Sample records for quadrupole light-molecule interaction

  1. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  2. Nanofocusing of structured light for quadrupolar light-matter interactions.

    PubMed

    Sakai, Kyosuke; Yamamoto, Takeaki; Sasaki, Keiji

    2018-05-17

    The spatial structure of an electromagnetic field can determine the characteristics of light-matter interactions. A strong gradient of light in the near field can excite dipole-forbidden atomic transitions, e.g., electric quadrupole transitions, which are rarely observed under plane-wave far-field illumination. Structured light with a higher-order orbital angular momentum state may also modulate the selection rules in which an atom can absorb two quanta of angular momentum: one from the spin and another from the spatial structure of the beam. Here, we numerically demonstrate a strong focusing of structured light with a higher-order orbital angular momentum state in the near field. A quadrupole field was confined within a gap region of several tens of nanometres in a plasmonic tetramer structure. A plasmonic crystal surrounding the tetramer structure provides a robust antenna effect, where the incident structured light can be strongly coupled to the quadrupole field in the gap region with a larger alignment tolerance. The proposed system is expected to provide a platform for light-matter interactions with strong multipolar effects.

  3. Atoms and Molecules Interacting with Light

    NASA Astrophysics Data System (ADS)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state

  4. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions.

    PubMed

    Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E

    2007-07-19

    Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.

  5. Manifestation of a strong quadrupole interaction and peculiarities in the SERS and SEHRS spectra of 4,4'-bipyridine

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Polubotko, A. M.

    2017-07-01

    The paper analyzes Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Hyper Raman Scattering (SEHRS) spectra of 4,4'-bypiridine molecule for two possible geometries, which are described by D 2 and D 2 h symmetry groups. It is pointed out on appearance of sufficiently strong lines, caused by vibrations with the unit irreducible representation for both possible configurations. Appearance of these lines in the SEHRS spectrum points out the existence of a strong quadrupole light-molecule interaction. In addition one observes the lines, caused by vibrations both with the unit irreducible representations A or A g and the irreducible representation B 1 or B 1 u . The last ones describe transformational properties of the d z component of the dipole moment, which is perpendicular to the surface. This property of the spectrum is caused by peculiarity of the geometry of the molecule, which consists of two benzene rings, which are weakly connected with each other. The linear combinations of the vibrations of the rings create two nearly degenerated symmetric and anti symmetrical states, which cannot be identified in the experimental spectra. The result is in a full agreement with the dipole-quadrupole theory of SERS and SEHRS.

  6. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  7. Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO

    NASA Astrophysics Data System (ADS)

    Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.

    2002-03-01

    The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.

  8. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru; Chelibanov, V. P., E-mail: Chelibanov@gmail.com

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  9. Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    NASA Astrophysics Data System (ADS)

    Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.

    2018-06-01

    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.

  10. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  11. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    PubMed

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  12. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    NASA Astrophysics Data System (ADS)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  13. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  14. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  15. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  16. Detection of Quadrupole Interactions by Muon Level Crossing Resonance

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    1992-02-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and

  17. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields

    NASA Astrophysics Data System (ADS)

    Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.

    2017-12-01

    The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.

  18. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  19. Observation of a quadrupole interaction for cubic imperfections exhibiting a dynamic Jahn-Teller effect.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).

  20. Theory of electronic structures and nuclear quadrupole interactions in molecular solids and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit

    We have investigated, using the Hartree-Fock Roothaan variational procedure, the electronic structures and associated nuclear quadrupole interactions (NQI) for the molecular solids, RDX (C3H6N6O6),/ /beta- HMX(C4H8N8O8), Cocaine (C17H21NO4), Cocaine Hydrochloride (C17H21NO4HCl) and Heroin (C21H23NO5) and for the (111) surface of silicon with adsorbed radioactive 111In atom and negative cadmium ion containing the excited nucleus 111Cd/* resulting from electron capture by lllIn. Our investigations indicate that for the ring 14N NQI parameters in RDX and β-HMX there is very good agreement between theory and experiment. For the peripheral 14N nuclei in NO2 groups, while the calculated electronic structures do explain the much weaker quadrupole coupling constants for these nuclei relative to the ring 14N nuclei, there are significant differences between theory and experiment. The influence of intermolecular interactions between adjacent molecules in the solid is invoked as a possible source for these differences. For the controlled substances, Cocaine and Heroin, again very good agreement is obtained between theory and experiment. For Cocaine Hydrochloride theory is able to explain the much smaller observed 14N nuclear quadrupole resonance frequency as compared to pure Cocaine. However there are significant differences between theory and experiment for the 14N and 35Cl quadrupole resonance frequencies. The influence of intermolecular interactions is one of the factors suggested to explain the difference. For the silicon (111) surface, the observed 111Cd/* NQI parameters, with the cadmium nucleus assumed to be located at the same site as the 111In nucleus from which it is generated, can be successfully explained by theory with the indium atom located at the two distinct sites available with the DAS model for the 7 x 7 reconstructed (111) surface. Some quantitative differences still remain, one of the main factor suggested for their explanation being a need for a

  1. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  2. Weak quadrupole moments

    NASA Astrophysics Data System (ADS)

    Lackenby, B. G. C.; Flambaum, V. V.

    2018-07-01

    We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.

  3. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less

  4. Highly Dynamic Anion-Quadrupole Networks in Proteins.

    PubMed

    Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome

    2016-11-01

    The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.

  5. The interaction of low-energy electrons with fructose molecules

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  6. B3LYP Calculation of Deuterium Quadrupole Coupling Constants in Molecules

    NASA Astrophysics Data System (ADS)

    Bailey, William C.

    1998-08-01

    The B3LYP/6-31G(df,3p) model for the calculation of deuterium nuclear quadrupole coupling constants (nqcc's) is shown to yield results as accurate as calculations previously performed at the MP4 level of theory. For 25 molecules, ranging from HD and DF to pyridine and fluorobenzene, the rms difference between the B3LYP nqcc's and the experimental nqcc's is 3.2 kHz (2.7%). For benzene, our calculations suggest that the experimental χbband χccof S. Jans-Bürli, M. Oldani, and A. Bauder, 1989.Mol. Phys.,68, 1111-1123) have been incorrectly assigned with respect to inertia axes and should be reversed. For borane carbonyl and nitric acid, it is shown that nqcc calculations using hydrogen bond lengths given by MP2/6-311 + G(d,p) optimizations in combination with the heavy atom experimental structures significantly improve agreement with the experimental nqcc's.

  7. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules

    NASA Astrophysics Data System (ADS)

    Steer, Edward W.; Petralia, Lorenzo S.; Western, Colin M.; Heazlewood, Brianna R.; Softley, Timothy P.

    2017-02-01

    The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2 + 1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated - with respect to both the local field direction and a space-fixed axis - as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK =11 could be achieved with the application of a small bias voltage (17 V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.

  8. Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes.

    PubMed Central

    Petsev, D N; Thomas, B R; Yau, S; Vekilov, P G

    2000-01-01

    We have studied the structure of the protein species and the protein-protein interactions in solutions containing two apoferritin molecular forms, monomers and dimers, in the presence of Na(+) and Cd(2+) ions. We used chromatographic, and static and dynamic light scattering techniques, and atomic force microscopy (AFM). Size-exclusion chromatography was used to isolate these two protein fractions. The sizes and shapes of the monomers and dimers were determined by dynamic light scattering and AFM. Although the monomer is an apparent sphere with a diameter corresponding to previous x-ray crystallography determinations, the dimer shape corresponds to two, bound monomer spheres. Static light scattering was applied to characterize the interactions between solute molecules of monomers and dimers in terms of the second osmotic virial coefficients. The results for the monomers indicate that Na(+) ions cause strong intermolecular repulsion even at concentrations higher than 0.15 M, contrary to the predictions of the commonly applied Derjaguin-Landau-Verwey-Overbeek theory. We argue that the reason for such behavior is hydration force due to the formation of a water shell around the protein molecules with the help of the sodium ions. The addition of even small amounts of Cd(2+) changes the repulsive interactions to attractive but does not lead to oligomer formation, at least at the protein concentrations used. Thus, the two ions provide examples of strong specificity of their interactions with the protein molecules. In solutions of the apoferritin dimer, the molecules attract even in the presence of Na(+) only, indicating a change in the surface of the apoferritin molecule. In view of the strong repulsion between the monomers, this indicates that the dimers and higher oligomers form only after partial denaturation of some of the apoferritin monomers. These observations suggest that aggregation and self-assembly of protein molecules or molecular subunits may be driven by

  9. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  10. Coherent interaction of single molecules and plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  11. The Role of TNF Family Molecules Light in Cellular Interaction Between Airway Smooth Muscle Cells and T Cells During Chronic Allergic Inflammation.

    PubMed

    Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin

    2018-06-01

    Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.

  12. Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Polubotko, A. M.; Chelibanov, V. P.

    2018-01-01

    The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.

  13. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  14. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  15. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  16. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  17. Nanophotonic detection of freely interacting molecules on a single influenza virus

    NASA Astrophysics Data System (ADS)

    Kang, Pilgyu; Schein, Perry; Serey, Xavier; O'Dell, Dakota; Erickson, David

    2015-07-01

    Biomolecular interactions, such as antibody-antigen binding, are fundamental to many biological processes. At present, most techniques for analyzing these interactions require immobilizing one or both of the interacting molecules on an assay plate or a sensor surface. This is convenient experimentally but can constrain the natural binding affinity and capacity of the molecules, resulting in data that can deviate from the natural free-solution behavior. Here we demonstrate a label-free method for analyzing free-solution interactions between a single influenza virus and specific antibodies at the single particle level using near-field optical trapping and light-scattering techniques. We determine the number of specific antibodies binding to an optically trapped influenza virus by analyzing the change of the Brownian fluctuations of the virus. We develop an analytical model that determines the increased size of the virus resulting from antibodies binding to the virus membrane with uncertainty of ±1-2 nm. We present stoichiometric results of 26 ± 4 (6.8 ± 1.1 attogram) anti-influenza antibodies binding to an H1N1 influenza virus. Our technique can be applied to a wide range of molecular interactions because the nanophotonic tweezer can handle molecules from tens to thousands of nanometers in diameter.

  18. Rotationally adiabatic pair interactions of para- and ortho-hydrogen with the halogen molecules F2, Cl2, and Br2.

    PubMed

    Berg, Matthias; Accardi, Antonio; Paulus, Beate; Schmidt, Burkhard

    2014-08-21

    The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.

  19. Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis

    PubMed Central

    Anand, Sudarshan; Wang, Pu; Yoshimura, Kiyoshi; Choi, In-Hak; Hilliard, Anja; Chen, Youhai H.; Wang, Chyung-Ru; Schulick, Richard; Flies, Andrew S.; Flies, Dallas B.; Zhu, Gefeng; Xu, Yanhui; Pardoll, Drew M.; Chen, Lieping; Tamada, Koji

    2006-01-01

    LIGHT is an important costimulatory molecule for T cell immunity. Recent studies have further implicated its role in innate immunity and inflammatory diseases, but its cellular and molecular mechanisms remain elusive. We report here that LIGHT is upregulated and functions as a proinflammatory cytokine in 2 independent experimental hepatitis models, induced by concanavalin A and Listeria monocytogenes. Molecular mutagenesis studies suggest that soluble LIGHT protein produced by cleavage from the cell membrane plays an important role in this effect through the interaction with the lymphotoxin-β receptor (LTβR) but not herpes virus entry mediator. NK1.1+ T cells contribute to the production, but not the cleavage or effector functions, of soluble LIGHT. Importantly, treatment with a mAb that specifically interferes with the LIGHT-LTβR interaction protects mice from lethal hepatitis. Our studies thus identify a what we believe to be a novel function of soluble LIGHT in vivo and offer a potential target for therapeutic interventions in hepatic inflammatory diseases. PMID:16557300

  20. Quasiparticle Approach to Molecules Interacting with Quantum Solvents.

    PubMed

    Lemeshko, Mikhail

    2017-03-03

    Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

  1. Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I

    2016-06-30

    The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Polymer and small molecule based hybrid light source

    DOEpatents

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  3. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  4. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  5. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  6. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    PubMed

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  7. DNA-psoralen interaction: a single molecule experiment.

    PubMed

    Rocha, M S; Viana, N B; Mesquita, O N

    2004-11-15

    By attaching one end of a single lambda-DNA molecule to a microscope coverslip and the other end to a polystyrene microsphere trapped by an optical tweezers, we can study the entropic elasticity of the lambda-DNA by measuring force versus extension as we stretch the molecule. This powerful method permits single molecule studies. We are particularly interested in the effects of the photosensitive drug psoralen on the elasticity of the DNA molecule. We have illuminated the sample with different light sources, studying how the different wavelengths affect the psoralen-DNA linkage. To do this, we measure the persistence length of individual DNA-psoralen complexes.

  8. Local correction of quadrupole errors at LHC interaction regions using action and phase jump analysis on turn-by-turn beam position data

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando; García Bonilla, Alba Carolina; Tomás García, Rogelio

    2017-11-01

    This article shows that the effect of all quadrupole errors present in an interaction region with low β * can be modeled by an equivalent magnetic kick, which can be estimated from action and phase jumps found on beam position data. This equivalent kick is used to find the strengths that certain normal and skew quadrupoles located on the IR must have to make an effective correction in that region. Additionally, averaging techniques to reduce noise on beam position data, which allows precise estimates of equivalent kicks, are presented and mathematically justified. The complete procedure is tested with simulated data obtained from madx and 2015-LHC experimental data. The analyses performed in the experimental data indicate that the strengths of the IR skew quadrupole correctors and normal quadrupole correctors can be estimated within a 10% uncertainty. Finally, the effect of IR corrections in the β* is studied, and a correction scheme that returns this parameter to its designed value is proposed.

  9. The quadrupole model for rigid-body gravity simulations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2013-07-01

    We introduce two new models for gravitational simulations of systems of non-spherical bodies, such as comets and asteroids. In both models, one body (the "primary") may be represented by any convenient means, to arbitrary accuracy. In our first model, all of the other bodies are represented by small gravitational "molecules" consisting of a few point masses, rigidly linked together. In our second model, all of the other bodies are treated as point quadrupoles, with gravitational potentials including spherical harmonic terms up to the third degree (rather than only the first degree, as for ideal spheres or point masses). This quadrupole formulation may be regarded as a generalization of MacCullagh's approximation. Both models permit the efficient calculation of the interaction energy, the force, and the torque acting on a small body in an arbitrary external gravitational potential. We test both models for the cases of a triaxial ellipsoid, a rectangular parallelepiped, and "duplex" combinations of two spheres, all in a point-mass potential. These examples were chosen in order to compare the accuracy of our technique with known analytical results, but the ellipsoid and duplex are also useful models for comets and asteroids. We find that both approaches show significant promise for more efficient gravitational simulations of binary asteroids, for example. An appendix also describes the duplex model in detail.

  10. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    PubMed Central

    Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610

  11. Infinite lattices of vortex molecules in Rabi-coupled condensates

    NASA Astrophysics Data System (ADS)

    Mencia Uranga, B.; Lamacraft, Austen

    2018-04-01

    Vortex molecules can form in a two-component superfluid when a Rabi field drives transitions between the two components. We study the ground state of an infinite system of vortex molecules in two dimensions, using a numerical scheme which makes no use of the lowest Landau level approximation. We find the ground state lattice geometry for different values of intercomponent interactions and strength of the Rabi field. In the limit of large field when molecules are tightly bound, we develop a complementary analytical description. The energy governing the alignment of molecules on a triangular lattice is found to correspond to that of an infinite system of two-dimensional quadrupoles, which may be written in terms of an elliptic function Q (zi j;ω1,ω2) . This allows for a numerical evaluation of the energy which enables us to find the ground state configuration of the molecules.

  12. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  13. Giant light-harvesting nanoantenna for single-molecule detection in ambient light

    PubMed Central

    Trofymchuk, Kateryna; Reisch, Andreas; Didier, Pascal; Fras, François; Gilliot, Pierre; Mely, Yves; Klymchenko, Andrey S.

    2017-01-01

    Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight. PMID:28983324

  14. Single Molecule Study of Metalloregulatory Protein-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Sarkar, Susanta; Benitez, Jaime; Huang, Zhengxi; Wang, Qi; Chen, Peng

    2007-03-01

    Control of metal concentrations is essential for living body. Metalloregulatory proteins respond to metal concentrations by regulating transcriptions of metal resistance genes via protein-DNA interactions. It is thus necessary to understand interactions of metalloregulatory proteins with DNA. Ensemble measurements provide average behavior of a vast number of biomolecules. In contrast, single molecule spectroscopy can track single molecules individually and elucidate dynamics of processes of short time scales and intermediate structures not revealed by ensemble measurements. Here we present single molecule study of interactions between PbrR691, a MerR-family metalloregulatory protein and DNA. We presume that the dynamics of protein/DNA conformational changes and interactions are important for the transcription regulation and kinetics of these dynamic processes can provide useful information about the mechanisms of these metalloregulatory proteins.

  15. Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.

    PubMed

    Paliwal, A; Asthagiri, D; Abras, D; Lenhoff, A M; Paulaitis, M E

    2005-09-01

    We model the hydration contribution to short-range electrostatic/dispersion protein interactions embodied in the osmotic second virial coefficient, B(2), by adopting a quasi-chemical description in which water molecules associated with the protein are identified through explicit molecular dynamics simulations. These water molecules reduce the surface complementarity of highly favorable short-range interactions, and therefore can play an important role in mediating protein-protein interactions. Here we examine this quasi-chemical view of hydration by predicting the interaction part of B(2) and comparing our results with those derived from light-scattering measurements of B(2) for staphylococcal nuclease, lysozyme, and chymotrypsinogen at 25 degrees C as a function of solution pH and ionic strength. We find that short-range protein interactions are influenced by water molecules strongly associated with a relatively small fraction of the protein surface. However, the effect of these strongly associated water molecules on the surface complementarity of short-range protein interactions is significant, and must be taken into account for an accurate description of B(2). We also observe remarkably similar hydration behavior for these proteins despite substantial differences in their three-dimensional structures and spatial charge distributions, suggesting a general characterization of protein hydration.

  16. The quadrupole moments of Cd and Zn isotopes - an apology

    NASA Astrophysics Data System (ADS)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  17. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    NASA Astrophysics Data System (ADS)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Rajbhandari, S.; Chun, H.; Orofino, C.; Cortizo-Lacalle, D.; Kanibolotsky, A. L.; Faulkner, G.; Findlay, N. J.; O'Brien, D. C.; Skabara, P. J.; Samuel, I. D. W.; Turnbull, G. A.

    2016-07-01

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ˜15 cm.

  18. Single Molecule Approaches in RNA-Protein Interactions.

    PubMed

    Serebrov, Victor; Moore, Melissa J

    RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques.

  19. Visualizing Chemical Interaction Dynamics of Confined DNA Molecules

    NASA Astrophysics Data System (ADS)

    Henkin, Gilead; Berard, Daniel; Stabile, Frank; Leslie, Sabrina

    We present a novel nanofluidic approach to controllably introducing reagent molecules to interact with confined biopolymers and visualizing the reaction dynamics in real time. By dynamically deforming a flow cell using CLiC (Convex Lens-induced Confinement) microscopy, we are able to tune reaction chamber dimensions from micrometer to nanometer scales. We apply this gentle deformation to load and extend DNA polymers within embedded nanotopographies and visualize their interactions with other molecules in solution. Quantifying the change in configuration of polymers within embedded nanotopographies in response to binding/unbinding of reagent molecules provides new insights into their consequent change in physical properties. CLiC technology enables an ultra sensitive, massively parallel biochemical analysis platform which can acces a broader range of interaction parameters than existing devices.

  20. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370more » Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ∼15 cm.« less

  1. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    PubMed

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  2. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  3. A versatile tunable microcavity for investigation of light-matter interaction

    NASA Astrophysics Data System (ADS)

    Mochalov, Konstantin E.; Vaskan, Ivan S.; Dovzhenko, Dmitriy S.; Rakovich, Yury P.; Nabiev, Igor

    2018-05-01

    Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 μm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.

  4. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    PubMed

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  5. {open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, S.F.; Petschek, R.G.; Singer, K.D.

    1997-10-01

    We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light formore » which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.« less

  6. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. Thesemore » intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.« less

  7. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  8. Incoherent light-induced self-organization of molecules.

    PubMed

    Kandjani, S Ahmadi; Barille, R; Dabos-Seignon, S; Nunzi, J M; Ortyl, E; Kucharski, S

    2005-12-01

    Although coherent light is usually required for the self-organization of regular spatial patterns from optical beams, we show that peculiar light-matter interaction can break this evidence. In the traditional method of recording laser-induced periodic surface structures, a light intensity distribution is produced at the surface of a polymer film by an interference between two coherent optical beams. We report on the self-organization followed by propagation of a surface relief pattern. It is induced in a polymer film by using a low-power and small-size coherent beam assisted by a high-power and large-size incoherent and unpolarized beam. We demonstrate that we can obtain large size and well-organized patterns starting from a dissipative interaction. Our experiments open new directions to improving optical processing systems.

  9. Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research

    Cancer.gov

    Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood vessels). They also interact with the extracellular matrix (ECM), a network of sugars and proteins that supports cells. Communication between neighboring cells and molecules often occurs through interaction among and between molecules on the cell surface and molecules of the ECM. Defining these interactions should facilitate the development of novel approaches to limit tumor progression.

