Sample records for quadrupole moment measurements

  1. Weak quadrupole moments

    NASA Astrophysics Data System (ADS)

    Lackenby, B. G. C.; Flambaum, V. V.

    2018-07-01

    We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.

  2. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of bothmore » tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.« less

  3. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  4. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  5. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    NASA Astrophysics Data System (ADS)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  6. Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I.C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arisemore » from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.« less

  7. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  8. Year-2017 nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Pyykkö, Pekka

    2018-05-01

    A 'year-2017' set of nuclear quadrupole moments, Q, is presented. Compared to the previous, 'year-2008' set, a major revision of the value, or an improvement of the accuracy is reported for 21H, 37, 3918Ar, 39, 40, 4119K, 6730Zn, 48Cd, 49In, 50Sn (Mössbauer state), 51Sb, 87Fr and 90Th. Slight improvements or valuable reconfirmations exist for 4Be, 6C, 16S, 17Cl, 33As, 35Br, 53I, 54Xe, 56Ba, 57La and 72Hf.

  9. Moment of inertia, quadrupole moment, Love number of neutron star and their relations with strange-matter equations of state

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati

    2018-02-01

    We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.

  10. Measurement of the electric quadrupole moments of CO2 , CO, N2 , Cl2 and BF3

    NASA Astrophysics Data System (ADS)

    Graham, C.; Imrie, D. A.; Raab, R. E.

    The electric quadrupole moments of a number of molecules have been determined from measurement of the birefringence induced in a gas by an electric field gradient. The values obtained are: carbon dioxide (- 14·27 ± 0·61)x 10-40 C m2, carbon monoxide (- 9·47 ± 0·15)x 10-40 C m2, nitrogen (- 4·65±0·08)x 10-40 C m2 and boron trifluoride (12·6±0·7)x 10-40 C m2. In the calculation of the moments for carbon monoxide and boron trifluoride the small hyperpolarizability contribution was neglected in the absence of known values. By means of the Jones calculus a detailed analysis was made of the effects of strain birefringence in the cell windows and imperfect orientation of polarizing components in the light path. This analysis led to a measurement procedure which yielded results significantly different from previously reported ones obtained with essentially the same apparatus. The probable error in the earlier procedure is identified.

  11. A note on the electric quadrupole and higher electric moments of ozone (O3)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2012-02-01

    We have obtained accurate ab initio and density functional theory values for the quadrupole, octopole and hexadecapole electric moments of the cyclic and open forms of ozone. Our best values have been calculated at the coupled cluster level of theory with molecule-specific basis sets. For the quadrupole moment (Θαβ/ea02) they are Θyy = -1.366 (cyclic), Θxx = -1.202, Θyy = 1.426 and Θxx = -0.223 (open). For the octopole (Ωαβγ/ea03) and hexadecapole (Φαβγδ/ea04) moments our best results are Ωzzz = 2.25, Φyyyy = 19.53 (cyclic), Ωxxz = 3.28, Ωzzz = -2.97, Φxxxx = -6.00, Φyyyy = -3.90 and Φzzzz = -3.54 (open).

  12. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  13. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  14. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  15. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  16. The 1.5 post-Newtonian radiative quadrupole moment in the context of a nonlocal field theory of gravity

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain

    2018-04-01

    We recently suggested a nonlocal modification of Einstein’s field equations in which Newton’s constant G was promoted to a covariant differential operator G_Λ(\\Box_g) . The latter contains two independent contributions which operate respectively in the infrared (IR) and ultraviolet (UV) energy regimes. In the light of the recent direct gravitational radiation measurements we aim to determine the UV-modified 1.5 post-Newtonian radiative quadrupole moment of a generic n-body system. We eventually use these preliminary results in the context of a binary system and observe that in the limit vanishing UV parameters we precisely recover the corresponding general relativistic results. Moreover we notice that the leading order deviation of the UV-modified radiative quadrupole moment numerically coincides with findings obtained in the framework of calculations performed previously in the context of the perihelion precession of Mercury.

  17. The quadrupole moments of Cd and Zn isotopes - an apology

    NASA Astrophysics Data System (ADS)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  18. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D{sub 2} and HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Tung Weicheng; Adamowicz, Ludwik

    2010-04-15

    We have carried out an accurate determination of the quadrupole moment of the deuteron nucleus. The evaluation of the constant is achieved by combining high accuracy Born-Oppenheimer calculations of the electric field gradient at the nucleus in the H{sub 2} molecule with spectroscopic measurements of the quadrupolar splitting in D{sub 2} and HD. The derived value is Q=0.285783(30) fm{sup 2}.

  19. Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR.

    PubMed

    Kiyama, Takashi; Itoh, Masayuki

    2003-10-17

    47,49Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/square root of 3(d(xy)+d(yz)+d(zx)) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.

  20. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N 3LO.« less

  1. Consequences of a new experimental determination of the quadrupole moment of the sun for gravitation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, J.W.

    1983-03-07

    A preliminary experimental determination by Hill, Bos and Goode of the interior rotation of the sun leads to a nonzero value for the quadrupole-moment coefficient J/sub 2/. This produces a deviation of 1.6% from Einstein's prediction of the precession of the perihelion of Mercury. A nonsymmetric gravitational theory can fit the measured precession with this J/sub 2/ and all other solar-system relativity experiments for one value of a post-Newtonian parameter in the theory. A prediction is made for the perihelion precession of Icarus.

  2. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    NASA Astrophysics Data System (ADS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  3. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  4. Beyond the Boost: Measuring the Intrinsic Dipole of the Cosmic Microwave Background Using the Spectral Distortions of the Monopole and Quadrupole.

    PubMed

    Yasini, Siavash; Pierpaoli, Elena

    2017-12-01

    We present a general framework for the accurate spectral modeling of the low multipoles of the cosmic microwave background (CMB) as observed in a boosted frame. In particular, we demonstrate how spectral measurements of the low multipoles can be used to separate the motion-induced dipole of the CMB from a possible intrinsic dipole component. In a moving frame, the leakage of an intrinsic dipole moment into the CMB monopole and quadrupole induces spectral distortions with distinct frequency functions that, respectively, peak at 337 and 276 GHz. The leakage into the quadrupole moment also induces a geometrical distortion to the spatial morphology of this mode. The combination of these effects can be used to lift the degeneracy between the motion-induced dipole and any intrinsic dipole that the CMB might possess. Assuming the current peculiar velocity measurements, the leakage of an intrinsic dipole with an amplitude of ΔT=30  μK into the monopole and quadrupole moments will be detectable by a PIXIE-like experiment at ∼40  nK (2.5σ) and ∼130  nK (11σ) level at their respective peak frequencies.

  5. Electric quadrupole moment of the 5d {sup 2}D{sub 3/2} state in {sup 171}Yb{sup +}: A relativistic coupled-cluster analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latha, K. V. P.; Chaudhuri, R. K.; Das, B. P.

    2007-12-15

    The electric quadrupole moment for the 5d {sup 2}D{sub 3/2} state of {sup 171}Yb{sup +}, has been calculated using the relativistic coupled-cluster method. Earlier a similar calculation was performed for the 4d {sup 2}D{sub 5/2} state of {sup 88}Sr{sup +} which is the most accurate determination to date [Sur et al., Phys. Rev. Lett. 96, 193001 (2006)]. The present calculation of the electric quadrupole moment of {sup 171}Yb{sup +} yielded a value 2.157ea{sub 0}{sup 2} where the experimental value is 2.08(11)ea{sub 0}{sup 2}; a{sub 0} is the Bohr radius and e the elementary charge. We discuss in this paper ourmore » results for {sup 171}Yb{sup +} in detail and highlight the dominant correlation effects present. We have presented the effect of inner core excitations and their contribution to the electric quadrupole moment, which is a property sensitive to regions away from the nucleus.« less

  6. Gamma-ray timing of redback PSR J2339-0533: Hints for gravitational quadrupole moment changes

    DOE PAGES

    Pletsch, Holger J.; Clark, Colin J.

    2015-06-25

    Here, we present the results of precision gamma-ray timing measurements of the binary millisecond pulsar PSR J2339–0533, an irradiating system of the "redback" type, using data from the Fermi Large Area Telescope. We describe an optimized analysis method to determine a long-term phase-coherent timing solution spanning more than six years, including a measured eccentricity of the binary orbit and constraints on the proper motion of the system. A major result of this timing analysis is the discovery of an extreme variation of the nominal 4.6 hr orbital periodmore » $${P}_{\\mathrm{orb}}$$ over time, showing alternating epochs of decrease and increase. We inferred a cyclic modulation of $${P}_{\\mathrm{orb}}$$ with an approximate cycle duration of 4.2 yr and a modulation amplitude of $${\\rm{\\Delta }}{P}_{\\mathrm{orb}}/{P}_{\\mathrm{orb}}=2.3\\times {10}^{-7}$$. Considering different possible physical causes, the observed orbital-period modulation most likely results from a variable gravitational quadrupole moment of the companion star due to cyclic magnetic activity in its convective zone.« less

  7. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  8. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  9. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  10. The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Özdem, U.

    2018-05-01

    The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.

  11. Analytical and numerical calculation of the second-order moment of the beam using a capacitive pickup

    NASA Astrophysics Data System (ADS)

    Tsemo Kamga, Joel Alain; Müller, Wolfgang F. O.; Weiland, Thomas

    2016-04-01

    Beam emittance has particular importance in particle physics, because it provides information about the quality of the particle beam. There are many techniques for measuring the beam emittance, such as that proposed by Miller et al. [Report No. SLAC-PUB-3186, (A) (1983)]. This technique is based on determining the emittance by measuring the second-order moment of the beam using quadrupole pickups consisting of four symmetrical electrodes placed around the beam pipe at 90° intervals, respectively. Based on Miller's approach, two signal processing methods are generally used to get the quadrupole moment of the beam, namely the difference over sum and the log ratio [P. Li et al., IEEE Nuclear Science Symposium Conference Record, N24-404, 2007, pp. 1675-1678] methods. However, these traditional methods provide results with a good accuracy only for a well centered beam. The method presented in this paper, which starts with Miller's approach, considerably reduces the impact of the dipole signal on the quadrupole moment measurement for both small and large values of the beam position. Furthermore, a methodology for the numerical determination of the sensitivity of quadrupole pickups will be presented.

  12. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    DOE PAGES

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; ...

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0 + 1 2 + 1), Q(2 + 1), and g(2 + 1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2 + 1), hasmore » been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less

  13. The quadrupole moments of some even–even nuclei around the mass of A ~ 80: {sup 68−80}Ge on the neighborhood of {sup 76−84}Kr and {sup 76−84}Se isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoruk, Abdulkadir, E-mail: yorukabdulkadir@hotmail.com; Turkan, Nureddin, E-mail: nureddin.turkan@medeniyet.edu.tr

    2016-09-15

    We have carried out the calculation of the quadrupole moments Q(2{sub 1}{sup +}) and electromagnetic transition rates B(E2) of some levels within the framework of the interacting boson model for even-mass Ge nuclei. The presented predictions of the quadrupole moments and B(E2) ratios for Ge nuclei are compared with the results of some previous experimental and theoretical ones along with those of the neighboring Kr and Se isotopes and then it was seen that they agree well with the previous experimental and theoretical ones.

  14. Magnetic moment measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap

    NASA Astrophysics Data System (ADS)

    Coppock, Joyce; Nagornykh, Pavel; Murphy, Jacob; Kane, Bruce

    Measurement of small magnetic effects in 2D materials can be facilitated by decoupling the material from its substrate using particle trapping techniques. We investigate the mechanical and magnetic properties of a rotating micron-scale graphene nanoplatelet levitated in a quadrupole electric field trap in high vacuum. Its motion is observed optically, via the scattering of a low-power laser beam. Illumination by a circularly polarized laser causes the nanoplatelet to rotate at frequencies of 10-40 MHz. Frequency locking to an applied RF electric field stabilizes the nanoplatelet so that its axis of rotation is normal to its surface. We find that residual slow dynamics of the axis orientation are determined by an applied magnetic field. From frequency- and field-dependent measurements, we observe one magnetic moment arising from the rapid rotation of the charged nanoplatelet and one originating from diamagnetism, and we estimate their magnitudes. We determine a gyromagnetic ratio corresponding to the rotational moment and discuss our measurements of diamagnetism in the context of theories of the properties of graphene. Our measurements imply a torque sensitivity of better than 10-23 N-m.

  15. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  16. An online database of nuclear electromagnetic moments

    NASA Astrophysics Data System (ADS)

    Mertzimekis, T. J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure - including nuclear moments - which hinders the information management. A new, dedicated, public and user friendly online database (http://magneticmoments.info) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.

  17. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  18. A new online database of nuclear electromagnetic moments

    NASA Astrophysics Data System (ADS)

    Mertzimekis, Theo J.

    2017-09-01

    Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.

  19. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  20. Electromagnetic moments of 22F

    NASA Astrophysics Data System (ADS)

    Mihara, M.; Matsuta, K.; Komurasaki, J.; Hirano, H.; Nishimura, D.; Momota, S.; Ohtsubo, T.; Izumikawa, T.; Shimbara, Y.; Kubo, T.; Kameda, D.; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zhu, Shengyun; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.; Nagatomo, T.; Matsumiya, R.; Ishikawa, D.; Fukuda, M.; Minamisono, T.; Nojiri, Y.; Alonso, J. R.; Crebs, G. F.; Symons, T. J. M.

    2010-03-01

    The magnetic dipole (μ) and electric quadrupole (Q) moments of short-lived nucleus 22F (Iπ=4+, T=4.2s) have been measured for the first time by means of the β-NMR technique. A spin polarized 22F beam was produced through the charge exchange reaction of 22Ne and was implanted into single crysltals of NaF and MgF2 for μ and Q measurements, respectively. As a result, |μ(F22)|=(2.69443±0.00039)μ and |Q(F22)|=(3±2)mb was obtained. These values are well reproduced by the shell model calculations.

  1. A dipole moment of the microwave background as a cosmological effect

    NASA Astrophysics Data System (ADS)

    Paczynski, Bohdan; Piran, Tsvi

    1990-12-01

    A spherically symmetrical Tolman-Bondi cosmological model is presented in which the curvature of space and the entropy variety with distance from the center. The dipole and quadrupole moments in the distribution of the microwave background radiation are calculated as a function of cosmic time and position of an observer, assuming that the distance to the horizon is much smaller than any characteristic scale in the model. The quadrupole moment is found to be affected mostly by the gradient in the curvature of space while the dipole moment is dominated by the gradient of entropy. The results indicate that the observed dipole in the microwave background may be cosmological in origin. Observational tests of this argument are suggested.

  2. A dipole moment of the microwave background as a cosmological effect

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Piran, Tsvi

    1990-01-01

    A spherically symmetrical Tolman-Bondi cosmological model is presented in which the curvature of space and the entropy variety with distance from the center. The dipole and quadrupole moments in the distribution of the microwave background radiation are calculated as a function of cosmic time and position of an observer, assuming that the distance to the horizon is much smaller than any characteristic scale in the model. The quadrupole moment is found to be affected mostly by the gradient in the curvature of space while the dipole moment is dominated by the gradient of entropy. The results indicate that the observed dipole in the microwave background may be cosmological in origin. Observational tests of this argument are suggested.

  3. HYPERFINE STRUCTURES AND NUCLEAR MOMENTS OF Lu$sup 176$m, Br$sup 80$, Br$sup 80$m, AND I$sup 132$ (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.B.

    1962-09-01

    The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)

  4. Measurement of magnetic moment via optical transmission

    NASA Astrophysics Data System (ADS)

    Heidsieck, Alexandra; Schmid, Daniel; Gleich, Bernhard

    2016-03-01

    The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle-virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior.

  5. Progress toward measuring the 6S1/2 <--> 5D3/2 magnetic-dipole transition moment in Ba+

    NASA Astrophysics Data System (ADS)

    Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval

    2015-05-01

    We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.

  6. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  7. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  8. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  9. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  10. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  11. Microwave spectroscopy of high-L, n=9 Rydberg levels of nickel: Polarizabilities and moments of the Ni+ ion

    NASA Astrophysics Data System (ADS)

    Woods, Shannon; Smith, Chris; Keele, Julie; Lundeen, S. R.

    2013-02-01

    The complete pattern of Rydberg binding energies of the 18 n=9 levels of nickel with L=6, 7, and 8 was measured using microwave plus resonant-excitation Stark-ionization spectroscopy. The measured pattern is consistent with the form predicted with the effective potential model, showing significant structure proportional to scalar products of tensor operators of order 0-4. The variation of the structure with L separates the various contributing terms and provides determinations of several properties of the Ni+ core ion. These include the quadrupole moment, Q = -0.469 78(9) a.u., the hexadecapole moment, Π = 0.36(5) a.u., the scalar and tensor dipole polarizabilities, αD,0= 7.949(2) a.u., αD,2=0.905(12) a.u., the scalar quadrupole polarizability, αQ,0=55(8) a.u., the g value, gJ=1.257(14), and the vector hyperpolarizability, βD,1=0.454(24) a.u.

  12. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    DTIC Science & Technology

    2015-08-11

    location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling

  13. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  14. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  15. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  16. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    NASA Astrophysics Data System (ADS)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  17. Measurements of DSD Second Moment Based on Laser Extinction

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip

    2013-01-01

    Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies

  18. Numerical modeling of magnetic moments for UXO applications

    USGS Publications Warehouse

    Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.

    2006-01-01

    The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.

  19. The 68mCu/68Cu isotope as a new probe for hyperfine studies: The nuclear moments

    NASA Astrophysics Data System (ADS)

    Fenta, A. S.; Pallada, S.; Correia, J. G.; Stachura, M.; Johnston, K.; Gottberg, A.; Mokhles Gerami, A.; Röder, J.; Grawe, H.; Brown, B. A.; Köster, U.; Mendonça, T. M.; Ramos, J. P.; Marsh, B. A.; Day Goodacre, T.; Amaral, V. S.; Pereira, L. M. C.; Borge, M. J. G.; Haas, H.

    2016-09-01

    Time Differential Perturbed Angular Correlation of γ-rays (TDPAC) experiments were performed for the first time in the decay of 68m Cu (6-, 721 \\text{keV}, 3.75 \\text{min}) produced at the ISOLDE facility at CERN. Due to the short half-life of the source isotope, the measurements were carried out online. The intermediate state (2+, 84.1 \\text{keV}, 7.84 \\text{ns}) offers the unique opportunity to study the electromagnetic fields acting at a copper probe in condensed matter via hyperfine interactions. The present work allowed determination of the nuclear moments for this state. The electric quadrupole moment |Q(2+,84.1 \\text{keV})|=0.110(3) \\text{b} was obtained from an experiment performed in Cu2O and the magnetic dipole moment |μ|=2.857(6) μ_\\text{N} from measurements in cobalt and nickel foils. The results are discussed in the framework of shell model calculations and the additivity rule for nuclear moments with respect to the robustness of the N = 40 sub-shell.

  20. A quantized microwave quadrupole insulator with topologically protected corner states

    NASA Astrophysics Data System (ADS)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  1. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    PubMed

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  2. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2009-08-01

    prosthesis alignment, socket pressure, gait, force and moment sensors 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER... prosthesis to measure the forces and moments at the base of the socket and to use these measurements to estimate the forces transmitted to the residual limb...BODY – EACH TASK IN STATEMENT OF WORK Task 1. To instrument a transtibial prosthesis with a tri-axial transducer to measure the forces and

  3. Tidal Love numbers and moment-Love relations of polytropic stars

    NASA Astrophysics Data System (ADS)

    Yip, Kenny L. S.; Leung, P. T.

    2017-12-01

    The physical significance of tidal deformation in astronomical systems has long been known. The recently discovered universal I-Love-Q relations, which connect moment of inertia, quadrupole tidal Love number and spin-induced quadrupole moment of compact stars, also underscore the special role of tidal deformation in gravitational wave astronomy. Motivated by the observation that such relations also prevail in Newtonian stars and crucially depend on the stiffness of a star, we consider the tidal Love numbers of Newtonian polytropic stars whose stiffness is characterized by a polytropic index n. We first perturbatively solve the Lane-Emden equation governing the profile of polytropic stars through the application of the scaled delta expansion method and then formulate perturbation series for the multipolar tidal Love number about the two exactly solvable cases with n = 0 and n = 1, respectively. Making use of these two series to form a two-point Padé approximant, we find an approximate expression of the quadrupole tidal Love number, whose error is less than 2.5 × 10-5 per cent (0.39 per cent) for n ∈ [0, 1] (n ∈ [0, 3]). Similarly, we also determine the mass moments for polytropic stars accurately. Based on these findings, we are able to show that the I-Love-Q relations are in general stationary about the incompressible limit irrespective of the equation of state of a star. Moreover, for the I-Love-Q relations, there is a secondary stationary point near n ≈ 0.4444, thus showing the insensitivity to n for n ∈ [0, 1]. Our investigation clearly tracks the universality of the I-Love-Q relations from their validity for stiff stars such as neutron stars to their breakdown for soft stars.

  4. Statistical moments in superposition models and strongly intensive measures

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Olszewski, Adam

    2017-06-01

    First, we present a concise glossary of formulas for composition of standard, cumulant, factorial, and factorial cumulant moments in superposition (compound) models, where final particles are created via independent emission from a collection of sources. Explicit mathematical formulas for the composed moments are given to all orders. We discuss the composition laws for various types of moments via the generating-function methods and list the formulas for the unfolding of the unwanted fluctuations. Second, the technique is applied to the difference of the scaled multiplicities of two particle types. This allows for a systematic derivation and a simple algebraic interpretation of the so-called strongly intensive fluctuation measures. With the help of the formalism we obtain several new strongly intensive measures involving higher-rank moments. The reviewed as well as the new results may be useful in investigations of mechanisms of particle production and event-by-event fluctuations in high-energy nuclear and hadronic collisions, and in particular in the search for signatures of the QCD phase transition at a finite baryon density.

  5. Simulation of Light Collection for Neutron Electrical Dipole Moment measurement

    NASA Astrophysics Data System (ADS)

    Ji, Pan; nEDM Collaboration

    2017-09-01

    nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.

  6. Analysis of closed orbit deviations for a first direct deuteron electric dipole moment measurement at the cooler synchrotron COSY

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Lehrach, A.

    2017-07-01

    The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.

  7. Relative importance of magnetic moments in UXO clearance applications

    USGS Publications Warehouse

    Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.

