ratio affects ion temperatures and the upper m/z limit in opposing directions. That is, as the ratio increases, the ion temperature also increases, whereas the upper m/z storage limit decreases. However, for a given VDDC /VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to a higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247

  17. Design desiderata for a laminar flow quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-01-01

    The Pierce design acceleration column has been widely used to accelerate high current beams. It operates well in the space charge limited condition, and will produce beams with a temperature comparable with that of the source. It is restricted in current density, however, by the Child-Langmuir relation. If the ion source itself is not the limiting constraint, then the achievable current density is limited by the electric field at which sparking occurs. One sees clearly that the achievable current density decreases as one goes to higher voltages. This can be easily overcome by using electrostatic quadrupole focusing in the acceleration column. Now it can be shown that the space charge limited current density in a constant energy quadrupole transport channel is greater than that if one assumes that the electric fields on the quadrupoles can be as high in the ion source extraction electric fields. In practice, this is a conservative assumption. It follows that if the beam can be transported a large distance at the C-L current density limit, it can surely be accelerated as it goes from quadrupole to quadrupole. Hence, the necessity of having a high gradient acceleration column goes away.

  18. Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage.

    PubMed

    Kim, Na Rae; Yun, Young Soo; Song, Min Yeong; Hong, Sung Ju; Kang, Minjee; Leal, Cecilia; Park, Yung Woo; Jin, Hyoung-Joon

    2016-02-10

    Advanced design of nanostructured functional carbon materials for use in sustainable energy storage systems suffers from complex fabrication procedures and the use of special methods and/or expensive precursors, limiting their practical applications. In this study, nanoporous carbon nanosheets (NP-CNSs) containing numerous redox-active heteroatoms (C/O and C/N ratios of 5.5 and 34.3, respectively) were fabricated from citrus peels by simply heating the peels in the presence of potassium ions. The NP-CNSs had a 2D-like morphology with a high aspect ratio of >100, high specific surface area of 1167 m(2) g(-1), and a large amount of nanopores between 1 and 5 nm. The NP-CNSs also had an electrical conductivity of 2.6 × 10(1) s cm(-1), which is approximately 50 times higher than that of reduced graphene oxide. These unique material properties resulted in superior electrochemical performance with a high specific capacity of 140 mAh g(-1) in the cathodic potential range. In addition, symmetric full-cell devices based on the NP-CNSs showed excellent cyclic performance over 100,000 repetitive cycles. PMID:26754183

  19. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance.

    PubMed

    Ling, Zheng; Yu, Chang; Fan, Xiaoming; Liu, Shaohong; Yang, Juan; Zhang, Mengdi; Wang, Gang; Xiao, Nan; Qiu, Jieshan

    2015-09-18

    A chitosan (CS) based nitrogen doped carbon cryogel with a high specific surface area (SSA) has been directly synthesized via a combined process of freeze-drying and high-temperature carbonization without adding any activation agents. The as-made carbon cryogel demonstrates an SSA up to 1025 m(2) g(-1) and a high nitrogen content of 5.98 wt%, while its counterpart derived from CS powder only shows an SSA of 26 m(2) g(-1). Freeze-drying is a determining factor for the formation of carbon cryogel with a high SSA, where the CS powder with a size of ca. 200 μm is transformed into the sheet-shaped cryogel with a thickness of 5-8 μm. The as-made carbon cryogel keeps the sheet-shaped structure and the abundant pores are formed in situ and decorated inside the sheets during carbonization. The carbon cryogel shows significantly enhanced performance as supercapacitor and lithium ion battery electrodes in terms of capacity and rate capability due to its quasi two-dimensional (2D) structure with reduced thickness. The proposed method may provide a simple approach to configure 2D biomass-derived advanced carbon materials for energy storage devices. PMID:26314370

  20. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage.

    PubMed

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-07-21

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g(-1) at 0.5 A g(-1), outstanding rate capability and long cycling stability, even at a current density of 20 A g(-1). The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials. PMID:24906180

  1. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage.

    PubMed

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-07-21

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g(-1) at 0.5 A g(-1), outstanding rate capability and long cycling stability, even at a current density of 20 A g(-1). The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials.

  2. Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage

    DOE PAGESBeta

    Ren, Chang E.; Zhao, M-Q; Makaryan, Taron; Halim, Joseph; Boota, M.; Kota, Sankalp; Anasori, Babak; Barsoum, M W; Gogotsi, Yury

    2016-02-16

    Herein we develop a chemical etching method to produce porous two-dimensional (2D) Ti3C2Tx MXenes at room temperature in aqueous solutions. The as-produced porous Ti3C2Tx (p-Ti3C2Tx) have larger specific surface areas and more open structures than their pristine counterparts, and can be fabricated into flexible films with, or without, the addition of carbon nanotubes (CNTs). The as-fabricated p-Ti3C2Tx/CNT films showed significantly improved lithium ion storage capabilities compared to pristine Ti3C2Tx based films, with a very high capacity of ≈1250 mAh g-1 at 0.1 C, excellent cycling stability, and good rate performance (330 mAh g-1 at 10 C). Using the same chemicalmore » etching method, we also made porous Nb2CTx and V2CTx MXenes. Therefore, this study provides a simple, yet effective, procedure to introduce pores into MXenes and possibly other 2D sheets that in turn, can enhance their electrochemical properties.« less

  3. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance

    NASA Astrophysics Data System (ADS)

    Ling, Zheng; Yu, Chang; Fan, Xiaoming; Liu, Shaohong; Yang, Juan; Zhang, Mengdi; Wang, Gang; Xiao, Nan; Qiu, Jieshan

    2015-09-01

    A chitosan (CS) based nitrogen doped carbon cryogel with a high specific surface area (SSA) has been directly synthesized via a combined process of freeze-drying and high-temperature carbonization without adding any activation agents. The as-made carbon cryogel demonstrates an SSA up to 1025 m2 g-1 and a high nitrogen content of 5.98 wt%, while its counterpart derived from CS powder only shows an SSA of 26 m2 g-1. Freeze-drying is a determining factor for the formation of carbon cryogel with a high SSA, where the CS powder with a size of ca. 200 μm is transformed into the sheet-shaped cryogel with a thickness of 5-8 μm. The as-made carbon cryogel keeps the sheet-shaped structure and the abundant pores are formed in situ and decorated inside the sheets during carbonization. The carbon cryogel shows significantly enhanced performance as supercapacitor and lithium ion battery electrodes in terms of capacity and rate capability due to its quasi two-dimensional (2D) structure with reduced thickness. The proposed method may provide a simple approach to configure 2D biomass-derived advanced carbon materials for energy storage devices.

  4. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    PubMed

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved.

  5. Development of high-energy silicon-based anode materials for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Yi, Ran

    The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability

  6. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  7. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  8. Detection, identification, and occurrence of thiotetronic acids in drinking water from underground sources by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-quadrupole time-of-flight-mass spectrometry.

    PubMed

    Lyczko, Jadwiga; Beach, Daniel; Gabryelski, Wojciech

    2015-10-01

    This paper demonstrates that electrospray ionization (ESI) with differential ion mobility spectroscopy (FAIMS) and "soft" mass spectrometry (MS) provide unique analytical capabilities that led to the discovery of sulfur-containing polar congeners of thiotetronic acid (TA) in drinking water from underground sources in Canada and the United States. Polar TAs accumulate in underground aquifers and appear to be the most abundant class of organic compounds in bottled water but cannot be detected by conventional mass spectrometry methods. We show that normally stable TAs are converted into very reactive ions in ESI which have to be analyzed using special conditions in ESI-FAIMS-MS to avoid extensive dissociation and ion/molecule reactions. De novo identification of 10 TAs was accomplished by the comparative tandem mass spectrometry analysis of authentic TA derivatives from groundwater samples and synthetic TA analogues prepared for this study. We present highlights of gas phase ion chemistry of polar TAs to explain their unique properties and reactivity. TA derivatives were originally isolated from soil bacteria and are of interest in the pharmaceutical industry due to their potent activity against a broad spectrum of pathogenic bacteria and negligible toxicity to mammals. We suspect that TAs are natural disinfection agents protecting groundwater from bacterial contamination, but these compound undergo modifications or decompose during an ozonation water treatment.

  9. Detection, identification, and occurrence of thiotetronic acids in drinking water from underground sources by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-quadrupole time-of-flight-mass spectrometry.