  10. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  11. Imaging prototypical aromatic molecules on insulating surfaces: a review

    NASA Astrophysics Data System (ADS)

    Hoffmann-Vogel, R.

    2018-01-01

    Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule–molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, C60 and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. C60 nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of C60 islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules ‘climb’ to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.

  12. Chiral Sensitivity in Electron-Molecule Interactions

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2015-09-01

    All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.

  13. Light and noise pollution interact to disrupt interspecific interactions.

    PubMed

    McMahon, Taegan A; Rohr, Jason R; Bernal, Ximena E

    2017-05-01

    Studies on the consequences of urbanization often examine the effects of light, noise, and heat pollution independently on isolated species providing a limited understanding of how these combined stressors affect species interactions. Here, we investigate how these factors interact to affect parasitic frog-biting midges (Corethrella spp.) and their túngara frog (Engystomops pustulosus) hosts. A survey of túngara frog calling sites revealed that frog abundance was not significantly correlated with urbanization, light, noise, or temperature. In contrast, frog-biting midges were sensitive to light pollution and noise pollution. Increased light intensity significantly reduced midge abundance at low noise levels. At high noise intensity, there were no midges regardless of light level. Two field experiments controlling light and noise levels to examine attraction of the midges to their host and their feeding behavior confirmed the causality of these field patterns. These findings demonstrate that both light and noise pollution disrupt this host-parasite interaction and highlight the importance of considering interactions among species and types of pollutants to accurately assess the impacts of urbanization on ecological communities. © 2017 by the Ecological Society of America.

  14. Light controllable catalytic activity of Au clusters decorated with photochromic molecules.

    PubMed

    Guo, Na; Yam, Kah Meng; Zhang, Chun

    2018-06-15

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au 8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au 8 ) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au 8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  15. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  16. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules

    NASA Astrophysics Data System (ADS)

    Nishikitani, Y.; Takeuchi, H.; Nishide, H.; Uchida, S.; Yazaki, S.; Nishimura, S.

    2015-12-01

    The authors present white polymer light-emitting electrochemical cells (PLECs) fabricated with polymer blend films of poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. The PLECs have bulk heterojunction structures composed of van der Waals interfaces between the PFD segments and the amine molecules. White-light electroluminescence (EL) can be achieved via light-mixing of the blue exciton emission from PFD and long-wavelength exciplex emission from excited complexes consisting of PFD segments (acceptors (As)) and the amine molecules (donors (Ds)). Precise control of the distances between the PFD and the amine molecules, affected through proper choice of the concentrations of PFD, amine molecules, and polymeric solid electrolytes, is critical to realizing white emission. White PLECs can be fabricated with PFD and amine molecules whose highest occupied molecular orbital (HOMO) levels range from -5.3 eV to -5.0 eV. Meanwhile, PLECs fabricated with amine molecules whose HOMO levels are lower than -5.6 eV cannot produce exciplex emission. The distances between the PFD and amine molecules of the exciplexes appear to be larger than 0.4 nm. These experimental data are explained by perturbation theory using the charge-transfer state ( A - D + ), the locally excited state ( A * D ), which is assumed to be the locally excited acceptor state in which there is no interaction with the donor molecule; and the energy gap between the HOMO levels of the PFD and the amine molecules. Color-stable white PLECs were fabricated using 4,4',4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine, which has a HOMO level of -5.2 eV, as the amine molecule, and the color stability of the device is a function of the fact that PFD forms exciplexes with these molecules.

  17. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  18. Ion-mobility study of two functionalized pentacene structural isomers using a modified electrospray/triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.

    2007-03-01

    We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.

  19. From dipolar to multipolar interactions between ultracold Feshbach molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Lepers, Maxence; Luc-Koenig, Eliane; Dulieu, Olivier

    2016-05-01

    Using the multipolar expansion of electrostatic and magnetostatic potential energies, we characterize the long-range interactions between two weakly-bound diatomic molecules, taking as an example the paramagnetic Er2 Feshbach molecules which were produced recently. The interaction between atomic magnetic dipoles gives rise to the usual R-3 leading term of the multipolar expansion, where R is the intermolecular distance. We show that additional terms scaling as R-5, R-7 and so on also appear, which are strongly anisotropic with respect to the orientation of the molecules. These terms can be seen as effective molecular multipole moments reflecting the spatial extension of the molecules which is non-negligible compared to R. We acknowledge the financial support of the COPOMOL project (ANR-13-IS04-0004) from Agence Nationale de la Recherche.

  20. Apparatus using the FARADAY effect to locate the magnetic axis of quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Le Bars, Josette

    1994-07-01

    A development using magneto-optic sensors is underway for the location of the magnetic center of long, small aperture, superconducting quadrupole magnets. The paper will describe the measuring methods and the preliminary results which have been obtained with gradients from 2.5 T/m to 10 T/m. The sensors are made of magneto-optic garnets using the Faraday effect which changes an incident beam of linearly polarized light into a transmitted beam of elliptically polarized light. An optical fiber bundle (phi less than 20 micron) carries the incident light to a polarized film, put above the magneto optic sensor. An analyzer film collects the transmitted light. A second optic fiber bundle carries this light toward a visual (microscope, video camera) or analogic data acquisition system. Furthermore, a level is associated with these crystals to determine the gravity direction. The 'mole' is moving along the axis of a warm bore tube when the magnet is superconducting. The present results are promising for measuring quadrupoles of much higher gradients, up to 100 T/m.

  1. Manipulating molecule-substrate exchange interactions via graphene

    NASA Astrophysics Data System (ADS)

    Bhandary, Sumanta; Eriksson, Olle; Sanyal, Biplab

    2013-03-01

    Organometallic molecules with a 3d metal center carrying a spin offers many interesting properties, e.g., existence of multiple spin states. A recent interest has been in understanding the magnetic exchange interaction between these organometallic molecules and magnetic substrates both from experiments and theory. In this work, we will show by calculations based on density functional theory how the exchange interaction is mediated via graphene in a geometry containing iron porphyrin(FeP)/graphene/Ni(111). The exchange interaction varies from a ferromagnetic to an antiferromagnetic one depending on the lattice site and type of defect in the graphene lattice along with the switching of spin state of Fe in FeP between S=1 and S=2, which should be detectable by x-ray magnetic circular dichroism experiments. This scenario of complex magnetic couplings with large magnetic moments may offer a unique spintronic logic device. We acknowledge financial support from the Swedish Research Council, KAW foundation and the ERC(project 247062 - ASD).

  2. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  3. Controlling single-molecule junction conductance by molecular interactions

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-07-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment.

  4. Spin dynamics in helical molecules with nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Albares, P.; Estévez, P. G.; Cerveró, J. M.; Gaul, C.; Diez, E.; Domínguez-Adame, F.

    2018-04-01

    It is widely admitted that the helical conformation of certain chiral molecules may induce a sizable spin selectivity observed in experiments. Spin selectivity arises as a result of the interplay between a helicity-induced spin–orbit coupling (SOC) and electric dipole fields in the molecule. From the theoretical point of view, different phenomena might affect the spin dynamics in helical molecules, such as quantum dephasing, dissipation and the role of metallic contacts. With a few exceptions, previous studies usually neglect the local deformation of the molecule about the carrier, but this assumption seems unrealistic to describe charge transport in molecular systems. We introduce an effective model describing the electron spin dynamics in a deformable helical molecule with weak SOC. We find that the electron–lattice interaction allows the formation of stable solitons such as bright solitons with well defined spin projection onto the molecule axis. We present a thorough study of these bright solitons and analyze their possible impact on the spin dynamics in deformable helical molecules.

  5. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  6. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    PubMed

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs

  7. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  8. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  10. MONA – Interactive manipulation of molecule collections

    PubMed Central

    2013-01-01

    Working with small‐molecule datasets is a routine task for cheminformaticians and chemists. The analysis and comparison of vendor catalogues and the compilation of promising candidates as starting points for screening campaigns are but a few very common applications. The workflows applied for this purpose usually consist of multiple basic cheminformatics tasks such as checking for duplicates or filtering by physico‐chemical properties. Pipelining tools allow to create and change such workflows without much effort, but usually do not support interventions once the pipeline has been started. In many contexts, however, the best suited workflow is not known in advance, thus making it necessary to take the results of the previous steps into consideration before proceeding. To support intuition‐driven processing of compound collections, we developed MONA, an interactive tool that has been designed to prepare and visualize large small‐molecule datasets. Using an SQL database common cheminformatics tasks such as analysis and filtering can be performed interactively with various methods for visual support. Great care was taken in creating a simple, intuitive user interface which can be instantly used without any setup steps. MONA combines the interactivity of molecule database systems with the simplicity of pipelining tools, thus enabling the case‐to‐case application of chemistry expert knowledge. The current version is available free of charge for academic use and can be downloaded at http://www.zbh.uni‐hamburg.de/mona. PMID:23985157

  11. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.

    PubMed

    Berger, Robert

    2008-10-21

    The importance of the Breit interaction for an accurate prediction of parity violating energy differences between enantiomers is studied within electroweak quantum chemical frameworks. Besides two-electron orbit-orbit and spin-spin coupling contributions, the Breit interaction gives rise to the spin-other-orbit coupling term of the Breit-Pauli Hamiltonian. The present numerical study demonstrates that neglect of this latter term leads in hydrogen peroxide (H(2)O(2)) to relative deviations in the parity violating potential (V(pv)) by about 10%, whereas further relativistic corrections accounted for within a four-component Dirac-Hartree-Fock-Coulomb (DHFC) framework remain smaller, below 5%. Thus, the main source of discrepancy between previous one-component based (coupled perturbed) Hartree-Fock (HF) and four-component Dirac-Hartree-Fock results for parity violating potentials in H(2)O(2) is the neglect of the Breit contribution in DHFC. In heavier homologs of hydrogen peroxide the relative contribution of the spin-other-orbit coupling term to V(pv) decreases with increasing nuclear charge, whereas other relativistic effects become increasingly important. As shown for the H(2)X(2) (X = O,S,Se,Te,Po) series of molecules and for CHBrClF, to a good approximation these other relativistic influences on V(pv) can be accounted for in one-component based HF calculations with the help of relativistic enhancement factors proposed earlier in the theory of atomic parity violation.

  12. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  13. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    NASA Astrophysics Data System (ADS)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  14. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  15. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  16. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  17. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  18. Biosensing via light scattering from plasmonic core-shell nanospheres coated with DNA molecules

    NASA Astrophysics Data System (ADS)

    Xie, Huai-Yi; Chen, Minfeng; Chang, Yia-Chung; Moirangthem, Rakesh Singh

    2017-05-01

    We present both experimental and theoretical studies for investigating DNA molecules attached on metallic nanospheres. We have developed an efficient and accurate numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the Green's function approach with suitable spherical harmonic basis. Next, we use this method to study optical scattering from DNA molecules attached to metallic nanoparticles placed on a substrate and compare with experimental results. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on Au nanoparticles. Our theoretical simulation indicates that the coverage of Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material (which may absorb light), can lead to a small but detectable spectroscopic shift in both the Ψ and Δ spectra with more significant change in Δ spectra in agreement with experimental results. Our studies demonstrated the ultrasensitive capability of SE for sensing submonolayer coverage of DNA molecules on Au nanospheres. Hence the spectroscopic ellipsometric measurements coupled with theoretical analysis via an efficient computation method can be an effective tool for detecting DNA molecules attached on Au nanoparticles, thus achieving label-free, non-destructive, and high-sensitivity biosensing with nanoscale resolution.

  19. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sculpting with light: Light/matter interactions in biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.

    When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.

  1. Interacting dark resonances with plasmonic meta-molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Mrejen, Michael; Kim, Jeongmin

    2014-09-15

    Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecularmore » excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance, efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.« less

  2. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  3. Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA

    PubMed Central

    Nevzorova, Tatiana A.; Zhao, Qingze; Lomakin, Yakov A.; Ponomareva, Anastasia A.; Mukhitov, Alexander R.; Purohit, Prashant K.; Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20–40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10−3 s−1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s−1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies. PMID:29104846

  4. Comprehensive mass spectrometric analysis of novel organic semiconductor molecules

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana

    This work presents a comprehensive mass spectrometry (MS) study of novel organic semiconductor molecules including ion mobility/reactivity measurements and trace elemental analysis. The organic molecules investigated here are important semiconductor materials for molecular electronic devices such as Organic Field-Effect Transistors (OFETs) and Light Emitted Diodes (LED). A high-performance orthogonal time-of flight mass spectrometer (TOF-MS) in combination with a matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure was used to perform MALDI/TOF analyses of pentacene and some of its derivatives with and without an added matrix. The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI/TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene. Furthermore, we reported ion mobility measurements of functionalized pentacene ions with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions for a prolong period of time. These capabilities were successfully employed in the measurement of ion mobilities in different modes of the IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully

  5. Light weakly interacting massive particles

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  6. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    NASA Astrophysics Data System (ADS)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  7. A molecule with small rotational constants containing an atom with a large nuclear quadrupole moment: The microwave spectrum of trans-1-iodoperfluoropropane

    NASA Astrophysics Data System (ADS)

    Dewberry, C. T.; Grubbs, G. S.; Cooke, S. A.

    2009-09-01

    Using pulsed jet chirped-pulse, and cavity-based Fourier transform microwave spectroscopies over 900 transitions have been recorded for the title molecule in the 1-4 GHz and 8-18 GHz regions. The C,C and C carbon-13 species have been observed in natural abundance allowing a substitution structure for the CCC backbone to be determined. Nearly all the transitions observed were either a-type R branches or b-type Q branches. No c-type transitions were observed consistent with only the trans conformer being present under our experimental conditions. The χaa,χbb,χcc and χab components of the iodine nuclear quadrupole coupling tensor have been determined. Of note, several forbidden, ΔJ±2 transitions, and one ΔJ±3 transition were observed with quite reasonable intensity. These observations have been rationalized through considerations of near degeneracies between energy levels connected via a large χab value (≈1 GHz).

  8. Interaction between two stopped light pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses bymore » an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.« less

  9. Simple Model for the Benzene Hexafluorobenzene Interaction

    DOE PAGES

    Tillack, Andreas F.; Robinson, Bruce H.

    2017-06-05

    While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less

  10. Simple Model for the Benzene Hexafluorobenzene Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillack, Andreas F.; Robinson, Bruce H.

    While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less

  11. Interactions of molecules and the properties of crystals

    NASA Astrophysics Data System (ADS)

    McConnell, Thomas Daniel Leigh

    In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used

  12. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  13. Correlation of Intermolecular Acyl Transfer Reactivity with Noncovalent Lattice Interactions in Molecular Crystals: Toward Prediction of Reactivity of Organic Molecules in the Solid State.

    PubMed

    Krishnaswamy, Shobhana; Shashidhar, Mysore S

    2018-04-06

    Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.

  14. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  15. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  16. Interaction between glycosaminoglycans and immunoglobulin light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X.; Myatt, E.; Lykos, P.

    1997-01-01

    Amyloidosis is a pathological process in which normally soluble proteins polymerize to form insoluble fibrils (amyloid). Amyloid formation is found in a number of diseases, including Alzheimer's disease, adult-onset diabetes, and light-chain-associated amyloidosis. No pharmaceutical methods currently exist to prevent this process or to remove the fibrils from tissue. The search for treatment and prevention methods is hampered by a limited understanding of the biophysical basis of amyloid formation. Glycosaminoglycans (GAGs) are long, unbranched heteropolysaccharides composed of repeating disaccharide subunits and are known to associate with amyloid fibrils. The interaction of amyloid-associated free light chains with GAGs was tested bymore » both size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments. The results indicated that heparin 16 000 and chondroitin sulfate B and C precipitated both human intact light chains and recombinant light chain variable domains. Although all light chains interacted with heparin, the strongest interactions were obtained with proteins that had formed amyloid. Molecular modeling indicated the possibility of interaction between heparin and the conserved saddle like surface of the light chain dimer opposite the complementarity-determining segments that form part of the antigen-binding site of a functional antibody. This suggestion might offer a new path to block the aggregation of amyloid-associated light chain proteins, by design of antagonists based on properties of GAG binding. A hexasaccharide was modeled as the basis for a possible antagonist.« less

  17. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  18. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  19. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2017-12-09

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  20. Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry.

    PubMed

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2018-01-01

    In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO 2 -FAs). It has recently been shown that these molecules are involved in key signaling pathways in animal systems through the implementation of antioxidant and anti-inflammatory responses. Nevertheless, this interaction has been poorly studied in plant systems. Very recently, the endogenous presence of NO 2 -FAs in the model plant Arabidopsis thaliana has been demonstrated as well as the significant involvement of nitro-linolenic acid (NO 2 -Ln) in the defence response against several abiotic and oxidative stress conditions. In this respect, the detection of NO 2 -FAs in plant systems can be a useful tool to determine the importance of these molecules in the regulation of different biochemical pathways. Using high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), the methods described in this chapter enable the determination of the NO 2 -FA content in a pM range as well as the characterization of these nitrated derivatives of unsaturated fatty acids in plant tissues.

  1. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  2. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  3. Simulating electric field interactions with polar molecules using spectroscopic databases

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Zak, Emil J.; Chubb, Katy L.; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2017-03-01

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH3 and NH3, and spontaneous emission data for optoelectrical Sisyphus cooling of H2CO and CH3Cl are discussed.

  4. A note on the electric quadrupole and higher electric moments of ozone (O3)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2012-02-01

    We have obtained accurate ab initio and density functional theory values for the quadrupole, octopole and hexadecapole electric moments of the cyclic and open forms of ozone. Our best values have been calculated at the coupled cluster level of theory with molecule-specific basis sets. For the quadrupole moment (Θαβ/ea02) they are Θyy = -1.366 (cyclic), Θxx = -1.202, Θyy = 1.426 and Θxx = -0.223 (open). For the octopole (Ωαβγ/ea03) and hexadecapole (Φαβγδ/ea04) moments our best results are Ωzzz = 2.25, Φyyyy = 19.53 (cyclic), Ωxxz = 3.28, Ωzzz = -2.97, Φxxxx = -6.00, Φyyyy = -3.90 and Φzzzz = -3.54 (open).

  5. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  6. Inter-subunit electrostatic interactions in ferritin molecule: comparison with inter-molecular interactions in crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Hogyoku, Michiru; Nagayama, Kuniaki

    1996-10-01

    We evaluated the contribution of electrostatic interactions to the stability of macromolecular assembly in a horse L ferritin molecule composed of 24 subunits and the three-dimensional crystal of the ferritin molecules with numerical calculation of Poisson-Boltzmann equation based on dielectric model. The calculation showed that the electrostatic energy both favors the assembly of the 24 subunits and the crystalline assembly of the ferritin molecules (i.e., 24-mers). Short-range interactions less than 5 Å such as salt bridges and hydrogen bonds were important for both the subunit assembly and the crystalline assembly. To elucidate the strong stabilization by electrostatic interactions in both the ferritin 24-mer and its crystal, we analyzed the contribution of individual atoms. It revealed that the stabilization was arising from buried salt bridges or hydrogen bonds, which yielded more than 5 kcal/mol in some interactions. These large electrostatic stabilization and also the unexpected small ionic strength dependence was different from those of bovine pancreatic trypsin inhibitor (BPTI) orthorhombic and pig-insulin cubic crystals previously calculated. We also evaluated changes of the accessible surface area (ASA) and hydration free energy in accordance with the process of the subunit assembly. The change of hydration free energy, which was very large (i.e. ˜ + 100 kcal/mol/subunit) and unfavorable for the assembly, was proportional to the electrostatic hydration energy (i.e. Born energy change in hydration process). Hydrophobic groups were likely to appear more frequently than hydrophilic groups at the subunit interfaces. These results suggest that the molecular structure of the ferritin 24-mer and the crystal structure of the 24-mers were both stabilized by local electrostatic interactions, in particular. We view protein crystals as an extension of the protein oligomer to an infinite number of subunits association.

  7. Studies of Interactions Between Nano-Objects and Polarized Light

    NASA Astrophysics Data System (ADS)

    Xie, Dan

    Optical studies of nano-objects that have dimensions 10--1000 nm have become a flourishing field of research. This special dimension category, connecting the smaller (molecular) world and the larger (cellular) world, have enabled these nano-objects to be widely utilized as novel optical tools in many fields. In addition to the extensive applications of nano objects, increasing efforts are also being put to better understand their interactions with light at a fundamental level. The work presented in this dissertation is part of such efforts, in which I selected three types of nano-objects and studied their optical properties both in theory and experiment. Second-harmonic and sum-frequency generations are among the most well-known nonlinear optical processes. Dielectric nanocrystals that are SHG- and SFG-active are favored tools in bioimaging. For a nanocrystal, its SHG/SFG intensity depends on the geometry of the light-particle system, i.e., the relationship between the nanocrystal orientation and the laser polarization. Using BaTiO 3 nanocrystals as an example, I carried out an in-depth, theoretical investigation of such dependence. Particularly, I studied the possibility of selectively maximizing the contrast between light signals from two or more nanocrystals by manipulating laser polarization. I will present a discussion on how the capacity of this selective illumination depends on the relative orientation between the two nanocrystals and the polarization of the excitation field. The optical responses of non-spherical plasmonic particles, being dynamic and complex, are only partially understood. Gold nanorods (AuNRs) are one of the most popular members in this nanoparticle family. They can produce two-photon luminescence (TPL) and amplify molecular events occurring at their surface. Both phenomena are known to be associated with surface plasmon resonances (SPR) of AuNRs, but details of the mechanisms are yet to be understood and quantified. I constructed a two

  8. Single-molecule fluorescence microscopy review: shedding new light on old problems

    PubMed Central

    Shashkova, Sviatlana

    2017-01-01

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303

  9. Interactions between nitrogen and oxygen molecules studied by gas-phase NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Misiak, Maria; Jackowski, Karol

    2018-05-01

    Gas-phase 14N and 15N NMR studies of nitrogen and synthetic air pressurized up to 300 bar were performed. It was found that the magnetic shielding of an isolated N2 molecule, σ0(N) = -63.4(2) ppm, is in good agreement with the results of ab initio calculations. The binary N2-O2 interactions contribute to shielding an order of the magnitude larger than the N2-N2 pairs. For nitrogen the three body collisions become observable by NMR for pressure higher than 200 bar and the appropriate coefficient can be practically assigned to the interaction between one molecule of N2 and a pair of O2 molecules.