    2006-01-01

    Surface magnetic anomaly observed in UXO clearance is mainly dipolar and, as a result, the dipole is the only moment used regularly in UXO applications. The dipole moment contains intensity of magnetization information but lacks shape information. Unlike dipole, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of magnetization distribution within buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present results of a 3D numerical modeling study for highly susceptible metallic objects. The basis for modeling is the solution of a nonlinear integral equation, describing magnetization within isolated objects, allowing us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by the different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at typical UXO burial depths, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination. ?? 2005 Society of Exploration Geophysicists.

  8. Quadrupole deformed and octupole collective bands in 228Ra

    NASA Astrophysics Data System (ADS)

    Gulda, K.; Mach, H.; Aas, A. J.; Borge, M. J. G.; Burke, D. G.; Fogelberg, B.; Gietz, H.; Grant, I. S.; Hagebo, E.; Hill, P.; Hoff, P.; Kaffrell, N.; Kurcewicz, W.; Lindroth, A.; Løvhøiden, G.; Martinez, T.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rubio, B.; Sanchez-Vega, M.; Tain, J. L.; Taylor, R. B. E.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration

    1998-06-01

    Spins and parities for collective states in 228Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ( t) method has been used to measure lifetimes of T {1}/{2} = 550(20) ps and 181 (3) ps for the 2 1+ and 4 1+ aembers of the K = 0 + band, and T {1}/{2} ⩽ 7 ps and ⩽6 ps for the 1 1- and 3 1- members of the K = 0 - band, respectively The quadrupole moments, Q0 deduced from the B (E2; 2 1+ → 0 1+) and B (E2; 4 1+ → 2 1+) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ⩾4 × 10 -4 e 2 fm 2, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227Ra and reveal octupole correlations in 228Ra.

  9. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.

    2017-07-01

    Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  10. Induced CMB quadrupole from pointing offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris, E-mail: adammoss@phas.ubc.ca, E-mail: dscott@phas.ubc.ca, E-mail: krs@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between themore » pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.« less

  11. Improving Bending Moment Measurements on Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Nathan L.

    Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the fieldmore » to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.« less

  12. COSMIC SHEAR MEASUREMENT USING AUTO-CONVOLVED IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiangchong; Zhang, Jun, E-mail: betajzhang@sjtu.edu.cn

    2016-10-20

    We study the possibility of using quadrupole moments of auto-convolved galaxy images to measure cosmic shear. The autoconvolution of an image corresponds to the inverse Fourier transformation of its power spectrum. The new method has the following advantages: the smearing effect due to the point-spread function (PSF) can be corrected by subtracting the quadrupole moments of the auto-convolved PSF; the centroid of the auto-convolved image is trivially identified; the systematic error due to noise can be directly removed in Fourier space; the PSF image can also contain noise, the effect of which can be similarly removed. With a large ensemblemore » of simulated galaxy images, we show that the new method can reach a sub-percent level accuracy under general conditions, albeit with increasingly large stamp size for galaxies of less compact profiles.« less

  13. Electromagnetic multipole moments of the P_c^+(4380) pentaquark in light-cone QCD

    NASA Astrophysics Data System (ADS)

    Özdem, U.; Azizi, K.

    2018-05-01

    We calculate the electromagnetic multipole moments of the P_c^+(4380) pentaquark by modeling it as the diquark-diquark-antiquark and {\\bar{D}}^*Σ _c molecular state with quantum numbers J^P = 3/2^-. In particular, the magnetic dipole, electric quadrupole and magnetic octupole moments of this particle are extracted in the framework of light-cone QCD sum rule. The values of the electromagnetic multipole moments obtained via two pictures differ substantially from each other, which can be used to pin down the underlying structure of P_c^+(4380). The comparison of any future experimental data on the electromagnetic multipole moments of the P_c^+(4380) pentaquark with the results of the present work can shed light on the nature and inner quark organization of this state.

  14. Numerical modeling of higher order magnetic moments in UXO discrimination

    USGS Publications Warehouse

    Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.

    2008-01-01

    The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.

  15. A big measurement of a small moment

    NASA Astrophysics Data System (ADS)

    E Sauer, B.; Devlin, J. A.; Rabey, I. M.

    2017-07-01

    A beam of ThO molecules has been used to make the most precise measurement of the electron’s electric dipole moment (EDM) to date. In their recent paper, the ACME collaboration set out in detail their experimental and data analysis techniques. In a tour-de-force, they explain the many ways in which their apparatus can produce a signal which mimics the EDM and show how these systematic effects are measured and controlled.

  16. Measuring masses of single bacterial whole cells with a quadrupole ion trap.

    PubMed

    Peng, Wen-Ping; Yang, Yi-Chang; Kang, Ming-Wei; Lee, Yuan T; Chang, Huan-Cheng

    2004-09-29

    A novel method has been developed to precisely measure the masses of single bacterial whole cells using a quadrupole ion trap as an electrodynamic balance. The bacterial cells were introduced into the ion trap by matrix-assisted laser desorption/ionization, confined in space by audio frequency ac fields, and detected by elastic light scattering. Mass measurement accuracy approaching 0.1% was achieved for Escherichia coli K-12 with a mass distribution of +/-3% from 60 repetitive measurements of the particles and their clusters. This is the first high-precision mass measurement reported for any intact microorganisms with masses greater than 1 x 1010 Da. The method opens new avenues for high-precision mass measurement of single microbial particles and offers an alternative approach for rapid identification of microorganisms by mass spectrometry.

  17. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  18. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  19. A parts-per-billion measurement of the antiproton magnetic moment

    NASA Astrophysics Data System (ADS)

    Smorra, C.; Sellner, S.; Borchert, M. J.; Harrington, J. A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; Blaum, K.; Matsuda, Y.; Ospelkaus, C.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2017-10-01

    Precise comparisons of the fundamental properties of matter-antimatter conjugates provide sensitive tests of charge-parity-time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter-antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = -2.7928473441(42)μN (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μp = 2.792847350(9)μN, and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10-24 gigaelectronvolts, and a possible splitting of the proton-antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10-12 Bohr magnetons.

  20. A parts-per-billion measurement of the antiproton magnetic moment.

    PubMed

    Smorra, C; Sellner, S; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Bohman, M; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-10-18

    Precise comparisons of the fundamental properties of matter-antimatter conjugates provide sensitive tests of charge-parity-time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter-antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μ N with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = -2.7928473441(42)μ N (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μ p  = 2.792847350(9)μ N , and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10 -24 gigaelectronvolts, and a possible splitting of the proton-antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10 -12 Bohr magnetons.

  1. The electric dipole moment of cobalt monoxide, CoO.

    PubMed

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  2. Lifetime measurement of high spin states in (75) Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javid; Trivedi, T.; Maurya, K.

    2010-01-01

    The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.

  3. Moments and Legendre-Fourier Series for Measures Supported on Curves

    NASA Astrophysics Data System (ADS)

    Lasserre, Jean B.

    2015-09-01

    Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t))\\colon tin [0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γ_{ij}) of a measure dμ(x,t) on [0,1]^2 to ensure that μ is supported on a trajectory {(t,x(t))\\colon tin [0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients {f}_j=({f}_j(i)) associated with some functions f_j\\colon [0,1]to R, j=1,ldots, where each f_j is obtained from the moments γ_{ji}, i=0,1,ldots, of μ.

  4. Confounder Detection in High-Dimensional Linear Models Using First Moments of Spectral Measures.

    PubMed

    Liu, Furui; Chan, Laiwan

    2018-06-12

    In this letter, we study the confounder detection problem in the linear model, where the target variable [Formula: see text] is predicted using its [Formula: see text] potential causes [Formula: see text]. Based on an assumption of a rotation-invariant generating process of the model, recent study shows that the spectral measure induced by the regression coefficient vector with respect to the covariance matrix of [Formula: see text] is close to a uniform measure in purely causal cases, but it differs from a uniform measure characteristically in the presence of a scalar confounder. Analyzing spectral measure patterns could help to detect confounding. In this letter, we propose to use the first moment of the spectral measure for confounder detection. We calculate the first moment of the regression vector-induced spectral measure and compare it with the first moment of a uniform spectral measure, both defined with respect to the covariance matrix of [Formula: see text]. The two moments coincide in nonconfounding cases and differ from each other in the presence of confounding. This statistical causal-confounding asymmetry can be used for confounder detection. Without the need to analyze the spectral measure pattern, our method avoids the difficulty of metric choice and multiple parameter optimization. Experiments on synthetic and real data show the performance of this method.

  5. Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    NASA Astrophysics Data System (ADS)

    Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.

    2018-06-01

    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.

  6. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  7. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  8. A method for direct measurement of the first-order mass moments of human body segments.

    PubMed

    Fujii, Yusaku; Shimada, Kazuhito; Maru, Koichi; Ozawa, Junichi; Lu, Rong-Sheng

    2010-01-01

    We propose a simple and direct method for measuring the first-order mass moment of a human body segment. With the proposed method, the first-order mass moment of the body segment can be directly measured by using only one precision scale and one digital camera. In the dummy mass experiment, the relative standard uncertainty of a single set of measurements of the first-order mass moment is estimated to be 1.7%. The measured value will be useful as a reference for evaluating the uncertainty of the body segment inertial parameters (BSPs) estimated using an indirect method.

  9. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  10. Instrumentation for measuring dynamic spinal load moment exposures in the workplace.

    PubMed

    Marras, William S; Lavender, Steven A; Ferguson, Sue A; Splittstoesser, Riley E; Yang, Gang; Schabo, Pete

    2010-02-01

    Prior research has shown the load moment exposure to be one of the strongest predictors of low back disorder risk in manufacturing jobs. However, to extend these finding to the manual lifting and handling of materials in distribution centers, where the layout of the lifting task changes from one lift to the next and the lifts are highly dynamic, would be very challenging without an automated means of quantifying reach distances and item weights. The purpose of this paper is to describe the development and validation of automated instrumentation, the Moment Exposure Tracking System (METS), designed to capture the dynamic load moment exposures and spine postures used in distribution center jobs. This multiphase process started by obtaining baseline data describing the accuracy of existing manual methods for obtaining moment arms during the observation of dynamic lifting for the purposes of benchmarking the automated system. The process continued with the development and calibration of an ultrasonic system to track hand location and the development of load sensing handles that could be used to assess item weights. The final version of the system yielded an average absolute error in the load's moment arm of 4.1cm under the conditions of trunk flexion and load asymmetry. This compares well with the average absolute error of 10.9cm obtained using manual methods of measuring moment arms. With the item mass estimates being within half a kilogram, the instrumentation provides a reliable and valid means for assessing dynamic load moment exposures in dynamic distribution center lifting tasks.

  11. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  12. Lifetime Measurements in Neutron-Rich Xe Isotopes — Evolution of Quadrupole Collectivity Beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Bönig, S.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Kröll, Th.; Thürauf, M.; Jolie, J.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G. S.; Soldner, T.; Urban, W.; Mǎrginean, N.; Ur, C. A.; Mach, H.; Fraile, L. M.; Paziy, V.; Regan, P. H.; Bruce, A. M.; Lalkovski, S.; Korten, W.

    Picosecond lifetimes of excited states in neutron-rich Xe isotopes were measured at the Institut Laue-Langevin via γ-ray spectroscopy of fission fragments from neutron-induced fission of 235U and 241Pu targets. The data collected with the recently installed fast timing array FATIMA in combination with the EXOGAM Ge array were analysed using the new generalized centroid difference method. Our aim is to study the quadrupole and octupole collectivity, arising in the mass region beyond the doubly magic 132Sn, by means of transition probabilities. These can be calculated from the directly measured lifetimes.

  13. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  14. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  15. Quadrupole, octopole, and hexadecapole electric moments of Σ, Π, Δ, and Φ electronic states: Cylindrically asymmetric charge density distributions in linear molecules with nonzero electronic angular momentum

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    2007-08-01

    The number of independent components, n, of traceless electric 2l-multipole moments is determined for C∞v molecules in Σ ±, Π, Δ, and Φ electronic states (Λ=0,1,2,3). Each 2l pole is defined by a rank-l irreducible tensor with (2l+1) components Pm(l) proportional to the solid spherical harmonic rlYml(θ,φ). Here we focus our attention on 2l poles with l =2,3,4 (quadrupole Θ, octopole Ω, and hexadecapole Φ). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Λ. For Σ±(Λ=0) states, all 2l poles have one independent parameter (n=1). For spatially degenerate states—Π, Δ, and Φ (Λ=1,2,3)—the general rule reads n =1 for l <2∣Λ∣ (when the 2l-pole rank lies below 2∣Λ∣) but n =2 for higher 2l poles with l ⩾2∣Λ∣. The second nonzero term is the off-diagonal matrix element ⟨ψ+Λ∣P∣m∣=2Λ(l)∣ψ-Λ⟩. Thus, a Π(Λ =1) state has one dipole (μz) but two independent 2l poles for l ⩾2—starting with the quadrupole [Θzz,(Θxx-Θyy)]. A Δ(Λ =2) state has n =1 for 2(1,2,3) poles (μz,Θzz,Ωzzz) but n =2 for higher 2(l⩾4) poles—from the hexadecapole Φ up. For Φ(Λ =3) states, it holds that n =1 for 21 to 25 poles but n =2 for all 2(l⩾6) poles. In short, what is usually stated in the literature—that n =1 for all possible 2l poles of linear molecules—only applies to Σ± states. For degenerate states with n =2, all Cartesian 2l-pole components (l⩾2∣Λ∣) can be expressed as linear combinations of two irreducible multipoles, Pm=0(l ) and P∣m∣=2Λ(l) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Θ, Ω, and Φ moments calculated for Λ =0-3 states of selected diatomics (in parentheses): XΣ+2(CN ), XΠ2(NO ), aΠu3(C2), XΔ2(NiH ), XΔ3(TiO ), XΦ3(CoF ), and XΦ4(TiF ). States of Π symmetry are most affected by the deviation from axial symmetry.

  16. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  17. Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fessenden, R.W.; Carton, P.M.; Shimamori, H.

    1982-09-16

    Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less

  18. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  19. Comparison of Measured Flapwise Structural Bending Moments on a Teetering Rotor Blade With Results Calculated From the Measured Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Mayo, Alton P.

    1959-01-01

    Flapwise bending moments were calculated for a teetering rotor blade using a reasonably rapid theoretical method in which airloads obtained from wind-tunnel tests were employed. The calculated moments agreed reasonably well with those measured with strain gages under the same test conditions. The range of the tests included one hovering and two forward-flight conditions. The rotor speed for the test was very near blade resonance, and difficult-to-calculate resonance effects apparently were responsible for the largest differences between the calculated and measured harmonic components of blade bending moments. These differences, moreover, were largely nullified when the harmonic components were combined to give a comparison of the calculated and measured blade total- moment time histories. The degree of agreement shown is therefore considered adequate to warrant the use of the theoretical method in establishing and applying methods of prediction of rotor-blade fatigue loads. At the same time, the validity of the experimental methods of obtaining both airload and blade stress measurement is also indicated to be adequate for use in establishing improved methods for prediction of rotor-blade fatigue loads during the design stage. The blade stiffnesses and natural frequencies were measured and found to be in close agreement with calculated values; however, for a condition of blade resonance the use of the experimental stiffness values resulted in better agreement between calculated and measured blade stresses.

  20. Nonlinear spline wavefront reconstruction through moment-based Shack-Hartmann sensor measurements.

    PubMed

    Viegers, M; Brunner, E; Soloviev, O; de Visser, C C; Verhaegen, M

    2017-05-15

    We propose a spline-based aberration reconstruction method through moment measurements (SABRE-M). The method uses first and second moment information from the focal spots of the SH sensor to reconstruct the wavefront with bivariate simplex B-spline basis functions. The proposed method, since it provides higher order local wavefront estimates with quadratic and cubic basis functions can provide the same accuracy for SH arrays with a reduced number of subapertures and, correspondingly, larger lenses which can be beneficial for application in low light conditions. In numerical experiments the performance of SABRE-M is compared to that of the first moment method SABRE for aberrations of different spatial orders and for different sizes of the SH array. The results show that SABRE-M is superior to SABRE, in particular for the higher order aberrations and that SABRE-M can give equal performance as SABRE on a SH grid of halved sampling.

  1. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  2. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  3. Spontaneous structural distortion of the metallic Shastry-Sutherland system Dy B4 by quadrupole-spin-lattice coupling

    NASA Astrophysics Data System (ADS)

    Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun

    2016-11-01

    Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.

  4. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    PubMed

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  5. First Measurement of the Atomic Electric Dipole Moment of Ra 225

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R. H.; Dietrich, M. R.; Kalita, M. R.

    The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).

  6. Simulation of Thermographic Responses of Delaminations in Composites with Quadrupole Method

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.; Cramer, K. Elliott

    2016-01-01

    The application of the quadrupole method for simulating thermal responses of delaminations in carbon fiber reinforced epoxy composites materials is presented. The method solves for the flux at the interface containing the delamination. From the interface flux, the temperature at the surface is calculated. While the results presented are for single sided measurements, with ash heating, expansion of the technique to arbitrary temporal flux heating or through transmission measurements is simple. The quadrupole method is shown to have two distinct advantages relative to finite element or finite difference techniques. First, it is straight forward to incorporate arbitrary shaped delaminations into the simulation. Second, the quadrupole method enables calculation of the thermal response at only the times of interest. This, combined with a significant reduction in the number of degrees of freedom for the same simulation quality, results in a reduction of the computation time by at least an order of magnitude. Therefore, it is a more viable technique for model based inversion of thermographic data. Results for simulations of delaminations in composites are presented and compared to measurements and finite element method results.

  7. Empirical moments of inertia of axially asymmetric nuclei

    DOE PAGES

    Allmond, J. M.; Wood, J. L.

    2017-02-06

    We extracted empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4more » $$+\\atop{1}$$)/E(2$$+\\atop{1}$$ ) > 2.7 from experimental 2$$+\\atop{g,y}$$, energies and electric quadrupole matrix elements, determined from multi- step Coulomb excitation data, and the results are compared to expectations based on rigid and irro- tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., <2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> and <0$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> < 2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{γ}$$> <2$$+\\atop{γ}$$ ||M (E2)||0$$+\\atop{g}$$> , can a unique solution to all three components of the inertia tensor of an asymmetric top be obtained. And while the absolute moments of inertia fall between the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively consistent with the β 2 sin 2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in- variance. A better understanding of inertial flow is central to improving collective models, particularly hydrodynamic-based collective models. The results suggest that a better description of collective dynamics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may provide a path forward. This is our first report of empirical moments of inertia for all three axes and the results should challenge both collective and microscopic descriptions of inertial flow.« less

  8. Measurement of whole-body human centers of gravity and moments of inertia.

    PubMed

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.

  9. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  10. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolicmore » acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.« less

  11. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, D. J.; Block, B. P.; Rubin, M.

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less

  12. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  13. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  14. Transverse-rapidity yt dependence of the nonjet azimuth quadrupole from 62- and 200-GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David T.; Prindle, Duncan J.; Trainor, Thomas A.

    2015-06-01

    Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a "perfect liquid" is formed in heavy-ion collisions at the Relativistic Heavy Ion Collider. However, conventional v2 methods based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution. In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted by v2{2D} . We establish systematic variations of the NJ quadrupole on yt, centrality, and collision energy. We adopt transverse-rapidity yt as both a velocity measure and a logarithmic alternative to transverse momentum pt. Based on NJ-quadrupole trends, we derive a completely factorized universal parametrization of quantity v2{2D} (yt,b ,√{sN N}) which describes the centrality, yt, and energy dependence. From yt-differential v2(yt) data we isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appears to be uncorrelated with a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole trends have interesting implications for hydro interpretations.

  15. The comet moment as a measure of DNA damage in the comet assay.

    PubMed

    Kent, C R; Eady, J J; Ross, G M; Steel, G G

    1995-06-01

    The development of rapid assays of radiation-induced DNA damage requires the definition of reliable parameters for the evaluation of dose-response relationships to compare with cellular endpoints. We have used the single-cell gel electrophoresis (SCGE) or 'comet' assay to measure DNA damage in individual cells after irradiation. Both the alkaline and neutral protocols were used. In both cases, DNA was stained with ethidium bromide and viewed using a fluorescence microscope at 516-560 nm. Images of comets were stored as 512 x 512 pixel images using OPTIMAS, an image analysis software package. Using this software we tested various parameters for measuring DNA damage. We have developed a method of analysis that rigorously conforms to the mathematical definition of the moment of inertia of a plane figure. This parameter does not require the identification of separate head and tail regions, but rather calculates a moment of the whole comet image. We have termed this parameter 'comet moment'. This method is simple to calculate and can be performed using most image analysis software packages that support macro facilities. In experiments on CHO-K1 cells, tail length was found to increase linearly with dose, but plateaued at higher doses. Comet moment also increased linearly with dose, but over a larger dose range than tail length and had no tendency to plateau.

  16. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  17. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    PubMed

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  18. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Precise measurement of charged defects in III-V compounds (supplement 2)

    NASA Technical Reports Server (NTRS)

    Soest, J. F.

    1973-01-01

    Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.

  1. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  2. A thermosphere composition measurement using a quadrupole mass spectrometer with a side energy focussing quasi-open ion source

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Spencer, N. W.; Schmitt, G. A.

    1971-01-01

    The atomic oxygen concentration in the altitude range 130 to 240 km was determined through the use of a quadrupole spectrometer with a strongly focussing ion source. The instrument is used in the Thermosphere Probe in a manner that greatly increases the proportion of measured oxygen ions that have not experienced a surface collision and permits quantitative evaluation of surface recombination and thermalization effects which inevitably enter all spectrometer determinations. The data obtained strengthen the concept that consideration of surface effects is significant in quantifying spectrometer measurements of reactive gases, and tend to be in agreement with von Zahn's recent results.

  3. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  4. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  5. Highly Dynamic Anion-Quadrupole Networks in Proteins.

    PubMed

    Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome

    2016-11-01

    The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.

  6. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  7. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2008-08-01

    leg and residual limb, the condition of your residual limb including touch and pressure sensation, and the type of components used in your prosthesis ...measured by a tri-axial transducer mounted on the pylon of a transtibial prosthesis distal to the socket can be used to estimate the intra-socket...alignment has been developed, and IRB approval has been obtained. 15. SUBJECT TERMS Amputees, prosthesis alignment, socket pressure, gait, force and moment

  8. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  9. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  10. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  11. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE PAGES

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo; ...

    2016-06-01

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  12. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  13. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    PubMed Central

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  14. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  15. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, Frederick D.; Chen, Yongping; Singha, Kamini

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error.

  16. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  17. Julius Edgar Lilienfeld Prize Talk: Measuring the Electron Magnetic Moment and the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Gabrielse, Gerald

    2011-05-01

    The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.