    PubMed

    Lyczko, Jadwiga; Beach, Daniel; Gabryelski, Wojciech

    2015-10-01

    This paper demonstrates that electrospray ionization (ESI) with differential ion mobility spectroscopy (FAIMS) and "soft" mass spectrometry (MS) provide unique analytical capabilities that led to the discovery of sulfur-containing polar congeners of thiotetronic acid (TA) in drinking water from underground sources in Canada and the United States. Polar TAs accumulate in underground aquifers and appear to be the most abundant class of organic compounds in bottled water but cannot be detected by conventional mass spectrometry methods. We show that normally stable TAs are converted into very reactive ions in ESI which have to be analyzed using special conditions in ESI-FAIMS-MS to avoid extensive dissociation and ion/molecule reactions. De novo identification of 10 TAs was accomplished by the comparative tandem mass spectrometry analysis of authentic TA derivatives from groundwater samples and synthetic TA analogues prepared for this study. We present highlights of gas phase ion chemistry of polar TAs to explain their unique properties and reactivity. TA derivatives were originally isolated from soil bacteria and are of interest in the pharmaceutical industry due to their potent activity against a broad spectrum of pathogenic bacteria and negligible toxicity to mammals. We suspect that TAs are natural disinfection agents protecting groundwater from bacterial contamination, but these compound undergo modifications or decompose during an ozonation water treatment. PMID:26340067

  10. Measurement of the ratio of C3+ and O4+ ions produced by ECRIS to prepare a laser cooling experiment at storage rings

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Wen, W. Q.; Ma, X.; Li, J. Y.; Feng, W. T.; Zhang, R. T.; Wang, Enliang; Yan, S.; Guo, D. L.; Hai, B.; Qian, D. B.; Zhang, P.; Xu, S.; Zhao, D. M.; Yang, J.; Zhang, D. C.; Li, B.; Gao, Y.; Huang, Z. K.; Wang, H. B.

    2014-11-01

    To prepare the upcoming laser cooling of relativistic C3+ ion beams at the experimental Cooler Storage Ring (CSRe), a novel experiment was performed using a reaction microscope to determine the ratio of C3+ ions in mixed ion beams of C3+ and O4+ that are produced by an Electron Cyclotron Resonance Ion Source (ECRIS). The mixed ion beams at an energy of 4 keV/u were directed to collide on a supersonic helium gas target. Using the single-electron capture channel and the coincidence technique, the fractions of C3+ and O4+ ions in the primary beam were obtained. Using different injection gases for ECRIS, including O2, CO, CO2, and CH4, at a fixed radio-frequency power of 300 W, the measured results showed that the fraction of C3+ ions was greater than 70% for the injection gases of CO and CO2. These measured results are very important and helpful for the upcoming laser cooling experiments.

  11. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  12. Degree of accuracy in determining the nuclear electric quadrupole moment of radium

    SciTech Connect

    Bieron, Jacek; Pyykkoe, Pekka

    2005-03-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the atomic expectation values responsible for the hyperfine splittings of the 7s7p {sup 3}P{sub 1,2} and {sup 1}P{sub 1} levels of radium. Calculated electric field gradients, together with the experimental electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q({sup 223}Ra) of 1.21(0.03) barn. This value is in good agreement with the semiempirical determination based on neutral radium hyperfine and fine structure, but differs from the latest result from an alkali-like radium ion.

  13. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  14. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  15. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  16. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  17. Storage and retrieval of collective excitations on a long-lived spin transition in a rare-earth ion-doped crystal.

    PubMed

    Goldschmidt, E A; Beavan, S E; Polyakov, S V; Migdall, A L; Sellars, M J

    2013-04-22

    Robust, long-lived optical quantum memories are important components of many quantum information and communication protocols. We demonstrate coherent generation, storage, and retrieval of excitations on a long-lived spin transition via spontaneous Raman scattering in a rare-earth ion-doped crystal. We further study the time dynamics of the optical correlations in this system. This is the first demonstration of its kind in a solid and an enabling step toward realizing a solid-state quantum repeater.

  18. The development of a data system for a combination of liquid chromatography or capillary electrophoresis with an ion trap storage/reflectron time-of-flight mass detector.

    PubMed

    Qian, M G; Wu, J T; Parus, S; Lubman, D M

    1996-01-01

    A data system based upon a 200 MHz transient recorder interface card in a Pentium PC computer is demonstrated for on-line analysis of microbore high-performance liquid chromatography (HPLC), capillary HPLC and capillary electrophoresis (CE) separations using a fast and sensitive ion-trap storage/reflectron time-of-flight mass spectrometric detector (IT-reTOFMS). Under the control of a user-written program, the system is capable of conducting the data acquisition and storage for a minimum of 30 min, at rates exceeding 10 Hz, of individual mass spectra containing 16,000 data points having 10 nsec resolution. The capability is mainly attributed to the use of a data reduction scheme in which only mass intensities higher than a preset threshold are saved as indexed flight-time/intensity pairs. This produces a typical reduction ratio of 30:1 in data set size, yielding faster storage with smaller file size, and permits the complete set of mass spectra to be held in the computer's memory. In addition, the data system is capable of displaying, for real-time evaluation of the analysis, each individual mass spectrum and the total-ion chromatogram. Further, the selected-ion chromatograms of given masses and a 3-dimensional topographic map describing a separation process can be rapidly generated from the collected data for the unambiguous and high fidelity identification of target analytes in a complex mixture.

  19. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  20. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.

    PubMed

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-12-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  1. Single-Laboratory Validation Study of a Method for Screening and Identification of Phosphodiesterase Type 5 Inhibitors in Dietary Ingredients and Supplements Using Liquid Chromatography/Quadrupole-Orbital Ion Trap Mass Spectrometry: First Action 2015.12.

    PubMed

    Vaclavik, Lukas; Schmitz, John R; Halbardier, Jean-Francois; Mastovska, Katerina

    2016-01-01

    A single-laboratory validation study of a method for screening and identification of phosphodiesterase type 5 (PDE5) inhibitors in dietary ingredients and supplements is described. PDE5 inhibitors were extracted from the samples using a 50:50 (v/v) mixture of acetonitrile and water and centrifuged. Supernatant was diluted, filtered, and analyzed by LC-high-resolution MS. Data were collected in MS acquisition mode that combined full-scan MS experiment with all-ion fragmentation and data-dependent MS/MS product from the ion scan experiment. This approach enabled collection of MS and tandem MS (MS/MS) data for both targeted and nontargeted PDE5 inhibitors in a single chromatographic run. Software-facilitated identification of targeted analytes was performed based on the retention time, accurate mass, and isotopic pattern of pseudomolecular ions, and accurate masses of fragment ions using an in-house compound database. Detection and identification of other PDE5 inhibitors and novel analogs were performed by retrospective evaluation of MS and MS/MS experimental data. The method validation results obtained for evaluated matrixes fulfilled the probability of identification requirements and probability of detection requirements (for the pooled data) set at 90% (95% confidence interval) in the respective AOAC Standard Method Performance Requirements for identification and screening methods for PDE5 inhibitors. Limited data demonstrating the quantification capability of the method were also generated. Mean recovery and repeatability obtained for the evaluated PDE5 inhibitors were in the range 69-90% and 0.4-1.8%, respectively.

  2. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage

    NASA Astrophysics Data System (ADS)

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-06-01

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g-1 at 0.5 A g-1, outstanding rate capability and long cycling stability, even at a current density of 20 A g-1. The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials.Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting

  3. Ion trap array mass analyzer: structure and performance.

    PubMed

    Li, Xiaoxu; Jiang, Gongyu; Luo, Chan; Xu, Fuxing; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2009-06-15

    An ion trap array (ITA) mass analyzer--a novel ion trap mass analyzer with multiple ion trapping and analyzing channels--was designed and constructed. Its property and performance were investigated and reported in this paper. The ITA was built with several planar electrodes including two parallel printed circuit board (PCB) plates. Each PCB plate was fabricated to several identical rectangular electric strips based on normal PCB fabrication technology and was placed symmetrically to those on the opposite plate. There is no electrode between any two adjacent strips. Every strip was supplied with an rf voltage while the polarity of the voltage applied to the adjacent two strips was opposite. So the electric potential at the central plane between two adjacent strips is zero. Multiple identical electric field regions that contain the dominant quadrupole plus some other high-order fields were produced between the two PCB plates. The multiple identical electric field regions will have the property of ion trapping, ion storage, and mass analysis functions. So an ITA could work as multiple ion trap mass analyzers. It could perform multiple sample ion storage, mass-selected ion isolation, ion ejection, and mass analysis simultaneously. The ITA was operated at both "digital ion trap mode" and "conventional rf mode" experimentally. A preliminary mass spectrum has been carried out in one of the ion trap channels, and it shows a mass resolution of over 1000. Additional functions such as mass-selected ion isolation and mass-selected ion ejection have also been tested. Furthermore, the ITA has a small size and very low cost. An ITA with four channels is less than 30 cm(3) in total volume, and it shows a great promise for the miniaturization of the whole mass spectrometer instrument and high-throughput mass analysis. PMID:19441854

  4. Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis.