  10. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  11. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  12. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  13. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.

    PubMed

    Sail, Vibhavari; Rizzo, Alessandro A; Chatterjee, Nimrat; Dash, Radha C; Ozen, Zuleyha; Walker, Graham C; Korzhnev, Dmitry M; Hadden, M Kyle

    2017-07-21

    Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.

  14. Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques

    DTIC Science & Technology

    2017-06-26

    SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and

  15. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  16. Molecular dynamics approach to probe PKCβII-ligand interactions and influence of crystal water molecules on these interactions.

    PubMed

    Grewal, Baljinder K; Bhat, Jyotsna; Sobhia, Masilamani Elizabeth

    2015-01-01

    PKCβII is a potential target for therapeutic intervention against pandemic diabetic complications. Present study probes the molecular interactions of PKCβII with its clinically important ligands, viz. ruboxistaurin, enzastaurin and co-crystallized ligand, 2-methyl-1H-indol-3-yl-BIM-1. The essentials of PKCβII-ligand interaction, crystal water-induced alterations in these interactions and key interacting flexible residues are analyzed. Computational methodologies, viz. molecular docking and molecular simulation coupled with molecular mechanics-Poisson-Boltzmann surface area and generalized born surface area (MM-PB[GB]SA) are employed. The structural changes in the presence and absence of crystal water molecules in PKCβII ATP binding site residues, and its interaction with bound ligand, are identified. Difference in interaction of selective and nonselective ligand with ATP binding site residues of PKCβII is reported. The study showed that the nonbonding interactions contribute significantly in PKCβII-ligand binding and presence of crystal water molecules affects the interactions. The findings of present work may integrate the new aspects in the drug design process of PKCβII inhibitors.

  17. Tuning the hybridization bandgap by meta-molecules with in-unit interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongqiang; Li, Yunhui, E-mail: liyunhui@tongji.edu.cn; Wu, Qian

    2015-09-07

    In this paper, we demonstrate that the hybridization bandgap (HBG) can be tuned conveniently by deep subwavelength meta-molecules with in-unit interaction. Spontaneous-emission-cancellation-like (SEC-like) effect is realized in a meta-molecule by introducing the destructive interference of two detuned meta-atoms. The meta-atoms consisting of subwavelength zero-index-metamaterial-based resonators are side-coupled to a microstrip. Compared to conventional HBG configurations, the presence of in-unit interaction between meta-atoms provides more flexibility in tuning the bandgap properties, keeping the device volume almost unchanged. Both numerical simulations and microwave experiments confirm that the width, depth, and spectrum shape of HBG can be tuned by simply introducing SEC-like interactionmore » into the meta-molecule. Due to these features, our design may be promising to be applied in microwave or optics communications systems with strict limitation of device volume and flexible bandgap properties.« less

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  19. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts

    PubMed Central

    Knowles, Robert R.; Jacobsen, Eric N.

    2010-01-01

    Catalysis by neutral, organic, small molecules capable of binding and activating substrates solely via noncovalent interactions—particularly H-bonding—has emerged as an important approach in organocatalysis. The mechanisms by which such small molecule catalysts induce high enantioselectivity may be quite different from those used by catalysts that rely on covalent interactions with substrates. Attractive noncovalent interactions are weaker, less distance dependent, less directional, and more affected by entropy than covalent interactions. However, the conformational constraint required for high stereoinduction may be achieved, in principle, if multiple noncovalent attractive interactions are operating in concert. This perspective will outline some recent efforts to elucidate the cooperative mechanisms responsible for stereoinduction in highly enantioselective reactions promoted by noncovalent catalysts. PMID:20956302

  20. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  1. A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces.

    PubMed

    Xu, David; Si, Yubing; Meroueh, Samy O

    2017-09-25

    The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.

  2. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy; Kawazoe, Yoshiyuki

    2017-11-01

    This study aims to cast light on the physico-chemical nature and energetics of interactions between the nucleobases and water/DMSO molecules which occurs through the non-conventional CH⋯O/N-H bonds using a comprehensive quantum-chemical approach. The computed interaction energies do not show any appreciable change for all the nucleobase-solvent complexes, conforming the experimental findings on the hydration enthalpies. Compared to water, DMSO form complexes with high interaction energies. The quantitative molecular electrostatic potentials display a charge transfer during the complexation. NBO analysis shows the nucleobase-DMSO complexes, have higher stabilization energy values than the nucleobase-water complexes. AIM analysis illustrates that the in the nucleobase-DMSO complexes, SO⋯H-N type interaction have strongest hydrogen bond strength with high E HB values. Furthermore, the Laplacian of electron density and total electron density were negative indicating the partial covalent nature of bonding in these systems, while the other bonds are classified as noncovalent interactions. EDA analysis indicates, the electrostatic interaction is more pronounced in the case of nucleobase-water complexes, while the dispersion contribution is more dominant in nucleobase-DMSO complexes. NCI-RDG analysis proves the existence of strong hydrogen bonding in nucleobase-DMSO complex, which supports the AIM results. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  4. High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein-Protein Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shihan; Senter, Timothy J.; Pollock, Jonathan

    2014-10-02

    The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ~288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interactionmore » with IC 50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.« less

  5. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  6. DFT study on the interaction of TiO2 (001) surface with HCHO molecules

    NASA Astrophysics Data System (ADS)

    Wu, Guofei; Zhao, Cuihua; Guo, Changqing; Chen, Jianhua; Zhang, Yibing; Li, Yuqiong

    2018-01-01

    The interactions of formaldehyde (HCHO) molecule with TiO2 (001) surface were studied using density functional theory calculations. HCHO molecules are dissociated by the cleavage of Csbnd H bonds after adsorption on TiO2 surface. The strong interactions between HCHO melecules and TiO2 surface are largely attributed to the bonding of hydrogen of HCHO and oxygen of TiO2 surface, which is mainly from the hybridization of the H 1s, O 2p and O 2s. The newly formed Hsbnd O bonds cause the structure changes of TiO2 surface, and lead to the cleavage of Osbnd Ti bond of TiO2 surface. The Csbnd O bond that the dissociated remains of HCHO and newly formed Hsbnd O bond can be oxidized to form carbon dioxide and water in subsequent action by oxygen from the atomosphere. The charges transfer from HCHO to TiO2 surface, and the sum amount of the charges transferred from four HCHO molecules to TiO2 surface is bigger than that from one HCHO molecule to TiO2 surface due to the combined interaction of four HCHO molecules with TiO2 surface.

  7. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  8. Noncovalent π⋅⋅⋅π interaction between graphene and aromatic molecule: Structure, energy, and nature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weizhou, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn; Zhang, Yu; Wang, Yi-Bo, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn

    2014-03-07

    Noncovalent π⋅⋅⋅π interactions between graphene and aromatic molecules have been studied by using density functional theory with empirical dispersion correction (ωB97X-D) combined with zeroth-order symmetry adapted perturbation theory (SAPT0). Excellent agreement of the interaction energies computed by means of ωB97X-D and spin component scaled (SCS) SAPT0 methods, respectively, shows great promise for the two methods in the study of the adsorption of aromatic molecules on graphene. The other important finding in this study is that, according to SCS-SAPT0 analyses, π⋅⋅⋅π interactions between graphene and aromatic molecules are largely dependent on both dispersion and electrostatic type interactions. It is also noticedmore » that π⋅⋅⋅π interactions become stronger and more dispersive (less electrostatic) upon substitution of the very electronegative fluorine atoms onto the aromatic molecules.« less

  9. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials

    PubMed Central

    Han, Tae-Hee; Choi, Mi-Ri; Jeon, Chan-Woo; Kim, Yun-Hi; Kwon, Soon-Ki; Lee, Tae-Woo

    2016-01-01

    Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (~97.5 cd/A, ~35.5% photons per electron), green (~101.5 cd/A, ~29.0% photons per electron), and white (~74.2 cd/A, ~28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices. PMID:27819053

  10. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  11. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  12. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  13. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  14. Detection of light-matter interaction in the weak-coupling regime by quantum light

    NASA Astrophysics Data System (ADS)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  15. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less

  16. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  17. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  18. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  19. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  20. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  1. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  2. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  3. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  4. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    PubMed

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  5. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    NASA Astrophysics Data System (ADS)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  6. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchinitser, Natalia; Feng, Liang

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less

  7. Induced CMB quadrupole from pointing offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris, E-mail: adammoss@phas.ubc.ca, E-mail: dscott@phas.ubc.ca, E-mail: krs@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between themore » pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.« less

  8. Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.

    PubMed

    Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-13

    Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.

  9. White Light Emission from Cucurbituril-Based Host-Guest Interaction in the Solid State: New Function of the Macrocyclic Host.

    PubMed

    Xia, Yu; Chen, Shiyan; Ni, Xin-Long

    2018-04-18

    Energy transfer and interchange are central for fabricating white light-emitting organic materials. However, increasing the efficiency of light energy transfer remains a considerable challenge because of the occurrence of "cross talk". In this work, by exploiting the unique photophysical properties of cucurbituril-triggered host-guest interactions, the two complementary luminescent colors blue and yellow for white light emission were independently obtained from a single fluorophore dye rather than energy transfer. Further study suggested that the rigid cavity of cucurbiturils efficiently prevented the aggregation of the dye and improved its thermal stability in the solid state by providing a regular nanosized fence for each encapsulated dye molecule. As a result, a novel macrocycle-assisted supramolecular approach for obtaining solid, white light-emitting organic materials with low cost, high efficiency, and easy scale-up was successfully demonstrated.

  10. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2015-11-01

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  11. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  12. Evaluation of interactions between RAW264.7 macrophages and small molecules by capillary electrophoresis.

    PubMed

    Wang, Feng-Qin; Li, Qiao-Qiao; Zhang, Qian; Wang, Yin-Zhen; Hu, Yuan-Jia; Li, Peng; Wan, Jian-Bo; Yang, Feng-Qing; Xia, Zhi-Ning

    2017-03-01

    In this study, the affinity interactions between RAW 264.7 macrophages and three small molecules including naringin, oleuropein and paeoniflorin were evaluated by affinity capillary electrophoresis (ACE), partial filling affinity capillary electrophoresis (PFACE) and frontal analysis capillary electrophoresis (FACE), respectively. The result indicated that ACE (varying concentrations of cell suspension were filled in the capillary as receptor) may not be suitable for the evaluation of interactions between cell and small molecules due to the high viscosity of cell suspension; PFACE can qualitatively evaluate the interaction, but the difference in viscosity between RAW264.7 suspension and buffer effects on the liner relationship between filling length and injection time, which makes the calculation of binding constant difficult. Furthermore, based on the PFACE results, naringin showed stronger interaction with macrophages than the other two molecules; taking advantage of the aggregation phenomenon of cell induced by electric field, FACE was successfully used to determine the stoichiometry (n = 5×10 9 ) and binding constant (K b = 1×10 4 L/mol) of the interaction between RAW264.7 and naringin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measurement of the electric quadrupole moments of CO2 , CO, N2 , Cl2 and BF3

    NASA Astrophysics Data System (ADS)

    Graham, C.; Imrie, D. A.; Raab, R. E.

    The electric quadrupole moments of a number of molecules have been determined from measurement of the birefringence induced in a gas by an electric field gradient. The values obtained are: carbon dioxide (- 14·27 ± 0·61)x 10-40 C m2, carbon monoxide (- 9·47 ± 0·15)x 10-40 C m2, nitrogen (- 4·65±0·08)x 10-40 C m2 and boron trifluoride (12·6±0·7)x 10-40 C m2. In the calculation of the moments for carbon monoxide and boron trifluoride the small hyperpolarizability contribution was neglected in the absence of known values. By means of the Jones calculus a detailed analysis was made of the effects of strain birefringence in the cell windows and imperfect orientation of polarizing components in the light path. This analysis led to a measurement procedure which yielded results significantly different from previously reported ones obtained with essentially the same apparatus. The probable error in the earlier procedure is identified.

  14. Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules.

    PubMed

    Haburcak, Richard; Shi, Junfeng; Du, Xuewen; Yuan, Dan; Xu, Bing

    2016-11-30

    The concurrence of enzymatic reaction and ligand-receptor interactions is common for proteins, but rare for small molecules and has yet to be explored. Here we show that ligand-receptor interaction modulates the morphology of molecular assemblies formed by enzyme-instructed assembly of small molecules. While the absence of ligand-receptor interaction allows enzymatic dephosphorylation of a precursor to generate the hydrogelator that self-assembles to form long nanofibers, the presence of the ligand-receptor interaction biases the pathway to form precipitous aggregates containing short nanofibers. While the hydrogelators self-assemble to form nanofibers or nanoribbons that are unable to bind with the ligand (i.e., vancomycin), the addition of surfactant breaks up the assemblies to restore the ligand-receptor interaction. In addition, an excess amount of the ligands can disrupt the nanofibers and result in the precipitates. As the first example of the use of ligand-receptor interaction to modulate the kinetics of enzymatic self-assembly, this work not only provides a solution to evaluate the interaction between aggregates and target molecules but also offers new insight for understanding the emergent behavior of sophisticated molecular systems having multiple and parallel processes.

  15. Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive cross-linking reagent.

    PubMed

    Collioud, A; Clémence, J F; Sänger, M; Sigrist, H

    1993-01-01

    Light-dependent oriented and covalent immobilization of target molecules has been achieved by combining two modification procedures: light-dependent coupling of target molecules to inert surfaces and thiol-selective reactions occurring at macromolecule or substrate surfaces. For immobilization purposes the heterobifunctional reagent N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl]-4-maleimidobutyr amide was synthesized and chemically characterized. The photosensitivity of the carbene-generating reagent and its reactivity toward thiols were ascertained. Light-induced cross-linking properties of the reagent were documented (i) by reacting first the maleimide function with a thiolated surface, followed by carbene insertion into applied target molecules, (ii) by photochemical coupling of the reagent to an inert support followed by thermochemical reactions with thiol functions, and (iii) by thermochemical modification of target molecules prior to carbene-mediated insertion into surface materials. Procedures mentioned led to light-dependent covalent immobilization of target molecules including amino acids, a synthetic peptide, and antibody-derived F(ab') fragments. Topically selective, light-dependent immobilization was attained with the bifunctional reagent by irradiation of coated surfaces through patterned masks. Glass and polystyrene served as substrates. Molecular orientation is asserted by inherently available or selectively introduced terminal thiol functions in F(ab') fragments and synthetic polypeptides, respectively.

  16. Observation of anisotropic interactions between metastable atoms and target molecules by two-dimensional collisional ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Ohno, Koichi

    Excited metastable atoms colliding with target molecules can sensitively probe outer properties of molecules by chemi-ionization (Penning ionization) from molecular orbitals in the outer region, since metastable atoms cannot penetrate into the repulsive interaction wall around the molecules. By means of two-dimensional measurements using kinetic energy analysis of electrons combined with a velocity-resolved metastable beam, one can obtain information on the anisotropic interaction between the colliding particles without any control of orientation or alignment of target molecules. We have developed a classical trajectory method to calculate the collision energy dependence of partial ionization cross-sections (CEDPICS) on the anisotropic interaction potential energy surface, which has enabled us to study stereodynamics between metastable atoms and target molecules as well as the spatial distribution of molecular orbitals and electron ejection functions which have a relation with entrance and exit channels of the reaction. Based on the individual CEDPICS, the electronic structure of molecules can also be elucidated.

  17. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    PubMed

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  18. A New Computational Tool for Understanding Light-Matter Interactions

    DTIC Science & Technology

    2016-02-11

    SECURITY CLASSIFICATION OF: Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by...Box 12211 Research Triangle Park, NC 27709-2211 Plasmonics , light-matter interaction, time-dependent density functional theory, modeling and...reviewed journals: Final Report: A New Computational Tool For Understanding Light-Matter Interactions Report Title Plasmonic resonance of a metallic

  19. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.

    2017-07-01

    Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  20. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    NASA Astrophysics Data System (ADS)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  1. Solar synthesis: prospects in visible light photocatalysis.

    PubMed

    Schultz, Danielle M; Yoon, Tehshik P

    2014-02-28

    Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.

  2. Solar Synthesis: Prospects in Visible Light Photocatalysis

    PubMed Central

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  3. Guest–host interactions of a rigid organic molecule in porous silica frameworks

    PubMed Central

    Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra

    2014-01-01

    Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886

  4. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.

    PubMed

    Nelson, Nathaniel; Schwartz, Daniel K

    2018-06-05

    The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm 2 /s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm 2 /s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties. Copyright

  5. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D{sub 2} and HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Tung Weicheng; Adamowicz, Ludwik

    2010-04-15

    We have carried out an accurate determination of the quadrupole moment of the deuteron nucleus. The evaluation of the constant is achieved by combining high accuracy Born-Oppenheimer calculations of the electric field gradient at the nucleus in the H{sub 2} molecule with spectroscopic measurements of the quadrupolar splitting in D{sub 2} and HD. The derived value is Q=0.285783(30) fm{sup 2}.

  6. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    NASA Astrophysics Data System (ADS)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  7. High-resolution single-molecule recognition imaging of the molecular details of ricin-aptamer interaction

    USDA-ARS?s Scientific Manuscript database

    The molecular details of DNA aptamer-ricin interactions were investigated. The toxic protein ricin molecules were immobilized on Au(111) surface using N-hydroxysuccinimide (NHS) ester to specifically react with lysine residues located on the ricin B chains. A single ricin molecule was visualized in ...

  8. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  9. Sphericalization of the potential of interaction of anisotropic molecules with spherical particles

    NASA Astrophysics Data System (ADS)

    Fernández-Prini, R.; Japas, María L.

    1986-09-01

    The possibility of employing sphericalized intermolecular potentials to describe the interactions between nonpolar anisotropic molecules (CCl4 and benzene) with spherical nonpolar molecules (Ar, Xe, and CH4) has been tested for binary systems having liquid- and gas-like densities. Median and RAM sphericalization procedures have been used and their capacity to account for the experimental values of cross second virial coefficients and Henry's constants are compared. It is shown that the median sphericalized potentials, which are temperature and density independent, give a fairly good description of the data which is better than that provided by RAM potentials. The possibility of accounting correctly for the change of properties when the relative size of the interacting partners changes (e.g., conformal systems) is noteworthy.

  10. Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics

    NASA Astrophysics Data System (ADS)

    Rajagopalan, P. T. Ravi; Zhang, Zhiquan; McCourt, Lynn; Dwyer, Mary; Benkovic, Stephen J.; Hammes, Gordon G.

    2002-10-01

    The thermodynamics and kinetics of the interaction of dihydrofolate reductase (DHFR) with methotrexate have been studied by using fluorescence, stopped-flow, and single-molecule methods. DHFR was modified to permit the covalent addition of a fluorescent molecule, Alexa 488, and a biotin at the N terminus of the molecule. The fluorescent molecule was placed on a protein loop that closes over methotrexate when binding occurs, thus causing a quenching of the fluorescence. The biotin was used to attach the enzyme in an active form to a glass surface for single-molecule studies. The equilibrium dissociation constant for the binding of methotrexate to the enzyme is 9.5 nM. The stopped-flow studies revealed that methotrexate binds to two different conformations of the enzyme, and the association and dissociation rate constants were determined. The single-molecule investigation revealed a conformational change in the enzyme-methotrexate complex that was not observed in the stopped-flow studies. The ensemble averaged rate constants for this conformation change in both directions is about 2-4 s1 and is attributed to the opening and closing of the enzyme loop over the bound methotrexate. Thus the mechanism of methotrexate binding to DHFR involves multiple steps and protein conformational changes.