  18. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE PAGES

    Parkison, Adam J.; Nelson, Andrew Thomas

    2016-01-11

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  19. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkison, Adam J.; Nelson, Andrew Thomas

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  20. Static and dynamic force/moment measurements in the Eidetics water tunnel

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  1. Rarefied-flow pitching moment coefficient measurements of the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1988-01-01

    An overview of the process for obtaining the Shuttle Orbiter rarefied-flow pitching moment from flight gyro data is presented. The extraction technique involves differentiation of the output of the pitch gyro after accounting for nonaerodynamic torques, such as those produced by gravity gradient and the Orbiter's auxiliary power unit and adjusting for drift biases. The overview of the extraction technique includes examples of results from each of the steps involved in the process, using the STS-32 mission as a typical sample case. The total pitching moment and moment coefficient (Cm) for that flight are calculated and compared with preflight predictions. The flight results show the anticipated decrease in Cm with increasing altitude. However, the total moment coefficient is less than predicted using preflight estimates.

  2. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  3. Search for Quadrupole Strength in the Electroexcitation of the Delta+ (1232)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Mertz; C. Vellidis; Ricardo Alarcon

    2001-04-01

    High precision 1H(e, e'p)pi0 measurements at Q2 = 0.126. (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N --> Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole (I = 3/2) amplitude ratios, RSM = (-6.5 +/- 0.2stat+sys+/-2.5mod)% and REM = 9-2.1 +/-0.2stat+sys +/-2.0mod)%, are dominated by model error. Previous RSM and REM results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

  4. Multipolar moments of weak lensing signal around clusters. Weighing filaments in harmonic space

    NASA Astrophysics Data System (ADS)

    Gouin, C.; Gavazzi, R.; Codis, S.; Pichon, C.; Peirani, S.; Dubois, Y.

    2017-09-01

    Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and topology of the cosmic web, in particular in the vicinity of lensing clusters. Aims: Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation. Methods: Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture multipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions from perturbation theory and spherical collapse. Results: The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster (ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are presented. The prospects of measuring this signal are estimated for current and future lensing data sets. Conclusions: The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and warm dark matter.

  5. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  6. Relativity experiment on Helios - A status report

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Melbourne, W. G.; Cain, D. L.; Lau, E. K.; Wong, S. K.; Kundt, W.

    1975-01-01

    The relativity experiment on Helios (Experiment 11) uses S-band and Doppler data, and spacecraft-solar-orbital data to measure the effects of general relativity in the solar system and the quadrupole moment in the solar gravitational field. Specifically, Experiment 11 is converned with measuring the following effects: (1) relativistic orbital corrections described by two parameters of the space-time metric which are both equal to unity in Einstein's theory; (2) orbital perturbations caused by a finite quadrupole moment of an oblate sun, described by zonal harmonics in the solar gravitational field.

  7. Variable Permanent Magnet Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.; Iwashita, Y.; /Kyoto U.

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four partsmore » and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.« less

  8. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  9. Magnetic quench antenna for MQXF quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  10. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    NASA Astrophysics Data System (ADS)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  11. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment.

    PubMed

    Lim, J; Almond, J R; Trigatzis, M A; Devlin, J A; Fitch, N J; Sauer, B E; Tarbutt, M R; Hinds, E A

    2018-03-23

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100  μK. This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  12. Solid-state (127)I NMR and GIPAW DFT study of metal iodides and their hydrates: structure, symmetry, and higher-order quadrupole-induced effects.

    PubMed

    Widdifield, Cory M; Bryce, David L

    2010-10-14

    Central-transition (127)I solid-state nuclear magnetic resonance (SSNMR) spectra are presented for several anhydrous group 2 metal iodides (MgI(2), CaI(2), SrI(2), and BaI(2)), hydrates (BaI(2)·2H(2)O and SrI(2)·6H(2)O), and CdI(2) (4H polytype). Variable offset cumulative spectrum data acquisition coupled with echo pulse sequences and an 'ultrahigh' applied field of 21.1 T were usually suitable to acquire high-quality spectra. Spectral analysis revealed iodine-127 nuclear quadrupole coupling constants (C(Q)((127)I)) ranging in magnitude from 43.5 (CaI(2)) to 214 MHz (one site in SrI(2)). For very large C(Q), analytical second-order perturbation theory could not be used to reliably extract chemical shifts and a treatment which includes quadrupolar effects exactly was required (Bain, A. D. Mol. Phys. 2003, 101, 3163). Differences between second-order and exact modeling allowed us to observe 'higher-order' quadrupole-induced effects for the first time. This finding will have implications for the interpretation of SSNMR spectra of quadrupolar nuclei with large quadrupole moments. In favorable situations (i.e., C(Q)((127)I) < 120 MHz), measurements were also performed at 11.75 T which when combined with the 21.1 T data allowed us to measure iodine chemical shift (CS) tensor spans in the range from 60 (BaI(2)·2H(2)O) to 300 ppm (one site in BaI(2)). These measurements represent the first complete characterizations (i.e., electric field gradient and CS tensors as well as their relative orientation) of noncubic iodide sites using (127)I SSNMR. In select cases, the SSNMR data are supported with (127)I NQR measurements. We also summarize a variety of trends in the halogen SSNMR parameters for group 2 metal halides. Gauge-including projector-augmented wave DFT computations are employed to complement the experimental observations, to predict potential structures for the two hydrates, and to highlight the sensitivity of C(Q)((127)I) to minute structural changes, which has

  13. Reliability of Achilles Tendon Moment Arm Measured In Vivo Using Freehand Three-Dimensional Ultrasound.

    PubMed

    Obst, Steven J; Barber, Lee; Miller, Ashton; Barrett, Rod S

    2017-08-01

    This study investigated reliability of freehand three-dimensional ultrasound (3DUS) measurement of in vivo human Achilles tendon (AT) moment arm. Sixteen healthy adults were scanned on 2 separate occasions by a single investigator. 3DUS scans were performed over the free AT, medial malleolus, and lateral malleolus with the ankle passively positioned in maximal dorsiflexion, mid dorsiflexion, neutral, mid plantar flexion and maximal plantar flexion. 3D reconstructions of the AT, medial malleolus, and lateral malleolus were created from manual segmentation of the ultrasound images and used to geometrically determine the AT moment arm using both a straight (straight AT MA ) and curved (curved AT MA ) tendon line-of-action. Both methods were reliable within- and between-session (intra-class correlation coefficients > 0.92; coefficient of variation < 2.5 %) and revealed that AT moment arm increased by ∼ 7 mm from maximal dorsiflexion (∼ 41mm) to maximal plantar flexion (∼ 48 mm). Failing to account for tendon curvature led to a small overestimation (< 2 mm) of AT moment arm that was most pronounced in ankle plantar flexion, but was less than the minimal detectable change of the method and could be disregarded.

  14. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  15. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  16. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision.

    PubMed

    Schneider, Georg; Mooser, Andreas; Bohman, Matthew; Schön, Natalie; Harrington, James; Higuchi, Takashi; Nagahama, Hiroki; Sellner, Stefan; Smorra, Christian; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Ulmer, Stefan

    2017-11-24

    Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μ p of the proton in units of the nuclear magneton μ N The result, μ p = 2.79284734462 (±0.00000000082) μ N , has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double-Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable a test of the fundamental symmetry between matter and antimatter in the baryonic sector at the 10 -10 level. Copyright © 2017, American Association for the Advancement of Science.

  17. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    PubMed Central

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  18. Gravity field, shape, and moment of inertia of Titan.

    PubMed

    Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W

    2010-03-12

    Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.

  19. Microfluidic quadrupole and floating concentration gradient.

    PubMed

    Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David

    2011-09-06

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.

  20. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.

    2016-06-01

    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.

  1. New measurement of the electron magnetic moment and the fine structure constant.

    PubMed

    Hanneke, D; Fogwell, S; Gabrielse, G

    2008-03-28

    A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr magnetons, g/2=1.001 159 652 180 73 (28) [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure constant, with alpha{-1}=137.035 999 084 (51) [0.37 ppb], and an uncertainty 20 times smaller than for any independent determination of alpha.

  2. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization

    PubMed Central

    2015-01-01

    Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins. PMID:25208235

  3. Kappa distributions in Saturn's magnetosphere: energetic ion moments using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2017-12-01

    Moments of the charged particle distribution function are a compact way of characterizing some of the properties of different magnetospheric regions. Following our previous analyses (Dialynas et al. 2009) and the techniques described in Dialynas et al. (2017), in the present study we use κ-Distribution fits to combine CHEMS (3 to 236 keV/e), LEMMS (0.024 < E < 18 MeV), and INCA (5.2 to >220 keV) H+ and O+ energetic ion spectra covering measurements made in 2004-2016 to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. We use the Khurana et al. [2007] magnetic field model to map the ion measurements to the equatorial plane and produce the equatorial distributions of all ion integral moments, focusing on partial density (n), integral intensity (In), partial pressure (P), integral energy intensity (IE); as well as the characteristic energy (Ec=Ie/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20 Rs). The Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ P, n and T in both local time and L-shell. We find that a) although the PH+ and PO+ are nearly comparable, H+ have higher IE and In at all radial distances (L>5) and local times; b) the 12Η+, ΓΟ+), are consistent with the Arridge et al. [2009] results. Dialynas K. et al. 2009, JGR, 114, A01212 Dialynas K. et al. 2017, Elsevier, ISBN: 9780128046388 Khurana K. K. et al. 2007, AGU, abstract #P44A-01 Roelof E. & A. Skinner 2000, SSR, 91, 437-459 Arridge C. S. et al. 2009, PSS, 57, 2032-2047

  4. Computing moment to moment BOLD activation for real-time neurofeedback

    PubMed Central

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  5. Manifestation of a strong quadrupole interaction and peculiarities in the SERS and SEHRS spectra of 4,4'-bipyridine

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Polubotko, A. M.

    2017-07-01

    The paper analyzes Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Hyper Raman Scattering (SEHRS) spectra of 4,4'-bypiridine molecule for two possible geometries, which are described by D 2 and D 2 h symmetry groups. It is pointed out on appearance of sufficiently strong lines, caused by vibrations with the unit irreducible representation for both possible configurations. Appearance of these lines in the SEHRS spectrum points out the existence of a strong quadrupole light-molecule interaction. In addition one observes the lines, caused by vibrations both with the unit irreducible representations A or A g and the irreducible representation B 1 or B 1 u . The last ones describe transformational properties of the d z component of the dipole moment, which is perpendicular to the surface. This property of the spectrum is caused by peculiarity of the geometry of the molecule, which consists of two benzene rings, which are weakly connected with each other. The linear combinations of the vibrations of the rings create two nearly degenerated symmetric and anti symmetrical states, which cannot be identified in the experimental spectra. The result is in a full agreement with the dipole-quadrupole theory of SERS and SEHRS.

  6. I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2013-07-01

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star’s internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star’s internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  7. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  8. Use of higher order signal moments and high speed digital sampling technique for neutron flux measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baers, L.B.; Gutierrez, T.R.; Mendoza, R.A.

    1993-08-01

    The second (conventional variance or Campbell signal) , , , the third , and the modified fourth order [minus] 3*[sup 2] etc. central signal moments associated with the amplified (K) and filtered currents [i[sub 1], i[sub 2], x = K * (i[sub 2]-),] from two electrodes of an ex-core neutron sensitive fission detector have been measured versus the reactor power of the 1 MW TRIGA reactor in Mexico City. Two channels of a high speed (400 kHz) multiplexing data sampler and A/D converter with 12 bit resolution and one megawords buffer memory were used. The data were further retrieved intomore » a PC and estimates for auto- and cross-correlation moments up to the fifth order, coherence (/[radical]), skewness (/([radical]/)[sup 3]), excess (/[sup 2] - 3) etc. quantities were calculated off-line. A five mode operation of the detector was achieved including the conventional counting rates and currents in agreement with the theory and the authors previous results with analogue techniques. The signals were proportional to the neutron flux and reactor power in some flux ranges. The suppression of background noise is improved and the lower limit of the measurement range is extended as the order of moment is increased, in agreement with the theory. On the other hand the statistical uncertainty is increased. At increasing flux levels it was statistically more difficult to obtain flux estimates based on the higher order ([>=]3) moments.« less

  9. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2010-10-01

    forces, moments, and alignments. 15. SUBJECT TERMS Amputees, prosthesis alignment, socket pressure, gait, force and moment sensors 16. SECURITY...evaluate the feasibility of using a tri-axial transducer mounted to the pylon of a lower limb prosthesis directly below the socket to a.) Characterize...weighing up to nearly 500lbs, or activities which involve deceleration or acceleration forces of up to 500 lbs along the pylon of a prosthesis . Diameter

  10. Shear nulling after PSF Gaussianisation: Moment-based weak lensing measurements with subpercent noise bias

    NASA Astrophysics Data System (ADS)

    Herbonnet, Ricardo; Buddendiek, Axel; Kuijken, Konrad

    2017-03-01

    Context. Current optical imaging surveys for cosmology cover large areas of sky. Exploiting the statistical power of these surveys for weak lensing measurements requires shape measurement methods with subpercent systematic errors. Aims: We introduce a new weak lensing shear measurement algorithm, shear nulling after PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most other methods. Methods: SNAPG operates on images that have been convolved with a kernel that renders the point spread function (PSF) a circular Gaussian, and uses weighted second moments of the sources. The response of such second moments to a shear of the pre-seeing galaxy image can be predicted analytically, allowing us to construct a shear nulling scheme that finds the shear parameters for which the observed galaxies are consistent with an unsheared, isotropically oriented population of sources. The inverse of this nulling shear is then an estimate of the gravitational lensing shear. Results: We identify the uncertainty of the estimated centre of each galaxy as the source of noise bias, and incorporate an approximate estimate of the centroid covariance into the scheme. We test the method on extensive suites of simulated galaxies of increasing complexity, and find that it is capable of shear measurements with multiplicative bias below 0.5 percent.

  11. Flight-measured X-24A lifting body control surface hinge moments and correlation with wind tunnel predictions

    NASA Technical Reports Server (NTRS)

    Tang, M. H.; Pearson, G. P. E.

    1973-01-01

    Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed.

  12. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor); Brennen, Reid A. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  15. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Chutjian, Ara (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  16. The quadrupole ionosphere

    NASA Technical Reports Server (NTRS)

    Rishbeth, H.

    1986-01-01

    The principal features that might exist in the terrestrial paleoionosphere, if the geomagnetic field were to assume a quadrupole form during a polarity reversal are discussed. Complicated phenomena would be expected to occur at magnetic equators and magnetospherically-driven plasma convection might occur at latitudes where the magnetic field is steeply inclined. The influence of magnetic field strength on ionospheric structure is considered in general terms.

  17. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    PubMed

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  18. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  19. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  20. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  1. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Z = 50 core stability in 110Sn from magnetic-moment and lifetime measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K. -H.

    2016-04-18

    In this study, the structure of the semimagic Sn50 isotopes were previously studied via measurements of B(E2;2 1 + → 0 1 +) and g factors of 2 1 + states. The values of the B(E2;2 1 +) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. This work presents the first measurement of the 2 1 + and 4 1 + states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B(E2) values.

  3. Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ricco, G.; Simula, S.; Battaglieri, M.; Ripani, M.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Nefedov, G.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-04-01

    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasielastic peak up to the invariant mass of the final-state hadronic system W≃2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasielastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behavior of the higher twist contribution suggests a partial cancelation of different higher twists entering into the expansion with opposite signs. This cancelation, found also in the proton moments, is a manifestation of the “duality” phenomenon in the F2 structure function.

  4. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  5. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments Database

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  6. Study of a micro chamber quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jinchan; Zhang Xiaobing; Mao Fuming

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less

  7. Multipole moments of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.

    General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metricmore » depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.« less

  8. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    NASA Astrophysics Data System (ADS)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  9. Moment-to-Moment Emotions during Reading

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; D'Mello, Sidney

    2012-01-01

    Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…

  10. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  11. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  12. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    NASA Astrophysics Data System (ADS)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  13. Absolute measurements of the electronic transition moments of seven band systems of the C2 molecule. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1979-01-01

    Electronic transition moments of seven C2 singlet and triplet band systems in the 0.2-1.2 micron spectral region were measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow bandpass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.

  14. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  15. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  16. Equatorial distributions of energetic ion moments in Saturn's magnetosphere using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2016-12-01

    We use kappa distribution fits to combined Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetosphere Measurements System (LEMMS, 0.024 < E < 18 MeV), and Ion Neutral Camera (INCA, 5.2 to >220 keV for H+) proton and singly ionized energetic ion spectra to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. Using a realistic magnetic field model (Khurana et al. 2007) and data from the entire Cassini mission to date (2004-2016), we map the ion measurements to the equatorial plane and via the modeled kappa distribution spectra we produce the equatorial distributions of all ion integral moments, focusing on partial density, integral intensity, partial pressure, integral energy intensity; as well as the characteristic energy (EC=IE/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20). A modified version of the semi-empirical Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere in both local time and L-shell. We find that a) although the H+ and O+ partial pressures and densities are nearly comparable, the >20 keV protons have higher number and energy intensities at all radial distances (L>5) and local times; b) the 12

  17. A method for estimating the mass properties of a manipulator by measuring the reaction moments at its base

    NASA Technical Reports Server (NTRS)

    West, Harry; Papadopoulos, Evangelos; Dubowsky, Steven; Cheah, Hanson

    1989-01-01

    Emulating on earth the weightlessness of a manipulator floating in space requires knowledge of the manipulator's mass properties. A method for calculating these properties by measuring the reaction forces and moments at the base of the manipulator is described. A manipulator is mounted on a 6-DOF sensor, and the reaction forces and moments at its base are measured for different positions of the links as well as for different orientations of its base. A procedure is developed to calculate from these measurements some combinations of the mass properties. The mass properties identified are not sufficiently complete for computed torque and other dynamic control techniques, but do allow compensation for the gravitational load on the links, and for simulation of weightless conditions on a space emulator. The algorithm has been experimentally demonstrated on a PUMA 260 and used to measure the independent combinations of the 16 mass parameters of the base and three proximal links.

  18. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  19. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  20. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  1. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  2. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  3. Ion-mobility study of two functionalized pentacene structural isomers using a modified electrospray/triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana V.; Bohme, Diethard K.; Baranov, Vladimir I.

    2007-03-01

    We report ion-mobility measurements with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR) designed to investigate ion molecule reactivity in organic mass spectrometry. Functionalized pentacene ions, which are generally unreactive were chosen for study to decouple drift/diffusion effects from reactivity (including clustering). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions. These capabilities were successfully employed in the measurement of ion mobilities in different modes of IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration.

  4. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  7. Three years of lightning impulse charge moment change measurements in the United States

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.

    2013-06-01

    We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.

  8. Transverse tails and higher order moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, W.L.; Decker, F.J.; Woodley, M.D.

    1993-05-01

    The tails that may be engendered in a beam`s transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment {l_angle}x{sup 3}{r_angle} in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set {l_angle}x{sup 3}{r_angle}, {l_angle}xx{prime}{sup 2}{r_angle}, {l_angle}x{prime}{sup 3}{r_angle}, and {l_angle}x{sup 2}x{prime}{r_angle} to be deduced --more » the natural extension of the well-known ``emittance measurement`` treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the {beta}-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails.« less

  9. L-moments and TL-moments of the generalized lambda distribution

    USGS Publications Warehouse

    Asquith, W.H.

    2007-01-01

    The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.

  10. Universal I-Love-Q and Multipole-Love Relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2014-03-01

    One of largest uncertainties in nuclear physics is the equation of state (EoS) in nuclear and supra-nuclear densities. Neutron-star (NS) and quark-star (QS) observables such as the mass and radius depend strongly on the EoS. We find universal relations among the moment-of-inertia, quadrupole moment and various tidal deformabilities of a slowly-rotating NS and QS that are almost EoS-independent. Such unexpected relations have several interesting applications. On an observational astrophysical front, independent measurement of any two quantities automatically determines the others that are not easily accessible. On a gravitational-wave front, such relations allow us to break the degeneracy between the spins and quadrupole moment, or between various tidal deformabilities. On a fundamental physics front, any two independent measurements of the quantities allow for a model-independent and EoS-independent test of general relativity.

  11. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  12. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  13. Assembling Transgender Moments

    ERIC Educational Resources Information Center

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  14. Probing-error compensation using 5 degree of freedom force/moment sensor for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Cho, Nahm-Gyoo

    2013-09-01

    A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.

  15. Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y = CCH2CH2X

    NASA Astrophysics Data System (ADS)

    Romero, Angel H.

    2017-10-01

    The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.

  16. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  17. Velocity and rolling-moment measurements in the wake of a swept-wing model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.

    1975-01-01

    Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.

  18. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  19. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  20. Moments of inertia of several airplanes

    NASA Technical Reports Server (NTRS)

    Miller, Marvel P; Soule, Hartley A

    1931-01-01

    This paper, which is the first of a series presenting the results of such measurements, gives the momental ellipsoids of ten army and naval biplanes and one commercial monoplane. The data were obtained by the use of a pendulum method, previously described. The moments of inertia are expressed in coefficient as well as in dimensional form, so that those for airplanes of widely different weights and dimensions can be compared.

  1. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Lloyd A.

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu +/ 65Cu + is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurementsmore » for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr +/ 53Cr + (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr + signal to 0.12% for the ratio of 51V + to 52Cr +. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li + signal becomes apparent. Space charge effects are consistent with the disturbances seen.« less

  2. Probing Low-Mass Vector Bosons with Parity Nonconservation and Nuclear Anapole Moment Measurements in Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.; Stadnik, Y. V.

    2017-12-01

    In the presence of P -violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba+ , Yb, Tl, Fr, and Ra+ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector-boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC amplitudes in Cs, Yb, and Tl, as well as the nuclear anapole moment of 133Cs, we constrain the P -violating vector-pseudovector nucleon-electron and nucleon-proton interactions mediated by a generic vector boson of arbitrary mass. Our limits improve on existing bounds from other experiments by many orders of magnitude over a very large range of vector-boson masses.

  3. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  4. Apparatus using the FARADAY effect to locate the magnetic axis of quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Le Bars, Josette

    1994-07-01

    A development using magneto-optic sensors is underway for the location of the magnetic center of long, small aperture, superconducting quadrupole magnets. The paper will describe the measuring methods and the preliminary results which have been obtained with gradients from 2.5 T/m to 10 T/m. The sensors are made of magneto-optic garnets using the Faraday effect which changes an incident beam of linearly polarized light into a transmitted beam of elliptically polarized light. An optical fiber bundle (phi less than 20 micron) carries the incident light to a polarized film, put above the magneto optic sensor. An analyzer film collects the transmitted light. A second optic fiber bundle carries this light toward a visual (microscope, video camera) or analogic data acquisition system. Furthermore, a level is associated with these crystals to determine the gravity direction. The 'mole' is moving along the axis of a warm bore tube when the magnet is superconducting. The present results are promising for measuring quadrupoles of much higher gradients, up to 100 T/m.