    PubMed

    Yun, Sol; Lee, Young-Chul; Park, Ho Seok

    2016-01-01

    The phase control, hierarchical architecturing and hybridization of iron oxide is important for achieving multifunctional capability for many practical applications. Herein, hierarchically structured reduced graphene oxide (hrGO)/α-Fe2O3 and γ-Fe3O4 nanobox hybrids (hrGO/α-Fe and hrGO/γ-Fe NBhs) are synthesized via a one-pot, hydrothermal process and their functionality controlled by the crystalline phases is adapted for energy storage and photocatalysis. The three-dimensionally (3D) macroporous structure of hrGO/α-Fe NBhs is constructed, while α-Fe2O3 nanoboxes (NBs) in a proximate contact with the hrGO surface are simultaneously grown during a hydrothermal treatment. The discrete α-Fe2O3 NBs are uniformly distributed on the surface of the hrGO/α-Fe and confined in the 3D architecture, thereby inhibiting the restacking of rGO. After the subsequent phase transition into γ-Fe3O4, the hierarchical structure and the uniform distribution of NBs are preserved. Despite lower initial capacity, the hrGO/α-Fe NBhs show better rate and cyclic performances than those of commercial rGO/α-Fe due to the uniform distribution of discrete α-Fe2O3 NBs and electronic conductivity, macroporosity, and buffering effect of the hrGO for lithium ion battery anodes. Moreover, the catalytic activity and kinetics of hrGO/γ-Fe NBhs are enhanced for photo-Fenton reaction because of the uniform distribution of discrete γ-Fe3O4 NBs on the 3D hierarchical architecture. PMID:26821937

  5. Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis

    PubMed Central

    Yun, Sol; Lee, Young-Chul; Park, Ho Seok

    2016-01-01

    The phase control, hierarchical architecturing and hybridization of iron oxide is important for achieving multifunctional capability for many practical applications. Herein, hierarchically structured reduced graphene oxide (hrGO)/α-Fe2O3 and γ-Fe3O4 nanobox hybrids (hrGO/α-Fe and hrGO/γ-Fe NBhs) are synthesized via a one-pot, hydrothermal process and their functionality controlled by the crystalline phases is adapted for energy storage and photocatalysis. The three-dimensionally (3D) macroporous structure of hrGO/α-Fe NBhs is constructed, while α-Fe2O3 nanoboxes (NBs) in a proximate contact with the hrGO surface are simultaneously grown during a hydrothermal treatment. The discrete α-Fe2O3 NBs are uniformly distributed on the surface of the hrGO/α-Fe and confined in the 3D architecture, thereby inhibiting the restacking of rGO. After the subsequent phase transition into γ-Fe3O4, the hierarchical structure and the uniform distribution of NBs are preserved. Despite lower initial capacity, the hrGO/α-Fe NBhs show better rate and cyclic performances than those of commercial rGO/α-Fe due to the uniform distribution of discrete α-Fe2O3 NBs and electronic conductivity, macroporosity, and buffering effect of the hrGO for lithium ion battery anodes. Moreover, the catalytic activity and kinetics of hrGO/γ-Fe NBhs are enhanced for photo-Fenton reaction because of the uniform distribution of discrete γ-Fe3O4 NBs on the 3D hierarchical architecture. PMID:26821937

  6. Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Yun, Sol; Lee, Young-Chul; Park, Ho Seok

    2016-01-01

    The phase control, hierarchical architecturing and hybridization of iron oxide is important for achieving multifunctional capability for many practical applications. Herein, hierarchically structured reduced graphene oxide (hrGO)/α-Fe2O3 and γ-Fe3O4 nanobox hybrids (hrGO/α-Fe and hrGO/γ-Fe NBhs) are synthesized via a one-pot, hydrothermal process and their functionality controlled by the crystalline phases is adapted for energy storage and photocatalysis. The three-dimensionally (3D) macroporous structure of hrGO/α-Fe NBhs is constructed, while α-Fe2O3 nanoboxes (NBs) in a proximate contact with the hrGO surface are simultaneously grown during a hydrothermal treatment. The discrete α-Fe2O3 NBs are uniformly distributed on the surface of the hrGO/α-Fe and confined in the 3D architecture, thereby inhibiting the restacking of rGO. After the subsequent phase transition into γ-Fe3O4, the hierarchical structure and the uniform distribution of NBs are preserved. Despite lower initial capacity, the hrGO/α-Fe NBhs show better rate and cyclic performances than those of commercial rGO/α-Fe due to the uniform distribution of discrete α-Fe2O3 NBs and electronic conductivity, macroporosity, and buffering effect of the hrGO for lithium ion battery anodes. Moreover, the catalytic activity and kinetics of hrGO/γ-Fe NBhs are enhanced for photo-Fenton reaction because of the uniform distribution of discrete γ-Fe3O4 NBs on the 3D hierarchical architecture.

  7. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    Li-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85 V demonstrated stable cycling up to 200 cycles followed by a rapid fade. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130 mAh/g at C/2. The improved stability, along with its cost-effectiveness, environmental benignity, and safety, make the LiFePO4/Li4Ti5O12 combination Li-ion battery a promising option for storing renewable energy.

  8. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    SciTech Connect

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  9. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry.

    PubMed

    Gros, Meritxell; Rodríguez-Mozaz, Sara; Barceló, Damià

    2012-07-27

    The present work describes the development of an analytical method, based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UPLC-QqLIT) for the determination of 81 pharmaceutical residues, covering various therapeutic groups, and some of their main metabolites, in surface and treated waters (influent and effluent wastewaters, river, reservoir, sea and drinking water). For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions per compound are monitored. Quantification is performed by the internal standard approach, indispensable to correct matrix effects. Moreover, to obtain an extra tool for confirmation of positive findings, an information dependent acquisition (IDA) experiment was performed, with SRM as survey scan and an enhanced product ion (EPI) scan as dependent scan. Compound identification was carried out by library search, matching the EPI spectra achieved at one fixed collision energy with those present in a library. The main advantages of the method are automation and speed-up of sample preparation by the reduction of extraction volumes for some matrices, the fast separation of a big number of pharmaceuticals, its high sensitivity (limits of detection in the low ng/L range), selectivity, due to the use of tandem mass spectrometry, reliability since a significant number of isotopically labeled compounds are used as internal standards for quantification and finally, the analysis of tap, reservoir and sea waters, since information about occurrence of pharmaceuticals in these matrices is still sparse. As part of the validation procedure, the method developed was applied to the analysis of pharmaceutical residues in waste and surface waters from different sites in Catalonia (North East of Spain).

  10. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  11. Simultaneous quantification of poly-dispersed anionic, amphoteric and nonionic surfactants in simulated wastewater samples using C18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.

    2005-01-01

    This paper describes the development of a guantitative method for direct and simultaneous determination of three frequently encountered surfactants, amphoteric (cocoamphoacetate, CAA), anionic (sodium laureth sulfate, SLES), and nonionic (alcohol ethoxylate, AE) using a reversed-phase C18 HPLC coupled with an ESI ion-trap mass spectrometer (MS). Chemical composition, ionization characteristics and fragmentation pathways of the surfactants are presented. Positive ESI was effective for all three surfactants in agueous methanol buffered with ammonium acetate. The method enables rapid determinations in small sample volumes containing inorganic salts (up to 3.5 g L(-1)) and multiple classes of surfactants with high specificity by applying surfactant specific tandem mass spectrometric strategies. It has dynamic linear ranges of 2-60, 1.5-40, 0.8-56 mg L(-1) with R2 egual or greater than 0.999, 0.98 and 0.999 (10 microL injection) for CAA, SLES, and AE, respectively.