  11. Bumpy light curves of interacting supernovae

    NASA Astrophysics Data System (ADS)

    Nyholm, Anders

    2017-04-01

    A supernova (SN) is the explosive destruction of a star. Via a luminous outpouring of radiation, the SN can rival the brightness of its SN host galaxy for months or years. In the past decade, astronomical surveys regularly observing the sky to deep limiting magnitudes have revealed that core collapse SNe (the demises of massive stars) are sometimes preceded by eruptive episodes by the progenitor stars during the years before the eventual SN explosion. Such SNe tend to show strong signatures of interaction between the SN ejecta and the circumstellar medium (CSM) deposited by the star before the SN explosion, likely by mass-loss episodes like the ones we have started to observe regularly. The complex CSM resolved around certain giant stars in our own galaxy and the eruptions of giant stars like Eta Carinae in the 19th century can be seen in this context. As the SN ejecta of an interacting SN sweep up the CSM of the progenitor, radiation from this process offers observers opportunity to scan the late mass loss history of the progenitor. In this thesis, interacting SNe and eruptive mass loss of their progenitors is discussed. The SN iPTF13z (discovered by the intermediate Palomar Transient Factory, iPTF) is presented. This transient was followed with optical photometry and spectroscopy during 1000 days and displayed a light curve with several conspicuous re-brigthenings ("bumps"), likely arising from SN ejecta interacting with denser regions in the CSM. Around 200 days before discovery, in archival data we found a clear precursor outburst lasting ∼50 days. A well-observed (but not necessarily well understood) event like SN 2009ip, which showed both precursor outbursts and a light curve bump, makes an interesting comparison object. The embedding of the (possible) SN in a CSM makes it hard to tell if a destructive SN explosion actually happened. In this respect, iPTF13z is compared to e.g. SN 2009ip but also to long-lived interacting SNe like SN 1988Z. Some suggestions

  12. Variable Permanent Magnet Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.; Iwashita, Y.; /Kyoto U.

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four partsmore » and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.« less

  13. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  14. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    NASA Astrophysics Data System (ADS)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  15. Single molecules and single nanoparticles as windows to the nanoscale

    NASA Astrophysics Data System (ADS)

    Caldarola, Martín; Orrit, Michel

    2018-05-01

    Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.

  16. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  17. The Laser Cooling and Magneto-Optical Trapping of the YO Molecule

    NASA Astrophysics Data System (ADS)

    Yeo, Mark

    Laser cooling and magneto-optical trapping of neutral atoms has revolutionized the field of atomic physics by providing an elegant and efficient method to produce cold dense samples of ultracold atoms. Molecules, with their strong anisotropic dipolar interaction promises to unlock even richer phenomenon. However, due to their additional vibrational and rotational degrees of freedom, laser cooling techniques have only been extended to a small set of diatomic molecules. In this thesis, we demonstrate the first magneto-optical trapping of a diatomic molecule using a quasi-cycling transition and an oscillating quadrupole magnetic field. The transverse temperature of a cryogenically produced YO beam was reduced from 25 mK to 10 mK via doppler cooling and further reduced to 2 mK with the addition of magneto-optical trapping forces. The optical cycling in YO is complicated by the presence of an intermediate electronic state, as decays through this state lead to optical pumping into dark rotational states. Thus, we also demonstrate the mixing of rotational states in the ground electronic state using microwave radiation. This technique greatly enhances optical cycling, leading to a factor of 4 increase in the YO beam fluorescence and is used in conjunction with a frequency modulated and chirped continuous wave laser to longitudinally slow the YO beam. We generate YO molecules below 10 m/s that are directly loadable into a three-dimensional magneto-optical trap. This mixing technique provides an alternative to maintaining rotational closure and should extend laser cooling to a larger set of molecules.

  18. Plasma ion-induced molecular ejection on the Galilean satellites - Energies of ejected molecules

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Boring, J. W.; Reimann, C. T.; Barton, L. A.; Sieveka, E. M.; Garrett, J. W.; Farmer, K. R.; Brown, W. L.; Lanzerotti, L. J.

    1983-01-01

    First measurements of the energy of ejection of molecules from icy surfaces by fast incident ions are presented. Such results are needed in discussions of the Jovian and Saturnian plasma interactions with the icy satellites. In this letter parameters describing the ion-induced ejection and redistribution of molecules on the Galilean satellites are recalculated in light of the new laboratory data.

  19. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  20. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  1. Single-Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions.

    PubMed

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  3. Determining the elastic properties of aptamer-ricin single molecule multiple pathway interactions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Park, Bosoon; Kwon, Yongkuk; Xu, Bingqian

    2014-05-01

    We report on the elastic properties of ricin and anti-ricin aptamer interactions, which showed three stable binding conformations, each of which has its special elastic properties. These different unbinding pathways were investigated by the dynamic force spectroscopy. A series-spring model combining the worm-like-chain model and Hook's law was used to estimate the apparent spring constants of the aptamer and linker molecule polyethylene glycol. The aptamer in its three different unbinding pathways showed different apparent spring constants. The two reaction barriers in the unbinding pathways also influence the apparent spring constant of the aptamer. This special elastic behavior of aptamer was used to distinguish its three unbinding pathways under different loading rates. This method also offered a way to distinguish and discard the non-specific interactions in single molecule experiments.

  4. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  5. Identification of Antibody and Small Molecule Antagonists of Ferroportin-Hepcidin Interaction

    PubMed Central

    Ross, Sandra L.; Biswas, Kaustav; Rottman, James; Allen, Jennifer R.; Long, Jason; Miranda, Les P.; Winters, Aaron; Arvedson, Tara L.

    2017-01-01

    The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided. PMID:29209212

  6. Investigating phonon-mediated interactions with polar molecules

    NASA Astrophysics Data System (ADS)

    Sous, John; Madison, Kirk; Berciu, Mona; Krems, Roman

    2017-04-01

    We show that an ensemble of polar molecules in an optical lattice realizes the Peierls polaron model for hard-core particles/ pseudospins. We analyze the quasiparticle spectrum in the one-particle subspace, the two-particle subspace and at finite concentrations. We derive an effective model that describes the low-energy behavior of the system. We show that the Hamiltonian includes phonon-mediated repulsions and phonon-mediated ``pair-hopping'' terms which move the particle pair as a whole. We show that microwave excitations of the system exhibit signatures of these interactions. These results pave the way for the experimental observation of phonon-mediated repulsion. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  7. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    PubMed

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, T., E-mail: torsten.hahn@physik.tu-freiberg.de; Liebing, S.; Kortus, J.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbitalmore » positions in structurally similar molecules appear to be transferable.« less

  9. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions.

    PubMed

    Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H

    2007-03-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.

  10. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.

    PubMed

    Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan

    2018-06-01

    Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microfluidic quadrupole and floating concentration gradient.

    PubMed

    Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David

    2011-09-06

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.

  12. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  13. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  14. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-02-27

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  15. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  16. Quantum-limited evanescent single molecule sensing.

    NASA Astrophysics Data System (ADS)

    Bowen, Warwick; Mauranyapin, Nicolas; Madsen, Lars; Taylor, Michael; Waleed, Muhammad

    Sensors that are able to detect and track single unlabeled biomolecules are an important tool both to understand biomolecular dynamics and interactions, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce a new approach that combines dark field illumination and heterodyne detection in an optical nanofibre. This allows operation at the fundamental precision limit introduced by quantisation of light. We achieve state-of-the-art sensitivity with a four order-of-magnitude reduction in optical intensity. This enables quantum noise limited tracking of single biomolecules as small as 3.5 nm and surface-molecule interactions to be montored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors. We acknkowledge financial support from AFOSR and AOARD.

  17. Quench Protection of SC Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  18. Relativistic quantum optics: The relativistic invariance of the light-matter interaction models

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; Rodriguez-Lopez, Pablo

    2018-05-01

    In this article we discuss the invariance under general changes of reference frame of all the physical predictions of particle detector models in quantum field theory in general and, in particular, of those used in quantum optics to model atoms interacting with light. We find explicitly how the light-matter interaction Hamiltonians change under general coordinate transformations, and analyze the subtleties of the Hamiltonians commonly used to describe the light-matter interaction when relativistic motion is taken into account.

  19. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  20. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  1. A permanent magnet trap for buffer gas cooled atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nohlmans, D.; Skoff, S. M.; Hendricks, R. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2013-05-01

    Cold molecules are set to provide a wealth of new science compared to their atomic counterparts. Here we want to present preliminary results for cooling and trapping atoms/molecules in a permanent magnetic trap. By replacing the conventional buffer gas cell with an arrangement of permanent magnets, we will be able to trap a fraction of the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 μB. Cold helium gas is pulsed into the trap region by a solenoid valve and the atoms/molecules are subsequently ablated into this and cooled via elastic collisions, leaving a fraction of them trapped. This new set-up is currently being tested with lithium atoms as they are easier to make. After having optimised the trapping and detection processes, we will use the same trap for YbF molecules.

  2. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.

    PubMed

    Michaud, Julie M; Jäger, Wolfgang

    2008-10-14

    Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].

  3. Motor-motor interactions in ensembles of muscle myosin: using theory to connect single molecule to ensemble measurements

    NASA Astrophysics Data System (ADS)

    Walcott, Sam

    2013-03-01

    Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.

  4. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  5. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  6. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  7. Interaction of cationic surfactants with DNA: a single-molecule study

    PubMed Central

    Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin

    2008-01-01

    The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749

  8. An alternative mechanism for spin-forbidden photo-ionization of diatomic molecules and its rotation-electronic selection rules

    NASA Astrophysics Data System (ADS)

    Chiu, Ying-Nan; Chiu, Lue-Yung Chow

    1990-02-01

    The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.

  9. Quantifying the Dynamic Interactions Between a Clathrin-Coated Pit and Cargo Molecules

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Tamkun, Michael; Krapf, Diego

    2014-03-01

    Clathrin-mediated endocytosis is a major pathway of internalization of cargo in eukaryotic cells. This process involves the recruitment of cargo molecules into a growing clathrin-coated pit (CCP). However, cargo-CCP interactions are difficult to study because CCPs display a large degree of lifetime heterogeneity and the interactions with cargo molecules evolve over time. We use single-molecule total internal reflection fluorescence (TIRF) microscopy, in combination with automatic detection and tracking algorithms, to directly visualize the recruitment of individual voltage-gated potassium channels into forming CCPs in living cells. Contrary to widespread ideas, cargo often escapes from a pit before abortive CCP termination or endocytic vesicle production. By measuring tens of thousands of capturing events, we build the distribution of capture times and the times that cargo remains confined to a CCP. An analytical stochastic model is developed and compared to the measured distributions. Due to the dynamic nature of the pit, the model is non-Markovian and it displays long-tail power law statistics. Our findings identify one source of the large heterogeneities observed in CCP maturation and provide a mechanism for the anomalous diffusion of proteins in the plasma membrane. This work was supported by National Science Foundation Grant PHY-0956714.

  10. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  11. Spin-orbit interaction of light on the surface of atomically thin crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Junxiao; Chen, Shizhen; Zhang, Wenshuai; Luo, Hailu; Wen, Shuangchun

    2017-09-01

    Two-dimensional (2D) atomic crystals have extraordinary electronic and photonic properties and hold great promise in the applications of photonic and optoelectronics. Here, we review some of our works about the spin-orbit interaction of light on the surface of 2D atomic crystals. First, we propose a general model to describe the spin-orbit interaction of light of the 2D free standing atomic crystal, and find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction. By developing the quantum weak measurements, we detect the spin-orbit interaction of light in 2D atomic crystals, which can act as a simple method for defining the layer numbers of graphene. Moreover, we find the transverse spin-dependent splitting in the photonic spin Hall effect exhibits a quantized behavior. Furthermore, the spin-orbit interaction of light for the case of air-topological insulator interface can be routed by adjusting the strength of the axion coupling. These basic finding may enhance the comprehension of the spin-orbit interaction, and find the important application in optoelectronic.

  12. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    NASA Astrophysics Data System (ADS)

    Tokunaga, S. K.; Hendricks, R. J.; Tarbutt, M. R.; Darquié, B.

    2017-05-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers is measurable. The molecules are produced with a rotational temperature of approximately 6 K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2 μm antisymmetric Re=O stretching mode of MTO with a resolution of 8 MHz and a frequency accuracy of 30 MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state. Our ability to produce dense samples of complex molecules of this type at low temperatures represents a key step towards a precision measurement of parity violation in a chiral species.

  13. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salam, A., E-mail: salama@wfu.edu

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-orderedmore » diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.« less

  14. Behavior of light polarization in photon-scalar interaction

    NASA Astrophysics Data System (ADS)

    Azizi, Azizollah; Nasirimoghadam, Soudabe

    2017-11-01

    Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.

  15. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Peter

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy

  16. Vibrational relaxation of a molecule in strong interaction with a reservoir: Nonmonotonic temperature dependence

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Ierides, A. A.

    2018-06-01

    This theoretical study of the vibrational relaxation of a molecule in interaction with a reservoir uncovers a noteworthy temperature (T) dependence of the time evolution of the relaxation. Its rate increases with T in one interval but decreases in another. The feature arises not for a weak molecule-reservoir interaction but only for coupling strong enough to require polaronic dressing transformations. Our treatment, based on a recent generalization of the well-known Montroll-Shuler equation for relaxation and an explicit calculation of bath correlations from the microscopically specified Hamiltonian, could provide an alternative explanation of an "inverted" T-dependence of relaxation in an experimental report by Fayer and collaborators on W(CO)6 dissolved in CHCl3.

  17. A new framework for interactive quality assessment with application to light field coding

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Ebrahimi, Touradj

    2017-09-01

    In recent years, light field has experienced a surge of popularity, mainly due to the recent advances in acquisition and rendering technologies that have made it more accessible to the public. Thanks to image-based rendering techniques, light field contents can be rendered in real time on common 2D screens, allowing virtual navigation through the captured scenes in an interactive fashion. However, this richer representation of the scene poses the problem of reliable quality assessments for light field contents. In particular, while subjective methodologies that enable interaction have already been proposed, no work has been done on assessing how users interact with light field contents. In this paper, we propose a new framework to subjectively assess the quality of light field contents in an interactive manner and simultaneously track users behaviour. The framework is successfully used to perform subjective assessment of two coding solutions. Moreover, statistical analysis performed on the results shows interesting correlation between subjective scores and average interaction time.

  18. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (quadrupole contained not only protonated molecules from mometasone, but also PPG interference. At enhanced resolution only selected mometasone peaks were transmitted, and no interference from PPG was detected. Sensitivity of the instrument was demonstrated with 10 femtograms of descarboethoxyloratadine injected on-column, for which a signal-to-noise (S/N) ratio of 24 was obtained for MRM chromatograms at both unit and enhanced resolution. Absolute signals obtained at enhanced resolution were about one-third those obtained at unit mass resolution. However, S/N was maintained at enhanced resolution due to the proportional decrease in noise level. Finally, the stability of the instrument operating at enhanced resolution was demonstrated during an overnight 17 h period that was used to validate a liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for

  19. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.

    PubMed

    Kedrov, Alexej; Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J

    2007-01-01

    Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.

  20. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  1. Near optimal discrimination of binary coherent signals via atom–light interaction

    NASA Astrophysics Data System (ADS)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  2. Photoexcitation circular dichroism in chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  3. Photoexcitation and photoionization of argon atom and chlorine molecule using the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Nayandin, Oleg

    2001-08-01

    The use of a third generation Synchrotron Radiation source combined with time-of-flight (TOF) electron spectrometers and a two-dimensional (2D) imaging technique makes it possible to investigate and reveal new aspects of atomic and molecular structure, and allows a better understanding of electron correlation. This dissertation concentrates on the experimental study of the interaction of synchrotron radiation with argon atoms and chlorine molecules in the gas phase. The measurements were performed using a two-dimensional photoelectron spectroscopy technique in combination with the high resolution Atomic, Molecular and Optical Physics undulator beam line at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The complete angle-resolved 2D experimental images of the electron emission following photoexcitation and photoionization of the 2p inner-shell in Ar and Cl2 were measured. For argon, the intensity profiles as a function of photon energy for all accessible Auger decay channels were studied for the first time. Significant asymmetries are observed in these various partial cross-sections, due to the interference between direct photoionization and resonant photoexcitation leading to the same final ionic state. For chlorine, Auger electron spectra following the decay of the 2p --> σ* and 2p --> nl resonances were analyzed. It was found that valence photoionization channels do not resonate strongly for photon energies equal to the coreto-Rydberg excitation, in contrast to the strongly resonating ones observed in the HCl molecule. Auger decay spectra of the 2p-1σ* resonances showed no evidence of atomic transitions in Cl2, indicative of no significant dissociation, also in contrast to HCl. In addition, angular distributions of the photo- and Auger electron lines were derived. These results contribute to a better understanding of atomic and molecular structure and dynamics of inner shell processes and hopefully will stimulate further experimental

  4. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions.

    PubMed

    Zimbovskaya, Natalya A

    2016-07-27

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  5. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  6. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry

    PubMed Central

    Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I.

    2016-01-01

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. PMID:26427327

  7. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    PubMed

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  9. Fast computation of quadrupole and hexadecapole approximations in microlensing with a single point-source evaluation

    NASA Astrophysics Data System (ADS)

    Cassan, Arnaud

    2017-07-01

    The exoplanet detection rate from gravitational microlensing has grown significantly in recent years thanks to a great enhancement of resources and improved observational strategy. Current observatories include ground-based wide-field and/or robotic world-wide networks of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2. This results in a large quantity of data to be processed and analysed, which is a challenge for modelling codes because of the complexity of the parameter space to be explored and the intensive computations required to evaluate the models. In this work, I present a method that allows to compute the quadrupole and hexadecapole approximations of the finite-source magnification with more efficiency than previously available codes, with routines about six times and four times faster, respectively. The quadrupole takes just about twice the time of a point-source evaluation, which advocates for generalizing its use to large portions of the light curves. The corresponding routines are available as open-source python codes.

  10. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions.

    PubMed

    Wang, Kai; Luo, Ying

    2013-07-08

    As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.

  11. Cosmological constraints on interacting light particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brust, Christopher; Cui, Yanou; Sigurdson, Kris, E-mail: cbrust@perimeterinstitute.ca, E-mail: yanou.cui@ucr.edu, E-mail: krs@phas.ubc.ca

    2017-08-01

    Cosmological observations are becoming increasingly sensitive to the effects of light particles in the form of dark radiation (DR) at the time of recombination. The conventional observable of effective neutrino number, N {sub eff}, is insufficient for probing generic, interacting models of DR. In this work, we perform likelihood analyses which allow both free-streaming effective neutrinos (parametrized by N {sub eff}) and interacting effective neutrinos (parametrized by N {sub fld}). We motivate an alternative parametrization of DR in terms of N {sub tot} (total effective number of neutrinos) and f {sub fs} (the fraction of effective neutrinos which are free-streaming),more » which is less degenerate than using N {sub eff} and N {sub fld}. Using the Planck 2015 likelihoods in conjunction with measurements of baryon acoustic oscillations (BAO), we find constraints on the total amount of beyond the Standard Model effective neutrinos (both free-streaming and interacting) of Δ N {sub tot} < 0.39 at 2σ. In addition, we consider the possibility that this scenario alleviates the tensions between early-time and late-time cosmological observations, in particular the measurements of σ{sub 8} (the amplitude of matter power fluctuations at 8 h {sup −1} Mpc), finding a mild preference for interactions among light species. We further forecast the sensitivities of a variety of future experiments, including Advanced ACTPol (a representative CMB Stage-III experiment), CMB Stage-IV, and the Euclid satellite. This study is relevant for probing non-standard neutrino physics as well as a wide variety of new particle physics models beyond the Standard Model that involve dark radiation.« less

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor); Brennen, Reid A. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Chutjian, Ara (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  15. The quadrupole ionosphere

    NASA Technical Reports Server (NTRS)

    Rishbeth, H.

    1986-01-01

    The principal features that might exist in the terrestrial paleoionosphere, if the geomagnetic field were to assume a quadrupole form during a polarity reversal are discussed. Complicated phenomena would be expected to occur at magnetic equators and magnetospherically-driven plasma convection might occur at latitudes where the magnetic field is steeply inclined. The influence of magnetic field strength on ionospheric structure is considered in general terms.

  16. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  17. Twisted molecular excitons as mediators for changing the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  18. A Liquid Array Platform For the Multiplexed Analysis of Synthetic Molecule-Protein Interactions

    PubMed Central

    Doran, Todd M.; Kodadek, Thomas

    2014-01-01

    Synthetic molecule microarrays, consisting of many different compounds spotted onto a planar surface such as modified glass or cellulose, have proven to be useful tools for the multiplexed analysis of small molecule- and peptide-protein interactions. However, these arrays are technically difficult to manufacture and use with high reproducibility and require specialized equipment. Here we report a more convenient alternative comprised of color-encoded beads that display a small molecule protein ligand on the surface. Quantitative, multiplexed assay of protein binding to up to 24 different ligands can be achieved using a common flow cytometer for the readout. This technology should be useful for evaluating hits from library screening efforts, the determination of structure activity relationships and for certain types of serological analyses. PMID:24245981

  19. Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Velichko, Elena; Nepomnyashchaya, Elina; Dudina, Alina; Pleshakov, Ivan; Aksenov, Evgenii

    2018-04-01

    In this article the interaction between ionically stabilized magnetic nanoparticles and blood serum albumin proteins in liquid medium are discussed. Some distributions of nanoparticles' agglomerate sizes in solutions of albumin molecules, magnetic nanoparticles and their mixtures both under the influence of magnetic field and free from it are presented. It is shown that magnetic nanoparticles interact with albumin molecules, forming agglomerates. It is also shown that at the influence of magnetic field sizes of agglomerates increase proportionally to the magnetic field density.

  20. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  1. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with

  2. Nonlinear light-matter interactions in engineered optical media

    NASA Astrophysics Data System (ADS)

    Litchinitser, Natalia

    In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This

  3. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  4. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  5. Root phototropism: how light and gravity interact in shaping plant form

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Correll, Melanie J.; Mullen, Jack L.; Hangarter, Roger P.; Edelmann, Richard E.