  5. Measurement of the nucleon structure function F 2 in the nuclear medium and evaluation of its moments

    DOE PAGES

    Osipenko, M.

    2010-06-01

    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W ≈ 2.4 GeV with four-momentum transfers Q 2 ranging from 0.2 to 5 GeV 2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q 2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By usingmore » these, as well as other world data, we evaluated the F 2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q 2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F 2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n < 7, suggesting partial parton deconfinement in nuclear matter. Lastly, we speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.« less

  6. Second Moments (planar Moments) and Their Application in Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bohn, Robert K.; Montgomery, John A., Jr.; Michels, H. Harvey; Byrd, Jason N.

    2013-06-01

    Second moments, also called planar moments (P_{ii} = Σ m_{i}^{} x_{i}^{2}), are the spectroscopic parameters used to determine substitution structures (r_{s}) ) by Kraitchman''s method from spectra of a molecule and its isotopologs. They are also useful for discussing other molecular structural properties. Just as bond lengths and angles are considered transferable among similar molecules, second moments of many common groups are also transferable. This paper discusses applications of second moments of methylene/methyl groups, singly or multiply, isopropyl/tert-butyl groups, phenyl groups, per{f}{l}uoro methylene/methyl groups, combinations of any of them, and planarity of molecules, the historically most common application of second moments. The inertial defect is Δ = (I_{c} - I_{a} - I_{b}) or -2P_{cc}. Some authors err by assuming each isotopolog provides three independent rotational constants, but in some cases they are not all independent. J. Kraitchman, Am. J. Phys. {21 (17), 1953.}

  7. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  8. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.

    PubMed

    Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D

    2014-02-01

    In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants.

  9. On the feasibility of sub-100 nm rad emittance measurement in plasma accelerators using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Wu, Y. P.; Nie, Z.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.

    2018-01-01

    Low emittance (sub-100 nm rad) measurement of electron beams in plasma accelerators has been a challenging issue for a while. Among various measurement schemes, measurements based on single-shot quad-scan using permanent magnetic quadrupoles (PMQs) has been recently reported with emittance as low as ˜200 nm Weingartner (2012 Phys. Rev. Spec. Top. Accel. Beams 15 111302). However, the accuracy and reliability of this method have not been systematically analyzed. Such analysis is critical for evaluating the potential of sub-100 nm rad emittance measurement using any scheme. In this paper, we analyze the effects of various nonideal physical factors on the accuracy and reliability using the PMQ method. These factors include aberration induced by a high order field, PMQ misalignment and angular fluctuation of incoming beams. Our conclusions are as follows: (i) the aberrations caused by high order fields of PMQs are relatively weak for low emittance measurement as long as the PMQs are properly constructed. A series of PMQs were manufactured and measured at Tsinghua University, and using numerical simulations their high order field effects were found to be negligible . (ii) The largest measurement error of emittance is caused by the angular misalignment between PMQs. For low emittance measurement of ˜100 MeV beams, an angular alignment accuracy of 0.1° is necessary. This requirement can be eased for beams with higher energies. (iii) The transverse position misalignment of PMQs and angular fluctuation of incoming beams only cause a translational and rotational shift of measured signals, respectively, therefore, there is no effect on the measured value of emittance. (iv) The spatial resolution and efficiency of the detection system need to be properly designed to guarantee the accuracy of sub-100 nm rad emittance measurement.

  10. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2017-12-09

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  11. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Forrest, Dana K.

    1991-01-01

    An experimental investigation was conducted to measure the forces, moments, and pressure distributions on the generic store separating from a rectangular box cavity contained in a flat plate surface at supersonic speeds. Pressure distributions inside the cavity and oil flow and vapor-screen photographs of the cavity flow field were also obtained. The measurements were obtained for the store separating from a flat plate surface, from two shallow cavities having length to depth ratios (L/h) of 16.778 and 12.073, and from a deep cavity having L/h = 6.730. Measurements for the shallow cavities were obtained both with and without rectangular doors attached to sides of the cavities. The tests were conducted at free stream Mach numbers of 1.69, 2.00 and 2.65 for a free stream Reynolds number per foot of 2 x 10(exp 6). Presented here are a discussion of the results, a complete tabulation of the pressure data, figures of both the pressure and force and moment data, and representative oil flow and vapor screen photographs.

  12. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  13. Forces and moments on a slender, cavitating body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with thismore » code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.« less

  14. Gravity Fields and Interiors of the Saturnian Satellites

    NASA Technical Reports Server (NTRS)

    Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.

    2006-01-01

    This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".

  15. Magnetic Moment Quantifications of Small Spherical Objects in MRI

    PubMed Central

    Cheng, Yu-Chung N.; Hsieh, Ching-Yi; Tackett, Ronald; Kokeny, Paul; Regmi, Rajesh Kumar; Lawes, Gavin

    2014-01-01

    Purpose The purpose of this work is to develop a method for accurately quantifying effective magnetic moments of spherical-like small objects from magnetic resonance imaging (MRI). A standard 3D gradient echo sequence with only one echo time is intended for our approach to measure the effective magnetic moment of a given object of interest. Methods Our method sums over complex MR signals around the object and equates those sums to equations derived from the magnetostatic theory. With those equations, our method is able to determine the center of the object with subpixel precision. By rewriting those equations, the effective magnetic moment of the object becomes the only unknown to be solved. Each quantified effective magnetic moment has an uncertainty that is derived from the error propagation method. If the volume of the object can be measured from spin echo images, the susceptibility difference between the object and its surrounding can be further quantified from the effective magnetic moment. Numerical simulations, a variety of glass beads in phantom studies with different MR imaging parameters from a 1.5 T machine, and measurements from a SQUID (superconducting quantum interference device) based magnetometer have been conducted to test the robustness of our method. Results Quantified effective magnetic moments and susceptibility differences from different imaging parameters and methods all agree with each other within two standard deviations of estimated uncertainties. Conclusion An MRI method is developed to accurately quantify the effective magnetic moment of a given small object of interest. Most results are accurate within 10% of true values and roughly half of the total results are accurate within 5% of true values using very reasonable imaging parameters. Our method is minimally affected by the partial volume, dephasing, and phase aliasing effects. Our next goal is to apply this method to in vivo studies. PMID:25490517

  16. Magnetic moment quantifications of small spherical objects in MRI.

    PubMed

    Cheng, Yu-Chung N; Hsieh, Ching-Yi; Tackett, Ronald; Kokeny, Paul; Regmi, Rajesh Kumar; Lawes, Gavin

    2015-07-01

    The purpose of this work is to develop a method for accurately quantifying effective magnetic moments of spherical-like small objects from magnetic resonance imaging (MRI). A standard 3D gradient echo sequence with only one echo time is intended for our approach to measure the effective magnetic moment of a given object of interest. Our method sums over complex MR signals around the object and equates those sums to equations derived from the magnetostatic theory. With those equations, our method is able to determine the center of the object with subpixel precision. By rewriting those equations, the effective magnetic moment of the object becomes the only unknown to be solved. Each quantified effective magnetic moment has an uncertainty that is derived from the error propagation method. If the volume of the object can be measured from spin echo images, the susceptibility difference between the object and its surrounding can be further quantified from the effective magnetic moment. Numerical simulations, a variety of glass beads in phantom studies with different MR imaging parameters from a 1.5T machine, and measurements from a SQUID (superconducting quantum interference device) based magnetometer have been conducted to test the robustness of our method. Quantified effective magnetic moments and susceptibility differences from different imaging parameters and methods all agree with each other within two standard deviations of estimated uncertainties. An MRI method is developed to accurately quantify the effective magnetic moment of a given small object of interest. Most results are accurate within 10% of true values, and roughly half of the total results are accurate within 5% of true values using very reasonable imaging parameters. Our method is minimally affected by the partial volume, dephasing, and phase aliasing effects. Our next goal is to apply this method to in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  18. Measurements of natural uranium concentration and isotopic composition with permil-level precision by inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shen, Chuan-Chou; Lin, Huei-Ting; Chu, Mei-Fei; Yu, Ein-Fen; Wang, Xianfeng; Dorale, Jeffrey A.

    2006-09-01

    A new analytical technique using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) has been developed that produces permil-level precision in the measurement of uranium concentration ([U]) and isotopic composition (δ234U) in natural materials. A 233U-236U double spike method was used to correct for mass fractionation during analysis. To correct for ratio drifting, samples were bracketed by uranium standard measurements. A sensitivity of 6-7 × 108 cps/ppm was generated with a sample solution uptake rate of 30 μL/min. With a measurement time of 15-20 min, standards of 30-ng uranium produced a within-run precision better than 3‰ (±2 R.S.D.) for δ234U and better than 2‰ for [U]. Replicate measurements made on standards show that a between-run reproducibility of 3.5‰ for δ234U and 2‰ for [U] can be achieved. ICP-QMS data of δ234U and [U] in seawater, coral, and speleothem materials are consistent with the data measured by other ICP-MS and TIMS techniques. Advantages of the ICP-QMS method include low cost, easy maintenance, simple instrumental operation, and few sample preparation steps. Sample size requirements are small, such as 10-14 mg of coral material. The results demonstrate that this technique can be applied to natural samples with various matrices.

  19. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    NASA Astrophysics Data System (ADS)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M < 1.4 M ⊙) neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed in an ultra-stripped supernova explosion (US-SN) with a ONeMg or Fe progenitor. Using systematically generated sets of equations of state we map out the relationship between the moment of inertia of J0737-3039A, a candidate for a moment of inertia measurement within a decade, and the binding energy of the two low-mass neutron stars. This relationship, similar to the I-Love-Q relations, is more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  20. An experimentally based nonlinear viscoelastic model of joint passive moment.

    PubMed

    Esteki, A; Mansour, J M

    1996-04-01

    Previous investigations have not converged on a generally accepted model of the dissipative part of joint passive moment. To provide a basis for developing a model, a series of measurements were performed to characterize the passive moment at the metacarpophalangeal joint of the index finger. Two measurement procedures were used, one in moment relaxation over a range of fixed joint angles and the other at a series of constant joint velocities. Fung's quasi-linear viscoelastic theory motivated the development of the passive moment model. Using this approach, it was not necessary to make restrictive assumptions regarding the viscoelastic behavior of the passive moment. The generality of the formulation allowed specific functions to be chosen based on experimental data rather than finding coefficients which attempted to fit a preselected model of the data. It was shown that a nonlinear viscoelastic model described the passive stiffness. No significant frictional effects were found. Of particular importance was the nonlinear behavior of the dissipative part of the passive moment which was modeled by joint speed raised to a power less than one. This result could explain the differing findings among previous investigations, and may have important implications for control of limb movement.

  1. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  2. Detection of Quadrupole Interactions by Muon Level Crossing Resonance

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    1992-02-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and

  3. A g-factor puzzle for the N=38 nuclei:First measurement of the ^70Ge 41^+ magnetic moment.

    NASA Astrophysics Data System (ADS)

    Boutachkov, Plamen; Kumbartzki, G.; Benczer-Koller, N.; Robinson, S.; Escuderos, A.; Stefanova, E.; Sharon, Y.; Zamick, L.; McCutchan, E.; Werner, V.; Ai, H.; Gurdal, G.; Heinz, A.; Qian, J.; Williams, E.; Winkler, R.; Garnsworthy, A.; Thompson, N.; Maier-Komor, P.

    2006-10-01

    The transient field technique in inverse kinematics allows g-factor studies of short-lived states. This method gives information on both the sign and the magnitude of the g factor. In a recent experiment, the g factor of the 4^+1 state of ^6830Zn38 was measured to be -0.37(17) suggesting a significant neutron g9/2 contribution to the wave function[1]. However, shell model calculations in the 0f5/2,1p3/2,1p1/2,0g9/2 space [1] predict a positive, nearly zero g factor. To obtain more information on this region we measured the magnetic moment of the 4^+1 in ^7032Ge38. The measurement was performed at WNSL, Yale, using a 275 MeV ^70Ge beam and a multilayered C+Gd+Cu target. A positive g factor was obtained. The measured magnetic moment was compared to full fp shell model calculations which we performed with the code ANTOINE using several effective interactions. The results were in good agreement with the experiment. The experiment and the implications of the new results will be discussed.1. J. Leske et al., Phys. Rev C 72, 044301 (2005).

  4. Optical and magnetic measurements of gyroscopically stabilized graphene nanoplatelets levitated in an ion trap

    NASA Astrophysics Data System (ADS)

    Nagornykh, Pavel; Coppock, Joyce E.; Murphy, Jacob P. J.; Kane, B. E.

    2017-07-01

    Using optical measurements, we demonstrate that the rotation of micron-scale graphene nanoplatelets levitated in a quadrupole ion trap in high vacuum can be frequency-locked to an applied radiofrequency electric field Erf. Over time, frequency-locking stabilizes the nanoplatelet so that its axis of rotation is normal to the nanoplatelet and perpendicular to Erf. We observe that residual slow dynamics of the direction of the axis of rotation in the plane normal to Erf is determined by an applied magnetic field. We present a simple model that accurately describes our observations. From our data and model, we can infer both a diamagnetic polarizability and a magnetic moment proportional to the frequency of rotation, which we compare to theoretical values. Our results establish that trapping technologies have applications for materials measurements at the nanoscale.

  5. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    NASA Astrophysics Data System (ADS)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  6. Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles

    NASA Astrophysics Data System (ADS)

    Delgado-Acosta, E. G.; Kirchbach, M.; Napsuciale, M.; Rodríguez, S.

    2012-06-01

    to be representation-dependent. In particular, we find the bi-vector (1,0)⊕(0,1) to be characterized by an electric quadrupole moment of opposite sign to the one found in (1/2,1/2), and consequently to the W boson. This observation allows us to explain the positive electric quadrupole moment of the ρ meson extracted from recent analyses of the ρ meson electric form factor. Our finding points toward the possibility that the ρ-meson could transform as part of an antisymmetric tensor with an a1 mesonlike state as its representation companion, a possibility consistent with the empirically established ρ and a1 vector meson dominance of the hadronic vector and axial-vector currents.

  7. Measuring the reionization 21 cm fluctuations using clustering wedges

    NASA Astrophysics Data System (ADS)

    Raut, Dinesh; Choudhury, Tirthankar Roy; Ghara, Raghunath

    2018-03-01

    One of the main challenges in probing the reionization epoch using the redshifted 21 cm line is that the magnitude of the signal is several orders smaller than the astrophysical foregrounds. One of the methods to deal with the problem is to avoid a wedge-shaped region in the Fourier k⊥ - k∥ space which contains the signal from the spectrally smooth foregrounds. However, measuring the spherically averaged power spectrum using only modes outside this wedge (i.e. in the reionization window) leads to a bias. We provide a prescription, based on expanding the power spectrum in terms of the shifted Legendre polynomials, which can be used to compute the angular moments of the power spectrum in the reionization window. The prescription requires computation of the monopole, quadrupole, and hexadecapole moments of the power spectrum using the theoretical model under consideration and also the knowledge of the effective extent of the foreground wedge in the k⊥ - k∥ plane. One can then calculate the theoretical power spectrum in the window which can be directly compared with observations. The analysis should have implications for avoiding any bias in the parameter constraints using 21 cm power spectrum data.

  8. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  9. Electric-field control of magnetic moment in Pd

    PubMed Central

    Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi

    2015-01-01

    Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306

  10. Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA

    NASA Astrophysics Data System (ADS)

    Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.

    2018-02-01

    A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.

  11. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  12. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  13. Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a

    DOE PAGES

    DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...

    2016-03-09

    The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less

  14. Measurement of the Spectroscopic Quadrupole Moment for the 2+1 State in 10Be:. Testing AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.

    2013-03-01

    The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal < 2+1|M({E}2)|2+1> matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.

  15. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements. In the past year, we have added to our data, primarily lunar laser ranging measurements, but also supplementary data concerning the physical properties of solar-system objects, such as the solar quadrupole moment, planetary masses, and asteroid radii. Because the solar quadrupole moment contributes to the classical precession of planetary perihelia, but with a dependence on distance from the Sun that differs from that of the relativistic precession, it is possible to estimate effects simultaneously. However, our interest is mainly in the relativistic effect, and we find that imposing a constraint on the quadrupole moment from helioseismology studies, gives us a dramatic (about ten-fold) decrease in the standard error of our estimate of the relativistic component of the perihelion advance.

  16. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    PubMed

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  17. Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.

    2010-11-01

    Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.

  18. Inquiry-Based Science: Turning Teachable Moments into Learnable Moments

    ERIC Educational Resources Information Center

    Haug, Berit S.

    2014-01-01

    This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…

  19. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  20. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  1. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  2. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  3. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such asmore » lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.« less

  4. First measurement of T -odd moments in D 0 → K S 0 π + π - π 0 decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanth, K.; Libby, J.; Adachi, I.

    2017-05-01

    We report the first measurement of the T-odd moments in the decay D 0 → Kmore » $$0\\atop{S}$$π +π -π 0 from a data sample corresponding to an integrated luminosity of 966 fb -1 collected by the Belle experiment at the KEKB asymmetric-energy eþe- collider.« less

  5. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less

  6. Numerical analysis of the Magnus moment on a spin-stabilized projectile

    NASA Astrophysics Data System (ADS)

    Cremins, Michael; Rodebaugh, Gregory; Verhulst, Claire; Benson, Michael; van Poppel, Bret

    2016-11-01

    The Magnus moment is a result of an uneven pressure distribution that occurs when an object rotates in a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on flight stability. According to one source, most transonic and subsonic flight instabilities are caused by the Magnus moment [Modern Exterior Ballistics, McCoy], and yet simulations often fail to accurately predict the Magnus moment in the subsonic regime. In this study, we present hybrid Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) predictions of the Magnus moment for a spin-stabilized projectile. Velocity, pressure, and Magnus moment predictions are presented for multiple Reynolds numbers and spin rates. We also consider the effect of a sting mount, which is commonly used when conducting flow measurements in a wind tunnel or water channel. Finally, we present the initial designs for a novel Magnetic Resonance Velocimetry (MRV) experiment to measure three-dimensional flow around a spinning projectile. This work was supported by the Department of Defense High Performance Computing Modernization Program (DoD HPCMP).

  7. Design study of beam position monitors for measuring second-order moments of charged particle beams

    NASA Astrophysics Data System (ADS)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  8. The MQXA quadrupoles for the LHC low-beta insertions

    NASA Astrophysics Data System (ADS)

    Ajima, Y.; Higashi, N.; Iida, M.; Kimura, N.; Nakamoto, T.; Ogitsu, T.; Ohhata, H.; Ohuchi, N.; Shintomi, T.; Sugawara, S.; Sugita, K.; Tanaka, K.; Taylor, T.; Terashima, A.; Tsuchiya, K.; Yamamoto, A.

    2005-09-01

    High-performance superconducting quadrupole magnets, MQXA, for the LHC low-beta insertions have been designed, manufactured in series and tested. The design field gradient of the quadrupole, which has a coil aperture of diameter 70 mm, was 240 T/m at 1.9 K; its effective length is 6.37 m, and it is required to operate reliably at up to 215 T/m when subjected to radiation heat deposit in the coils of up to 5 W/m. The series of 20 magnets has been produced in industry, and tested at KEK. The magnet design is explained, and the construction and performance of the series units, in terms of training, field quality and geometry, are presented.

  9. Apparent Explosion Moments from Rg Waves Recorded on SPE

    DOE PAGES

    Larmat, Carene; Rougier, Esteban; Patton, Howard John

    2016-11-29

    Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less

  10. Apparent Explosion Moments from Rg Waves Recorded on SPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene; Rougier, Esteban; Patton, Howard John

    Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less

  11. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses.

    PubMed

    Boone, David A; Kobayashi, Toshiki; Chou, Teri G; Arabian, Adam K; Coleman, Kim L; Orendurff, Michael S; Zhang, Ming

    2013-04-01

    Alignment - the process and measured orientation of the prosthetic socket relative to the foot - is important for proper function of a transtibial prosthesis. Prosthetic alignment is performed by prosthetists using visual gait observation and amputees' feedback. The aim of this study was to investigate the effect of transtibial prosthesis malalignment on the moments measured at the base of the socket: the socket reaction moments. Eleven subjects with transtibial amputation were recruited from the community. An instrumented prosthesis alignment component was used to measure socket reaction moments during ambulation under 17 alignment conditions, including nominally aligned using conventional clinical methods, and angle perturbations of 3° and 6° (flexion, extension, abduction, and adduction) and translation perturbations of 5mm and 10mm (anterior, posterior, lateral, and medial) referenced from the nominal alignment. Coronal alignment perturbations caused systematic changes in the coronal socket reaction moments. All angle and translation perturbations revealed statistically significant differences on coronal socket reaction moments compared to the nominal alignment at 30% and 75% of stance phase (P<0.05). The effect of sagittal alignment perturbations on sagittal socket reaction moments was not as responsive as that of the coronal perturbations. The sagittal angle and translation perturbations of the socket led to statistically significant changes in minimum moment, maximum moment, and moments at 45% of stance phase in the sagittal plane. Therefore, malalignment affected the socket reaction moments in amputees with transtibial prostheses. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The forces and moments acting on parts of the XN2Y-1 airplane during spins

    NASA Technical Reports Server (NTRS)

    Scudder, N F

    1937-01-01

    The magnitudes of the yawing moments produced by various parts of an airplane during spins have previously been found to be of major importance in determining the nature of the spin. Discrepancies in resultant yawing moments determined from model and full-scale tests, however, have indicated the probable importance of scale effect on the model. In order to obtain data for a more detailed comparison between full-scale and model results, flight tests were made to determine the yawing moments contributed by various parts of an airplane in spins. The inertia moment was determined by the usual measurement of the spinning motion, and the aerodynamic yawing moments on the fuselage, fin, and rudder were determined by pressure-distribution measurements over these parts of the airplane. The wing yawing moment was determined by taking the difference between the gyroscopic moment and the fuselage, fin, and rudder moments. The numerical values of the wing yawing moments were found to be of the same order of magnitude as those measured in wind tunnels.

  13. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

    NASA Astrophysics Data System (ADS)

    Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A.