  12. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    NASA Astrophysics Data System (ADS)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  13. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  14. Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Chiu, Hsien-Chieh; Arthur, Zachary; Zhou, Jigang; Wang, Jian; Chen, Ning; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-10-01

    Li2FeSiO4 (LFS) has drawn much attention as cathode for high capacity Li-ion batteries. Even though significant volume of study has been devoted to its crystal chemistry and electrochemistry, many questions relating to its Li-ion storage dynamics remain yet to be fully elucidated. In this context, synchrotron-based X-ray diffraction and absorption spectroscopies are employed to characterize the phase stability and charge compensation mechanism in a metastable Li2FeSiO4 nanostructured cathode as a function of state-of-charge (Li2-xFeSiO4, x = 0, 0.25, 0.50, 0.75, 1.0) and cycling at very low current. The results demonstrate (i) no detectable phase transition from monoclinic to orthorhombic phase during the first charge-discharge cycle but rather formation of antisite defects that progressively induce phase transformation after several electrochemical cycles; (ii) characteristics of solid solution Li-ion storage (Li2-xFeSiO4, x = 0-1); and (iii) the charge compensation for the first Li extraction does not come solely from the ferrous to ferric conversion, but interestingly from prominent participation of lattice oxygen as well that appears to destabilize the cycled LFS structure with significant performance implications.

  15. Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries.

    PubMed

    Sun, Yang; Zhao, Liang; Pan, Huilin; Lu, Xia; Gu, Lin; Hu, Yong-Sheng; Li, Hong; Armand, Michel; Ikuhara, Yuichi; Chen, Liquan; Huang, Xuejie

    2013-01-01

    Room-temperature sodium-ion batteries attract increasing attention for large-scale energy storage applications in renewable energy and smart grid. However, the development of suitable anode materials remains a challenging issue. Here we demonstrate that the spinel Li4Ti5O12, well-known as a 'zero-strain' anode for lithium-ion batteries, can also store sodium, displaying an average storage voltage of 0.91 V. With an appropriate binder, the Li4Ti5O12 electrode delivers a reversible capacity of 155 mAh g(-1) and presents the best cyclability among all reported oxide-based anode materials. Density functional theory calculations predict a three-phase separation mechanism, 2Li4Ti5O12+6Na(+)+6e(-)↔Li7Ti5O12+Na6LiTi5O12, which has been confirmed through in situ synchrotron X-ray diffraction and advanced scanning transmission electron microscope imaging techniques. The three-phase separation reaction has never been seen in any insertion electrode materials for lithium- or sodium-ion batteries. Furthermore, interfacial structure is clearly resolved at an atomic scale in electrochemically sodiated Li4Ti5O12 for the first time via the advanced electron microscopy.

  16. Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage

    PubMed Central

    Jiang, Yan-Mei; Wang, Kai-Xue; Zhang, Hao-Jie; Wang, Jing-Feng; Chen, Jie-Sheng

    2013-01-01

    Hierarchical Li4Ti5O12/TiO2 tubes composed of ultrathin nanoflakes have been successfully fabricated via the calcination of the hydrothermal product of a porous amorphous TiO2 precursor and lithium hydroxide monohydrate. The hierarchical tubes are characterized by powder X-ray diffraction, nitrogen adsorption/desorption, scanning electron microscopy and transmission electron microscopy techniques. These nanoflakes exhibit a quite complex submicroscopic structure with regular structural imperfection, including a huge number of grain boundaries and dislocations. The lithium ion storage property of these tubes is evaluated by galvanostatic discharge/charge experiment. The product shows initial discharge capacities of 420, 225, and 160 mAh g−1 at 0.01, 0.1, and 1.0 A g−1, respectively. After 100 cycles, the discharge capacity is 139 mAh g−1 at 1.0 A g−1 with a capacity retention of 87%, demonstrating good high-rate performance and good cycleability. The high electrochemical performance is attributed to unique structure and morphology of the tubes. The regular structural imperfection existed in the nanoflakes also benefit to lithium ion storage property of these tubes. The hierarchical Li4Ti5O12/TiO2 tubes are a promising anode material for lithium-ion batteries with high power and energy densities. PMID:24336187

  17. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  18. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  19. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  20. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.

    PubMed

    Huang, Hui; Feng, Tong; Gan, Yongping; Fang, Mingyu; Xia, Yang; Liang, Chu; Tao, Xinyong; Zhang, Wenkui

    2015-06-10

    The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

  1. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries.

    PubMed

    Liu, Jun; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-08-10

    Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g(-1) is achieved.

  2. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  3. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.

    PubMed

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-12-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change. PMID:26831683

  4. Octupole Excitation of Trapped Ion Motion for Precision Mass Measurements

    NASA Astrophysics Data System (ADS)

    Bollen, G.; Ringle, R.; Schury, P.; Schwarz, S.; Sun, T.

    2005-04-01

    National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA An azimuthal octupole radiofrequency field has been used to excite the ion motion of ^40Ar^+ ions stored in a Penning trap. A resonant response was observed at twice the ions' true cyclotron frequency φc=q/m.B. The experiment has been performed with the 9.4-T Penning trap system of the recently commissioned LEBIT facility at the NSCL at MSU [1]. Similar to the excitation with an azimuthal quadrupole field at φc [2,3], octupole excitation at 2φc gives rise to a periodic beating of the ion motion between magnetron and reduced cyclotron motion. Differences are observed in the dependence of the excited ion motion on initial amplitudes and phases of the radial eigen motions. The observed behavior of the ions is found to be in good agreement with the results of numerical simulations. The technique still requires further testing but the first results indicate that 2φc excitation may provide benefits that are similar to doubling the magnetic field strength B. In particular precision mass measurements of short-lived rare isotopes may benefit from this technique by being able to reach a given precision with shorter ion storage and observation times. [1] S. Schwarz et al, Nucl. Instr. Meth. B204 (2004) 507 [2] G. Bollen et al., J. Appl. Phys. 68 (1990) 4355 [3] M. König et al., Int. J. Mass Spec. Ion. Proc. 142 (1995) 95

  5. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-01

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs.The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect

  6. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect

    Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2014-02-15

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  7. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  8. Heavy Ion Fusion Injector Program

    SciTech Connect

    Yu, S.; Eylon, S.; Chupp, W.W.

    1993-05-01

    A program is underway to construct a 2 MV, 800 mA, K{sup +} injector for heavy ion fusion. The Electrostatic Quadrupole (ESQ) injector configuration consists of a zeolite source, a diode of up to 1 MV, together with several electrostatic quadrupole units to simultaneously focus and accelerate the beam to 2 MV. The key issues of source technology, high voltage breakdown, beam aberrations, and transient effects will be discussed. Results from ongoing experiments and simulations will be presented.

  9. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    SciTech Connect

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G.; Oks, E. M.

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  10. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range.

    PubMed

    Zolotukhin, D B; Tyunkov, A V; Yushkov, Yu G; Oks, E M

    2015-12-01

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  11. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G.; Oks, E. M.

    2015-12-01

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  12. Rapid flame synthesis of internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage.

    PubMed

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-28

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo(6+) doping can improve the conductivity of electrode materials and facilitate rapid Li(+) intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li(+) ion storage ability as well as incorporates Mo(6+). Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo(6+) and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. PMID:26490363

  13. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    PubMed

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  14. Upper stability island of the quadrupole mass filter with amplitude modulation of the applied voltages.

    PubMed

    Konenkov, N V; Korolkov, A N; Machmudov, Marat

    2005-03-01

    Modulation of the voltages applied to a quadrupole mass filter (QMF), either RF or RF and DC, leads to splitting of the stability region into islands of stability. The ion optical properties, such as transmission, resolving power and peak tails of the first upper stability islands have been investigated by numerical simulation of ion trajectories. The dependence of the location of this island on the amplitude of the modulation and the parameter nu = omega/Omega = Q/P where omega is modulation frequency, Omega is main angular radio frequency, and Q and P are integers, is calculated in detail. Different methods of adjusting the QMF resolution are examined. It is found that operation at the upper and lower tips of the stability islands created by amplitude modulation of the RF voltage is preferred, because of the technical simplicity of this method and a reduction of the required separation time. Amplitude modulation improves the performance of a QMF constructed with round rods, in comparison to perfect quadrupole fields. For example, with amplitude modulation of the RF, to reach a resolution of R(0.1) = 1200 requires only about 75 RF cycles of ion motion in a quadrupole field created by round rods. PMID:15734331

  15. High-precision storage ring for g-2 of the muon and possible applications in particle and heavy ion physics

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    1998-11-01

    A new superferric magnetic storage ring with highly homogeneous field at 1.45 T and weak electrostatic focussing is described which has been set up at the Brookhaven National Laboratory (BNL), USA, for a precision measurement of the magnetic anomaly of the muon. The toroidal storage volume has a radius of 7 m and a diameter of 9 cm. Precision magnetic field determination based on pulsed NMR on protons in H2O yields the field to better than 0.1 ppm everywhere within the storage region. Follow on experiments using the setup have been already suggested to search for a finite mass of the muon neutrino and to search for an electric dipole moment of the muon with significantly increased accuracy. The high homogeneity of the field suggests the usage of such devices as a mass spectrometer for heavier particles as well.