    2003-01-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  6. Root phototropism: how light and gravity interact in shaping plant form.

    PubMed

    Kiss, John Z; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E

    2003-06-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  7. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis

    2016-04-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  8. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  9. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  10. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  11. Open conformers: the hidden face of MHC-I molecules.

    PubMed

    Arosa, Fernando A; Santos, Susana G; Powis, Simon J

    2007-03-01

    A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.

  12. Mechanisms of interaction of monochromatic visible light with cells

    NASA Astrophysics Data System (ADS)

    Karu, Tiina I.

    1996-01-01

    Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O'2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low- power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Besides explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive

  13. Geometry-dependent atomic multipole models for the water molecule.

    PubMed

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  14. Geometry-dependent atomic multipole models for the water molecule

    NASA Astrophysics Data System (ADS)

    Loboda, O.; Millot, C.

    2017-10-01

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  15. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong

    2016-06-05

    YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Sean A.; Aprà, Edoardo; Govind, Niranjan

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting withmore » a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.« less

  17. Role of Dispersive Fluorous Interaction in the Solvation Dynamics of the Perfluoro Group Containing Molecules.

    PubMed

    Mondal, Saptarsi; Chaterjee, Soumit; Halder, Ritaban; Jana, Biman; Singh, Prashant Chandra

    2017-08-17

    Perfluoro group containing molecules possess an important self-aggregation property through the fluorous (F···F) interaction which makes them useful for diverse applications such as medicinal chemistry, separation techniques, polymer technology, and biology. In this article, we have investigated the solvation dynamics of coumarin-153 (C153) and coumarin-6H (C6H) in ethanol (ETH), 2-fluoroethanol (MFE), and 2,2,2-trifluoroethanol (TFE) using the femtosecond upconversion technique and molecular dynamics (MD) simulation to understand the role of fluorous interaction between the solute and solvent molecules in the solvation dynamics of perfluoro group containing molecules. The femtosecond upconversion data show that the time scales of solvation dynamics of C6H in ETH, MFE, and TFE are approximately the same whereas the solvation dynamics of C153 in TFE is slow as compared to that of ETH and MFE. It has also been observed that the time scale of solvation dynamics of C6H in ETH and MFE is higher than that of C153 in the same solvents. MD simulation results show a qualitative agreement with the experimental data in terms of the time scale of the slow components of the solvation for all the systems. The experimental and simulation studies combined lead to the conclusion that the solvation dynamics of C6H in all solvents as well as C153 in ETH and MFE is mostly governed by the charge distribution of ester moieties (C═O and O) of dye molecules whereas the solvation of C153 in TFE is predominantly due to the dispersive fluorous interaction (F···F) between the perfluoro groups of the C153 and solvent molecules.

  18. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.

    PubMed

    Eng, Lars; Nygren-Babol, Linnéa; Hanning, Anders

    2016-10-01

    Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system-the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Classical Theory of Light Colors: a Paradigm for Description of Particle Interactions

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel; Gatu, Irina; Iacob, Dan Dezideriu; Butuc, Irina; Ghizdovat, Vlad

    2016-06-01

    The color is an interaction property: of the interaction of light with matter. Classically speaking it is therefore akin to the forces. But while forces engendered the mechanical view of the world, the colors generated the optical view. One of the modern concepts of interaction between the fundamental particles of matter - the quantum chromodynamics - aims to fill the gap between mechanics and optics, in a specific description of strong interactions. We show here that this modern description of the particle interactions has ties with both the classical and quantum theories of light, regardless of the connection between forces and colors. In a word, the light is a universal model in the description of matter. The description involves classical Yang-Mills fields related to color.

  20. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  1. Fiat Lux, Let There Be Light!

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2015-01-01

    Most of us think of light as helping us see things, but it is so much more important than that. Light is electromagnetic energy moving in waves through space, interacting with atoms and molecules as it goes. So are radio waves, microwaves, infrared light, ultraviolet, x-rays and gamma rays - all of them are electromagnetic energy, and the only real difference is the spacing between the wave crests. So light gives us communications with each other with radio and TV, and it gives us the ability to travel through the universe using telescopes and our imagination. But light also gives us access to scientific questions, such as: what holds the atoms and molecules together? How does the mysterious quantum mechanics work? And understanding all these, how can we build electronic devices for modern life? And if we are very ambitious, we build accelerators like the Large Hadron Collider, and particles collide and concentrate electromagnetic energy into tiny spaces, and according to Einstein's E equals mc squared, we turn energy into new particles to learn, perhaps what the universe was like when it was a tiny fraction of a second old.

  2. The 1.5 post-Newtonian radiative quadrupole moment in the context of a nonlocal field theory of gravity

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain

    2018-04-01

    We recently suggested a nonlocal modification of Einstein’s field equations in which Newton’s constant G was promoted to a covariant differential operator G_Λ(\\Box_g) . The latter contains two independent contributions which operate respectively in the infrared (IR) and ultraviolet (UV) energy regimes. In the light of the recent direct gravitational radiation measurements we aim to determine the UV-modified 1.5 post-Newtonian radiative quadrupole moment of a generic n-body system. We eventually use these preliminary results in the context of a binary system and observe that in the limit vanishing UV parameters we precisely recover the corresponding general relativistic results. Moreover we notice that the leading order deviation of the UV-modified radiative quadrupole moment numerically coincides with findings obtained in the framework of calculations performed previously in the context of the perihelion precession of Mercury.

  3. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    NASA Astrophysics Data System (ADS)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  4. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    PubMed Central

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-01-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693

  5. Phase-resolved two-dimensional terahertz spectroscopy - a probe of highly nonlinear light-matter interactions

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    Terahertz (THz) spectroscopy gives insight into low-frequency excitations and charge dynamics in condensed matter. So far, most experiments in a frequency range from 0.5 to 30 THz have focused on the linear THz response to determine linear absorption and disperion spectra, and/or electric conductivities. The generation of ultrashort THz transients with peak electric fields up to megavolts/cm has allowed for addressing nonlinear light-matter interactions and inducing excitations far from equilibrium. The novel method of two-dimensional THz (2D-THz) spectroscopy allows for mapping ultrafast dynamics and couplings of elementary excitations up to arbitrary nonlinear order in the electric field, both under resonant and nonresonant excitation conditions. In particular, different contributions to the overall nonlinear response are separated by dissecting it as a function of excitation and detection frequencies and for different waiting times after excitation. This talk gives an introduction in 2D-THz spectroscopy, including its recent extension to 3-pulse sequences and interaction schemes. To illustrate the potential of the method, recent results on two-phonon coherences and high-order interband excitations in the semiconductor InSb will be presented. Nonlinear THz excitation of two-phonon coherences exploits a resonance enhancement by the large electronic interband dipole of InSb and is, thus, far more efficient than linear excitation via resonant two-phonon absorption. As a second application, the nonlinear softmode response in a crystal consisting of aspirin molecules will be discussed. At moderate THz driving fields, the pronounced correlation of rotational modes of CH3 groups with collective oscillations of π-electrons drives the system into the regime of nonperturbative light-matter interaction. Nonlinear absorption around 1.1 THz leads to a blue-shifted coherent emission at 1.5 THz, revealing a dynamic breakup of the strong electron-phonon correlations.

  6. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $$Nb_3Sn$$ Quadrupole for the High-Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, S.; et al.

    The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less

  7. Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Hsueh, Carlin

    Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an

  8. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    NASA Astrophysics Data System (ADS)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  9. Study of a micro chamber quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jinchan; Zhang Xiaobing; Mao Fuming

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less

  10. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  11. Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan

    2018-04-18

    Studies of the surface of a catalyst in the gas phase via photoelectron spectroscopy is an important approach to establish a correlation between the surface of a catalyst under reaction conditions or during catalysis and its corresponding catalytic performance. Unlike the well understood interactions between photoelectrons and the atomic layers of a surface in ultrahigh vacuum (UHV) and the well-developed method of quantitative analysis of a solid surface in UHV, a fundamental understanding of the interactions between X-ray photons and gaseous molecules and between photoelectrons and molecules of the gas phase in ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is lacking. Through well designed experiments, here the impact of the interactions between photoelectrons and gaseous molecules and interactions between X-ray photons and gaseous molecules on the intensity of the collected photoelectrons have been explored. How the changes in photoelectron intensity resulting from these interactions influence measurement of the authentic atomic ratio of element M to A of a solid surface has been discussed herein, and methods to correct the measured nominal atomic ratio of two elements of a solid surface upon travelling through a gas phase to its authentic atomic ratio have been developed.

  12. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    PubMed

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  13. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.

    PubMed

    Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E

    2007-12-12

    The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).

  14. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  15. Predicting the points of interaction of small molecules in the NF-κB pathway

    PubMed Central

    2011-01-01

    Background The similarity property principle has been used extensively in drug discovery to identify small compounds that interact with specific drug targets. Here we show it can be applied to identify the interactions of small molecules within the NF-κB signalling pathway. Results Clusters that contain compounds with a predominant interaction within the pathway were created, which were then used to predict the interaction of compounds not included in the clustering analysis. Conclusions The technique successfully predicted the points of interactions of compounds that are known to interact with the NF-κB pathway. The method was also shown to be successful when compounds for which the interaction points were unknown were included in the clustering analysis. PMID:21342508

  16. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  17. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  18. Sensing small molecule interactions with lipid membranes by local pH modulation.

    PubMed

    Huang, Da; Zhao, Tao; Xu, Wei; Yang, Tinglu; Cremer, Paul S

    2013-11-05

    Herein, we utilized a label-free sensing platform based on pH modulation to detect the interactions between tetracaine, a positively charged small molecule used as a local anesthetic, and planar supported lipid bilayers (SLBs). The SLBs were patterned inside a flow cell, allowing for various concentrations of tetracaine to be introduced over the surface in a buffer solution. Studies with membranes containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) yielded an equilibrium dissociation constant value of Kd = 180 ± 47 μm for this small molecule-membrane interaction. Adding cholesterol to the SLBs decreased the affinity between tetracaine and the bilayers, while this interaction tightened when POPE (1-hexadecanoyl-2-(9-Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine) was added. Studies were also conducted with three negatively charged membrane lipids, POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)), and ganglioside GM1. All three measurements gave rise to a similar tightening of the apparent Kd value compared with pure POPC membranes. The lack of chemical specificity with the identity of the negatively charged lipid indicated that the tightening was largely electrostatic. Through a direct comparison with ITC measurements, it was found that the pH modulation sensor platform offers a facile, inexpensive, highly sensitive, and rapid method for the detection of interactions between putative drug candidates and lipid bilayers. As such, this technique may potentially be exploited as a screen for drug development and analysis.

  19. Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.

    2010-11-01

    Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.

  20. Investigation of Ion Transmission Effects on Intact Protein Quantification in a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Appulage, Dananjaya Kalu; McAllister, Erin A.; Schug, Kevin A.

    2017-09-01

    Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N2, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. [Figure not available: see fulltext.

  1. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    PubMed

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  2. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  3. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.

    PubMed

    Pronobis, Wiktor; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2018-06-12

    Machine learning (ML) based prediction of molecular properties across chemical compound space is an important and alternative approach to efficiently estimate the solutions of highly complex many-electron problems in chemistry and physics. Statistical methods represent molecules as descriptors that should encode molecular symmetries and interactions between atoms. Many such descriptors have been proposed; all of them have advantages and limitations. Here, we propose a set of general two-body and three-body interaction descriptors which are invariant to translation, rotation, and atomic indexing. By adapting the successfully used kernel ridge regression methods of machine learning, we evaluate our descriptors on predicting several properties of small organic molecules calculated using density-functional theory. We use two data sets. The GDB-7 set contains 6868 molecules with up to 7 heavy atoms of type CNO. The GDB-9 set is composed of 131722 molecules with up to 9 heavy atoms containing CNO. When trained on 5000 random molecules, our best model achieves an accuracy of 0.8 kcal/mol (on the remaining 1868 molecules of GDB-7) and 1.5 kcal/mol (on the remaining 126722 molecules of GDB-9) respectively. Applying a linear regression model on our novel many-body descriptors performs almost equal to a nonlinear kernelized model. Linear models are readily interpretable: a feature importance ranking measure helps to obtain qualitative and quantitative insights on the importance of two- and three-body molecular interactions for predicting molecular properties computed with quantum-mechanical methods.

  4. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  5. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  6. BRIEF COMMUNICATION: Calculation of a magnetic field effect on emission spectra of light diatomic molecules for diagnostic application to fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.

    2009-12-01

    A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.

  7. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  8. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    NASA Astrophysics Data System (ADS)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  9. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  10. Probing the Wave Nature of Light-Matter Interaction

    DOE PAGES

    Boone, D. E.; Jackson, C. H.; Swecker, A. T.; ...

    2018-05-30

    Here, the wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects ofmore » light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconductingfield effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the

  11. Probing the Wave Nature of Light-Matter Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, D. E.; Jackson, C. H.; Swecker, A. T.

    Here, the wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects ofmore » light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconductingfield effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the

  12. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, D. J.; Block, B. P.; Rubin, M.

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less

  13. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N 3LO.« less

  14. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  15. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition.

    PubMed

    Brotosudarmo, Tatas H P; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T; Moulisová, Vladimíra; Cogdell, Richard J; Köhler, Jürgen

    2009-09-02

    Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous alphabeta-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the "tightly coupled ring" can be modeled by nine alphabeta-Bchls dimers, such that the Bchls bound to six alphabeta-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six alphabeta-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C(3). It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder.

  16. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy

    PubMed Central

    Yang, Weidong; Musser, Siegfried M.

    2008-01-01

    The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and ∼15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. PMID:16879979

  17. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  18. Light Matter Interaction on the Nanoscale

    DTIC Science & Technology

    2016-01-05

    Light-Matter Interaction on the Nanoscale 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0022 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Xiaoqin...ORGANIZATION NAME( S ) AND ADDRESS(ES) Physics Department University of Texas-Austin 2515 Speedway, Austin, TX, 78712 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) AFOSR 875 N RANDOLPH ST ARLINGTON VA 22203 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR

  19. Computational biology of RNA interactions.

    PubMed

    Dieterich, Christoph; Stadler, Peter F

    2013-01-01

    The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication.

    PubMed

    Pilger, Beatrice D; Cui, Can; Coen, Donald M

    2004-05-01

    The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.

  1. PubChem3D: Shape compatibility filtering using molecular shape quadrupoles

    PubMed Central

    2011-01-01

    Background PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height? Results Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz) were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz), of allowed values for the similarity metric, shape Tanimoto (ST) ≥ 0.8. The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative) as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered by the 3-D neighbor set

  2. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    NASA Astrophysics Data System (ADS)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  3. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  4. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  5. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE PAGES

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    2017-09-15

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  6. Single-molecule pull-down (SiMPull) for new-age biochemistry: methodology and biochemical applications of single-molecule pull-down (SiMPull) for probing biomolecular interactions in crude cell extracts.

    PubMed

    Aggarwal, Vasudha; Ha, Taekjip

    2014-11-01

    Macromolecular interactions play a central role in many biological processes. Protein-protein interactions have mostly been studied by co-immunoprecipitation, which cannot provide quantitative information on all possible molecular connections present in the complex. We will review a new approach that allows cellular proteins and biomolecular complexes to be studied in real-time at the single-molecule level. This technique is called single-molecule pull-down (SiMPull), because it integrates principles of conventional immunoprecipitation with the powerful single-molecule fluorescence microscopy. SiMPull is used to count how many of each protein is present in the physiological complexes found in cytosol and membranes. Concurrently, it serves as a single-molecule biochemical tool to perform functional studies on the pulled-down proteins. In this review, we will focus on the detailed methodology of SiMPull, its salient features and a wide range of biological applications in comparison with other biosensing tools. © 2014 WILEY Periodicals, Inc.

  7. The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1979-01-01

    The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.

  8. Creation of Excitons Excited by Light with a Spatial Mode

    NASA Astrophysics Data System (ADS)

    Syouji, Atsushi; Saito, Shingo; Otomo, Akira

    2017-12-01

    When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.

  9. Cranking Calculation in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Wang, Baolin

    1998-10-01

    A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.

  10. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  11. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE PAGES

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...

    2016-02-11

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  12. Raman scattering mediated by neighboring molecules

    NASA Astrophysics Data System (ADS)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  13. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  14. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  15. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  16. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  17. Chemical interaction between Lilium brownii and Rhizoma Anemarrhenae, the herbal constituents of Baihe Zhimu decoction, by liquid chromatography coupled to hybrid triple quadrupole linear ion trap mass spectrometer.

    PubMed

    Yang, Bo; Liu, Zhirui; Wang, Qian; Xia, Peiyuan

    2018-03-01

    During the course of decoction, the components of herbal formula interact with each other, such that chemical extraction characteristics are altered. The crude drugs, Lilium brownii (Baihe) and Rhizoma Anemarrhenae (Zhimu), are the herbal constituents of Baihe Zhimu decoction, a traditional herbal formula. To investigate the chemical interaction between Baihe and Zhimu when decocting together, eight marker components in Baihe Zhimu decoction were simultaneously characterized and quantified in one run by a hybrid triple quadrupole linear ion trap mass spectrometer in the multiple reactions monitoring-information dependent acquisition-enhanced product ion mode. The results showed that Zhimu significantly suppressed the extraction of phenolic glycosides (the components from Baihe) when co-decocting, and Baihe clearly suppressed the extraction of xanthones and steroidal saponins (the components from Zhimu). Overall, the presently developed method would be a preferred candidate for the investigation of the chemical interaction between herbal medicines. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Main regularities of SERS on semiconductors and dielectrics

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Polubotko, A. M.

    2018-04-01

    The paper demonstrates that the reason of SERS on dielectrics and semiconductors is the enhancement of the electric field in the regions of the tops of the surface roughness with a very large positive curvature. The enhancement in many ways depends on the dielectric constant of the substrate and is stronger for a larger dielectric constant. The theoretical result points out that on dielectrics and semiconductors it is weaker than on metals. Experimentally it is demonstrated that there are forbidden lines on hydroquinone, adsorbed on TiO2 , which indicate on the existence of strong quadrupole light-molecule interaction in such systems.

  19. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application.

  20. Theoretical investigation of interaction of sorbitol molecules with alcohol dehydrogenase in aqueous solution using molecular dynamics simulation.

    PubMed

    Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud

    2011-03-01

    The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.

  1. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  2. Modification in structure, phase transition, and magnetic property of metallic gallium driven by atom-molecule interactions.

    PubMed

    Song, Le Xin; Chen, Jie; Zhu, Lin Hong; Xia, Juan; Yang, Jun

    2011-09-05

    The present work supports a novel paradigm in which the surface structure and stacking behavior of metallic gallium (Ga) were significantly influenced by the preparation process in the presence of organic small molecules (ethanol, acetone, dichloromethane, and diethyl ether). The extent of the effect strongly depends on the polarity of the molecules. Especially, a series of new atom-molecule aggregates consisting of metallic Ga and macrocyclic hosts (cyclodextrins, CDs) were prepared and characterized by various techniques. A comprehensive comparative analysis between free metallic Ga and the Ga samples obtained provides important and at present rare information on the modification in structure, phase transition, and magnetic property of Ga driven by atom-molecule interactions. First, there is a notable difference in microstructure and electronic structure between the different types of Ga samples. Second, differential scanning calorimetry analysis gives us a complete picture (such as the occurrence of a series of metastable phases of Ga in the presence of CDs) that has allowed us to consider that Ga atoms were protected by the shielding effect provided by the cavities of CDs. Third, the metallic Ga distributed in the aggregates exhibits very interesting magnetic property compared to free metallic Ga, such as the uniform zero-field-cooled and field-cooled magnetization processes, the enhanced responses in magnetization to temperature and applied field, and the fundamental change in shape of magnetic hysteresis loops. These significant changes in structural transformation and physical property of Ga provide a novel insight into the understanding of atom-molecule interactions between metallic atoms and organic molecules.

  3. Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

    NASA Astrophysics Data System (ADS)

    Wang, Bai-Bin; Chang, Chi-Fen; Yang, Wein-Duo

    2013-07-01

    γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse's equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter's theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.

  4. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  5. Interactively Applying the Variational Method to the Dihydrogen Molecule: Exploring Bonding and Antibonding

    ERIC Educational Resources Information Center

    Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian; Polfer, Nicolas C.

    2016-01-01

    In this work we are going to present how an interactive platform can be used as a powerful tool to allow students to better explore a foundational problem in quantum chemistry: the application of the variational method to the dihydrogen molecule using simple Gaussian trial functions. The theoretical approach for the hydrogen atom is quite…

  6. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    PubMed Central

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  7. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    PubMed

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. From Animaculum to single molecules: 300 years of the light microscope.

    PubMed

    Wollman, Adam J M; Nudd, Richard; Hedlund, Erik G; Leake, Mark C

    2015-04-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term 'biologists'). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503-519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants.

  9. From Animaculum to single molecules: 300 years of the light microscope

    PubMed Central

    Wollman, Adam J. M.; Nudd, Richard; Hedlund, Erik G.; Leake, Mark C.

    2015-01-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632–1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term ‘biologists’). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503–519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants. PMID:25924631

  10. N3LO NN interaction adjusted to light nuclei in ab exitu approach

    DOE PAGES

    Shirokov, A. M.; Shin, I. J.; Kim, Y.; ...