    2017-10-01

    We describe the first precision measurement of the electron's electric dipole moment (de) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on 180Hf 19F+ in its metastable 3Δ1 electronic state, we obtain de=(0.9 ±7. 7stat±1. 7syst)×10-29 e cm , resulting in an upper bound of |de|<1.3 ×10-28 e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |de|<9.4 ×10-29 e cm [J. Baron et al., New J. Phys. 19, 073029 (2017), 10.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  14. Electric dipole moments of nanosolvated acid molecules in water clusters.

    PubMed

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  15. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  16. New Experiment to Measure the Electron Electric Dipole Moment

    NASA Technical Reports Server (NTRS)

    Kittle, Melanie

    2003-01-01

    An electron can possess an electric dipole moment (edm) only if time reversal symmetry (T) is violated. No edm of any particle has yet been discovered. CP-violation, equivalent to T-violation by the CPT theorem, does occur in Kaon decays and can be accounted for by the standard model. However, this mechanism leads to an electron edm d(sub e) of the order of 10(exp -38) e cm, whereas the current experimental bound on d(sub e) is about 10(exp -27) e cm. However, well-motivated extensions of the standard model such as supersymmetric theories do predict that de could be as large as the current bound. In addition, CP violation in the early universe is required to explain the preponderance of matter over anti-matter, but the exact mechanism of this CP violation is unclear. For these reasons, we are undertaking a new experimental program to determine de to an improved accuracy of 10(exp -29) e cm. Our experiment will use laser-cooled, trapped Cesium atoms to measure the atomic edm d(sub Cs) that occurs if d(sub e) is not zero. In order to do this, we will measure the energy splitting between the atoms spin states in parallel electric and magnetic fields. The signature of an edm would be a linear dependence of the splitting on the electric field E due to the interaction - d(sub Cs) dot E. Our measurement will be much more sensitive than previous measurements because atoms can be stored in the trap for tens of seconds, allowing for much narrower Zeeman resonance linewidths. Also, our method eliminates the most important systematic errors, proportional to atomic velocity, which have limited previous experiments. In this presentation, we will describe the design of our new apparatus, which is presently under construction. An important feature of our experimental apparatus is that magnetic field noise will be suppressed to a very low value of the order of 1 fT/(Hz)1/2. This requires careful attention to the Johnson noise currents in the chamber, which have not been important

  17. Moment distributions around holes in symmetric composite laminates subjected to bending moments

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.

    1989-01-01

    An analytical investigation of the effects of holes on the moment distribution of symmetric composite laminates subjected to bending moments is described. A general, closed-form solution for the moment distribution of an infinite anisotropic plate is derived, and this solution is used to determine stress distributions both on the hole boundary and throughout the plate. Results are presented for several composite laminates that have holes and are subjected to either pure bending or cylindrical bending. Laminates with a circular hole or with an elliptical hole are studied. Laminate moment distributions are discussed, and ply stresses are described.

  18. Estimation of low back moments from video analysis: a validation study.

    PubMed

    Coenen, Pieter; Kingma, Idsart; Boot, Cécile R L; Faber, Gert S; Xu, Xu; Bongers, Paulien M; van Dieën, Jaap H

    2011-09-02

    This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed. Ten healthy subjects participated in a protocol comprising 12 lifting conditions. Low back moments were assessed using two variants of a video analysis method and a lab-based reference method. Repeated measures ANOVAs showed no overall differences in peak moments between the two versions of the video analysis method and the reference method. However, two conditions showed a minor overestimation of one of the video analysis method moments. Standard deviations were considerable suggesting that errors in the video analysis were random. Furthermore, there was a small underestimation of dynamic components and overestimation of the static components of the moments. Intraclass correlations coefficients for peak moments showed high correspondence (>0.85) of the video analyses with the reference method. It is concluded that, when a sufficient number of measurements can be taken, the video analysis method for assessment of low back loads during lifting tasks provides valid estimates of low back moments in ergonomic practice and epidemiological studies for lifts up to a moderate level of asymmetry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS.

    PubMed

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  20. A molecule with small rotational constants containing an atom with a large nuclear quadrupole moment: The microwave spectrum of trans-1-iodoperfluoropropane

    NASA Astrophysics Data System (ADS)

    Dewberry, C. T.; Grubbs, G. S.; Cooke, S. A.

    2009-09-01

    Using pulsed jet chirped-pulse, and cavity-based Fourier transform microwave spectroscopies over 900 transitions have been recorded for the title molecule in the 1-4 GHz and 8-18 GHz regions. The C,C and C carbon-13 species have been observed in natural abundance allowing a substitution structure for the CCC backbone to be determined. Nearly all the transitions observed were either a-type R branches or b-type Q branches. No c-type transitions were observed consistent with only the trans conformer being present under our experimental conditions. The χaa,χbb,χcc and χab components of the iodine nuclear quadrupole coupling tensor have been determined. Of note, several forbidden, ΔJ±2 transitions, and one ΔJ±3 transition were observed with quite reasonable intensity. These observations have been rationalized through considerations of near degeneracies between energy levels connected via a large χab value (≈1 GHz).

  1. Six-axis orthodontic force and moment sensing system for dentist technique training.

    PubMed

    Midorikawa, Yoshiyuki; Takemura, Hiroshi; Mizoguchi, Hiroshi; Soga, Kohei; Kamimura, Masao; Suga, Kazuhiro; Wei-Jen Lai; Kanno, Zuisei; Uo, Motohiro

    2016-08-01

    The purpose of this study is to develop a sensing system device that measures three-axis orthodontic forces and three-axis orthodontic moments for dentist training. The developed sensing system is composed of six-axis force sensors, action sticks, sliders, and tooth models. The developed system also simulates various types of tooth row shape patterns in orthodontic operations, and measures a 14 × 6 axis orthodontic force and moment from tooth models simultaneously. The average force and moment error per loaded axis were 2.06 % and 2.00 %, respectively.

  2. Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve

    ERIC Educational Resources Information Center

    Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.

    2013-01-01

    We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…

  3. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  4. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald

    2018-05-22

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  5. Multiple shadows from distorted static black holes

    NASA Astrophysics Data System (ADS)

    Grover, Jai; Kunz, Jutta; Nedkova, Petya; Wittig, Alexander; Yazadjiev, Stoytcho

    2018-04-01

    We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the influence of the external gravitational field on the photon dynamics. The external matter sources modify the light ring structure and lead to the appearance of multiple shadow images. In the case of negative quadrupole moments we identify the most prominent mechanism causing multiple shadow formation. Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends on the quadrupole moment, but also on the position of the observer and the celestial sphere.

  6. The Aerodynamic Forces and Moments Exerted on a Spinning Model of the NY-1 Airplane as Measured by the Spinning Balance

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerm, N, C h

    1934-01-01

    A preliminary investigation of the effects of changes in the elevator and rudder settings and of small changes in attitude upon the aerodynamic forces and moments exerted upon a spinning airplane was undertaken with the spinning balance in the 5-foot vertical tunnel of the National Advisory Committee for Aeronautics. The tests were made on a 1/12-scale model of the ny-1 airplane. Data by which to fix the attitude, the radius of spin, and the rotational and air velocities were taken from recorded spins of the full-scale airplane. Two spinning conditions were investigated. All six components of the aerodynamic reaction were measured and are presented in coefficient form refereed to airplane axes. The results indicate that the change in yawing moment produced by the rudder with the elevator up was the only component of force or moment produced by the elevator and rudder that could not have been balanced in an actual spin by small changes in attitude and angular velocity.

  7. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-28

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  8. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  9. A shock-tube measurement of the SiO/E 1 Sigma + - X 1 Sigma +/ transition moment

    NASA Technical Reports Server (NTRS)

    Park, C.

    1978-01-01

    The sum of the squares of the electronic transition moments for the (E 1 Sigma +) - (X 1 Sigma +) band system of SiO has been determined from absorption measurements conducted in the reflected-shock region of a shock tube. The test gas produced by shock-heating a mixture of SiCl4, N2O, and Ar, and the spectra were recorded photographically in the 150-230-nm wavelength range. The values of the sum of the squares were determined by comparing the measured absorption spectra with those produced by a line-by-line synthetic spectrum calculation. The value so deduced at an r-centroid value of 3.0 bohr was 0.86 + or - 0.10 atomic unit.

  10. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  11. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    PubMed

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  12. Moment of Inertia of a Ping-Pong Ball

    ERIC Educational Resources Information Center

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  13. Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO

    NASA Astrophysics Data System (ADS)

    Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.

    2002-03-01

    The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.

  14. Dependence of muscle moment arms on in-vivo three-dimensional kinematics of the knee

    PubMed Central

    Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B.

    2016-01-01

    Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented. PMID:27620064

  15. Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee.

    PubMed

    Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B

    2017-03-01

    Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented.

  16. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  17. Search for a Neutron Electric Dipole Moment

    PubMed Central

    Golub, R.; Huffman, P. R.

    2005-01-01

    The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116

  18. Three-dimensional moment arms and architecture of chimpanzee (Pan troglodytes) leg musculature

    PubMed Central

    Holowka, Nicholas B; O'Neill, Matthew C

    2013-01-01

    The muscular and skeletal morphology of the chimpanzee ankle and foot differs from that of humans in many important respects. However, little information is available on the moment arms and architecture of the muscles that function around chimpanzee ankle and foot joints. The main goals of this study were to determine the influence of changes in leg and foot position on the moment arms of these muscle–tendon units (MTUs), and provide new measurements of their architecture. Three-dimensional moment arm data were collected from two adult, cadaveric Pan troglodytes specimens for 11 MTUs that cross the ankle and foot joints. Tendon-excursion measurements were made throughout the full range of plantarflexion–dorsiflexion (PF–DF) and eversion–inversion (EV–IN), including repeated measurements for mm. gastrocnemius at 0 °, 45 °, 90 ° and 135 ° of knee flexion. The total range of motion was calculated from three-dimensional joint motion data while ensuring that foot movement was restricted to a single plane. Measurements of muscle mass, fascicle length, pennation angle and physiological cross-sectional area were then collected for each MTU. Our results demonstrate that joint position has a significant effect on moment arm lengths, and that in some cases this effect is counterintuitive. These new data contribute to filling a significant gap in previously published chimpanzee moment arm data, providing a comprehensive characterization of the MTUs that move the chimpanzee ankle and foot joints. They also provide empirical support to the notion that chimpanzees have larger ranges of motion at these joints than humans. Comparison of osteometric estimates of moment arm lengths to direct tendon-excursion measures provides some guidance for the use of skeletal features in estimations of PF–DF moment arms. Finally, muscle architecture data are consistent with the findings of previous studies, and increase the sample size of the chimpanzee data that are currently

  19. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J., E-mail: Jieliu@aps.anl.gov; Jaski, M., E-mail: jaski@aps.anl.gov; Borland, M., E-mail: borland@aps.anl.gov

    2016-07-27

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based onmore » the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.« less

  20. Analysis of field errors for LARP Nb 3Sn HQ03 quadrupole magnet

    DOE PAGES

    Wang, Xiaorong; Ambrosio, Giorgio; Chlachidze, Guram; ...

    2016-12-01

    The U.S. LHC Accelerator Research Program, in close collaboration with CERN, has developed three generations of high-gradient quadrupole (HQ) Nb 3Sn model magnets, to support the development of the 150 mm aperture Nb 3Sn quadrupole magnets for the High-Luminosity LHC. The latest generation, HQ03, featured coils with better uniformity of coil dimensions and properties than the earlier generations. We tested the HQ03 magnet at FNAL, including the field quality study. The profiles of low-order harmonics along the magnet aperture observed at 15 kA, 1.9 K can be traced back to the assembled coil pack before the magnet assembly. Based onmore » the measured harmonics in the magnet center region, the coil block positioning tolerance was analyzed and compared with earlier HQ01 and HQ02 magnets to correlate with coil and magnet fabrication. Our study the capability of correcting the low-order non-allowed field errors, magnetic shims were installed in HQ03. Furthermore, the expected shim contribution agreed well with the calculation. For the persistent-current effect, the measured a4 can be related to 4% higher in the strand magnetization of one coil with respect to the other three coils. Lastly, we compare the field errors due to the inter-strand coupling currents between HQ03 and HQ02.« less

  1. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2015-05-01

    The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of

  2. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  3. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  4. MQXFS1 Quadrupole Fabrication Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Anerella, M.; Bossert, R.

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  5. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  6. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    PubMed

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  7. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  8. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions.

    PubMed

    Cairncross, William B; Gresh, Daniel N; Grau, Matt; Cossel, Kevin C; Roussy, Tanya S; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A

    2017-10-13

    We describe the first precision measurement of the electron's electric dipole moment (d_{e}) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on ^{180}Hf^{19}F^{+} in its metastable ^{3}Δ_{1} electronic state, we obtain d_{e}=(0.9±7.7_{stat}±1.7_{syst})×10^{-29}  e cm, resulting in an upper bound of |d_{e}|<1.3×10^{-28}  e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |d_{e}|<9.4×10^{-29}  e cm [J. Baron et al., New J. Phys. 19, 073029 (2017)NJOPFM1367-263010.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  9. Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2003-02-01

    We report accurate values of the electric moments, static polarizabilities, hyperpolarizabilities and their respective derivatives for N2. Our values have been extracted from finite-field Møller-Pleset perturbation theory and coupled cluster calculations performed with carefully designed basis sets. A large [15s12p9d7f] basis set consisting of 290 CGTF is expected to provide reference self-consistent-field values of near-Hartree-Fock quality for all properties. The Hartree-Fock limit for the mean hyperpolarizability is estimated at γ¯=715±4e4a04Eh-3 at the experimental bond length Re=2.074 32a0. Accurate estimates of the electron correlation effects were obtained with a [10s7p6d4f] basis set. Our best values are Θ=-1.1258ea02 for the quadrupole and Φ=-6.75ea04 for the hexadecapole moment, ᾱ=11.7709 and Δα=4.6074e2a02Eh-1 for the mean and the anisotropy of the dipole polarizability, C¯=41.63e2a04Eh-1 for the mean quadrupole polarizability and γ¯=927e4a04Eh-3 for the dipole hyperpolarizability. The latter value is quite close to Shelton's experimental estimate of 917±5e4a04Eh-3 [D. P. Shelton, Phys. Rev. A 42, 2578 (1990)]. The R dependence of all properties has been calculated with a [7s5p4d2f] basis set. At the CCSD(T) level of theory the dipole polarizability varies around Re as ᾱ(R)/e2a02Eh-1=11.8483+6.1758(R-Re)+0.9191(R-Re)2-0.8212(R-Re)3-0.0006(R-Re)4, Δα(R)/e2a02Eh-1=4.6032+7.0301(R-Re)+1.9340(R-Re)2-0.5708(R-Re)3+0.1949(R-Re)4. For the Cartesian components and the mean of γαβγδ, (dγzzzz/dR)e=1398, (dγxxxx/dR)e=867, (dγxxzz/dR)e=317, and (dγ¯/dR)e=994e4a03Eh-3. For the quadrupole polarizability Cαβ,γδ, we report (dCzz,zz/dR)e=19.20, (dCxz,xz/dR)e=16.55, (dCxx,xx/dR)e=10.20, and (dC¯/dR)e=23.31e2a03Eh-1. At the MP2 level of theory the components of the dipole-octopole polarizability (Eα,βγδ) and the mean dipole-dipole-octopole hyperpolarizability B¯ we have obtained (dEz,zzz/dR)e=36.71, (dEx,xxx/dR)e=-12.94e2a03Eh-1, and

  10. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  11. Electric dipole moment of the diatomic tif in its higher vibrational states

    NASA Astrophysics Data System (ADS)

    Nair, K. P. R.; Hoeft, J.

    1983-04-01

    The electric dipole moment of 205Tl 19F has been measured in its higher vibrational states up to ν = 7 by studying the Statk effect in the J = O → 1 rotational transitions. The variation of the electric dipole moment with vibrational states is discussed. The electric dipole moment can be written as lμ νl = 4.1941 (15) + 0.0681(12) (ν + 1/2) D.

  12. Passive moment about the hip in straight leg raising.

    PubMed

    Lee, R Y; Munn, J

    2000-06-01

    The purpose of this examine is to study the load-deformation characteristics of the hip in straight leg raising. An experimental study in which passive moment about the hip was determined as a function of hip angle. Straight leg raising is widely employed in clinical examination, and there is little information on its mechanical characteristics. Fourteen healthy volunteers were recruited for this study. Three trials of straight leg raise tests were performed while subjects lay supine on a plinth that was fitted with load cells. An electrogoniometer was employed to measure hip flexion during the test. Resistive moment at the hip was determined using a dynamic biomechanical model. The present experimental method was shown to be highly reliable. The moment-angle curves of all subjects were shown to follow an exponential function. Stiffness and strain energy of posterior hip tissues could be derived from the moment-angle curves. Evaluation of such elastic properties is clinically important as they may be altered with injuries of the tissues. Clinically, contracture of hamstring muscles and other posterior hip tissues is evaluated by measuring the available range of hip flexion in straight leg raising. However, this does not provide any information on the elastic properties of the tissues. The present study reports a reliable method of evaluating such properties.

  13. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    PubMed

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  14. Electrostatic Properties of Aqueous Salt Solution Interfaces: A Comparison of Polarizable and Non-Polarizable Ion Models

    PubMed Central

    Warren, G. Lee; Patel, Sandeep

    2014-01-01

    The effects of ion force field polarizability on the interfacial electrostatic properties of ~1 M aqueous solutions of NaCl, CsCl and NaI are investigated using molecular dynamics simulations employing both non-polarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, “permanent” and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and zz components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor mimicking a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase non-monotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the non-polarizable salts yield values 20 to 60 mV more positive than pure water and increase by an additional 30 to 100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by

  15. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchán, E.; Moran, K.; Lister, C. J.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0 + → 0 + transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the J π = 11/2 - isomericmore » state at 662 keV in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.« less

  16. Validation of an improved method to calculate the orientation and magnitude of pedicle screw bending moments.

    PubMed

    Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E

    2012-10-01

    Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.

  17. A moment projection method for population balance dynamics with a shrinkage term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shaohua; Yapp, Edward K.Y.; Akroyd, Jethro

    A new method of moments for solving the population balance equation is developed and presented. The moment projection method (MPM) is numerically simple and easy to implement and attempts to address the challenge of particle shrinkage due to processes such as oxidation, evaporation or dissolution. It directly solves the moment transport equation for the moments and tracks the number of the smallest particles using the algorithm by Blumstein and Wheeler (1973) . The performance of the new method is measured against the method of moments (MOM) and the hybrid method of moments (HMOM). The results suggest that MPM performs muchmore » better than MOM and HMOM where shrinkage is dominant. The new method predicts mean quantities which are almost as accurate as a high-precision stochastic method calculated using the established direct simulation algorithm (DSA).« less

  18. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  19. Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM

    NASA Astrophysics Data System (ADS)

    Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.

    2018-03-01

    In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.

  20. QUANTIFYING UNCERTAINTY DUE TO RANDOM ERRORS FOR MOMENT ANALYSES OF BREAKTHROUGH CURVES

    EPA Science Inventory

    The uncertainty in moments calculated from breakthrough curves (BTCs) is investigated as a function of random measurement errors in the data used to define the BTCs. The method presented assumes moments are calculated by numerical integration using the trapezoidal rule, and is t...

  1. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  2. Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2001-04-01

    Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.

  3. Target recognition based on the moment functions of radar signatures

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Tae; Kim, Hyo-Tae

    2002-03-01

    In this paper, we present the results of target recognition research based on the moment functions of various radar signatures, such as time-frequency signatures, range profiles, and scattering centers. The proposed approach utilizes geometrical moments or central moments of the obtained radar signatures. In particular, we derived exact and closed form expressions of the geometrical moments of the adaptive Gaussian representation (AGR), which is one of the adaptive joint time-frequency techniques, and also computed the central moments of range profiles and one-dimensional (1-D) scattering centers on a target, which are obtained by various super-resolution techniques. The obtained moment functions are further processed to provide small dimensional and redundancy-free feature vectors, and classified via a neural network approach or a Bayes classifier. The performances of the proposed technique are demonstrated using a simulated radar cross section (RCS) data set, or a measured RCS data set of various scaled aircraft models, obtained at the Pohang University of Science and Technology (POSTECH) compact range facility. Results show that the techniques in this paper can not only provide reliable classification accuracy, but also save computational resources.

  4. Vibrationally averaged dipole moments of methane and benzene isotopologues.

    PubMed

    Arapiraca, A F C; Mohallem, J R

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C6H3D3 is about twice as large as the measured dipole moment of C6H5D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  5. Indirect Measurement of Rotor Dynamic Imbalance for Control Moment Gyroscopes via Gimbal Disturbance Observer.

    PubMed

    Huang, Liya; Wu, Zhong; Wang, Kan

    2018-06-07

    The high-precision speed control of gimbal servo systems is the key to generating high-precision torque for control moment gyroscopes (CMGs) in spacecrafts. However, the control performance of gimbal servo systems may be degraded significantly by disturbances, especially a dynamic imbalance disturbance with the same frequency as the high-speed rotor. For assembled CMGs, it is very difficult to measure the rotor imbalance directly by using a dynamic balancing machine. In this paper, a gimbal disturbance observer is proposed to estimate the dynamic imbalance of the rotor assembled in the CMG. First, a third-order dynamical system is established to describe the disturbance dynamics of the gimbal servo system, in which the rotor dynamic imbalance torque along the gimbal axis and the other disturbances are modeled to be periodic and bounded, respectively. Then, the gimbal disturbance observer is designed for the third-order dynamical system by using the total disturbance as a virtual measurement. Since the virtual measurement is derived from the inverse dynamics of the gimbal servo system, the information of the rotor dynamic imbalance can be obtained indirectly only using the measurements of gimbal speed and three-phase currents. Semi-physical experimental results demonstrate the effectiveness of the observer by using a CMG simulator.

  6. The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment.

    PubMed

    Takashima, S

    2001-04-05

    The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments.

  7. Collectivity in the light radon nuclei measured directly via Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Gaffney, L. P.; Robinson, A. P.; Jenkins, D. G.; Andreyev, A. N.; Bender, M.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Cocolios, T. E.; Davinson, T.; Deacon, A. N.; De Witte, H.; DiJulio, D.; Diriken, J.; Ekström, A.; Fransen, Ch.; Freeman, S. J.; Geibel, K.; Grahn, T.; Hadinia, B.; Hass, M.; Heenen, P.-H.; Hess, H.; Huyse, M.; Jakobsson, U.; Kesteloot, N.; Konki, J.; Kröll, Th.; Kumar, V.; Ivanov, O.; Martin-Haugh, S.; Mücher, D.; Orlandi, R.; Pakarinen, J.; Petts, A.; Peura, P.; Rahkila, P.; Reiter, P.; Scheck, M.; Seidlitz, M.; Singh, K.; Smith, J. F.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Wenander, F.; Wimmer, K.; Wrzosek-Lipska, K.; Zielińska, M.