  16. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-05-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g-1 at a current density of 100 mA g-1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour.

  17. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    PubMed Central

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  18. Quadrupole moments of odd-A 53-63Mn: Onset of collectivity towards N = 40

    NASA Astrophysics Data System (ADS)

    Babcock, C.; Heylen, H.; Bissell, M. L.; Blaum, K.; Campbell, P.; Cheal, B.; Fedorov, D.; Garcia Ruiz, R. F.; Geithner, W.; Gins, W.; Day Goodacre, T.; Grob, L. K.; Kowalska, M.; Lenzi, S. M.; Maass, B.; Malbrunot-Ettenauer, S.; Marsh, B.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Rossel, R.; Rothe, S.; Sánchez, R.; Tsunoda, Y.; Wraith, C.; Xie, L.; Yang, X. F.

    2016-09-01

    The spectroscopic quadrupole moments of the odd-even Mn isotopes between N = 28 and N = 38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE's cooler and buncher (ISCOOL) was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1 νg9/2 and 2 νd5/2 orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N = 36 onwards. Specifically, the inclusion of the 2 νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N = 40 and Z = 28, leading to an increase in deformation above N = 36.

  19. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  20. Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials.

    PubMed

    Nishihara, Hirotomo; Itoi, Hiroyuki; Kogure, Taichi; Hou, Peng-Xiang; Touhara, Hidekazu; Okino, Fujio; Kyotani, Takashi

    2009-01-01

    An ordered microporous carbon, which was prepared with zeolite as a template, was used as a model material to understand the ion storage/transfer behavior in electrical double-layer capacitor (EDLC). Several types of such zeolite-templated carbons (ZTCs) with different structures (framework regularity, particle size and pore diameter) were prepared and their EDLC performances were evaluated in an organic electrolyte solution (1 M Et(4)NBF(4)/propylene carbonate). Moreover, a simple method to evaluate a degree of wettability of microporous carbon with propylene carbonate was developed. It was found that the capacitance was almost proportional to the surface area and this linearity was retained even for the carbons with very high surface areas (>2000 m(2) g(-1)). It has often been pointed out that thin pore walls limit capacitance and this usually gives rise to the deviation from linearity, but such a limitation was not observed in ZTCs, despite their very thin pore walls (a single graphene, ca. 0.34 nm). The present study clearly indicates that three-dimensionally connected and regularly arranged micropores were very effective at reducing ion-transfer resistance. Despite relatively small pore diameter ZTCs (ca. 1.2 nm), their power density remained almost unchanged even though the particle size was increased up to several microns. However, when the pore diameter became smaller than 1.2 nm, the power density was decreased due to the difficulty of smooth ion-transfer in such small micropores. PMID:19338036

  1. Flexible Hybrid Electrodes Containing Vanadium Pentoxide (V2O5) and an Electron- and Ion-Conducting Diblock Copolymer for Energy Storage

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    2015-03-01

    Vanadium pentoxide (V2O5) is a promising cathode material for Lithium-ion batteries due to its high capacity, high energy density, and cost-effectiveness. However, its low lithium-ion diffusion coefficient (10-12 - 10-13 cm2/s), low electronic conductivity (10-2 - 10-3 S/cm), and severe volumetric changes during cycling have hindered its application in practical devices. One way to address these problems is to design hybrid electrodes that incorporate a second active material. For this purpose, poly(3-hexylthiophene)-block-poly(ethylene oxide) (P3HT- b-PEO) block copolymer containing electron- and ion-conducting polymer blocks was introduced to a V2O5 electrode system. Cathodes are prepared by mixing aqueous dispersions of block copolymer, V2O5, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and drop casting. The V2O5 and P3HT- b-PEO hybrid electrode showed synergistic results, having improved electrochemical storage performance and mechanical property. We also demonstrated a flexible battery prototype using the P3HT- b-PEO/V2O5 cathode.

  2. Bifacial Metasurface with Quadrupole Optical Response

    NASA Astrophysics Data System (ADS)

    Shevchenko, Andriy; Kivijärvi, Ville; Grahn, Patrick; Kaivola, Matti; Lindfors, Klas

    2015-08-01

    We design, fabricate, and characterize a metasurface, whose multipole optical response depends significantly on the illumination direction. The metasurface is composed of gold-nanodisc dimers embedded in glass. In spite of their nanoscale size, the dimers exhibit a dominating electric-current-quadrupole response in a wide range of wavelengths around 700 nm when illuminated from one side, and a primarily electric-dipole response when illuminated from the opposite side. This leads to two consequences. First, the reflection coefficient of the metasurface considerably differs for the two sides of illumination. Second, quadrupole excitation results in a significant local enhancement of both electric and magnetic fields around the dimers. Our experimental spectroscopic data are in good agreement with simulations obtained using a multipole expansion model.

  3. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-06-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  4. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2007-08-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  5. Dipole and quadrupole integrals for the C I, N I, and O I sequences. [electron transition probabilities computation

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Wade, C.

    1974-01-01

    The Coulomb approximation tables of Oertel and Shomo, together with binding-energy values obtained by a screening approximation, have been used to produce values of the dipole and quadrupole radial integrals needed in obtaining transition probabilities for ions of six, seven, and eight electrons. Some comparisons with more rigorously calculated values show that the present values are quite accurate, especially for ions of higher atomic number.

  6. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  7. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  8. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  9. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  10. LHC INTERACTION REGION QUADRUPOLE ERROR IMPACT STUDIES

    SciTech Connect

    FISCHER,W.; PTITSIN,V.; WEI,J.

    1999-09-07

    The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper the authors study the impact of the expected field errors of these magnets on the dynamic aperture. The authors investigate different magnet arrangements and error strength. Based on the results they propose and evaluate a corrector layout to meet the required dynamic aperture performance in a companion paper.

  11. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  12. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.

    PubMed

    Shen, Wei; Wang, Cong; Liu, Haimei; Yang, Wensheng

    2013-10-18

    A porous Na3 V2 (PO4 )3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol-gel method combined with a freeze-drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium-ion batteries, this porous Na3 V2 (PO4 )3 /C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7-4.0 V versus Na(+) /Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g(-1) at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g(-1) ), an initial capacity of 97.6 mA h g(-1) can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3 V2 (PO4 )3 /C suggest that this material is a promising cathode for large-scale sodium-ion rechargeable batteries.

  13. Apparatus and method of dissociating ions in a multipole ion guide

    SciTech Connect

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  14. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  15. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(VI) ions.

    PubMed

    Zhang, Le; Wang, Lin Lin; Gong, Le Le; Feng, Xue Feng; Luo, Ming Biao; Luo, Feng

    2016-07-01

    Driven by an energy crisis but consequently puzzled by various environmental problems, uranium, as the basic material of nuclear energy, is now receiving extensive attentions. In contrast to numerous sorbents applied in this field, metal-organic framework (MOFs), as a renovated material platform, has only recently been developed. How to improve the adsorption capacity of MOF materials towards U(VI) ions, as well as taking advantage of the nature of these MOFs to design photo-switched behaviour for photo-triggered storage/release of U(VI) ions are at present urgent problems and great challenges to be solved. Herein, we show a simple and facile method to target the goal. Through coordination-based post-synthetic strategy, microporous- mesoporous Zn-MOF-74 was easily functionalized by grafting coumarin on coordinatively unsaturated Zn(II) centers, yielding a series of coumarin-modified Zn-MOF-74 materials. The obtained samples displayed ultra-high adsorption capacity for U(VI) ions from water at pH value of 4 with maximum adsorption capacities as high as 360 mg/g (the record value in MOFs) and a remarkable photo-switched capability of 50 mg/g at pH value of 4. To the best of knowledge, and in contrast to the well-known photo-switched behaviour towards CO2, dye (propidium iodide), as well as fluorescence observed in MOFs, this is the first study that shows a photo-switched behaviour towards radioactive U(VI) ions in aqueous solution.