    2016-08-09

    Here, we use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. Then, we test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.

  11. REVIEWS OF TOPICAL PROBLEMS Electron-vibration interaction in tunneling processes through single molecules

    NASA Astrophysics Data System (ADS)

    Arseev, Petr I.; Maslova, N. S.

    2011-02-01

    It is shown how effective Hamiltonians are constructed in the framework of the adiabatic approach to the electron-vibration interaction in electron tunneling through single molecules. Methods for calculating tunneling characteristics are discussed and possible features resulting from the electron-vibration coupling are described. The intensity of vibrations excited by a tunneling current in various systems is examined.

  12. Investigation of Molecule-Surface Interactions With Overtone Absorption Spectroscopy and Computational Methods

    DTIC Science & Technology

    2010-11-01

    method at a fraction of the computational cost . The overtone frequency serves as the bridge between the molecule-surface interaction model and...the computational cost of utilizing higher levels of theory such as MP2. The second task is the calculation of absorption frequencies as a function...the methyl C-H bonds, and n\\ and inn are the carbon and hydrogen atomic masses, respectively. The calculation of the fundamental and overtone

  13. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effectsmore » of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.« less

  14. Crystal structure at 2.8 A of the DLLRKN-containing coiled-coil domain of huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding.

    PubMed

    Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay

    2007-03-16

    Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.

  15. Crystal structure at 2.8 Å of the DLLRKN-containing coiled-coil domain of Huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding

    PubMed Central

    Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay

    2007-01-01

    Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618

  16. STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).

    PubMed

    Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen

    2009-05-05

    Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.

  17. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  18. Interaction between light and superconductors

    NASA Astrophysics Data System (ADS)

    Gilabert, Alain

    In the first part of this review article we resume briefly the fundamental aspect of the photon-superconductor interaction. The emphase is focused on the characteristic times and on the phenomenological models (the T*, the μ* models and the model of the kinetics equations) describing the out of equilibrium superconductivity. The experiments made on classical illuminated superconductors especially on tunnel junctions are then reported. In the second part we present the applied aspect of the photon-superconductor interaction. The interaction of the light with the high Tc superconductors is reviewed in the last part. Dans la première partie de cet article de revue, on résume brièvement 1'aspect fondamental de l'action des photons sur les supraconducteurs en s'attachant surtout à rappeler les différents temps caractéristiques de cette interaction et les modèles phénoménologiques (le modèle T*, le modèle μ*, le modèle des équations cinétiques) décrivant la supraconductivité hors équilibre. La seconde partie rappelle les expériences réalisées sur les supraconducteurs classiques illuminés et spécialement les jonctions tunnel ainsi que certaines applications de la supraconductivité hors équilibre comme les liens faibles controllables par des moyens optiques. La dernière partie est consacrée aux nouvelles expériences qui démarrent concernant l'action de la lumière sur les supraconducteurs à hautes températures critiques.

  19. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGES

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  20. Hadronic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Wang, Qian; Zhao, Qiang; Zou, Bing-Song

    2018-01-01

    A large number of experimental discoveries especially in the heavy quarkonium sector that did not meet the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy. Among various explanations of the internal structure of these excitations, hadronic molecules, being analogs of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty. Experimental evidence of various candidates of hadronic molecules and methods of identifying such structures are reviewed. Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules and are discussed in both the continuum and finite volumes. Also pertinent lattice QCD results are presented. Further, the production mechanisms and decays of hadronic molecules are discussed and comments are given on the reliability of certain assertions often made in the literature.

  1. Information technology in chemistry research and education: Part I. Ab initio studies on the hydrolysis of aromatic diazonium ions. Part II. Theoretical study and molecular modeling of non-covalent interactions. Part III. Applying information technology in chemistry education

    NASA Astrophysics Data System (ADS)

    Wu, Zhengyu

    Part I of this dissertation studies the bonding in chemical reactions, while Part II studies the bonding related to inter- and intra-molecular interactions. Part III studies the application of IT technology in chemistry education. Part I of this dissertation (chapter 1 and chapter 2) focuses on the theoretical studies on the mechanism of the hydrolysis reactions of benzenediazonium ion and guaninediazonium ion. The major conclusion is that in hydrolysis reactions the "unimolecular mechanism" actually has to involve the reacting solvent molecule. Therefore, the unimolecular pathway can only serve as a conceptual model but will not happen in the reality. Chapter I concludes that the hydrolysis reaction of benzenediazonium ion takes the direct SN2Ar mechanism via a transition state but without going through a pre-coordination complex. Chapter 2 concludes that the formation of xanthine from the dediazoniation reaction of guaninediazonium ion in water takes the SN2Ar pathway without a transition state. And oxanine might come from an intermediate formed by the bimolecular deprotonation of the H atom on N3 of guaninediazonium ion synchronized with the pyrimidine ring opening reaction. Part II of this dissertation includes chapters 3, 4, and 5. Chapter 3 studies the quadrupole moment of benzene and quadrupole-quadrupole interactions. We concluded that the quadrupole-quadrupole interaction is important in the arene-arene interactions. Our study shows the most stable structure of benzene dimer is the point-to-face T-shaped structure. Chapter 4 studies the intermolecular interactions that result in the disorder of the crystal of 4-Chloroacetophenone-(4-methoxyphenylethylidene). We analyzed all the nearest neighbor interactions within that crystal and found that the crystal structure is determined by its thermo-dynamical properties. Our calculation perfectly reproduced the percentage of parallel-alignment of the crystal. Part III of this dissertation is focused on the

  2. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-03

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  3. Conformational Switching in a Light-Harvesting Protein as Followed by Single-Molecule Spectroscopy

    PubMed Central

    Gall, Andrew; Ilioaia, Cristian; Krüger, Tjaart P.J.; Novoderezhkin, Vladimir I.; Robert, Bruno; van Grondelle, Rienk

    2015-01-01

    Among the ultimate goals of protein physics, the complete, experimental description of the energy paths leading to protein conformational changes remains a challenge. Single protein fluorescence spectroscopy constitutes an approach of choice for addressing protein dynamics, and, among naturally fluorescing proteins, light-harvesting (LH) proteins from purple bacteria constitute an ideal object for such a study. LHs bind bacteriochlorophyll a molecules, which confer on them a high intrinsic fluorescence yield. Moreover, the electronic properties of these pigment-proteins result from the strong excitonic coupling between their bound bacteriochlorophyll a molecules in combination with the large energetic disorder due to slow fluctuations in their structure. As a result, the position and probability of their fluorescence transition delicately depends on the precise realization of the disorder of the set of bound pigments, which is governed by the LH protein dynamics. Analysis of these parameters using time-resolved single-molecule fluorescence spectroscopy thus yields direct access to the protein dynamics. Applying this technique to the LH2 protein from Rhodovulum (Rdv.) sulfidophilum, the structure—and consequently the fluorescence properties—of which depends on pH, allowed us to follow a single protein, pH-induced, reversible, conformational transition. Hence, for the first time, to our knowledge, a protein transition can be visualized through changes in the electronic structure of the intrinsic cofactors, at a level of a single LH protein, which opens a new, to our knowledge, route for understanding the changes in energy landscape that underlie protein function and adaptation to the needs of living organisms. PMID:26039172

  4. MoS2 monolayers on nanocavities: enhancement in light-matter interaction

    NASA Astrophysics Data System (ADS)

    Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen

    2016-06-01

    Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.

  5. Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.

    PubMed

    Kao, Joseph P Y; Muralidharan, Sukumaran

    2013-01-01

    Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter.

  6. Lattice Light Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution

    PubMed Central

    Chen, Bi-Chang; Legant, Wesley R.; Wang, Kai; Shao, Lin; Milkie, Daniel E.; Davidson, Michael W.; Janetopoulos, Chris; Wu, Xufeng S.; Hammer, John A.; Liu, Zhe; English, Brian P.; Mimori-Kiyosue, Yuko; Romero, Daniel P.; Ritter, Alex T.; Lippincott-Schwartz, Jennifer; Fritz-Laylin, Lillian; Mullins, R. Dyche; Mitchell, Diana M.; Bembenek, Joshua N.; Reymann, Anne-Cecile; Böhme, Ralph; Grill, Stephan W.; Wang, Jennifer T.; Seydoux, Geraldine; Tulu, U. Serdar; Kiehart, Daniel P.; Betzig, Eric

    2015-01-01

    Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, too small, or occur too rapidly to see clearly with existing tools. We crafted ultra-thin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at sub-second intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and complexity of living systems. PMID:25342811

  7. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  8. Damping of spin-dipole mode and generation of quadrupole mode excitations in a spin-orbit coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Blasing, David; Chen, Yong

    2017-04-01

    In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.

  9. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    PubMed

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  11. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2017-04-01

    Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).

  12. Deuteron electromagnetic form factors with the light-front approach

    NASA Astrophysics Data System (ADS)

    Sun, Bao-dong; Dong, Yu-bing

    2017-01-01

    The electromagnetic form factors and low-energy observables of the deuteron are studied with the help of the light-front approach, where the deuteron is regarded as a weakly bound state of a proton and a neutron. Both the S and D wave interacting vertexes among the deuteron, proton, and neutron are taken into account. Moreover, the regularization functions are also introduced. In our calculations, the vertex and the regularization functions are employed to simulate the momentum distribution inside the deuteron. Our numerical results show that the light-front approach can roughly reproduce the deuteron electromagnetic form factors, like charge G 0, magnetic G 1, and quadrupole G 2, in the low Q 2 region. The important effect of the D wave vertex on G 2 is also addressed. Supported by National Natural Science Foundation of China (10975146, 11475192), The fund provided by the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD" project is also appreciated, YBD thanks FAPESP grant 2011/11973-4 for funding his visit to ICTP-SAIFR

  13. I. Depolarized Light Scattering Studies of Rotational - Coupling in Liquids Composed of Small Anisotropic Molecules. I. Investigation of the Coupling Between Reorientation and Longitudinal Modes in the Brillouin Spectra of Liquids Composed of Anisotropic Molecules.

    NASA Astrophysics Data System (ADS)

    O'Steen, Byron Lance

    Part I. In an attempt to better understand the molecular interactions governing the behaviour of the coupling parameter R measured in light scattering experiments, the depolarized (I(,vh)) spectra for a series of liquids composed of small aromatic molecules, very similar in size and shape, have been measured. The molecules studied here were generally monosubstituted benzene and pyridine derivatives. All were found to exhibit the doublet structure indicative of dynamic coupling between molecular reorientation and shear modes, or more simply, rotational-translational coupling. The degree of this coupling is measured by a parameter R(O(LESSTHEQ) R(LESSTHEQ) 1) which is often though of as the fraction of the shear viscosity attributable to reorientational motion. From the depolarized spectra the coupling parameter R, collective reorientation frequency, and low frequency shear viscosity were determined. The values of R were found to vary from 0.24 to 0.55 for the liquids studied here. This range is nearly as broad as that observed in all previous studies, which have included such diverse molecules as carbon disulfide, tri-phenyl phosphite, and the highly anisotropic liquid crystal MBBA. This suggests that size and shape considerations, or steric forces, are not the primary factor in determining the degree of rotational-translational coupling as measured by light scattering. If this is indeed the case then other non-steric interactions must be producing the observed variation in R. With this in mind, we have examined possible electrostatic interactions. A simple correlation with dipole moment was not found to exist. Instead it appears that the variation in R can only be understood by consideration of the detailed molecular charge distribution. This is determined to a large extent by resonance interactions with the aromatic ring which are generally reflected in the change of dipole moment from the aliphatic compound (CH(,3)-R) to its aromatic analog (C(,6)H(,5)-R). Based

  14. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  15. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  16. Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I.C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arisemore » from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.« less

  17. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size

  18. Investigation of the Hydantoin Monomer and its Interaction with Water Molecules

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Hydantoin (Imidazolidine-2,4-dione, C_3H_4N_2O_2) is a five-membered heterocyclic compound of astrobiological interest. This molecule has been detected in carbonaceous chondrites [1], and its formation can rise from the presence of glycolic acid and urea, two prebiotic molecules [2]. The hydrolysis of hydantoin under acidic conditions can also produce glycine [3], an amino acid actively searched for in the interstellar medium. Spectroscopic data of hydantoin is very limited and mostly dedicated to the solid phase. The high resolution study in gas phase is restricted to the work recently published by Ozeki et al. reporting the pure rotational spectra of the ground state and two vibrational states of the molecule in the millimeter-wave region (90-370 GHz)[4]. Using chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, we recorded the jet-cooled rotational spectra of hydantoin with water between 2 to 8 GHz. We observed the ground state of hydantoin monomer and several water complexes with one or two water molecules. All the observed species exhibit a hyperfine structure due to the two nitrogen atoms present in the molecule, which were fully resolved and analyzed. Additional experiments with a ^{18}O enriched water sample were realized to determine the oxygen-atom positions of the water monomers. These experiments yielded accurate structural information on the preferred water binding sites. The observed complexes and the interactions that hold them together, mainly strong directional hydrogen bonds, will be presented and discussed. [1] Shimoyama, A. and Ogasawara, R., Orig. Life Evol. Biosph., 32, 165-179, 2002. DOI:10.1023/A:1016015319112. [2] Menor-Salván, C. and Marín-Yaseli, M.R., Chem. Soc. Rev., 41(16), 5404-5415, 2012. DOI:10.1039/c2cs35060b. [3] De Marcellus P., Bertrand M., Nuevo M., Westall F. and Le Sergeant d'Hendecourt L., Astrobiology. 11(9), 847-854, 2011. DOI:10.1089/ast.2011.0677. [4] Ozeki, H., Miyahara R., Ihara H., Todaka S., Kobayashi

  19. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-04-14

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work.

  20. Efficiency for preforming molecules from mixtures of light Fermi and heavy Bose atoms in optical lattices: The strong-coupling-expansion method

    NASA Astrophysics Data System (ADS)

    Hu, Anzi; Freericks, J. K.; Maśka, M. M.; Williams, C. J.

    2011-04-01

    We discuss the application of a strong-coupling expansion (perturbation theory in the hopping) for studying light-Fermi-heavy-Bose (like K40-Rb87) mixtures in optical lattices. We use the strong-coupling method to evaluate the efficiency for preforming molecules, the entropy per particle, and the thermal fluctuations. We show that within the strong interaction regime (and at high temperature), the strong-coupling expansion is an economical way to study this problem. In some cases, it remains valid even down to low temperatures. Because the computational effort is minimal, the strong-coupling approach allows us to work with much larger system sizes, where boundary effects can be eliminated, which is particularly important at higher temperatures. Since the strong-coupling approach is so efficient and accurate, it allows one to rapidly scan through parameter space in order to optimize the preforming of molecules on a lattice (by choosing the lattice depth and interspecies attraction). Based on the strong-coupling calculations, we test the thermometry scheme based on the fluctuation-dissipation theorem and find the scheme gives accurate temperature estimation even at very low temperature. We believe this approach and the calculation results will be useful in the design of the next generation of experiments and will hopefully lead to the ability to form dipolar matter in the quantum degenerate regime.

  1. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  2. Targeted studies on the interaction of nicotine and morin molecules with amyloid β-protein.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that occurs due to progressive deposition of amyloid β-protein (Aβ) in the brain. Stable conformations of solvated Aβ₁₋₄₂ protein were predicted by molecular dynamics (MD) simulation using the OPLSAA force field. The seven residue peptide (Lys-Leu-Val-Phe-Phe-Ala-Glu) Aβ₁₆₋₂₂ associated with AD was studied and reported in this paper. Since effective therapeutic agents have not yet been studied in detail, attention has focused on the use of natural products as effective anti-aggregation compounds, targeting the Aβ₁₋₄₂ protein directly. Experimental and theoretical investigation suggests that some compounds extracted from natural products might be useful, but detailed insights into the mechanism by which they might act remains elusive. The molecules nicotine and morin are found in cigarettes and beverages. Here, we report the results of interaction studies of these compounds at each hydrophobic residue of Aβ₁₆₋₂₂ peptide using the hybrid ONIOM (B3LYP/6-31G**:UFF) method. It was found that interaction with nicotine produced higher deformation in the Aβ₁₆₋₂₂ peptide than interaction with morin. MD simulation studies revealed that interaction of the nicotine molecule with the β-sheet of Aβ₁₆₋₂₂ peptide transforms the β-sheet to an α-helical structure, which helps prohibit the aggregation of Aβ-protein.

  3. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    NASA Astrophysics Data System (ADS)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  4. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  5. Decomposition of energetic molecules by interfacing with a catalytic oxide: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Wang, Fenggong; Tsyshevsky, Roman; Zverev, Anton; Mitrofanov, Anatoly; Kuklja, Maija

    Organic-inorganic interfaces provide both intrigues and opportunities for designing systems that possess properties and functionalities inaccessible by each individual component. In particular, mixing with a photocatalyst may significantly affect the adsorption, decomposition, and photoresponse of organic molecules. Here, we choose the formulation of TiO2 and trinitrotoluene (TNT), a highly catalytic oxide and a prominent explosive, as a prototypical example to explore the interaction at the interface on the photosensitivity of energetic materials. We show that, whether or not a catalytic oxide additive can help molecular decompositions under light illumination depends largely on the band alignment between the oxide surface and the energetic molecule. Furthermore, an oxygen vacancy can lead to the electron density transfer from the surface to the energetic molecules, causing an enhancement of the bonding between molecules and surface and a reduction of the molecular decomposition activation barriers.

  6. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  7. Effects of the quadrupole wakefields in a passive streaker

    DOE PAGES

    Craievich, Paolo; Lutman, Alberto A.

    2016-10-05

    A novel method based on transverse wakefields has been recently proposed to characterize the temporal profile of a relativistic electron bunch. The electron bunch is streaked by the interaction with the transverse wakefield excited when the electrons travel off-axis in a device called the passive streaker. Furthermore, for the large transverse off-axis offsets required to effectively streak the electron bunch, higher order modes can be excited. The time-dependent quadrupole wakefield of the dielectric-lined structure can cause a significant enlargement of the transverse profile at the screen. Consequently, the measurement resolution is decreased also at the bunch tail. We report onmore » how the temporal profile can be effectively reconstructed also including the defocusing effect for a given transverse beam distribution at the passive streaker.« less

  8. Drug-DNA interactions at single molecule level: A view with optical tweezers

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan

    Studies of small molecule--DNA interactions are essential for developing new drugs for challenging diseases like cancer and HIV. The main idea behind developing these molecules is to target and inhibit the reproduction of the tumor cells and infected cells. We mechanically manipulate single DNA molecule using optical tweezers to investigate two molecules that have complex and multiple binding modes. Mononuclear ruthenium complexes have been extensively studied as a test for rational drug design. Potential drug candidates should have high affinity to DNA and slow dissociation kinetics. To achieve this, motifs of the ruthenium complexes are altered. Our collaborators designed a dumb-bell shaped binuclear ruthenium complex that can only intercalate DNA by threading through its bases. Studying the binding properties of this complex in bulk studies took hours. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to thread and make it fast compared to the bulk experiments. Stretching single DNA molecules with different concentration of drug molecules and holding it at a constant force allows the binding to reach equilibrium. By this we can obtain the equilibrium fractional ligand binding and length of DNA at saturated binding. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics of this complex process. The second complex discussed in this study is Actinomycin D (ActD), a well studied anti-cancer agent that is used as a prototype for developing new generations of drugs. However, the biophysical basis of its activity is still unclear. Because ActD is known to intercalate double stranded DNA (dsDNA), it was assumed to block replication by stabilizing dsDNA in front of the replication fork. However, recent studies have shown that ActD binds with even higher affinity to imperfect duplexes and some sequences of single stranded DNA (ssDNA). We directly measure the on and off rates by

  9. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  10. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  11. Molecules to maps: tools for visualization and interaction in support of computational biology.

    PubMed

    Kraemer, E T; Ferrin, T E

    1998-01-01

    The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.

  12. Interactions of light and gravity in Chara internodal cells

    NASA Astrophysics Data System (ADS)

    Staves, Mark P.; Whitsit, Kimberly; Yeung, Edward

    2005-08-01

    The "shoots" of Chara corallina are composed of large (ca. 2-5 cm length and 0.5 mm diameter) internodal cells alternating with smaller, node-forming cells. We find that these shoots are both negatively gravitropic as well as positively phototropic. Differential growth in response to both gravity and light typically takes place in the two most apical (youngest) internodal cells, however the plants can be manipulated so that all curvature takes place in a single cell. We grew Chara in aquaria filled with artificial pond water with their rhizoids in 35 mm film canisters containing soil. Thus, it was easy to reorient the axis of the plant with respect to gravity. Experimental plants were allowed to develop to a stage where they had one or two visible internodal cells. In the absence of light, internodal cells are negatively gravitropic. If gravistimulated (horizontal) internodal cells are illuminated with white light from above, gravity and light act together and more rapid curvature ensues. If however, gravistimulated internodal cells are illuminated from below, gravity and light act antagonistically and light can overcome the gravity signal. We find that gravistimulated cells illuminated from below will bend up (i.e. negatively gravitropic and negatively phototropic) at light intensities below ca. 1 μmol m-2 s-1 whereas they curve downward (positively gravitropic and positively phototropic) at higher light intensities. Preliminary studies indicate that both blue and green light stimulate phototropism whereas red light is not effective. Chara thus provides a system in which a single, statolith-free cell responds to both light and gravity and in which the interactions of the light- and gravity-induced signal transduction pathways can be investigated.