    2015-06-01

    Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z =82 and the neutron midshell at N =104 . Purpose: Evidence for shape coexistence has been inferred from α -decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of 202Rn and 204Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E 2 ) matrix element connecting the ground state and first excited 21+ state was extracted for both 202Rn and 204Rn, corresponding to B (E 2 ;21+→01+) =29-8+8 and 43-12+17 W.u., respectively. Additionally, E 2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in 202Rn. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.

  8. Effects of the Racket Polar Moment of Inertia on Dominant Upper Limb Joint Moments during Tennis Serve

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  9. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    NASA Astrophysics Data System (ADS)

    Uchikata, Nami; Yoshida, Shijun; Pani, Paolo

    2016-09-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.

  10. Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with Rotational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2014-11-01

    The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second

  11. AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.

    1986-01-01

    In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.

  12. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  13. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  14. Three-Dimensional Multi-fluid Moment Simulation of Ganymede

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.

    2016-12-01

    Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.

  15. Effects of the quadrupole wakefields in a passive streaker

    DOE PAGES

    Craievich, Paolo; Lutman, Alberto A.

    2016-10-05

    A novel method based on transverse wakefields has been recently proposed to characterize the temporal profile of a relativistic electron bunch. The electron bunch is streaked by the interaction with the transverse wakefield excited when the electrons travel off-axis in a device called the passive streaker. Furthermore, for the large transverse off-axis offsets required to effectively streak the electron bunch, higher order modes can be excited. The time-dependent quadrupole wakefield of the dielectric-lined structure can cause a significant enlargement of the transverse profile at the screen. Consequently, the measurement resolution is decreased also at the bunch tail. We report onmore » how the temporal profile can be effectively reconstructed also including the defocusing effect for a given transverse beam distribution at the passive streaker.« less

  16. Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.; Howe, Michael S.

    1994-01-01

    BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.

  17. Measurements of store forces and moments and cavity pressures for a generic store in and near a box cavity at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Plentovich, E. B.; Tracy, M. B.; Hemsch, Michael J.

    1995-01-01

    An experimental force and moment study was conducted in the Langley 8-Foot Transonic Pressure Tunnel for a generic store in and near rectangular box cavities contained in a flat-plate configuration at subsonic and transonic speeds. Surface pressures were measured inside the cavities and on the flat plate. The length-to-height ratios were 5.42, 6.25, 10.83, and 12.50. The corresponding width-to-height ratios were 2.00, 2.00, 4.00, and 4.00. The free-stream Mach number range was from 0.20 to 0.95. Surface pressure measurements inside the cavities indicated that the flow fields for the shallow cavities were either closed or transitional near the transitional/closed boundary. For the deep cavities, the flow fields were either open or near the open/transitional boundary. The presence of the store did not change the type of flow field and had only small effects on the pressure distributions. For transitional or open transitional flow fields, increasing the free-stream Mach number resulted in large reductions in pitching-moment coefficient. Values of pitching-moment coefficient were always much greater for closed flow fields than for open flow fields.

  18. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  19. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2013-04-26

    Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 40Ar/36Ar geochronology on a quadrupole mass spectrometer: Where are we going?

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Wijbrans, J. R.; Kuiper, K. F.; Fenton, C. R.; Williams, A. J.

    2009-04-01

    40Ar/39Ar analysis has passed many milestones since its first application (Wänke & König, 1959). From the early all-glass Reynolds-type vacuum system to today's high quality, bakeable all-metal piping and valve systems, the evolution of ultra high vacuum systems has been considerable. Extraction systems have faced similar changes over time. Early furnaces made partially of glass were later replaced by full metal constructs containing a high temperature resistant molybdenum alloy tube and heating mechanism, sometimes contained within an insulating secondary vacuum chamber. Laser extraction techniques further refined the approach allowing very small samples or sample parts to be analyzed. The principal type of mass spectrometer used for 40Ar/36Ar geochronology is the magnetic sector instrument, which has the resolution and sensitivity necessary for measuring argon isotopes and achieving high precision over a large age range. We present 40Ar/39Ar data from basalt samples collected from a number of different locations, all obtained using the Hiden HAL Series 1000 quadrupole mass spectrometer at Vrije University, Amsterdam. We show that quadrupole technology is not only a viable option in K-Ar geochronology (Rouchon et al., 2008) but also in 40Ar/39Ar geochronology. The data was obtained from groundmass hand-picked from 200-500 um size fractions. Sample amounts of 200 to 500 mg were used for incremental heating experiments. The quality of the data is demonstrated by convergence of plateau and isochron ages, replicate analyses and by comparison to results of independent studies. Sample ages range from 40 ka to 400 ka, demonstrating the potential of quadrupole instruments for dating even very young rocks using the 40Ar/39Ar incremental heating technique. Rouchon, V., Lefevre, J.-C., Quidelleur, X., Guerin, G., Gillot, P.-Y. (2008): Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: A potential for K-Ar geochronology. International Journal of

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetimemore » that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.« less

  2. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  3. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  4. The nuclear quadrupole coupling constants and the structure of the para-para ammonia dimer

    NASA Astrophysics Data System (ADS)

    Heineking, N.; Stahl, W.; Olthof, E. H. T.; Wormer, P. E. S.; van der Avoird, A.; Havenith, M.

    1995-06-01

    Expressions are derived for the nuclear quadrupole splittings in the E3 and E4 (para-para) states of (NH3)2 and it is shown that these can be matched with the standard expressions for rigid rotors with two identical quadrupolar nuclei. The matching is exact only when the off-diagonal Coriolis coupling is neglected. However, the selection rules for rotational transitions are just opposite to those for the rigid rotor. Hyperfine splittings are measured for the J=2←1 transitions in the E3 and E4 states with ‖K‖=1; the quadrupole coupling constants χaa=0.1509(83) MHz and χbb-χcc=2.8365(83) MHz are extracted from these measurements by the use of the above mentioned correspondence with the rigid rotor expressions. The corresponding results are also calculated, with and without the Coriolis coupling, from the six-dimensional vibration-rotation-tunneling (VRT) wave functions of (NH3)2, which were previously obtained by Olthof et al. [E.H.T. Olthof, A. van der Avoird, and P.E.S. Wormer, J. Chem. Phys. 101, 8430 (1994)]. From the comparison of χaa with the measured value it follows that the semiempirical potential and the resulting VRT states of Olthof et al. are very accurate along the interchange (ϑA,ϑB) coordinate. From χbb-χcc it follows that this potential is probably too soft in the dihedral angle γ¯=γA-γB, which causes the torsional amplitude to be larger than derived from the experiment.

  5. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd 106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2 + 1 and 4 + 1 states in 106Cd were measured to be g(2 + 1) = +0.398(22) and g(4 + 1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ( 106Cd; 2 + 1) = 7.0(3) ps and τ( 106Cd; 4 + 1) = 2.5(2) ps. The mean life τ( 106Cd; 2 + 2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ( 106Cd; 4 + 3) = 1.1(1) ps and τ( 106Cd; 3 – 1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4 + 1) of 106Cd is found to be only 59% of the g(2 + 1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  6. Injection-induced moment release can also be aseismic

    USGS Publications Warehouse

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  7. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    NASA Astrophysics Data System (ADS)

    Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang

    2004-03-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.

  8. Three-moment representation of rain in a cloud microphysics model

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Fan, J.; Rasch, P. J.; Morrison, H.; Milbrandt, J.; Khain, A.; Shpund, J.

    2017-12-01

    Two-moment microphysics schemes have been commonly used for cloud simulation in models across different scales - from large-eddy simulations to global climate models. These schemes have yielded valuable insights into cloud and precipitation processes, however the size distributions are limited to two degrees of freedom, and thus the shape parameter is typically fixed or diagnosed. We have developed a three-moment approach for the rain category in order to provide an additional degree of freedom to the size distribution and thereby improve the cloud microphysics representations for more accurate weather and climate simulations. The approach is applied to the Predicted Particle Properties (P3) scheme. In addition to the rain number and mass mixing ratios predicted in the two-moment P3, we now include prognostic equations for the sixth moment of the size distribution (radar reflectivity), thus allowing the shape parameter to evolve freely. We employ the spectral bin microphysics (SBM) model to formulate the three-moment process rates in P3 for drop collisions and breakup. We first test the three-moment scheme with a maritime stratocumulus case from the VOCALS field campaign, and compare the model results with respect to cloud and precipitation properties from the new P3 scheme, original two-moment P3 scheme, SBM, and in-situ aircraft measurements. The improved simulation results by the new P3 scheme will be discussed and physically explained.

  9. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  10. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  11. Calculated electric dipole moment of NiH X2Delta

    NASA Technical Reports Server (NTRS)

    Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1985-01-01

    A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.

  12. Vibrationally averaged dipole moments of methane and benzene isotopologues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapiraca, A. F. C.; Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG; Mohallem, J. R., E-mail: rachid@fisica.ufmg.br

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice ofmore » appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.« less

  13. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.

    PubMed

    Suderman, Bethany L; Vasavada, Anita N

    2017-08-01

    Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). Moment arm estimates were also found to be significantly different among moment arm calculation methods for 11 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). In particular, using straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

  14. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  15. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    PubMed

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    PubMed Central

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  17. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    PubMed

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  18. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    NASA Astrophysics Data System (ADS)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  19. Z =50 core stability in 110Sn from magnetic-moment and lifetime measurements

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K.-H.; Torres, D. A.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Gürdal, G.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Robinson, S. J. Q.; Sharon, Y. Y.; Wiens, A.

    2016-04-01

    Background: The structure of the semimagic 50Sn isotopes were previously studied via measurements of B (E 2 ;21+→01+ ) and g factors of 21+ states. The values of the B (E 2 ;21+ ) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. Purpose: This work presents the first measurement of the 2 1+ and 4 1+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B (E 2 ) values. Methods: The 110Sn nuclei have been produced in inverse kinematics in an α -particle transfer reaction from 12C to 106Cd projectiles at 390, 400, and 410 MeV. The g factors have been measured with the transient field technique. Lifetimes have been determined from line shapes using the Doppler-shift attenuation method. Results: The g factors of the 21+ and 41+ states in 110Sn are g (21+) = +0.29(11) and g (41+) = +0.05(14), respectively. In addition, the g (41+) = +0.27(6) in 106Cd has been measured for the first time. A line-shape analysis yielded τ (110Sn ; 21+) = 0.81(10) ps and a lifetime of τ (110Sn ; 31-) = 0.25(5) ps was calculated from the fully Doppler-shifted γ line. Conclusions: No evidence has been found in 110Sn that would require excitation of protons from the closed Z =50 core.

  20. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  1. Moment arms of the human neck muscles in flexion, bending and rotation.

    PubMed

    Ackland, David C; Merritt, Jonathan S; Pandy, Marcus G

    2011-02-03

    There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less

  3. Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzdensky, Dmitri A.; Kulsrud, Russell M.

    2006-06-15

    A quadrupole pattern of the out-of-plane component of the magnetic field inside a reconnection region is seen as an important signature of the Hall-magnetohydrodynamic regime of reconnection. It has been first observed in numerical simulations and just recently confirmed in the Magnetic Reconnection Experiment [Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsin, Phys. Rev. Lett. 95, 055003 (2005)] and also seen in spacecraft observations of Earth's magnetosphere. In this study, the physical origin of the quadrupole field is analyzed and traced to a current of electrons that flows along the lines in and out ofmore » the inner reconnection region to maintain charge neutrality. The role of the quadrupole magnetic field in the overall dynamics of the reconnection process is discussed. In addition, the bipolar poloidal electric field is estimated and its effect on ion motions is emphasized.« less

  4. Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory.

    PubMed

    Friedrich, Joachim; Coriani, Sonia; Helgaker, Trygve; Dolg, Michael

    2009-10-21

    A fully automated parallelized implementation of the incremental scheme for coupled-cluster singles-and-doubles (CCSD) energies has been extended to treat molecular (unrelaxed) first-order one-electron properties such as the electric dipole and quadrupole moments. The convergence and accuracy of the incremental approach for the dipole and quadrupole moments have been studied for a variety of chemically interesting systems. It is found that the electric dipole moment can be obtained to within 5% and 0.5% accuracy with respect to the exact CCSD value at the third and fourth orders of the expansion, respectively. Furthermore, we find that the incremental expansion of the quadrupole moment converges to the exact result with increasing order of the expansion: the convergence of nonaromatic compounds is fast with errors less than 16 mau and less than 1 mau at third and fourth orders, respectively (1 mau=10(-3)ea(0)(2)); the aromatic compounds converge slowly with maximum absolute deviations of 174 and 72 mau at third and fourth orders, respectively.

  5. Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-10-01

    A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni x (NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2-4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.

  6. Influence of sticking vs non-sticking limits of moment of inertia and higher order deformations in the decay of 214,216Rn* compound systems

    NASA Astrophysics Data System (ADS)

    Mittal, Rajni; Jain, Deepika; Sharma, Manoj K.

    2017-12-01

    The dynamical cluster decay model (DCM) is employed to explore the relative effect of sticking (IS) and non-sticking (INS) limits of moment of inertia (MOI) in the decay of hot and rotating 214,216Rn* compound nuclei, formed in 16,18O + 198Pt reactions. Beside this, the nuclear deformation effects i.e. quadrupole β2 (static and dynamic) and higher order static deformations up to hexadecapole (β4) are duly incorporated and studied within DCM. The influence of both 'INS/IS' addressing rotational energy component and 'deformations' is gauged through the barrier characteristics, preformation factor and barrier lowering effects. The experimentally given ER and ff data is addressed by optimizing the neck-length ΔR, that strongly depends on the limiting angular momentum, which in turn depends on the sticking or non-sticking limits of interaction. In addition to this, the influence of increase in energy and neutron number is probed in reference to ER survival probability of Rn compound nucleus. Finally, the ff cross-sections of 214,216Rn* nuclei are predicted within sticking limit of moment of inertia as the same seems to be more suitable for such decay paths.

  7. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  8. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  9. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  10. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  11. Magnetic dipole moment determination by near-field analysis

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1972-01-01

    A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

  12. Origin of the net magnetic moment in LaCoO3

    NASA Astrophysics Data System (ADS)

    Kaminsky, G. M.; Belanger, D. P.; Ye, F.; Fernandez-Baca, J. A.; Wang, J.; Matsuda, M.; Yan, J.-Q.

    2018-01-01

    We use polarized neutron scattering to characterize the Bragg scattering intensity below TC=89.5 K at the (1,0,0) pseudocubic nuclear Bragg point of LaCoO3. Upon cooling in a field (FC), a net magnetic moment is apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior associated with the net moment near TC upon cooling in small applied fields rapidly rounds with increasing field strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that forms upon FC, even when all the interactions in the system are antiferromagnetic.

  13. Observation of a quadrupole interaction for cubic imperfections exhibiting a dynamic Jahn-Teller effect.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).

  14. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  15. Method and apparatus for measuring the gas permeability of a solid sample

    DOEpatents

    Carstens, D.H.W.

    1984-01-27

    The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.

  16. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  17. I -Love- Q relations for white dwarf stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  18. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  19. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  20. Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth.

    PubMed

    Keefe, Douglas H

    2012-11-01

    A click-evoked otoacoustic emission (CEOAE) has group delay and spread as first- and second-order temporal moments varying over frequency, and instantaneous frequency and bandwidth as first- and second-order spectral moments varying over time. Energy-smoothed moments were calculated from a CEOAE database over 0.5-15 kHz bandwidth and 0.25-20 ms duration. Group delay and instantaneous frequency were calculated without phase unwrapping using a coherence synchrony measure that accurately classified ears with hearing loss. CEOAE moment measurements were repeatable in individual ears. Group delays were similar for CEOAEs and stimulus-frequency OAEs. Group spread is a frequency-specific measure of temporal spread in an emission, related to spatial spread across tonotopic generation sites along the cochlea. In normal ears, group delay and spread increased with frequency and decreased with level. A direct measure of cochlear tuning above 4 kHz was analyzed using instantaneous frequency and bandwidth. Synchronized spontaneous OAEs were present in most ears below 4 kHz, and confounded interpretation of moments. In ears with sensorineural hearing loss, group delay and spread varied with audiometric classification and amount of hearing loss; group delay differed between older males and females. CEOAE moments reveal clinically relevant information on cochlear tuning in ears with normal and impaired hearing.

  1. How to Detect Insight Moments in Problem Solving Experiments.

    PubMed

    Laukkonen, Ruben E; Tangen, Jason M

    2018-01-01

    Arguably, it is not possible to study insight moments during problem solving without being able to accurately detect when they occur (Bowden and Jung-Beeman, 2007). Despite over a century of research on the insight moment, there is surprisingly little consensus on the best way to measure them in real-time experiments. There have also been no attempts to evaluate whether the different ways of measuring insight converge. Indeed, if it turns out that the popular measures of insight diverge , then this may indicate that researchers who have used one method may have been measuring a different phenomenon to those who have used another method. We compare the strengths and weaknesses of the two most commonly cited ways of measuring insight: The feelings-of-warmth measure adapted from Metcalfe and Wiebe (1987), and the self-report measure adapted from Bowden and Jung-Beeman (2007). We find little empirical agreement between the two measures, and conclude that the self-report measure of Aha! is superior both methodologically and theoretically, and provides a better representation of what is commonly regarded as insight. We go on to describe and recommend a novel visceral measure of insight using a dynamometer as described in Creswell et al. (2016).

  2. How to Detect Insight Moments in Problem Solving Experiments

    PubMed Central

    Laukkonen, Ruben E.; Tangen, Jason M.

    2018-01-01

    Arguably, it is not possible to study insight moments during problem solving without being able to accurately detect when they occur (Bowden and Jung-Beeman, 2007). Despite over a century of research on the insight moment, there is surprisingly little consensus on the best way to measure them in real-time experiments. There have also been no attempts to evaluate whether the different ways of measuring insight converge. Indeed, if it turns out that the popular measures of insight diverge, then this may indicate that researchers who have used one method may have been measuring a different phenomenon to those who have used another method. We compare the strengths and weaknesses of the two most commonly cited ways of measuring insight: The feelings-of-warmth measure adapted from Metcalfe and Wiebe (1987), and the self-report measure adapted from Bowden and Jung-Beeman (2007). We find little empirical agreement between the two measures, and conclude that the self-report measure of Aha! is superior both methodologically and theoretically, and provides a better representation of what is commonly regarded as insight. We go on to describe and recommend a novel visceral measure of insight using a dynamometer as described in Creswell et al. (2016). PMID:29593598

  3. A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    1998-04-01

    The electric multipole moments, dipole and quadrupole polarizability and hyperpolarizability of hydrogen chloride have been determined from an extensive and systematic study based on finite-field fourth-order many-body perturbation theory and coupled-cluster calculations. Our best values for the dipole, quadrupole, octopole and hexadecapole moment at the experimental internuclear separation of Re=2.408645a0 are μ=0.4238ea0, Θ=2.67ea02, Ω=3.94ea03, and Φ=13.37ea04, respectively. For the mean and the anisotropy of the dipole polarizability ααβ we recommend ᾱ=17.41±0.02 and Δα=1.60±0.03e2a02Eh-1. For the mean value of the first dipole hyperpolarizability βαβγ we advance β¯=-6.8±0.3e3a03Eh-2. Extensive calculations with a [8s6p6d3f/5s4p2d1f] basis set at the CCSD(T) level of theory yield the R-dependence of the Cartesian components and the mean of the second dipole hyperpolarizability γαβγδ(R)/e4a04Eh-3 around Re as γzzzz(R)=1907+1326(R-Re)+570(R-Re)2+10(R-Re)3-40(R-Re)4, γxxxx(R)=3900+747(R-Re)-65(R-Re)2-38(R-Re)3-7(R-Re)4, γxxzz(R)=962+222(R-Re)+88(R-Re)2+49(R-Re)3+5(R-Re)4, γ¯(R)=3230+841(R-Re)+151(R-Re)2+21(R-Re)3-9(R-Re)4, with z as the molecular axis. The present investigation suggests an estimate of (26.7±0.3)×102e4a04Eh-3 for the Hartree-Fock limit of the mean value γ¯ at Re. CCSD(T) calculations with basis sets of [8s6p6d3f/5s4p2d1f] and [9s7p5d4f/6s5p4d1f] size and MP4 calculations with the even larger [15s12p7d3f/12s7p2d1f] give (7.0±0.3)×102e4a04Eh-3 for the electron correlation effects for this property, thus leading to a recommended value of γ¯=(33.7±0.6)×102e4a04Eh-3. For the quadrupole polarizability Cαβ,γδ/e2a04Eh-1 at Re our best values are Czz,zz=41.68, Cxz,xz=26.11, and Cxx,xx=35.38, calculated with the [9s7p5d4f/6s5p4d1f] basis set at the CCSD(T) level of theory. The following CCSD(T) values were obtained with [8s6p6d3f/5s4p2d1f] at Re: dipole-quadrupole polarizability Aα,βγ/e2a03Eh-1, Az,zz=14.0, and

  4. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    NASA Astrophysics Data System (ADS)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  5. Measurement of Magnetic Field Uniformity For a Neutron Electric Dipole Moment Detector with New Lead Endcaps

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel

    2016-09-01

    Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.

  6. Element Specific Spin and Orbital Moments in Fe1-x Vx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Y.; Scheck, C; Bailey, W

    2009-01-01

    We present transmission-mode X-ray magnetic circular dichroism (XMCD) measurements of element-specific magnetic moments for Fe and V at the L2,3 edges in polycrystalline Fe1-xVx ultrathin films. We find that the orbital-to-spin moment ratio of Fe does not change within experimental error. The V XMCD is not very informative, and a nearly pure-spin type V impurity moment ({approx}1.0 {mu}{sub B}/atom, antiparallel to the Fe host moment) is assumed to match known magnetization data. Data are further reduced to a two-sublattice model and found to be compatible with known spectroscopic splitting g-factor data in the alloy. The results confirm that the verymore » low Gilbert damping, attained through the introduction of V into epitaxial Fe1-xVx films and found by ferromagnetic resonance (FMR), does not result from the reduction of orbital moment content in the alloy.« less

  7. Force and moment measurements on a 74 deg delta wing with an apex flap

    NASA Technical Reports Server (NTRS)

    Buter, T. A.; Rao, D. M.