  16. Towards the assessment of a residential electric storage system: analysis of Canadian residential electricity use and the development of a lithium-ion battery model

    NASA Astrophysics Data System (ADS)

    Saldanha, Neil

    Peak electricity demand from residential houses leads to increased greenhouse gas emissions from inefficient electricity production. The coincidental use of household appliances and lighting, known as non-HVAC loads, and air-conditioners creates periods of increased electricity demand on utility providers in Ontario. This leads to electricity production from fuels such as coal that produce excessive greenhouse gas emissions. To assess the potential of a micro-cogeneration device coupled with lithium-ion battery electricity storage to reduce peak electricity demand using building simulation, residential electricity use of Canadian houses must be accurately represented. Thus, electricity use from twelve houses in the Ottawa, Ontario area was collected over a one year period, beginning in the summer of 2009. The project measured and analyzed non-HVAC and space cooling electricity use at one-minute intervals. The daily non-HVAC electricity profiles measured in this study show more variation and higher occurrences of peak loads compared to previously developed synthetically generated profiles. Both non-HVAC and space cooling profiles show large variations in electricity consumption between households. The relationship between daily space cooling electricity consumption and outdoor temperature is shown. A lithium-ion battery model was then developed in the building simulation program ESP-r. The model accounts for changes in performance due to varying temperature and current, and addresses long-term degradation over a battery's life cycle. The model was calibrated and validated using simulated data from the National Research Council's Institute for Chemical Process and Environmental Technology. The functionality of the lithium-ion model simulated in a household and coupled with a Stirling engine micro-cogeneration model is demonstrated. Following the implementation of an optimized controller, a lithium-ion battery simulated with a micro-cogeneration device can be sized

  17. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  18. Cryo-technical design aspects of the superconducting SIS100 quadrupole doublet modules

    SciTech Connect

    Meier, J. P.; Bleile, A.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2014-01-29

    The FAIR project was initiated to build an international accelerator and experimental facility for basic research activities in various fields of modern physics. The core component of the project will be the SIS100 heavy ion accelerator, producing heavy ion beams of uniquely high intensities and qualities. The superconducting main quadrupoles and corrector magnets are assembled within complex quadrupole doublet modules (QDMs), combining two superconducting quadrupole (focusing and defocusing), sextupole and steering magnets in one cryostat. In addition a cryo-catcher, a beam position monitor and a cold beam pipe will be integrated. In accordance with the magnet lattice structure, the QDM series for the SIS100 consists of four main families composed of eleven different configurations. The common technical feature of all configurations is a sophisticated common girder structure, mechanically integrating all functional components in one cold mass and being suspended in a corresponding cryostat system. The requirements to position preservation during thermal cycling are to be fulfilled by a precise and stable support of the functional elements, as well as by a reliable, reproducible and stable cold mass suspension system. The main design aspects of the QDMs will be discussed as a result of these requirements.

  19. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kang, Yun Chan

    2016-02-01

    Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g-1, respectively, at a high current density of 1.0 A g-1, and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10th discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g-1 at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls.Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144

  20. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites.

    PubMed

    Lim, Dae-Woon; Chyun, Seung An; Suh, Myunghyun Paik

    2014-07-21

    To develop a metal-organic framework (MOF) for hydrogen storage, SNU-200 incorporating a 18-crown-6 ether moiety as a specific binding site for selected cations has been synthesized. SNU-200 binds K(+), NH4(+), and methyl viologen (MV(2+)) through single-crystal to single-crystal transformations. It exhibits characteristic gas-sorption properties depending on the bound cation. SNU-200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol(-1)) than other zinc-based MOFs. Among the cation inclusions, K(+) is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol(-1)) as a result of the accessible open metal sites on the K(+) ion. PMID:24939240

  1. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time.

  2. "Butterfly effect" in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance.

    PubMed

    Zhang, Xiaoting; Zhou, Jisheng; Song, Huaihe; Chen, Xiaohong; Fedoseeva, Yu V; Okotrub, A V; Bulusheva, L G

    2014-10-01

    Generally speaking, excellent electrochemical performance of metal oxide/graphene nanosheets (GNSs) composite is attributed to the interfacial interaction (or "synergistic effect") between constituents. However, there are no any direct observations on how the electronic structure is changed and how the properties of Li-ion storage are affected by adjusting the interfacial interaction, despite of limited investigations on the possible nature of binding between GNSs and metal oxide. In this paper, CuO nanosheets/GNSs composites with a little Cu2O (ca. 4 wt %) were utilized as an interesting model to illustrate directly the changes of interfacial nature as well as its deep influence on the electronic structure and Li-ion storage performance of composite. The interfacial adjustment was successfully fulfilled by removal of Cu2O in the composite by NH3·H2O. Formation of Cu-O-C bonds on interfaces both between CuO and GNSs, and Cu2O and GNSs in the original CuO/GNSs composites was detected. The small interfacial alteration by removal of the little Cu2O results in the obvious changes in electronic structure, such as weakening of covalent Cu-O-C interfacial interaction and recovery of π bonds in graphene, and simultaneously leads to variations in electrochemical performance of composites, including a 21% increase of reversible capacity, degradation of cyclic stability and rate-performance, and obvious increase of charge-transfer resistance, which can be called a "butterfly effect" in graphene-based metal oxide composites. These interesting phenomena could be helpful to design not only the high-performance graphene/metal oxide anode materials but also various advanced graphene-based composites used in the other fields such as sensors, catalysis, fuel cells, solar cells, etc.

  3. "Butterfly effect" in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance.

    PubMed

    Zhang, Xiaoting; Zhou, Jisheng; Song, Huaihe; Chen, Xiaohong; Fedoseeva, Yu V; Okotrub, A V; Bulusheva, L G

    2014-10-01

    Generally speaking, excellent electrochemical performance of metal oxide/graphene nanosheets (GNSs) composite is attributed to the interfacial interaction (or "synergistic effect") between constituents. However, there are no any direct observations on how the electronic structure is changed and how the properties of Li-ion storage are affected by adjusting the interfacial interaction, despite of limited investigations on the possible nature of binding between GNSs and metal oxide. In this paper, CuO nanosheets/GNSs composites with a little Cu2O (ca. 4 wt %) were utilized as an interesting model to illustrate directly the changes of interfacial nature as well as its deep influence on the electronic structure and Li-ion storage performance of composite. The interfacial adjustment was successfully fulfilled by removal of Cu2O in the composite by NH3·H2O. Formation of Cu-O-C bonds on interfaces both between CuO and GNSs, and Cu2O and GNSs in the original CuO/GNSs composites was detected. The small interfacial alteration by removal of the little Cu2O results in the obvious changes in electronic structure, such as weakening of covalent Cu-O-C interfacial interaction and recovery of π bonds in graphene, and simultaneously leads to variations in electrochemical performance of composites, including a 21% increase of reversible capacity, degradation of cyclic stability and rate-performance, and obvious increase of charge-transfer resistance, which can be called a "butterfly effect" in graphene-based metal oxide composites. These interesting phenomena could be helpful to design not only the high-performance graphene/metal oxide anode materials but also various advanced graphene-based composites used in the other fields such as sensors, catalysis, fuel cells, solar cells, etc. PMID:25226227

  4. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.

    PubMed

    Tang, Jialiang; Pol, Vilas G

    2016-01-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  5. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    NASA Astrophysics Data System (ADS)

    Tang, Jialiang; Pol, Vilas G.

    2016-02-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  6. Ion mobility spectrometry versus classical physico-chemical analysis for assessing the shelf life of extra virgin olive oil according to container type and storage conditions.

    PubMed

    Garrido-Delgado, Rocío; Dobao-Prieto, M Mar; Arce, Lourdes; Aguilar, Joaquín; Cumplido, José L; Valcárcel, Miguel

    2015-03-01

    An experimental study was conducted to assess the stability of a single-variety (Arbequina) extra virgin olive oil (EVOO) as a function of container type and storage conditions over a period of 11 months. EVOO quality was assessed by using ion mobility spectrometry (IMS), which provides increased simplicity, expeditiousness, and relative economy. The results were compared with the ones obtained by using the official method based on classical physico-chemical analysis. Bag-in-box, metal, dark glass, clear glass, and polyethylene terephthalate containers holding EVOO were opened on a periodic basis for sampling to simulate domestic use; in parallel, other containers were kept closed until analysis to simulate the storage conditions on market shelves. The results of the physico-chemical and instrumental analyses led to similar conclusions. Thus, samples packaged in bag-in-box containers preserved oil quality for 11 months, better than other container types. The HS-GC-IMS results confirm that 2-heptenal and 1-penten-3-one are two accurate markers of EVOO quality.