  13. Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Nithyanandan, K.; Andral, Ugo; Tchofo-Dinda, Patrice; Grelu, Philippe

    2017-06-01

    Real-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics. Our experiments agree well with numerical predictions and bring insights to the analogy between self-organized states of lights and states of the matter.

  14. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  15. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Schatz, George C.

    2017-06-01

    A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.

  16. Third-order-harmonic generation in coherently spinning molecules

    NASA Astrophysics Data System (ADS)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  17. Spontaneous structural distortion of the metallic Shastry-Sutherland system Dy B4 by quadrupole-spin-lattice coupling

    NASA Astrophysics Data System (ADS)

    Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun

    2016-11-01

    Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.

  18. Organic light emitting board for dynamic interactive display

    PubMed Central

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-01-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications. PMID:28406151

  19. Organic light emitting board for dynamic interactive display

    NASA Astrophysics Data System (ADS)

    Kim, Eui Hyuk; Cho, Sung Hwan; Lee, Ju Han; Jeong, Beomjin; Kim, Richard Hahnkee; Yu, Seunggun; Lee, Tae-Woo; Shim, Wooyoung; Park, Cheolmin

    2017-04-01

    Interactive displays involve the interfacing of a stimuli-responsive sensor with a visual human-readable response. Here, we describe a polymeric electroluminescence-based stimuli-responsive display method that simultaneously detects external stimuli and visualizes the stimulant object. This organic light-emitting board is capable of both sensing and direct visualization of a variety of conductive information. Simultaneous sensing and visualization of the conductive substance is achieved when the conductive object is coupled with the light emissive material layer on application of alternating current. A variety of conductive materials can be detected regardless of their work functions, and thus information written by a conductive pen is clearly visualized, as is a human fingerprint with natural conductivity. Furthermore, we demonstrate that integration of the organic light-emitting board with a fluidic channel readily allows for dynamic monitoring of metallic liquid flow through the channel, which may be suitable for biological detection and imaging applications.

  20. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  1. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  2. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  3. Epsilon-near-zero modes for tailored light-matter interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Liu, Sheng; Benz, Alexander

    Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less

  4. Epsilon-near-zero modes for tailored light-matter interaction

    DOE PAGES

    Campione, Salvatore; Liu, Sheng; Benz, Alexander; ...

    2015-10-20

    Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less

  5. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NASA Astrophysics Data System (ADS)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  6. TULIPs: tunable, light-controlled interacting protein tags for cell biology.

    PubMed

    Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael

    2012-03-04

    Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.

  7. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Hornung, Balazs; McMullen, Ryan S; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2016-11-01

    Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made with perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas- and liquid-phase dynamics. Specifically, we show that in such solvents, the translational and rotational cooling of an energetic CN radical can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational-energy dissipation within these liquids can be modelled through a series of classic collisions, whereas classically simulated rotational-energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.

  8. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  9. Therapeutic blockade of LIGHT interaction with HVEM and LTβR attenuates in vivo cytotoxic allogeneic responses

    PubMed Central

    del Rio, Maria-Luisa; Fernandez-Renedo, Carlos; Scheu, Stefanie; Pfeffer, Klaus; Shintani, Yasushi; Kronenberg, Mitchell; Chaloin, Olivier; Schneider, Pascal; Rodriguez-Barbosa, Jose-Ignacio

    2016-01-01

    Background TNF/TNFR superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T cell activation and differentiation towards effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40/CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, HVEM and LTβR may decrease T cell-mediated allogeneic responses. Methods A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. Results We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors HVEM and LTβR. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host anti-donor short-term cytotoxic response in WT B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. Conclusions The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation. PMID:25226173

  10. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  11. Analysis of all-optical light modulation in proteorhodopsin protein molecules

    NASA Astrophysics Data System (ADS)

    Roy, Sukhdev; Sharma, Parag

    2008-03-01

    We present a detailed steady-state and time-dependent theoretical analysis of all-optical light modulation in the recently discovered, wild-type proteorhodopsin (WTpR) protein molecules based on excited-state absorption. Amplitude modulation of cw probe laser beam transmissions at 520, 405, 555 and 560 nm, corresponding to the peak absorption of pR, pRM, pRK and pRN intermediate states of pR photocycle, respectively, by cw and pulsed modulating pump laser beam at 520 nm have been analyzed. The effect of various spectral and kinetic parameters on modulation characteristics has been studied. There is an optimum value of concentration for a given pump intensity value for which maximum modulation of the probe beam can be achieved. The switching characteristics of probe beam at 405 and 520 nm exhibit dip and peak, respectively, which can be removed by decreasing the absorption of pRM state at 520 nm. The modulation in WTpR is at lower pump powers with smaller contrast in comparison to WT bacteriorhodopsin (bR) and WT pharaonis phoborhodopsin (ppR). The modulation characteristics exhibit unique features compared to bR and ppR.

  12. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    NASA Astrophysics Data System (ADS)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    2015-10-01

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  13. Interaction of light with dye-doped calcium phosphate nanoparticles

    NASA Astrophysics Data System (ADS)

    Russin, Timothy John

    In this work we present work on a novel amorphous calcium phosphate nanoparticle system for use in bioimaging and drug delivery applications. The system, by virtue of its synthesis, can be made to encapsulate and protect any number of molecules that are not suitable for biological applications on their own; for example, medication that is poorly soluble in aqueous solution can be encapsulated for delivery, or fragile optical molecules can be encapsulated to protect them from the local environment. We have encapsulated the near-infrared dye indocyanine green, which has beneficial properties for optical imaging (low biotoxicity, absorption and emission at a minimum of tissue absorption). There are two original works presented in this thesis. The first describes the measurement of the quantum yield of the indocyanine green-doped nanoparticles, as well as the development of a theoretical method to extract the molecular quantum yield of a fluorophore encapsulated in a dielectric sphere from effective quantum yield measurements of nanoparticle dispersions in solution. The second work is an application of diffuse scattering theory to the problem of light propagation in biological tissue; specifically, the limits on penetration depth for photodynamic therapy and bioimaging.

  14. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    PubMed

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  15. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    PubMed

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  16. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  17. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  18. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  19. Preventing Small Molecule Nucleation and Crystallization by Sequestering in a Micelle Corona

    NASA Astrophysics Data System (ADS)

    Li, Ziang; Johnson, Lindsay; Ricarte, Ralm; Yao, Letitia; Hillmyer, Marc; Bates, Frank; Lodge, Timothy

    We exploited a blend of hydroxypropyl methylcellulose acetate succinate and poly(N-isopropylacrylamide) (PNIPAm) to improve the solubility and dissolution of a rapidly crystallizing model drug molecule phenytoin and observed synergistic effect in vitro at constant drug loading by varying the blending ratio. Dynamic and static light scattering experiments showed that PNIPAm self-assembled into micelles in aqueous solution. We believe that adding these PNIPAm micelles inhibited both nucleation and crystal growth of phenytoin based on the polarized light micrographs taken from the dissolution media. The drug-polymer intermolecular interaction was revealed by nuclear Overhauser effect spectroscopy and further quantified by diffusion ordered spectroscopy. We found that the phenytoin molecules were sequestered in aqueous solution by partitioning into the corona of the micelle. The blend strategy through the use of self-assembled micelles showcased in this study offers a new platform for designing advanced excipients for oral drug delivery. This study was funded by The Dow Chemical Company through Agreement 224249AT with the University of Minnesota.

  20. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  1. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  2. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  3. Free iterative-complement-interaction calculations of the hydrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yusaku; Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2005-12-15

    The free iterative-complement-interaction (ICI) method based on the scaled Schroedinger equation proposed previously has been applied to the calculations of very accurate wave functions of the hydrogen molecule in an analytical expansion form. All the variables were determined with the variational principle by calculating the necessary integrals analytically. The initial wave function and the scaling function were changes to see the effects on the convergence speed of the ICI calculations. The free ICI wave functions that were generated automatically were different from the existing wave functions, and this difference was shown to be physically important. The best wave function reportedmore » in this paper seems to be the best worldwide in the literature from the variational point of view. The quality of the wave function was examined by calculating the nuclear and electron cusps.« less

  4. The interfacial energetics of the oil molecules interactions with shale media using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, J.

    2017-12-01

    Characterizing the behavior of oil molecules in nanopore is vital to the understanding of geochemistry of hydrocarbon-bearing fluid in ultra-tight source rocks, such as shale. The heterogeneous nature of hydrocarbon system of nanoscale complicates experimental studies of oil / shale interfacial interaction. Therefore, to gain mechanistic understanding of the interplay of oil molecules in rock nanopore, molecular dynamics simulations have been applied to study the interactions of polar and non-polar oil on both calcite and kerogen surfaces. The effect of surface wetting, oil polarity, and temperature on the Gibbs free energy of adsorption have been investigated. The free energy, entropy, and enthalpy profiles have been calculated using advanced molecular dynamics method: umbrella sampling. In agreement with experiment, 1) surface with adsorbed water layer significantly reduces the oil adsorption energy on kerogen and turns the calcite surface to highly oil-repellent; 2) polar oil has overall stronger adsorption free energy than that of non-polar oil on both non-wetted calcite and kerogen surface; 3) organic interface (e.g. kerogen) exhibits stronger adsorption of oil molecules compared to inorganic one (e.g. calcite). The finding of this study indicates that oil displacement in nanopores can be enhanced by promoting the water adsorption on surface and reducing the polarity of oil on both inorganic and organic interfaces.

  5. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  6. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  7. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  8. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principlemore » and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.« less

  9. Correlated Light-Matter Interactions in Cavity QED

    NASA Astrophysics Data System (ADS)

    Flick, Johannes; Pellegrini, Camilla; Ruggenthaler, Michael; Appel, Heiko; Tokatly, Ilya; Rubio, Angel

    2015-03-01

    In the last decade, time-dependent density functional theory (TDDFT) has been successfully applied to a large variety of problems, such as calculations of absorption spectra, excitation energies, or dynamics in strong laser fields. Recently, we have generalized TDDFT to also describe electron-photon systems (QED-TDDFT). Here, matter and light are treated on an equal quantized footing. In this work, we present the first numerical calculations in the framework of QED-TDDFT. We show exact solutions for fully quantized prototype systems consisting of atoms or molecules placed in optical high-Q cavities and coupled to quantized electromagnetic modes. We focus on the electron-photon exchange-correlation (xc) contribution by calculating exact Kohn-Sham potentials using fixed-point inversions and present the performance of the first approximated xc-potential based on an optimized effective potential (OEP) approach. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, and Fritz-Haber-Institut der MPG, Berlin

  10. Spectroscopy and Chemistry of Cold Molecules

    NASA Astrophysics Data System (ADS)

    Momose, Takamasa

    2012-06-01

    Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also

  11. Measuring masses of single bacterial whole cells with a quadrupole ion trap.

    PubMed

    Peng, Wen-Ping; Yang, Yi-Chang; Kang, Ming-Wei; Lee, Yuan T; Chang, Huan-Cheng

    2004-09-29

    A novel method has been developed to precisely measure the masses of single bacterial whole cells using a quadrupole ion trap as an electrodynamic balance. The bacterial cells were introduced into the ion trap by matrix-assisted laser desorption/ionization, confined in space by audio frequency ac fields, and detected by elastic light scattering. Mass measurement accuracy approaching 0.1% was achieved for Escherichia coli K-12 with a mass distribution of +/-3% from 60 repetitive measurements of the particles and their clusters. This is the first high-precision mass measurement reported for any intact microorganisms with masses greater than 1 x 1010 Da. The method opens new avenues for high-precision mass measurement of single microbial particles and offers an alternative approach for rapid identification of microorganisms by mass spectrometry.

  12. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  13. Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure-function relationships and interactions of binding molecules.

    PubMed

    Zhu, Shi-Yong; Li, Xue-Nan; Sun, Xiao-Chen; Lin, Jia; Li, Wei; Zhang, Cong; Li, Jin-Long

    2017-02-22

    Knowledge about mammalian selenoproteins is increasing. However, the selenoproteome of birds remains considerably less understood, especially concerning its biochemical characterization, structure-function relationships and the interactions of binding molecules. In this work, the SECIS elements, subcellular localization, protein domains and interactions of binding molecules of the selenoproteome in Gallus gallus were analyzed using bioinformatics tools. We carried out comprehensive analyses of the structure-function relationships and interactions of the binding molecules of selenoproteins, to provide biochemical characterization of the selenoproteome in Gallus gallus. Our data provided a wealth of information on the biochemical functions of bird selenoproteins. Members of the selenoproteome were found to be involved in various biological processes in chickens, such as in antioxidants, maintenance of the redox balance, Se transport, and interactions with metals. Six membrane-bound selenoproteins (SelI, SelK, SelS, SelT, DIO1 and DIO3) played important roles in maintaining the membrane integrity. Chicken selenoproteins were classified according to their ligand binding sites as zinc-containing matrix metalloselenoproteins (Sep15, MsrB1, SelW and SelM), POP-containing selenoproteins (GPx1-4), FAD-interacting selenoproteins (TrxR1-3), secretory transport selenoproteins (GPx3 and SelPa) and other selenoproteins. The results of our study provided new evidence for the unknown biological functions of the selenoproteome in birds. Future research is required to confirm the novel biochemical functions of bird selenoproteins.

  14. The Effects of Lighting and Interpersonal Distance on Counseling Interactions

    ERIC Educational Resources Information Center

    Dumont, Florent; Lecomte, Conrad

    1975-01-01

    Results showed a significant interactive effect of lighting and distance on the communication of empathy. Requests for reprints should be sent to F. Dumont, McGill University, 3700 McTavish Street, Montreal, P.Q., H3A 1Y2. (Author)

  15. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Harutyunyan, Boris

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the twomore » SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.« less

  16. Mechanical Design Studies of the MQXF Long Model Quadrupole for the HiLumi LHC

    DOE PAGES

    Pan, Heng; Anderssen, Eric; Ambrosio, Giorgio; ...

    2016-12-20

    The Large Hadron Collider Luminosity upgrade (HiLumi) program requires new low-β triplet quadrupole magnets, called MQXF, in the Interaction Region (IR) to increase the LHC peak and integrated luminosity. The MQXF magnets, designed and fabricated in collaboration between CERN and the U.S. LARP, will all have the same cross section. The MQXF long model, referred as MQXFA, is a quadrupole using the Nb3Sn superconducting technology with 150 mm aperture and a 4.2 m magnetic length and is the first long prototype of the final MQXF design. The MQXFA magnet is based on the previous LARP HQ and MQXFS designs. Inmore » this paper we present the baseline design of the MQXFA structure with detailed 3D numerical analysis. A detailed tolerance analysis of the baseline case has been performed by using a 3D finite element model, which allows fast computation of structures modelled with actual tolerances. Tolerance sensitivity of each component is discussed to verify the actual tolerances to be achieved by vendors. In conclusion, tolerance stack-up analysis is presented in the end of this paper.« less

  17. A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

    PubMed Central

    2010-01-01

    Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082

  18. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less

  19. Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E.

    PubMed

    Ferrero, Maximiliano R; Heins, Anja M; Soprano, Luciana L; Acosta, Diana M; Esteva, Mónica I; Jacobs, Thomas; Duschak, Vilma G

    2016-02-01

    In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host-parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E-Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E-Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E-Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E-Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.

  20. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis.

    PubMed

    Astani, Elahe K; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L

    2016-07-01

    A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.

    PubMed Central

    Liu, S Y; Kono, M; Ebrey, T G

    1991-01-01

    The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939

  2. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    PubMed

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  3. Three-dimensional light-tissue interaction models for bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Côté, D.; Allard, M.; Henkelman, R. M.; Vitkin, I. A.

    2005-09-01

    Many diagnostic and therapeutic approaches in medical physics today take advantage of the unique properties of light and its interaction with tissues. Because light scatters in tissue, our ability to develop these techniques depends critically on our knowledge of the distribution of light in tissue. Solutions to the diffusion equation can provide such information, but often lack the flexibility required for more general problems that involve, for instance, inhomogeneous optical properties, light polarization, arbitrary three-dimensional geometries, or arbitrary scattering. Monte Carlo techniques, which statistically sample the light distribution in tissue, offer a better alternative to analytical models. First, we discuss our implementation of a validated three-dimensional polarization-sensitive Monte Carlo algorithm and demonstrate its generality with respect to the geometry and scattering models it can treat. Second, we apply our model to bioluminescence tomography. After appropriate genetic modifications to cell lines, bioluminescence can be used as an indicator of cell activity, and is often used to study tumour growth and treatment in animal models. However, the amount of light escaping the animal is strongly dependent on the position and size of the tumour. Using forward models and structural data from magnetic resonance imaging, we show how the models can help to determine the location and size of tumour made of bioluminescent cancer cells in the brain of a mouse.

  4. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  5. Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a

    DOE PAGES

    DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...

    2016-03-09

    The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less

  6. Molecular self assembly and chiral recognition of copper octacyanophthalocyanine on Au(111): Interplay of intermolecular and molecule-substrate interactions.

    NASA Astrophysics Data System (ADS)

    Sk, Rejaul; Dhara, Barun; Miller, Joel; Deshpande, Aparna

    Submolecular resolution scanning tunneling microscopy (STM) of copper octacyanophthalocyanine, CuPc(CN)8, at 77 K demonstrates that these achiral molecules form a two dimensional (2D) tetramer-based self-assembly upon evaporation onto an atomically flat Au(111) substrate. They assemble in two different structurally chiral configurations upon adsorption on Au(111). Scanning tunneling spectroscopy (STS),acquired at 77 K, unveils the HOMO and LUMO energy levels of this self-assembly. Voltage dependent STM images show that each molecule in both the structurally chiral configurations individually becomes chiral by breaking the mirror symmetry due to the enhanced intermolecular dipolar coupling interaction at the LUMO energy while the individual molecules remain achiral at the HOMO energy and within the HOMO-LUMO gap. At the LUMO energy, the handedness of the each chiral molecule is decided by the direction of the dipolar coupling interaction in the tetramer unit cell. This preference for LUMO energy indicates that this chirality is purely electronic in nature and it manifests on top of the organizational chirality that is present in the self-assembly independent of the orbital energy. Supported by IISER Pune and DAE-BRNS, India (Project No. 2011/20/37C/17/BRNS).

  7. Dynamic Kerr effect in a strong uniform AC electric field for interacting polar and polarizable molecules in the mean field approximation

    NASA Astrophysics Data System (ADS)

    Deshmukh, Snehal D.; Déjardin, Pierre-Michel; Kalmykov, Yuri P.

    2017-09-01

    Analytical formulas for the electric birefringence response of interacting polar and anisotropically polarizable molecules due to a uniform alternating electric field are derived using Berne's forced rotational diffusion model [B. J. Berne, J. Chem. Phys. 62, 1154 (1975)] in the nonlinear version described by Warchol and Vaughan [J. Chem. Phys. 71, 502 (1979)]. It is found for noninteracting molecules that the signal consists of a frequency-dependent DC component superimposed on an oscillatory part with a frequency twice that of the AC driving field. However, unlike noninteracting molecules, the AC part strongly deviates from its dilute counterpart. This suggests a possible way of motivating new experimental studies of intermolecular interactions involving electro-optical methods and complementary nonlinear dielectric relaxation experiments.

  8. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  9. Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vexiau, R.; Lepers, M., E-mail: maxence.lepers@u-psud.fr; Aymar, M.

    2015-06-07

    We have calculated the isotropic C{sub 6} coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state X{sup 1}Σ{sup +}. We consider the ten species made up of {sup 7}Li, {sup 23}Na, {sup 39}K, {sup 87}Rb, and {sup 133}Cs. Following our previous work [Lepers et al., Phys. Rev. A 88, 032709 (2013)], we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels,more » and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it is applied for each of the three contributions to the sum-over-state formula. Our results are particularly relevant in the context of inelastic and reactive collisions between ultracold bialkali molecules in deeply bound or in Feshbach levels.« less

  10. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such asmore » lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.« less

  11. PREFACE: Light element atom, molecule and radical behaviour in the divertor and edge plasma regions

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kung

    2015-01-01

    This volume of Journal of Physics: Conference Series contains contributions by participants in an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on "Light element atom, molecule and radical behaviour in the divertor and edge plasma regions" (in magnetic fusion devices). Light elements are the dominant impurity species in fusion experiments and in the near-wall plasma they occur as atoms or ions and also as hydrides and other molecules and molecular ions. Hydrogen (H or D, and T in a reactor) is the dominant species in fusion experiments, but all light elements He - O and Ne are of interest for various reasons. Helium is a product of the D+T fusion reaction and is introduced in experiments for transport studies. Lithium is used for wall coating and also as a beam diagnostic material. Beryllium is foreseen as a wall material for the ITER experiment and is used on the Joint European Torus (JET) experiment. Boron may be used as a coating material for the vessel walls. Carbon (graphite or carbon-fiber composite) is often used as the target material for wall regions subject to high heat load. Nitrogen may be used as a buffer gas for edge plasma cooling. Oxygen is a common impurity in experiments due to residual water vapor. Finally, neon is another choice as a buffer gas. Data for collisional and radiative processes involving these species are important for plasma modelling and for diagnostics. The participants in the CRP met 3 times over the years 2009-2013 for a research coordination meeting. Reports and presentation materials for these meetings are available through the web page on coordinated research projects of the (IAEA) Atomic and Molecular Data Unit [1]. Some of the numerical data generated in the course of the CRP is available through the ALADDIN database [2]. The IAEA takes the opportunity to thank the participants in the CRP for their dedicated efforts in the course of the CRP and for their contributions to this volume. The IAEA

  12. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model.