    1984-01-01

    Results are presented of a subsonic experimental investigation of an apex flap concept on a 74 deg swept delta wing with trailing-edge flaps. The apex flap comprised approximately 6 percent of the wing area forward of a transverse hinge, allowing for upward and downward deflection angles from +40 deg to -20 deg. Upward deflection forces leading-edge vortex formation on the apex flap, resulting in an increased lift component on the apex area. The associated nose-up moment balances the nose-down moment due to trailing-edge flaps, resulting in sizeable increase in the trimmed lift coefficient particularly at low angles of attack. Nose-down apex deflection may be used to augment the pitch control for rapid recovery from high-alpha maneuvers. This report presents the balance data without analysis.

  8. Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem.

    PubMed

    Alexiadis, Alessio; Vanni, Marco; Gardin, Pascal

    2004-08-01

    The method of moment (MOM) is a powerful tool for solving population balance. Nevertheless it cannot be used in every circumstance. Sometimes, in fact, it is not possible to write the governing equations in closed form. Higher moments, for instance, could appear in the evolution of the lower ones. This obstacle has often been resolved by prescribing some functional form for the particle size distribution. Another example is the occurrence of fractional moment, usually connected with the presence of fractal aggregates. For this case we propose a procedure that does not need any assumption on the form of the distribution but it is based on the "moments generating function" (that is the Laplace transform of the distribution). An important result of probability theory is that the kth derivative of the moments generating function represents the kth moment of the original distribution. This result concerns integer moments but, taking in account the Weyl fractional derivative, could be extended to fractional orders. Approximating fractional derivative makes it possible to express the fractional moments in terms of the integer ones and so to use regularly the method of moments.

  9. Nuclear Structure Studies with Radioactive Ion Beams in the Mass A = 80 Region

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2009-03-01

    An experimental program to measure spectroscopic properties of neutron-rich nuclei in the A = 80 region is underway at the Holifield Radioactive Ion Beam Facility. Our approach has been to get a comprehensive picture of the shell structure in this region by studying a series of properties of low lying states (E(2+), B(E2), g-factors and quadrupole moments). The beams, instrumentation and techniques developed specifically for this purpose have allowed us to systematically study the behavior of these observables along isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions. We have developed many techniques and detectors for in-beam gamma spectroscopy with radioactive ion beams. Most of the detectors can be used individually or in combination. Generally these detector systems have very large efficiencies. We give examples of their use from three recent experiments; namely, Coulomb excitation of n-rich nuclei along the N = 50 shell closure, the static quadrupole moment of the first 2+ in 78Ge and g-factor measurements of n-rich isotopes near N = 50.

  10. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, B.I.

    1978-09-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimentalmore » hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.« less

  11. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  12. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  13. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    NASA Astrophysics Data System (ADS)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  14. Knee joint moments during high flexion movements: Timing of peak moments and the effect of safety footwear.

    PubMed

    Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M

    2017-03-01

    (1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Origin of the net magnetic moment in LaCoO 3

    DOE PAGES

    Kaminsky, G.; Belanger, David P.; Ye, Feng; ...

    2018-01-19

    We use polarized neutron scattering to characterize the Bragg scattering intensity below T C=89.5 K at the (1,0,0) pseudocubic nuclear Bragg point of LaCoO 3. Upon cooling in a field (FC), a net magnetic moment is apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior associated with the net moment near T C upon cooling in small applied fields rapidly rounds with increasing field strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that forms upon FC, even when all the interactions in the system aremore » antiferromagnetic.« less

  16. Determining Individual Grains' Magnetic Moments by Micromagnetic Tomography

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Fabian, K.; Béguin, A.; Reith, P.; Rastogi, A.; Barnhoorn, A.; Hilgenkamp, H.

    2017-12-01

    Methods to derive paleodirections or paleointensities from rocks currently rely on measurements of bulk samples (typically 10 cc). These samples contain many millions of magnetic remanence carrying grains, their statistical assemblage gives rise to a net magnetic moment for the entire sample. The magnetic properties of these grains, however, differ because of their sizes, shapes, and chemical composition. When dealing with lavas this complex magnetic behavior often hampers paleointensity experiments; while occasionally a reliable paleodirection is obscured. If we would be able to isolate the contribution of each magnetic grain in a sample to the bulk magnetic moment of that sample, a wealth of opportunities for highly detailed magnetic analysis would be opened, possibly leading to an entirely new approach in retrieving paleomagnetic signals from complex mineralogies. Here we take the first practical steps towards this goal by developing a new technique: 'micromagnetic tomography'. Firstly, the distribution and volume of the remanence carrying grains in the sample must be assessed; this is done using a MicroCT scanner capable of detecting grains 1 micron. Secondly, the magnetic stray field perpendicular to the surface of a thin sample is measured using a high-resolution DC SQUID microscope. A mathematical inversion of these measurements yields the isolated direction and magnitude of the magnetic moment of individual grains in the sample. As the measured strength of the magnetic field decreases with the third power as function of distance to the exerting grain (as a result of decay in three dimensions), grains in the top 30-40 microns of our synthetic sample with a relatively low dispersion of grains in a matrix can be assessed reliably. We will discuss the potential of our new inversion scheme, and current challenges we need to overcome for both the scanning SQUID and MicroCT techniques before we can analyse 'real' volcanic samples with our technique.

  17. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  18. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa 5

    DOE PAGES

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; ...

    2016-10-10

    PuCoGa 5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (T c ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa 5, concentrating on the system's normal state properties near to T c and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographicallymore » inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn 5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  19. Improved Estimates of Moments and Winds from Radar Wind Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmus, Jonathan; Ghate, Virendra P.

    2017-01-02

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins,more » etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.« less

  20. Mechanical correction of dynamometer moment for the effects of segment motion during isometric knee-extension tests

    PubMed Central

    Baltzopoulos, Vasilios; Richards, Paula J.; Maganaris, Constantinos N.

    2011-01-01

    The purpose of this study was to determine the effect of dynamometer and joint axis misalignment on measured isometric knee-extension moments using inverse dynamics based on the actual joint kinematic information derived from the real-time X-ray video and to compare the errors when the moments were calculated using measurements from external anatomical surface markers or obtained from the isokinetic dynamometer. Six healthy males participated in this study. They performed isometric contractions at 90° and 20° of knee flexion, gradually increasing to maximum effort. For the calculation of the actual knee-joint moment and the joint moment relative to the knee-joint center, determined using the external marker, two free body diagrams were used of the Cybex arm and the lower leg segment system. In the first free body diagram, the mean center of the circular profiles of the femoral epicondyles was used as the knee-joint center, whereas in the second diagram, the joint center was assumed to coincide with the external marker. Then, the calculated knee-joint moments were compared with those measured by the dynamometer. The results indicate that 1) the actual knee-joint moment was different from the dynamometer recorded moment (difference ranged between 1.9% and 4.3%) and the moment calculated using the skin marker (difference ranged between 2.5% and 3%), and 2) during isometric knee extension, the internal knee angle changed significantly from rest to the maximum contraction state by about 19°. Therefore, these differences cannot be neglected if the moment–knee-joint angle relationship or the muscle mechanical properties, such as length-tension relationship, need to be determined. PMID:21474701

  1. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  2. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, J. G.; Cremaldi, L. M.; Hart, T. L.

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittancemore » is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.« less

  3. Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV

    NASA Astrophysics Data System (ADS)

    Phan, Hoang Vu; Park, Hoon Cheol

    2016-04-01

    In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.

  4. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  5. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Arabian, Adam K; Rosenbaum-Chou, Teri G; Boone, David A

    2014-04-11

    The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment-time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On verifying magnetic dipole moment of a magnetic torquer by experiments

    NASA Astrophysics Data System (ADS)

    Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.

    2018-01-01

    Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”

  7. Compensated Ferrimagnetism in the Zero-Moment Heusler Alloy Mn3Al

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Wang, Yung Jui; Stephen, Gregory M.; McDonald, Ian J.; Grutter, Alexander J.; Sterbinsky, George E.; Arena, Dario A.; Borchers, Julie A.; Kirby, Brian J.; Lewis, Laura H.; Barbiellini, Bernardo; Bansil, Arun; Heiman, Don

    2017-06-01

    While antiferromagnets have been proposed as components to limit stray magnetic fields, their inability to be spin polarized inhibits their use in spintronic devices. Compensated ferrimagnets are a unique solution to this dilemma since they have zero net moment, but their nonsymmetric density of states allows the achievement of high spin polarization. Density-functional theory predicts Mn3Al in the D 03 structure to be fully compensated and retain half-metallicity at room temperature. In this work, 50-nm Mn3Al thin films are synthesized using molecular beam epitaxy and annealed at various temperatures in order to investigate their magnetic properties. Magnetometry measurements confirm the high Curie temperature of 605 K. Polarized-neutron reflectometry (PNR) indicates a low net magnetic moment, along with depth profiles of the structure and magnetization. From the PNR data, a saturation moment of 0.11 ±0.04 μB/f .u . is extracted, confirming the nominal zero moment present in these thin films.

  8. Development of a radio-frequency quadrupole cooler for high beam currents

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  9. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  10. I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2013-07-01

    The exterior gravitational field of a slowly rotating neutron star can be characterized by its multipole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment to quadratic order in spin. In principle, all of these quantities depend on the neutron star’s internal structure, and thus, on unknown nuclear physics at supranuclear energy densities, all of which is usually parametrized through an equation of state. We here find relations between the moment of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend sensitively on the neutron star’s internal structure. Such universality may arise for two reasons: (i) these relations depend most sensitively on the internal structure far from the core, where all realistic equations of state mostly approach each other; (ii) as the neutron star compactness increases, the I-Love-Q trio approaches that of a black hole, which does not have an internal-structure dependence. Three important consequences derive from these I-Love-Q relations. On an observational astrophysics front, the measurement of a single member of the I-Love-Q trio would automatically provide information about the other two, even when the latter may not be observationally accessible. On a gravitational-wave front, the I-Love-Q relations break the degeneracy between the quadrupole moment and the neutron star spins in binary inspiral waveforms, allowing second-generation ground-based detectors to determine the (dimensionless) averaged spin to O(10)%, given a sufficiently large signal-to-noise ratio detection. On a fundamental physics front, the I-Love-Q relations allow for tests of general relativity in the neutron star strong field that are both theory and internal-structure independent. As an example, by combining gravitational-wave and electromagnetic observations, one may constrain dynamical Chern-Simons gravity in the future by more than six orders of magnitude more stringently than

  11. Magnetic moment arrangement in amorphous Fe 0.66Er 0.19B 0.15

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Kalska, B.; Satuła, D.; Dobrzyński, L.; Broddefalk, A.; Wäppling, R.; Nordblad, P.

    2002-11-01

    Magnetization measurements and Mössbauer spectroscopy with and without a monochromatic circularly polarized Mössbauer source (MCPMS) have been performed in order to determine the magnetic properties of the amorphous alloy Fe 0.66Er 0.19B 0.15. The system is found to order ferrimagnetically at TC=330 K and to show a compensation temperature ( Tcomp) at 120 K. A reorientation of the magnetic moments of iron and erbium during sample cooling through the compensation point in magnetic field is clearly displayed in the MCPMS data. The orientation of the net magnetic moment is due to the orientation of Fe moments above Tcomp and to Er moments at low temperatures. The results are compatible with a model of predominantly antiferromagnetic Fe-Er coupling accompanied by random local anisotropy acting on the Er moments.

  12. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.

    The nuclear structure of 124Xe has been investigated via measurements of the β +/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2 + → 0 + in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te( 3He,n) 124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  13. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGES

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; ...

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β +/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2 + → 0 + in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study,more » $$B(E2; 2^+_3 → 0^+_2)$$ = 78(13) W.u. and $$B(E2; 2^+_4 → 0^+_3)$$ = 53(12) W.u. were determined. The $$0^+_3$$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te( 3He,n) 124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  14. Local Homing Navigation Based on the Moment Model for Landmark Distribution and Features

    PubMed Central

    Lee, Changmin; Kim, DaeEun

    2017-01-01

    For local homing navigation, an agent is supposed to return home based on the surrounding environmental information. According to the snapshot model, the home snapshot and the current view are compared to determine the homing direction. In this paper, we propose a novel homing navigation method using the moment model. The suggested moment model also follows the snapshot theory to compare the home snapshot and the current view, but the moment model defines a moment of landmark inertia as the sum of the product of the feature of the landmark particle with the square of its distance. The method thus uses range values of landmarks in the surrounding view and the visual features. The center of the moment can be estimated as the reference point, which is the unique convergence point in the moment potential from any view. The homing vector can easily be extracted from the centers of the moment measured at the current position and the home location. The method effectively guides homing direction in real environments, as well as in the simulation environment. In this paper, we take a holistic approach to use all pixels in the panoramic image as landmarks and use the RGB color intensity for the visual features in the moment model in which a set of three moment functions is encoded to determine the homing vector. We also tested visual homing or the moment model with only visual features, but the suggested moment model with both the visual feature and the landmark distance shows superior performance. We demonstrate homing performance with various methods classified by the status of the feature, the distance and the coordinate alignment. PMID:29149043

  15. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  16. Perception and Haptic Rendering of Friction Moments.

    PubMed

    Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T

    2011-01-01

    This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.

  17. Cranking Calculation in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Wang, Baolin

    1998-10-01

    A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.

  18. Moments of action provide insight into critical times for advection-diffusion-reaction processes.

    PubMed

    Ellery, Adam J; Simpson, Matthew J; McCue, Scott W; Baker, Ruth E

    2012-09-01

    Berezhkovskii and co-workers introduced the concept of local accumulation time as a finite measure of the time required for the transient solution of a reaction-diffusion equation to effectively reach steady state [Biophys J. 99, L59 (2010); Phys. Rev. E 83, 051906 (2011)]. Berezhkovskii's approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb [IMA J. Appl. Math. 47, 193 (1991)]. Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time, the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one-dimensional linear advection-diffusion-reaction partial differential equation (PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random-walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.

  19. Static and dynamic pitching moment measurements on a family of elliptic cones at Mach number 11 in helium

    NASA Technical Reports Server (NTRS)

    Orlik-Rueckermann, K. J.; Laberge, J. G.

    1970-01-01

    Static and dynamic pitching moment measurements were made on a family of constant volume elliptic cones about two fixed axes of oscillation in the NAE helium hypersonic wind tunnel at a Mach number of 11 and at Reynolds numbers based on model length of up to 14 million. Viscous effects on the stability derivatives were investigated by varying the Reynolds number for certain models by a factor as large as 10. The models investigated comprised a 7.75 deg circular cone, elliptic cones of axis ratios 3 and 6, and an elliptic cone with conical protuberances.

  20. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees

    PubMed Central

    Kobayashi, Toshiki; Orendurff, Michael S.; Arabian, Adam K.; Rosenbaum-Chou, Teri G.; Boone, David A.

    2014-01-01

    The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. PMID:24612718

  1. Mathematical Micro-Identities: Moment-to-Moment Positioning and Learning in a Fourth-Grade Classroom

    ERIC Educational Resources Information Center

    Wood, Marcy B.

    2013-01-01

    Identity is an important tool for understanding students' participation in mathematics lessons. Researchers usually examine identity at a macro-scale: across typical classroom activity and in students' self-reports. However, learning occurs on a micro-scale: in moments during a lesson. To capture identity in these moments, I used positioning…

  2. Temperature coefficient of the dipole moment of poly(4-chlorostyrene, 4-methylstyrene) copolymers in benzene solutions

    NASA Astrophysics Data System (ADS)

    Mashimo, S.; Nozaki, R.; Work, R. N.

    1982-09-01

    Mean square values of the dipole moments of poly(4-chlorostyrene) and copolymers of poly(4-chlorostyrene, 4-methylstyrene) have been determined at up to five different temperatures. There is a significant positive temperature coefficient of the mean square dipole moment. Curves of the dipole moments and of the slopes, normalized to unity at P4CS, have essentially the same shapes. The copolymers in benzene solutions lead to values of the mean square dipole moments that are about 20% larger than measurements in p-xylene.

  3. A new insole measurement system to detect bending and torsional moments at the human foot during footwear condition: a technical report.

    PubMed

    Stief, Thomas; Peikenkamp, Klaus

    2015-01-01

    Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the mechanical aspects of various kinds of hard and soft tissue injuries. Therefore, we describe the development of a new measuring device that allows the reliable determination of bending and torsional load at the foot in shoes. The system consists of a measuring insole and an analogue device with Bluetooth interface. The specific shape of the insole base layer, the positions of the strain gauges, and the interconnections between them have all been selected in such a way so as to isolate bending and torsional moment detections in the medial and lateral metatarsal region. The system was calibrated using a classical two-point test procedure. A single case study was executed to evaluate the new device for practical use. This application consisted of one subject wearing neutral shoes walking on a treadmill. The calibration results (coefficients of determination R(2) > 0.999) show that bending and torsional load can be reliably detected using the measurement system presented. In the single case study, alternating bending and torsional load can be detected during walking, and the shape of the detected bending moments can be confirmed by the measurements of Arndt et al. (J Biomech 35:621-8, 2002). Despite some limitations, the presented device allows for the reliable determination of bending and torsional stresses at the foot in shoes.

  4. Geoelectrical inference of mass transfer parameters using temporal moments

    USGS Publications Warehouse

    Day-Lewis, Frederick D.; Singha, Kamini

    2008-01-01

    We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT‐estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments.

  5. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  6. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  7. Improved explanation of human intelligence using cortical features with second order moments and regression.

    PubMed

    Park, Hyunjin; Yang, Jin-ju; Seo, Jongbum; Choi, Yu-yong; Lee, Kun-ho; Lee, Jong-min

    2014-04-01

    Cortical features derived from magnetic resonance imaging (MRI) provide important information to account for human intelligence. Cortical thickness, surface area, sulcal depth, and mean curvature were considered to explain human intelligence. One region of interest (ROI) of a cortical structure consisting of thousands of vertices contained thousands of measurements, and typically, one mean value (first order moment), was used to represent a chosen ROI, which led to a potentially significant loss of information. We proposed a technological improvement to account for human intelligence in which a second moment (variance) in addition to the mean value was adopted to represent a chosen ROI, so that the loss of information would be less severe. Two computed moments for the chosen ROIs were analyzed with partial least squares regression (PLSR). Cortical features for 78 adults were measured and analyzed in conjunction with the full-scale intelligence quotient (FSIQ). Our results showed that 45% of the variance of the FSIQ could be explained using the combination of four cortical features using two moments per chosen ROI. Our results showed improvement over using a mean value for each ROI, which explained 37% of the variance of FSIQ using the same set of cortical measurements. Our results suggest that using additional second order moments is potentially better than using mean values of chosen ROIs for regression analysis to account for human intelligence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  9. Searches for Large-scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Telescope Array Collaboration

    2014-10-01

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  10. Weak-lensing shear estimates with general adaptive moments, and studies of bias by pixellation, PSF distortions, and noise

    NASA Astrophysics Data System (ADS)

    Simon, Patrick; Schneider, Peter

    2017-08-01

    In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this

  11. Morphological analysis of the hindlimb in apes and humans. II. Moment arms

    PubMed Central

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-01-01

    Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of moment arm against joint angle) differed in different hindlimb muscles and in the same muscle in different subjects (both in the same and in different ape species). Most moment arms increased with increasing joint flexion, a finding which may be understood in the context of the employment of flexed postures by most non-human apes (except orang-utans) during both terrestrial and arboreal locomotion. When compared with humans, non-human great apes tended to have muscles better designed for moving the joints through large ranges. This was particularly true of the pedal digital flexors in orang-utans. In gibbons, the only lesser ape studied here, many of the moment arms measured were relatively short compared with those of great apes. This study was performed on a small sample of apes and thus differences noted here warrant further investigation in larger populations. PMID:16761974

  12. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  13. Magnetic moment distribution modeling in non stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lázpita, P.; Gutiérrez, J.; Barandiarán, J. M.; Chernenko, V. A.; Mondelli, C.; Chapon, L.

    2014-11-01

    Neutron polarized diffraction technique has been used to elucidate the magnetic moment distribution density in non stoichiometric Ni—Mn—Ga single crystals. These experiments allow us to determine a localized magnetic moment in the Mn position in the austenitic phase, and to validity qualitatively previous models of magnetic distributions where there are antiferromagnetic and ferromagnetic coupling for Mn atoms that are sited out of their properly positions. This measurements show the deep dependence of the magnetic moment with the composition and the atomic order.

  14. Validation of a dynamic linked segment model to calculate joint moments in lifting.

    PubMed

    de Looze, M P; Kingma, I; Bussmann, J B; Toussaint, H M

    1992-08-01

    A two-dimensional dynamic linked segment model was constructed and applied to a lifting activity. Reactive forces and moments were calculated by an instantaneous approach involving the application of Newtonian mechanics to individual adjacent rigid segments in succession. The analysis started once at the feet and once at a hands/load segment. The model was validated by comparing predicted external forces and moments at the feet or at a hands/load segment to actual values, which were simultaneously measured (ground reaction force at the feet) or assumed to be zero (external moments at feet and hands/load and external forces, beside gravitation, at hands/load). In addition, results of both procedures, in terms of joint moments, including the moment at the intervertebral disc between the fifth lumbar and first sacral vertebra (L5-S1), were compared. A correlation of r = 0.88 between calculated and measured vertical ground reaction forces was found. The calculated external forces and moments at the hands showed only minor deviations from the expected zero level. The moments at L5-S1, calculated starting from feet compared to starting from hands/load, yielded a coefficient of correlation of r = 0.99. However, moments calculated from hands/load were 3.6% (averaged values) and 10.9% (peak values) higher. This difference is assumed to be due mainly to erroneous estimations of the positions of centres of gravity and joint rotation centres. The estimation of the location of L5-S1 rotation axis can affect the results significantly. Despite the numerous studies estimating the load on the low back during lifting on the basis of linked segment models, only a few attempts to validate these models have been made. This study is concerned with the validity of the presented linked segment model. The results support the model's validity. Effects of several sources of error threatening the validity are discussed. Copyright © 1992. Published by Elsevier Ltd.

  15. The large-scale microwave background anisotropy in decaying particle cosmology

    NASA Technical Reports Server (NTRS)

    Panek, Miroslaw

    1988-01-01

    The quadrupole anisotropy of the microwave background radiation in cosmological models with decaying particles is investigated. A conservative upper limit on value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z(d) of less than 3-6.

  16. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model.

    PubMed

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  17. Earth's magnetic moment during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.

    2017-11-01

    The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.