  7. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs. PMID:27015357

  8. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs.

  9. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    PubMed Central

    Tang, Jialiang; Pol, Vilas G.

    2016-01-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices. PMID:26846311

  10. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.

    PubMed

    Tang, Jialiang; Pol, Vilas G

    2016-01-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices. PMID:26846311

  11. Ion mobility spectrometry versus classical physico-chemical analysis for assessing the shelf life of extra virgin olive oil according to container type and storage conditions.

    PubMed

    Garrido-Delgado, Rocío; Dobao-Prieto, M Mar; Arce, Lourdes; Aguilar, Joaquín; Cumplido, José L; Valcárcel, Miguel

    2015-03-01

    An experimental study was conducted to assess the stability of a single-variety (Arbequina) extra virgin olive oil (EVOO) as a function of container type and storage conditions over a period of 11 months. EVOO quality was assessed by using ion mobility spectrometry (IMS), which provides increased simplicity, expeditiousness, and relative economy. The results were compared with the ones obtained by using the official method based on classical physico-chemical analysis. Bag-in-box, metal, dark glass, clear glass, and polyethylene terephthalate containers holding EVOO were opened on a periodic basis for sampling to simulate domestic use; in parallel, other containers were kept closed until analysis to simulate the storage conditions on market shelves. The results of the physico-chemical and instrumental analyses led to similar conclusions. Thus, samples packaged in bag-in-box containers preserved oil quality for 11 months, better than other container types. The HS-GC-IMS results confirm that 2-heptenal and 1-penten-3-one are two accurate markers of EVOO quality. PMID:25645180

  12. Interactions between CO2, minerals, and toxic ions: Implications for CO2 leakage from deep geological storage (Invited)

    NASA Astrophysics Data System (ADS)

    Renard, F.; Montes-Hernandez, G.

    2013-12-01

    The long-term injection of carbon dioxide into geological underground reservoirs may lead to leakage events that will enhance fluid-rock interactions and question the safety of these repositories. If injection of carbon dioxide into natural reservoirs has been shown to mobilize some species into the pore fluid, including heavy metals and other toxic ions, the detailed interactions remain still debated because two main processes could interact and modify fluid composition: on the one hand dissolution/precipitation reactions may release/incorporate trace elements, and on the other hand adsorption/desorption reactions on existing mineral surfaces may also mobilize or trap these elements. We analyze here, through laboratory experiments, a scenario of a carbon dioxide reservoir that leaks into a fresh water aquifer through a localized leakage zone such as a permeable fault zone localized in the caprock and enhance toxic ions mobilization. Our main goal is to evaluate the potential risks on potable water quality. In a series of experiments, we have injected carbon dioxide into a fresh water aquifer-like medium that contained carbonate and/or iron oxide particles, pure water, and various concentrations of trace elements (copper, arsenic, cadmium, and selenium, in various states of oxidation). This analogue and simplified medium has been chosen because it contains two minerals (calcite, goethite) widespread found in freshwater aquifers. The surface charge of these minerals may vary with pH and therefore control how trace elements are adsorbed or desorbed, depending on fluid composition. Our experiments show that these minerals could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if carbon dioxide is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from carbon dioxide intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in the aquifer. Our

  13. Resonant laser ablation ion trap mass spectrometry -- Recent applications for chemical analysis

    SciTech Connect

    Gill, C.G.; Garrett, A.W.; Hemberger, P.H.; Nogar, N.S.

    1995-12-31

    Resonant Laser Ablation (RLA) is a useful ionization process for selectively producing gas phase ions from a solid sample. Recent use of RLA for mass spectrometry by this group and by others has produced a wealth of knowledge and useful analytical techniques. The method relies upon the focusing of modest intensity laser pulses ({le} 10{sup 7} W {center_dot} Cm{sup {minus}2}) upon a sample surface. A small quantity of material is vaporized, and atoms of desired analyte are subsequently ionized by (n + m) photon processes in the gas phase (where n = number of photons to a resonant transition and m = number of photons to exceed the ionization limit). The authors have been using (2 + 1) resonant ionization schemes for this work. Quadrupole ion trap mass spectrometry is realizing a very prominent role in current mass spectrometric research. Ion traps are versatile, powerful and extremely sensitive mass spectrometers, capable of a variety of ionization modes, MS{sup n} type experiments, high mass ranges and high resolution, all for a fraction of the cost of other instrumentation with similar capabilities. Quadrupole ion traps are ideally suited to pulsed ionization sources such as laser ionization methods, since their normal operational method (Mass Selective Instability) relies upon the storage of ions from a finite ionization period followed by ejection and detection of these ions based upon their mass to charge ratios. The paper describes selective ionization for trace atomic analysis, selective reagent ion source for ion chemistry investigations, and the analysis of ``difficult`` environmental contaminants, i.e., TBP.

  14. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  15. Experimental assessment of CO2-mineral-toxic ion interactions in a simplified freshwater aquifer: implications for CO2 leakage from deep geological storage.

    PubMed

    Montes-Hernandez, German; Renard, François; Lafay, Romain

    2013-06-18

    The possible intrusion of CO2 into a given freshwater aquifer due to leakage from deep geological storage involves a decrease in pH, which has been directly associated with the remobilization of hazardous trace elements via mineral dissolution and/or via desorption processes. In an effort to evaluate the potential risks to potable water quality, the present study is devoted to experimental investigation of the effects of CO2 intrusion on the mobility of toxic ions in simplified equilibrated aquifers. We demonstrate that remobilization of trace elements by CO2 intrusion is not a universal physicochemical effect. In fact goethite and calcite, two minerals frequently found in aquifers, could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if CO2 is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from CO2 intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in underground layers. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These adsorbed ions on calcite are not remobilized when CO2 is intruded into the system, but it intensifies calcite dissolution. On the other hand, arsenite As(III) is significantly adsorbed on goethite, but is partially remobilized by CO2 intrusion.

  16. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2015-11-11

    Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.

  17. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  18. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer.

    PubMed

    Hager, James W; Yves Le Blanc, J C

    2003-01-01

    The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.

  19. Nuclear Quadrupole Resonance Studies in MICA

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Rhadakrishna, S.; Marino, R. A.

    1986-02-01

    Aluminum-27 NQR transitions were detected in Muscovite Mica at room temperature using double resonance by level crossing (DRLC) techniques. Three lines were observed with frequencies of 572.5, 1052.0, and 1624.5 kHz. These lines are assigned to the octahedrally coordinated site, AlO4(OH)2. The corresponding quadrupole coupling constant, e2q Q/h, and asymmetry parameter, η, are 3554.8 kHz and 0.265, respectively. The remaining tetrahedrally coordinated sites, AlO4, gave no discernible signal, perhaps due to the greater 27Al- 1H distance.

  20. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    SciTech Connect

    Anthuvan Rajesh, John; Pandurangan, Arumugam; Senthil, Chenrayan; Sasidharan, Manickam

    2014-12-15

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi{sub 5} alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi{sub 5}) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g{sup −1} at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions.

  1. Multiphysics simulations of nanoarchitectures and analysis of germanium core-shell anode nanostructure for lithium-ion energy storage applications

    NASA Astrophysics Data System (ADS)

    Clancy, T.; Rohan, J. F.

    2015-12-01

    This paper reports multiphysics simulations (COMSOL) of relatively low conductive cathode oxide materials in nanoarchitectures that operate within the appropriate potential range (cut-off voltage 2.5 V) at 3 times the C-rate of micron scale thin film materials while still accessing 90% of material. This paper also reports a novel anode fabrication of Ge sputtered on a Cu nanotube current collector for lithium-ion batteries. Ge on Cu nanotubes is shown to alleviate the effect of volume expansion, enhancing mechanical stability at the nanoscale and improved the electronic characteristics for increased rate capabilities.

  2. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.

    PubMed

    Rhee, Oonhee; Lee, Gibaek; Choi, Jinsub

    2016-06-15

    The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm(-2) even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment. PMID:27218822

  3. CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers

    SciTech Connect

    Calvey, J.R.; Li, Y.; Livezey, J.A.; Makita, J.; Meller, R.E.; Palmer, M.A.; Schwartz, R.M.; Strohman, C.R.; Harkay, K.; Calatroni, S.; Rumolo, G.; Kanazawa, K.; Suetsugu, Y.; Pivi, M.; Wang, L.; /SLAC

    2010-06-15

    Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

  4. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping

  5. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  6. SSC Quadrupole Magnet Performance at LBL

    SciTech Connect

    Lietzke, A.F.; Barale, P.; Benjegerdes, r.; Caspi, S.; Cortella, J.; Dell'Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scalan, R.; Taylor, C.E.; Wandesforde, A.