    PubMed

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-06-29

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.

  13. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    PubMed Central

    Cosic, Irena; Cosic, Drasko; Lazar, Katarina

    2016-01-01

    The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714

  14. [Determination of hydroxyproline in liver tissue by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    PubMed

    Liu, Wei; Qi, Shenglan; Xu, Ying; Xiao, Zhun; Fu, Yadong; Chen, Jiamei; Yang, Tao; Liu, Ping

    2017-12-08

    A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 μm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 μg/L with the correlation coefficient ( R 2 ) of 0.9983. The limit of quantification was 0.78 μg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.

  15. Blackbody emission from light interacting with an effective moving dispersive medium.

    PubMed

    Petev, M; Westerberg, N; Moss, D; Rubino, E; Rimoldi, C; Cacciatori, S L; Belgiorno, F; Faccio, D

    2013-07-26

    Intense laser pulses excite a nonlinear polarization response that may create an effective flowing medium and, under appropriate conditions, a blocking horizon for light. Here, we analyze in detail the interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion properties. An analytical model based on a first Born approximation is found to be in excellent agreement with numerical simulations based on Maxwell's equations and shows that when a blocking horizon is formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results, diamond is proposed as a promising candidate medium for future studies of Hawking emission from artificial, dispersive horizons.

  16. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments.

    PubMed

    Rocha, M S

    2015-09-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.

  17. Molecular optoelectronics: the interaction of molecular conduction junctions with light.

    PubMed

    Galperin, Michael; Nitzan, Abraham

    2012-07-14

    The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.

  18. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  19. The MQXA quadrupoles for the LHC low-beta insertions

    NASA Astrophysics Data System (ADS)

    Ajima, Y.; Higashi, N.; Iida, M.; Kimura, N.; Nakamoto, T.; Ogitsu, T.; Ohhata, H.; Ohuchi, N.; Shintomi, T.; Sugawara, S.; Sugita, K.; Tanaka, K.; Taylor, T.; Terashima, A.; Tsuchiya, K.; Yamamoto, A.

    2005-09-01

    High-performance superconducting quadrupole magnets, MQXA, for the LHC low-beta insertions have been designed, manufactured in series and tested. The design field gradient of the quadrupole, which has a coil aperture of diameter 70 mm, was 240 T/m at 1.9 K; its effective length is 6.37 m, and it is required to operate reliably at up to 215 T/m when subjected to radiation heat deposit in the coils of up to 5 W/m. The series of 20 magnets has been produced in industry, and tested at KEK. The magnet design is explained, and the construction and performance of the series units, in terms of training, field quality and geometry, are presented.

  20. Quadrupole, octopole, and hexadecapole electric moments of Σ, Π, Δ, and Φ electronic states: Cylindrically asymmetric charge density distributions in linear molecules with nonzero electronic angular momentum

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    2007-08-01

    The number of independent components, n, of traceless electric 2l-multipole moments is determined for C∞v molecules in Σ ±, Π, Δ, and Φ electronic states (Λ=0,1,2,3). Each 2l pole is defined by a rank-l irreducible tensor with (2l+1) components Pm(l) proportional to the solid spherical harmonic rlYml(θ,φ). Here we focus our attention on 2l poles with l =2,3,4 (quadrupole Θ, octopole Ω, and hexadecapole Φ). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Λ. For Σ±(Λ=0) states, all 2l poles have one independent parameter (n=1). For spatially degenerate states—Π, Δ, and Φ (Λ=1,2,3)—the general rule reads n =1 for l <2∣Λ∣ (when the 2l-pole rank lies below 2∣Λ∣) but n =2 for higher 2l poles with l ⩾2∣Λ∣. The second nonzero term is the off-diagonal matrix element ⟨ψ+Λ∣P∣m∣=2Λ(l)∣ψ-Λ⟩. Thus, a Π(Λ =1) state has one dipole (μz) but two independent 2l poles for l ⩾2—starting with the quadrupole [Θzz,(Θxx-Θyy)]. A Δ(Λ =2) state has n =1 for 2(1,2,3) poles (μz,Θzz,Ωzzz) but n =2 for higher 2(l⩾4) poles—from the hexadecapole Φ up. For Φ(Λ =3) states, it holds that n =1 for 21 to 25 poles but n =2 for all 2(l⩾6) poles. In short, what is usually stated in the literature—that n =1 for all possible 2l poles of linear molecules—only applies to Σ± states. For degenerate states with n =2, all Cartesian 2l-pole components (l⩾2∣Λ∣) can be expressed as linear combinations of two irreducible multipoles, Pm=0(l ) and P∣m∣=2Λ(l) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Θ, Ω, and Φ moments calculated for Λ =0-3 states of selected diatomics (in parentheses): XΣ+2(CN ), XΠ2(NO ), aΠu3(C2), XΔ2(NiH ), XΔ3(TiO ), XΦ3(CoF ), and XΦ4(TiF ). States of Π symmetry are most affected by the deviation from axial symmetry.

  1. Van der Waals Interactions of Organic Molecules on Semiconductor and Metal Surfaces: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Li, Guo; Cooper, Valentino; Cho, Jun-Hyung; Tamblyn, Isaac; Du, Shixuan; Neaton, Jeffrey; Gao, Hong-Jun; Zhang, Zhenyu

    2012-02-01

    We present a comparative investigation of vdW interactions of the organic molecules on semiconductor and metal surfaces using the DFT method implemented with vdW-DF. For styrene/H-Si(100), the vdW interactions reverse the effective intermolecular interaction from repulsive to attractive, ensuring preferred growth of long wires as observed experimentally. We further propose that an external E field and the selective creation of Si dangling bonds can drastically improve the ordered arrangement of the molecular nanowires [1]. For BDA/Au(111), the vdW interactions not only dramatically enhances the adsorption energies, but also significantly changes the molecular configurations. In the azobenzene/Ag(111) system, vdW-DF produces superior predictions for the adsorption energy than those obtained with other vdW corrected DFT approaches, providing evidence for the applicability of the vdW-DF method [2].

  2. Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Nosir, M. A.; Martin-Gondre, L.; Bocan, G. A.; Díez Muiño, R.

    2016-09-01

    We present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12 = - 7.8 % and Δ23 = - 21.7 % with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34 = 9.7 % . Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.

  3. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  4. Direct detection signatures of self-interacting dark matter with a light mediator

    DOE PAGES

    Nobile, Eugenio Del; Kaplinghat, Manoj; Yu, Hai-Bo

    2015-10-27

    Self-interacting dark matter (SIDM) is a simple and well-motivated scenario that could explain long-standing puzzles in structure formation on small scales. If the required self-interaction arises through a light mediator (with mass ~ 10 MeV) in the dark sector, this new particle must be unstable to avoid overclosing the universe. The decay of the light mediator could happen due to a weak coupling of the hidden and visible sectors, providing new signatures for direct detection experiments. The SIDM nuclear recoil spectrum is more peaked towards low energies compared to the usual case of contact interactions, because the mediator mass ismore » comparable to the momentum transfer of nuclear recoils. We show that the SIDM signal could be distinguished from that of DM particles with contact interactions by considering the time-average energy spectrum in experiments employing different target materials, or the average and modulated spectra in a single experiment. Using current limits from LUX and SuperCDMS, we also derive strong bounds on the mixing parameter between hidden and visible sector.« less

  5. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  6. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  7. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light

    NASA Astrophysics Data System (ADS)

    Vitkin, I. Alex; Laszlo, Richard D.; Whyman, Claire L.

    2002-02-01

    The use of polarized light for investigation of optically turbid systems has generated much recent interest since it has been shown that multiple scattering does not fully scramble the incident polarization states. It is possible under some conditions to measure polarization signals in diffusely scattered light, and use this information to characterize the structure or composition of the turbid medium. Furthermore, the idea of quantitative detection of optically active (chiral) molecules contained in such a system is attractive, particularly in clinical medicine where it may contribute to the development of a non-invasive method of glucose sensing in diabetic patients. This study uses polarization modulation and synchronous detection in the perpendicular and in the exact backscattering orientations to detect scattered light from liquid turbid samples containing varying amounts of L and D (left and right) isomeric forms of a chiral sugar. Polarization preservation increased with chiral concentrations in both orientations. In the perpendicular orientation, the optical rotation of the linearly polarized fraction also increased with the concentration of chiral solute, but in different directions for the two isomeric forms. There was no observed optical rotation in the exact backscattering geometry for either isomer. The presence of the chiral species is thus manifest in both detection directions, but the sense of the chiral asymmetry is not resolvable in retroreflection. The experiments show that useful information may be extracted from turbid chiral samples using polarized light.

  8. Light Vehicle-Heavy Vehicle Interaction Data Collection and Countermeasure Research Project.

    DOT National Transportation Integrated Search

    2016-11-01

    The Light Vehicle-Heavy Vehicle Interaction (LV-HV) Data Collection and Countermeasure Research Project : leveraged data from the Drowsy Driver Warning System Field Operational Test (DDWS FOT) to investigate a : set of research issues relating to dri...

  9. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  10. Magnetic quench antenna for MQXF quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  11. Artificial light at night alters trophic interactions of intertidal invertebrates.

    PubMed

    Underwood, Charlotte N; Davies, Thomas W; Queirós, Ana M

    2017-07-01

    Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the

  12. Coupling control and optimization at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Wurtz, W. A.

    2018-06-01

    We present a detailed study using the skew quadrupoles in the Canadian Light Source storage ring lattice to control the parameters of a coupled lattice. We calculate the six-dimensional beam envelop matrix and use it to produce a variety of objective functions for optimization using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. MOPSO produces a number of skew quadrupole configurations that we apply to the storage ring. We use the X-ray synchrotron radiation diagnostic beamline to image the beam and we make measurements of the vertical dispersion and beam lifetime. We observe satisfactory agreement between the measurements and simulations. These methods can be used to adjust phase space coupling in a rational way and have applications to fine-tuning the vertical emittance and Touschek lifetime and measuring the gas scattering lifetime.

  13. Biosensor-based small molecule fragment screening with biolayer interferometry

    NASA Astrophysics Data System (ADS)

    Wartchow, Charles A.; Podlaski, Frank; Li, Shirley; Rowan, Karen; Zhang, Xiaolei; Mark, David; Huang, Kuo-Sen

    2011-07-01

    Biosensor-based fragment screening is a valuable tool in the drug discovery process. This method is advantageous over many biochemical methods because primary hits can be distinguished from non-specific or non-ideal interactions by examining binding profiles and responses, resulting in reduced false-positive rates. Biolayer interferometry (BLI), a technique that measures changes in an interference pattern generated from visible light reflected from an optical layer and a biolayer containing proteins of interest, is a relatively new method for monitoring small molecule interactions. The BLI format is based on a disposable sensor that is immersed in 96-well or 384-well plates. BLI has been validated for small molecule detection and fragment screening with model systems and well-characterized targets where affinity constants and binding profiles are generally similar to those obtained with surface plasmon resonsance (SPR). Screens with challenging targets involved in protein-protein interactions including BCL-2, JNK1, and eIF4E were performed with a fragment library of 6,500 compounds, and hit rates were compared for these targets. For eIF4E, a protein containing a PPI site and a nucleotide binding site, results from a BLI fragment screen were compared to results obtained in biochemical HTS screens. Overlapping hits were observed for the PPI site, and hits unique to the BLI screen were identified. Hit assessments with SPR and BLI are described.

  14. LIGHT-ing Up Prostate Cancer for Immunotherapy

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-15-1-0491 TITLE: LIGHT -ing up prostate cancer for immunotherapy PRINCIPAL INVESTIGATOR: W. Martin Kast, Ph.D...FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 4. TITLE AND SUBTITLE LIGHT -ing up prostate cancer...expression of LIGHT molecules within the tumor milieu counteracts cancer immune-evasion mechanisms and instigates activation and migration of T-cells

  15. Slowing techniques for loading a magneto-optical trap of CaF molecules

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  16. Nanocomplexes of Photolabile Polyelectrolyte and Upconversion Nanoparticles for Near-Infrared Light-Triggered Payload Release.

    PubMed

    Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue

    2018-06-07

    A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.

  17. Transverse-rapidity yt dependence of the nonjet azimuth quadrupole from 62- and 200-GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David T.; Prindle, Duncan J.; Trainor, Thomas A.

    2015-06-01

    Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a "perfect liquid" is formed in heavy-ion collisions at the Relativistic Heavy Ion Collider. However, conventional v2 methods based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution. In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted by v2{2D} . We establish systematic variations of the NJ quadrupole on yt, centrality, and collision energy. We adopt transverse-rapidity yt as both a velocity measure and a logarithmic alternative to transverse momentum pt. Based on NJ-quadrupole trends, we derive a completely factorized universal parametrization of quantity v2{2D} (yt,b ,√{sN N}) which describes the centrality, yt, and energy dependence. From yt-differential v2(yt) data we isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appears to be uncorrelated with a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole trends have interesting implications for hydro interpretations.

  18. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  19. Light-induced valley polarization in interacting and nonlinear Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Bertrand, Simon; Garate, Ion; Côté, René

    2017-08-01

    It has been recently predicted that the interplay between Coulomb interactions and Berry curvature can produce interesting optical phenomena in topologically nontrivial two-dimensional insulators. Here, we present a theory of the interband optical absorption for three-dimensional, doped Weyl semimetals. We find that the Berry curvature, Coulomb interactions, and the nonlinearity in the single-particle energy spectrum can together enable a light-induced valley polarization. We support and supplement our numerical results with an analytical toy model calculation, which unveils topologically nontrivial Mahan excitons with nonzero vorticity.

  20. Single-molecule dynamics in nanofabricated traps

    NASA Astrophysics Data System (ADS)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  1. Selectivity by Small-Molecule Inhibitors of Protein Interactions Can Be Driven by Protein Surface Fluctuations

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2015-01-01

    Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions. PMID:25706586

  2. Light-induced quantitative microprinting of biomolecules

    NASA Astrophysics Data System (ADS)

    Strale, Pierre-Olivier; Azioune, Ammar; Bugnicourt, Ghislain; Lecomte, Yohan; Chahid, Makhlad; Studer, Vincent

    2017-02-01

    Printing of biomolecules on substrates has developed tremendously in the past few years. The existing methods either rely on slow serial writing processes or on parallelized photolithographic techniques where cumbersome mask alignment procedures usually impair the ability to generate multi-protein patterns. We recently developed a new technology allowing for high resolution multi protein micro-patterning. This technology named "Light-Induced Molecular Adsorption of Proteins (LIMAP)" is based on a water-soluble photo-initiator able to reverse the antifouling property of polymer brushes when exposed to UV light. We developed a wide-field pattern projection system based on a DMD coupled to a conventional microscope which permits to generate arbitrary grayscale patterns of UV light at the micron scale. Interestingly, the density of adsorbed molecules scales with the dose of UV light thus allowing the quantitative patterning of biomolecules. The very low non specific background of biomolecules outside of the UV-exposed areas allows for the sequential printing of multiple proteins without alignment procedures. Protein patterns ranging from 500 nm up to 1 mm can be performed within seconds, as well as gradients of arbitrary shapes. The range of applications of the LIMAP approach extends from the single molecule up to the multicellular scale with an exquisite control over local protein density. We show that it can be used to generate complex protein landscapes useful to study protein-protein, cell-cell and cell-matrix interactions.

  3. Visualization of DNA molecules in time during electrophoresis

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1991-01-01

    For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.

  4. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    PubMed

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  5. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimle, Timothy

    and nature of the unpaired electrons. Analysis of the hyperfine interactions (i.e. Fermi-contact, nuclear electric quadrupole, etc.) is particularly insightful because it results from the interaction of nuclei with non-zero spin and the chemically important valence electrons. The bulk of the spectroscopic techniques used in these studies exploit the sensitivity of laser induced fluorescence (LIF) detection. The spectroscopic schemes employed include: a) cw and pulsed laser field-free(FF) excitation and dispersed LIF (DLIF); b) optical Stark; c) optical Zeeman; d) pump/probe microwave double resonance (PPMODR); e) fluorescence lifetimes, and f) resonant and non-resonant two-photon ionization TOF mass spectrometry. Vibrational spacing, force constants and electronic states distributions are derived from the analysis of pulsed dye laser excitation and DLIF spectra. Geometric structure (bond lengths and angles) and hyperfine parameters are derived from the analysis of cw-laser LIF and PPMODR spectra. Permanent electric dipole moments, mel,, and magnetic dipole moments, mm, are derived from the analysis of optical Stark and Zeeman spectra, respectively. Transition moments are derived from the analysis of radiative lifetimes. A supersonic molecular beam sample of these ephemeral molecules is generated by skimming the products of either a laser ablation/reaction source or a d.c. discharge source.« less

  6. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles.

    PubMed

    Sindelka, Milan; Moiseyev, Nimrod

    2006-04-27

    We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

  7. Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins.

    PubMed

    Gao, Jing; van Kleeff, Paula J M; Oecking, Claudia; Li, Ka Wan; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; de Boer, Albertus H

    2014-12-01

    Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N-invertase activity is underscored by the light-induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light-induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca(++) changes that activate calcium-dependent kinases, await further study. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    PubMed

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  9. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-28

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  10. Inter-molecule interaction for magnetic property of vanadyl tetrakis(thiadiazole) porphyrazine film on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro

    2018-05-01

    We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.

  11. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  12. Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC

    DOE PAGES

    Ferracin, P.; G. Ambrosio; Anerella, M.; ...

    2015-12-18

    The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less

  13. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  14. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in Citrus juices.

    PubMed

    Abad-García, Beatriz; Garmón-Lobato, Sergio; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2009-09-01

    A mass spectrometric method using electrospray ionization with triple quadrupole and quadrupole time-of-flight hybrid (Q-Tof) mass spectrometry has been applied to the structural characterization of dihydroflavonols. This family of compounds has been studied by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the first time in this work. A comprehensive study of the product ion MS spectra of the [M+H](+) ion of a commercially available standard has been performed. The most useful fragmentations in terms of structural identification are those that involve cleavage of the C-ring, resulting in diagnostic ions of dihydroflavonol family: (1,3)A(0) (+), (1,2)B(0) (+), (1,2)B(0) (+)-CO, (0,2)A(0) (+), (0,2)A(0) (+)-H(2)O, (0,2)A(0) (+)-CO, and (0,2)A(0) (+)-H(2)O-CO, that allow the characterization of the substituents in the A- and B-rings. In addition to those ions, other product ions due to losses of H(2)O and CO molecules from the Y(0) (+) ion were observed. Their fragmentation mechanisms and ion structures have been proposed. The established fragmentation patterns have been used to successfully identity three dihydroflavonols found in tangerine juices for the first time. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. 3D-Printed Beam Splitter for Polar Neutral Molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  16. Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors

    PubMed Central

    Zhang, Kam Y. J.

    2013-01-01

    One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs. PMID:24130741

  17. Root-shoot interaction in the greening of wheat seedlings grown under red light

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.

    1995-01-01

    Wheat seedlings grown with roots exposed to constant red light (300-500 micromoles m-2 s-1) did not accumulate chlorophyll in the leaves. In contrast, seedlings grown with their roots shielded from light accumulated chlorophylls. Chlorophyll biosynthesis could be induced in red-light-grown chlorophyll-deficient yellow plants by either reducing the red-light intensity at the root surface to 100 micromoles m-1 s-1 or supplementing with 6% blue light. The inhibition of chlorophyll biosynthesis was due to impairment of the Mg-chelatase enzyme working at the origin of the Mg-tetrapyrrole pathway. The root-perceived photomorphogenic inhibition of shoot greening demonstrates root-shoot interaction in the greening process.

  18. Prediction of thermodynamic properties of coal derivatives. Progress report, September 1, 1981-August 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohue, M.D.

    It is the purpose of this research program to develop a model to predict the thermodynamic properties of coal derivatives. Unlike natural gas and petroleum, coal and its gasification and liquefaction products are predominantly aromatic and have substantial quadrupole moments. Because of these quadrupole forces, the numerous correlational techniques that have been developed for petroleum products cannot be used to predict the thermodynamic properties of coal derivatives. We are presently developing a correlation that will be useful in predicting the thermodynamic properties of coal derivatives. This theory is based on the Perturbed-Hard-Chain theory, but is different from PHCT in twomore » respects. First, PHCT uses a square-well to describe the intermolecular potential energy between two molecules. In our new theory, the Lennard-Jones potential energy function is used. The second difference is that we take into account the effect of quadrupole forces on the intermolecular potential energy. In PHCT these forces were ignored. In PHCT the contributions to the partition function (or equation of state) that arise from the attractive forces between molecules (regardless of whether these forces are treated as a square-well or by Lennard-Jones) are calculated by assuming that they are perturbations on a hard sphere. In calculating the contributions to the partition function that arise from the quadrupole-quadrupole interactions, we use a second order perturbation about the Lennard-Jones. For aromatic molecules, the effect of this additional perturbation is significant.« less

  19. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.

  20. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    PubMed

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.