    1992-10-01

    Lawrence Berkeley Laboratory (LBL) contracted to design, construct, and test four short (1m) models and six full-size (5m) models of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211 Tesla/meter). The training performance of these magnets is summarized. Magnets were tested in a horizontal boiling helium (1 Atm) cryostat. The magnetic, strain-gage and training responses to two thermal cycles were measured. The quadrupole gradient, and relative multipole purity were determined from Fourier analysis of the rotating coil signals. Magnetic and strain-gage measurements were taken on-the-fly. The voltage-tap data was analyzed to determine quench-origin and propagation characteristics. Quench-training proceeded at 4.3K until a plateau was achieved or sub-cooling (2.5K) was used to accelerate the training process. The early short (1m) magnets were also trained at 1.8K (10kA) to help identify potential weak areas. The MIITs were calculated to compare various magnet protection methods. Except for modest training above the anticipated SSC operating point, the magnets performed very well and proved to be self-protecting. Some design flaws were identified and corrected. The last two 1 m models and all the 5m models have been reinstalled in cryostats at the SSC Laboratory, retested and used to achieve various milestones in their program.

  7. Quadrupole Polarizabilities in A ~150 Superdeformed Bands

    NASA Astrophysics Data System (ADS)

    Satula, Wojciech; Nazarewicz, Witold; Dobaczewski, Jacek; Dudek, Jerzy

    1996-10-01

    In this study, the quadrupole and hexadecapole moments of superdeformed (SD) bands in the A ~150 mass region have been analyzed in the cranking Skyrme-Hartree-Fock model. The analysis shows that the relative quadrupole moments, δ Q_20(X_A)≡ Q_20(X_A)-Q_20(^152Dy;yrast), follow experimental trends rather well and that they can be written as a sum of independent contributions from the single-particle/hole states around the doubly-magic SD core of ^152Dy with a surpisingly high accuracy. For more than 90% of the SD bands considered, the deviation |δ Q_20 ( X_A) - sum_Nn_zΛδ q^[Nn_zΛ]| is less than 0.04 b. It suggests that the SD high-spin bands around ^152Dy are excellent examples of an almost undisturbed single-particle motion, i.e., can be described by the extreme shell model.

  8. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  9. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    NASA Astrophysics Data System (ADS)

    Ishii, Yosuke; Sakamoto, Yuki; Song, Hayong; Tashiro, Kosuke; Nishiwaki, Yoshiki; Al-zubaidi, Ayar; Kawasaki, Shinji

    2016-03-01

    We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes (SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  10. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    SciTech Connect

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  11. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  12. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  13. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  14. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  15. Quadrupole photoionization of hydrogen atoms in Debye plasmas

    SciTech Connect

    Lin, C. Y.; Ho, Y. K.

    2010-09-15

    Although a great deal of effort has been devoted to investigating dipole photoionization of plasma-embedded atoms, far less is known about the corresponding quadrupole transitions. In the present work, quadrupole photoionization processes for the ground and excited states of hydrogen atoms in Debye plasma are explored using the method of complex coordinate rotation. The plasma shielding effects on the quadrupole photoionization cross sections are reported for a variety of Debye screening lengths and compared to the dipole results accordingly. Under the perturbation of plasma screening, shape resonances and Cooper-type minima occurring in both dipole and quadrupole photoionization cross sections are presented and discussed. Comparisons are made to other theoretical calculations for the dipole photoionization with good agreement. The present quadrupole results are the first predictions for hydrogen photoionization in Debye plasmas.

  16. Effects of Sorption in the Lower Unsaturated Zone on the Storage and Transport of Ions in Recharge to Ground Water, Southern New Jersey

    NASA Astrophysics Data System (ADS)

    Reilly, T. J.; Baehr, A. L.

    2006-05-01

    A field-based approach for determining sorption in the lower unsaturated zone (between the root zone and the capillary fringe) and its effect on the storage and transport of ions in recharge to ground water has been demonstrated for a small (8 km2) agricultural watershed in the Coastal Plain of southern New Jersey. These sediments typically are quartzose, acidic (pH 3.9-6.8 standard units), iron- and kaolinite-rich, and organic-matter poor, and the shallow ground water is nearly saturated with oxygen. Moisture-content and chemical-concentration data obtained from 14 paired unsaturated-zone-core (mean depth 5.7 m) and shallow- ground-water samples (mean depth 6.0 m) were used to estimate the mass flux of chemical constituents across the water table and sorption coefficients (Kd). Denitrification is not thought to be a significant process in this system as the water is nearly saturated with oxygen. The selectivity order of the Kd values for cations is consistent with the expected selectivity order based on charge density (for example, Na+ > Mg++ > Ca++ for sands). Although calculated sorption coefficients were greater for cations than for anions (cation sorption coefficients were 4 to 10 times greater than those calculated for NO3-), sorption has a substantial effect on the transport of anions through the unsaturated zone. In particular, average Kd values for NO3- were 0.22 L/mg for sands and 0.62 L/mg for finer grained sediments. This result indicates that the lower unsaturated zone in the study area is a large reservoir for nitrogen as nitrate. Unless the system is at steady state, models that do not account for sorption will result in underestimates of nitrogen storage and overestimates of contaminant transport rates. Such predictions would lead to overly optimistic expectations for natural cleansing in this watershed and in other, similar settings.

  17. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.

    PubMed

    Hou, Linrui; Hua, Hui; Lian, Lin; Cao, Hui; Zhu, Siqi; Yuan, Changzhou

    2015-09-01

    In the work, a facile and green two-step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle-shaped mesoporous ZnFe2 O4 microrods (MRs) with a high tap density of ∼0.85 g cm(3) , which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long-life anode for advanced Li-ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g(-1) , the resulting ZnFe2 O4 MRs with high loading of ∼1.4 mg per electrode still preserved a reversible capacity as large as ∼542 mAh g(-1) . Furthermore, an initial charge capacity of ∼1150 mAh g(-1) is delivered by the ZnFe2 O4 anode at 100 mA g(-1) , resulting in a high Coulombic efficiency of ∼76 % for the first cycle. The superior Li-storage properties of the as-obtained ZnFe2 O4 were rationally associated with its mesoprous micro-/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li(+) transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode-electrolyte sur-/interfaces for efficient lithium storage, particularly at high rates.

  18. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  19. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  20. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Kang, Wenpei; Tang, Yongbing; Li, Wenyue; Yang, Xia; Xue, Hongtao; Yang, Qingdan; Lee, Chun-Sing

    2014-11-01

    Porous hierarchical NiMn2O4/C tremella-like nanostructures are obtained through a simple solvothermal and calcination method. As the anode of lithium ion batteries (LIBs), porous NiMn2O4/C nanostructures exhibit a superior specific capacity and an excellent long-term cycling performance even at a high current density. The discharge capacity can stabilize at 2130 mA h g-1 within 350 cycles at a current density of 1000 mA g-1. After a long-term cycling of 1500 cycles, the capacity is still as high as 1773 mA h g-1 at a high current density of 4000 mA g-1, which is almost five times higher than the theoretical capacity of graphite. The porous NiMn2O4/C hierarchical nanostructure provides sufficient contact with the electrolyte and fast three-dimensional Li+ diffusion channels, and dramatically improves the capacity of NiMn2O4/C via interfacial storage.Porous hierarchical NiMn2O4/C tremella-like nanostructures are obtained through a simple solvothermal and calcination method. As the anode of lithium ion batteries (LIBs), porous NiMn2O4/C nanostructures exhibit a superior specific capacity and an excellent long-term cycling performance even at a high current density. The discharge capacity can stabilize at 2130 mA h g-1 within 350 cycles at a current density of 1000 mA g-1. After a long-term cycling of 1500 cycles, the capacity is still as high as 1773 mA h g-1 at a high current density of 4000 mA g-1, which is almost five times higher than the theoretical capacity of graphite. The porous NiMn2O4/C hierarchical nanostructure provides sufficient contact with the electrolyte and fast three-dimensional Li+ diffusion channels, and dramatically improves the capacity of NiMn2O4/C via interfacial storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04031g