  18. New limits on neutrino magnetic moment through nonvanishing 13-mixing

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

    2018-05-01

    The relatively large value of the neutrino mixing angle θ13 set by recent measurements allows us to use solar neutrinos to set a limit on the neutrino magnetic moment involving the second and third flavor families, μ23. The existence of a random magnetic field in the solar convective zone can produce a significant antineutrino flux when a nonvanishing neutrino magnetic moment is assumed. Even if we consider a vanishing neutrino magnetic moment involving the first family, electron antineutrinos are indirectly produced through the mixing between the first and third families and μ23≠0 . Using KamLAND limits on the solar flux of electron antineutrino, we set the limit μ23<0.95 ×10-11μB as a reasonable assumption on the behavior of solar magnetic fields. This is the first time that a limit on μ23 has been established in the literature directly from neutrino interactions with magnetic fields, and, interestingly enough, is comparable with the limits on the neutrino magnetic moment involving the first family and with the ones coming from modifications to the electroweak cross section.

  19. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  20. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  1. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  2. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  3. Superdeformed shapes and configurations in thallium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reviol, W.; Mueller, W.F.; Riedinger, L.L.

    1997-09-01

    Superdeformation studies in {sup 189,191,192}Tl at Gammasphere are discussed. New results on {sup 191}Tl are the observation of interband transitions between the signature partner E2 bands and the measurement of an average quadrupole moment (Q{sub 0} = 18 {+-} 1 eb) for these superdeformed structures. These data enable them to derive absolute M1 strengths and confirm that the 81st proton occupies the [642]5/2 orbital. Tentative data for one superdeformed sequence in {sup 189}Tl are consistent with the prediction of a decrease in quadrupole deformation for the lightest nuclei at the limit of this island of superdeformation.

  4. Functional roles of lower-limb joint moments while walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  5. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.

  6. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  7. Exact collisional moments for plasma fluid theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  8. Exact collisional moments for plasma fluid theories

    DOE PAGES

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  9. Solving moment hierarchies for chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Supriya; Smith, Eric

    2017-10-01

    The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.

  10. Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.

    PubMed

    Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R

    2011-05-25

    Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.

  11. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; hide

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  12. The quadrupole model for rigid-body gravity simulations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2013-07-01

    We introduce two new models for gravitational simulations of systems of non-spherical bodies, such as comets and asteroids. In both models, one body (the "primary") may be represented by any convenient means, to arbitrary accuracy. In our first model, all of the other bodies are represented by small gravitational "molecules" consisting of a few point masses, rigidly linked together. In our second model, all of the other bodies are treated as point quadrupoles, with gravitational potentials including spherical harmonic terms up to the third degree (rather than only the first degree, as for ideal spheres or point masses). This quadrupole formulation may be regarded as a generalization of MacCullagh's approximation. Both models permit the efficient calculation of the interaction energy, the force, and the torque acting on a small body in an arbitrary external gravitational potential. We test both models for the cases of a triaxial ellipsoid, a rectangular parallelepiped, and "duplex" combinations of two spheres, all in a point-mass potential. These examples were chosen in order to compare the accuracy of our technique with known analytical results, but the ellipsoid and duplex are also useful models for comets and asteroids. We find that both approaches show significant promise for more efficient gravitational simulations of binary asteroids, for example. An appendix also describes the duplex model in detail.

  13. Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites

    NASA Astrophysics Data System (ADS)

    Lang, L. L.; Xu, J.; Qi, W. H.; Li, Z. Z.; Tang, G. D.; Shang, Z. F.; Zhang, X. Y.; Wu, L. Q.; Xue, L. C.

    2014-09-01

    Powder samples of the ferrites MxNi1-xFe2O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) were prepared using a chemical co-precipitation method. X-ray diffraction analysis showed that the two series of samples had a single-phase cubic spinel structure. It was found that the magnetic moments (μexp) per formula of samples measured at 10 K decreased when Cr substituted for Ni, but increased when Co substituted for Ni, in spite of the fact that the magnetic moments of Cr2+ (4 μB) and Co2+ (3 μB) are higher than that of Ni2+ (2 μB). With the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the Fe, Co, and Ni cations in the same sublattices of spinel ferrites, the dependences on the Cr (Co) doping level of the sample magnetic moments at 10 K were fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. For the two series of samples, the fitted magnetic moments are close to the experimental results.

  14. Detrended fluctuation analysis based on higher-order moments of financial time series

    NASA Astrophysics Data System (ADS)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  15. Relationship between cardiopulmonary responses and isokinetic moments: the optimal angular velocity for muscular endurance

    PubMed Central

    Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok

    2017-01-01

    Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints. PMID:28503531

  16. Relationship between cardiopulmonary responses and isokinetic moments: the optimal angular velocity for muscular endurance.

    PubMed

    Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok

    2017-04-01

    Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints.

  17. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    PubMed

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.

    2018-04-01

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.

  19. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  20. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  1. Blurred image recognition by legendre moment invariants

    PubMed Central

    Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis

    2010-01-01

    Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003

  2. A general moment expansion method for stochastic kinetic models

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.

    2013-05-01

    Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.

  3. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  4. Multipole Structure and Coordinate Systems

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…

  5. Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal deformabilities

    DOE PAGES

    Steiner, A. W.; Gandolfi, S.; Fattoyev, F. J.; ...

    2015-01-13

    Here, we perform a systematic assessment of models for the equation of state (EOS) of dense matter in the context of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars. We demonstrate that currently available neutron star mass and radius measurements provide strong constraints on moments of inertia, tidal deformabilities, and crust thicknesses. Moreover, a measurement of the moment of inertia of PSR J0737-3039A with a 10% error, without any other information from observations, will constrain the EOS over a range of densities to within 50% 60%. We find tidal deformabilitiesmore » between 0.6 and 6 1036 g cm 2 s 2 (to 95% confidence) for M = 1.4 M ⊙ , and any measurement which constrains this range will provide an important constraint on dense matter. The crustal fraction of the moment of inertia can be as large as 10% for M = 1.4 M ⊙ permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even with a large amount of superfluid entrainment. Finally, due to the uncertainty in the equation of state, there is at least a 40% variation in the thickness of the crust for a fixed mass and radius, which implies that future simulations of the cooling of a neutron star crust which has been heated by accretion will need to take this variation into account.« less

  6. An integrated CFD/experimental analysis of aerodynamic forces and moments

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Robertson, David D.; Moyer, Seth A.

    1989-01-01

    Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.

  7. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.

    PubMed

    Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B; Krogsgaard, Michael R; Benoit, Daniel L

    2017-03-01

    Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they relate to joint stability by quantifying the relationship between individual muscle activation patterns and internal net joint moments in all three loading planes and 2) to determine whether these roles change with increasing force levels. A standing isometric force matching protocol required subjects to modulate ground reaction forces to elicit various combinations and magnitudes of sagittal, frontal, and transverse internal joint moments. Surface EMG measured activities of 10 lower limb muscles. Partial least squares regressions determined which internal moment(s) were significantly related to the activation of individual muscles. Rectus femoris and tensor fasciae latae were classified as moment actuators for knee extension and hip flexion. Hamstrings were classified as moment actuators for hip extension and knee flexion. Gastrocnemius and hamstring muscles were classified as specific joint stabilizers for knee rotation. Vastii were classified as general joint stabilizers because activation was independent of moment generation. Muscle roles did not change with increasing effort levels. Our findings indicate muscle activation is not dependent on anatomical orientation but perhaps on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation.

  8. A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice.

    PubMed

    Miller, S W; Dennis, R G

    1996-12-01

    A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r = R sin(a + delta), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and delta, the angle at which the maximum moment arm occurs as offset from 90 degrees. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.

  9. a Fascinating Two-Photon Process: Magnetically Induced Quadrupole Second Harmonic Genaration

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masahiro

    1990-10-01

    After a short prologue, recalling the memory of the first meeting with Professor Bloembergen, the author reviews a topic of a second harmonic generation in centrosymmetric medium, that is, magnetically induced quadrupole SHG. A pictorial description of the process is presented together with a few suggestions for future experiment.

  10. Moment distributions of clusters and molecules in the adiabatic rotor model

    NASA Astrophysics Data System (ADS)

    Ballentine, G. E.; Bertsch, G. F.; Onishi, N.; Yabana, K.

    2008-01-01

    We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor. Program summaryProgram title:AdiabaticRotor Catalogue identifier:ADZO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:479 No. of bytes in distributed program, including test data, etc.:4853 Distribution format:tar.gz Programming language:Fortran 90 Computer:Pentium-IV, Macintosh Power PC G4 Operating system:Linux, Mac OS X RAM:600 Kbytes Word size:64 bits Classification:2.3 Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field. Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method. Running time:3 min on a 3 GHz Pentium IV processor.

  11. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  12. Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms.

    PubMed

    Jorgensen, Michael J; Marras, William S; Gupta, Purnendu; Waters, Thomas R

    2003-01-01

    Accurate anatomical inputs for biomechanical models are necessary for valid estimates of internal loading. The magnitude of the moment arm of the lumbar erector muscle group is known to vary as a function of such variables as gender. Anatomical evidence indicates that the moment arms decrease during torso flexion. However, moment arm estimates in biomechanical models that account for individual variability have been derived from imaging studies from supine postures. Quantify the sagittal plane moment arms of the lumbar erector muscle group as a function of torso flexion, and identify individual characteristics that are associated with the magnitude of the moment arms as a function of torso flexion. Utilization of a 0.3 Tesla Open magnetic resonance image (MRI) to image and quantify the moment arm of the right erector muscle group as a function of gender and torso flexion. Axial MRI images through and parallel to each of the lumbar intervertebral discs at four torso flexion angles were obtained from 12 male and 12 female subjects in a lateral recumbent posture. Multivariate analysis of variance was used to investigate the differences in the moment arms at different torso flexion angles, whereas hierarchical linear regression was used to investigate associations with individual anthropometric characteristics and spinal posture. The largest decrease in the lumbar erector muscle group moment arm from neutral to 45-degree flexion occurred at the L5-S1 level (9.7% and 8.9% for men and women, respectively). Measures of spinal curvature (L1-S1 lordosis), body mass and trunk characteristics (depth or circumference) were associated with the varying moment arm at most lumbar levels. The sagittal plane moment arms of the lumbar erector muscle mass decrease as the torso flexes forward. The change in moment arms as a function of torso flexion may have an impact on prediction of spinal loading in biomechanical models.

  13. Implementation of parallel moment equations in NIMROD

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu Q.; Held, Eric D.; Ji, Jeong-Young

    2017-10-01

    As collisionality is low (the Knudsen number is large) in many plasma applications, kinetic effects become important, particularly in parallel dynamics for magnetized plasmas. Fluid models can capture some kinetic effects when integral parallel closures are adopted. The adiabatic and linear approximations are used in solving general moment equations to obtain the integral closures. In this work, we present an effort to incorporate non-adiabatic (time-dependent) and nonlinear effects into parallel closures. Instead of analytically solving the approximate moment system, we implement exact parallel moment equations in the NIMROD fluid code. The moment code is expected to provide a natural convergence scheme by increasing the number of moments. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  14. Synthesis of low-moment CrVTiAl: a potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, Gregory; Wolfsberg, Jacob; McDonald, Ian; Lejeune, Brian; Lewis, Laura; Heiman, Don

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials - semiconductors with unequal band gaps for each spin channel - can generate spin-polarized current without the need for spin-polarizing electrodes. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing fringing fields to interfere with neighboring components. Several quaternary Heusler compounds have recently been predicted to have spin-filter properties and Curie temperatures TC >1000 K. In this work, CrVTiAl has been synthesized in the Y-type Heusler structure, as confirmed by X-ray diffractometry. Magnetization measurements exhibit an exceptionally small temperature-independent moment of 10-3μB /f.u. up to 400 K, a result that is consistent with zero-moment ferrimagnetism. In addition, temperature dependent resistivity measurements reveal the existence of a semiconducting conduction channel. These results suggest that CrVTiAl is a promising candidate for future spintronic devices.

  15. Second generation measurement of the electric dipole moment of the electron using trapped ThF+ ions

    NASA Astrophysics Data System (ADS)

    Ng, Kia Boon; Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matthew; Ni, Yiqi; Ye, Jun; Cornell, Eric

    2016-05-01

    ThF+ has been chosen as the candidate for a second generation measurement of the electric dipole moment of the electron (eEDM). Compared to the current HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states. Here, we present progress of our experimental setup, preliminary spectroscopic data of multi-photon ionization, and discussions of new features in ion trapping, state preparation and population readout.

  16. Influence of different shortening velocities preceding stretch on human triceps surae moment generation in vivo.

    PubMed

    De Monte, Gianpiero; Arampatzis, Adamantios

    2008-07-19

    The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening

  17. Preliminary Design of the Vacuum System for FAIR Super FRS Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Akhter, J.; Pal, G.; Datta, A.; Sarma, P. R.; Bhunia, U.; Roy, S.; Bhattacharyya, S.; Nandi, C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The Super-Conducting Fragment Separator (Super FRS) of the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large-acceptance superonducting fragment separator. The separator consists of large dipole, quadrupole and hexapole superconducting magnets. The long quadrupole magnet cryostat houses the helium chamber, which has the magnet iron and NbTi superconducting coil. The magnet weighs about 30 tons. The helium chamber is enclosed in vacuum inside the magnet cryostat. Multilayer Insulation (MLI) will be wrapped around the thermal shield to reduce radiation loss. Polyster of MLI comprises the major component responsible for outgassing. In order to reduce outgassing, pumping at elevated temperatures has to be carried out. In view of the large size and weight of the magnet, a seal off approach might not be operationally feasible. Continuous pumping of the cryostat has also been examined. Pump has been kept at a distance from the magnet considering the effect of stray magnetic fields. Oil free turbo molecular pump and scroll pump combination will be used to pump down the cryostat. The ultimate heat load of the cryostat will be highly dependent on the pressure attained. Radiation and conduction plays an important role in the heat transfer at low temperatures. This paper presents the vacuum design of the long quadrupole magnet cryostat and estimates the heat load of the cryostat.

  18. Microwave spectroscopy of high-L Rydberg states of nickel

    NASA Astrophysics Data System (ADS)

    Lindsay, Mark D.; Keele, Julie A.; Woods, Shannon L.; Lundeen, Stephen R.

    2010-03-01

    High-L non-penetrating Rydberg levels of nickel display a fine structure pattern consisting of six levels for each value of L. This pattern was studied recently with the optical RESIS technique, determining initial values of the quadrupole moment and polarizabilities of the ^2D5/2 ground state of Ni^+ [1]. Measurements are now in progress using the microwave RESIS technique [2], which promises much more precise measurements of the fine structure and of the related core properties, including the permanent hexadecapole moment.[4pt] [1] Julie A. Keele, et. al., to be published, Phys. Rev. A[0pt] [2] M.E. Hanni, et. al., Phys. Rev. A 78, 062510 (2008)

  19. Fast rotating neutron stars with realistic nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.

    2015-07-01

    We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.

  20. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  1. Individual responses to alignment perturbations in socket reaction moments while walking in transtibial prostheses.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2014-05-01

    The alignment of transtibial prostheses has a systematic effect on the mean socket reaction moments in amputees. However, understanding their individual differences in response to alignment perturbations is also important for prosthetists to fully utilize the socket reaction moments for dynamic alignment in each unique patient. The aim of this study was to investigate individual responses to alignment perturbations in transtibial prostheses with solid-ankle-cushion-heel feet. A custom instrumented prosthesis alignment component was used to measure the socket reaction moments while walking in 11 amputees with transtibial prostheses under 17 alignment conditions, including 3° and 6° of flexion, extension, abduction, and adduction of the socket, 5mm and 10mm of anterior, posterior, lateral, and medial translation of the socket, and an initial baseline alignment. Coronal moments at 30% of stance and maximum sagittal moments were extracted for comparisons from each amputee. In the coronal plane, varus moment at 30% of stance was generally reduced by adduction or medial translation of the socket in all the amputees. In the sagittal plane, extension moment was generally increased by posterior translation or flexion of the socket; however, this was not necessarily the case for all the amputees. Individual responses to alignment perturbations are not always consistent, and prosthetists would need to be aware of this variance when addressing individual socket reaction moments during dynamic alignment in clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Higher-order dielectrophoretic effects: levitation at a field null.

    PubMed

    Washizu, M; Jones, T B; Kaler, K V

    1993-08-20

    Experiments with certain new micro-electrode structures used to achieve passive dielectrophoretic levitation of small particles and biological cells reveal a pronounced size-dependent effect not anticipated by the conventional dipole-based model. The conventional theory fails to predict this size effect because it neglects higher-order moments such as the quadrupole, hexapole, and octupole. These higher-order moments are in fact responsible for the levitation force achieved by azimuthally periodic electrode structures because, in such geometries, the electric field is zero along the axis so that the induced dipole moment must be zero. For example, the planar quadrupole levitates particles passively along the central axis through the interaction of its field with the induced quadrupolar moment of the particle. The size effect reported with this structure is readily explained in terms of this quadrupolar component of the ponderomotive force exerted on the particle.

  3. Moments of inertia of relativistic magnetized stars

    NASA Astrophysics Data System (ADS)

    Konno, K.

    2001-06-01

    We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.

  4. The effect of isolated valgus moments on ACL strain during single-leg landing: A simulation study

    PubMed Central

    Shin, Choongsoo S.; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2009-01-01

    Valgus moments on the knee joint during single-leg landing have been suggested as a risk factor for anterior cruciate ligament (ACL) injury. The purpose of this study was to test the influence of isolated valgus moment on ACL strain during single-leg landing. Physiologic levels of valgus moments from an in vivo study of single-leg landing were applied to a three-dimensional dynamic knee model, previously developed and tested for ACL strain measurement during simulated landing. The ACL strain, knee valgus angle, tibial rotation, and medial collateral ligament (MCL) strain were calculated and analyzed. The study shows that the peak ACL strain increased nonlinearly with increasing peak valgus moment. Subjects with naturally high valgus moments showed greater sensitivity for increased ACL strain with increased valgus moment, but ACL strain plateaus below reported ACL failure levels when the applied isolated valgus moment rises above the maximum values observed during normal cutting activities. In addition, the tibia was observed to rotate externally as the peak valgus moment increased due to bony and soft-tissue constraints. In conclusion, knee valgus moment increases peak ACL strain during single-leg landing. However, valgus moment alone may not be sufficient to induce an isolated ACL tear without concomitant damage to the MCL, because coupled tibial external rotation and increasing strain in the MCL prevent proportional increases in ACL strain at higher levels of valgus moment. Training that reduces the external valgus moment, however, can reduce the ACL strain and thus may help athletes reduce their overall ACL injury risk. PMID:19100550

  5. Sampling theorem for geometric moment determination and its application to a laser beam position detector.

    PubMed

    Loce, R P; Jodoin, R E

    1990-09-10

    Using the tools of Fourier analysis, a sampling requirement is derived that assures that sufficient information is contained within the samples of a distribution to calculate accurately geometric moments of that distribution. The derivation follows the standard textbook derivation of the Whittaker-Shannon sampling theorem, which is used for reconstruction, but further insight leads to a coarser minimum sampling interval for moment determination. The need for fewer samples to determine moments agrees with intuition since less information should be required to determine a characteristic of a distribution compared with that required to construct the distribution. A formula for calculation of the moments from these samples is also derived. A numerical analysis is performed to quantify the accuracy of the calculated first moment for practical nonideal sampling conditions. The theory is applied to a high speed laser beam position detector, which uses the normalized first moment to measure raster line positional accuracy in a laser printer. The effects of the laser irradiance profile, sampling aperture, number of samples acquired, quantization, and noise are taken into account.

  6. Experimental and theoretical determination of the dipole-quadrupole and dipole-octopole polarizabilities of the group IV tetrachlorides TiCl4, ZrCl4, and HfCl4

    NASA Astrophysics Data System (ADS)

    Hohm, Uwe; Maroulis, G.

    2006-03-01

    The dipole-quadrupole and dipole-octopole polarizabilities A and E of TiCl4, ZrCl4, and HfCl4 have been determined from collision-induced light-scattering experiments. Our respective experimental results for ∣A ∣ are (165±10), (110±30), and (140±20) e2a03Eh-1, whereas ∣E∣ is determined to be (675±125), (750±200), and (670±400) e2a04Eh-1. Theory predicts values convincingly close to experiment, as A =(181.4±9.1), (167.6±8.4), and (139.8±7.0) e2a03Eh-1, and E =(-671±67), (-688±69), and (-574±57) e2a04Eh-1. In addition our quantum chemical ab initio calculations give reliable values for the dipole polarizability α, as well as for the octopole and hexadecapole moments Ω and Φ for all three substances.

  7. Enhanced orbital magnetic moment in FeCo nanogranules observed by Barnett effect

    NASA Astrophysics Data System (ADS)

    Ogata, Y.; Chudo, H.; Gu, B.; Kobayashi, N.; Ono, M.; Harii, K.; Matsuo, M.; Saitoh, E.; Maekawa, S.

    2017-11-01

    The gyroscopic g factor, g‧ , of FeCo nanogranules embedded in a matrix of MgF2 (FeCo-MgF2) was determined by measuring the magnetic-field generation from a rotating sample due to the Barnett effect. The g‧ value of the FeCo-MgF2 is estimated to be 1.76 ± 0.11. The orbital contribution to the magnetic moment in the FeCo nanogranules was found to be quite large compared with that in bulk FeCo, being consistent with a density-functional-theory calculation that shows that the orbital magnetic moment may increase at the FeCo/MgF2 interfaces. The result suggests that the orbital magnetic moment is enhanced by symmetry breaking at the surface of the FeCo nanogranules.

  8. Exploration of Learning Strategies Associated With Aha Learning Moments.

    PubMed

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  9. Improved limit on the Ra 225 electric dipole moment

    DOE PAGES

    Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.; ...

    2016-08-03

    In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.

  10. Improved limit on the Ra 225 electric dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.

    In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.

  11. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions.

    PubMed

    Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E

    2007-07-19

    Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.

  12. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

    DOE PAGES

    Gil-Marin, Hector; Percival, Will J.; Cuesta, Antonio J.; ...

    2016-05-30

    Here, we present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of zCMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ 2 moment, α2, where μ is the cosine of the angle to the line of sight. Themore » μ 2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ 2-moment, which are related to radial and angular shifts in scale. We report H(zLOWZ)r s(zd) = (11.60 ± 0.60) × 10 3 km s -1 and D A(zLOWZ)/r s(zd) = 6.66 ± 0.16 with a cross-correlation coefficient of rHD A = 0.41, for the LOWZ sample; and H(zCMASS)r s(zd) = (14.56 ± 0.37) × 10 3 km s -1 and D A(zCMASS)/r s(z d) = 9.42 ± 0.13 with a cross-correlation coefficient of rHD A = 0.47, for the CMASS sample.« less

  13. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F.; Nie, Z.; Wu, Y. P.

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  14. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE PAGES

    Li, F.; Nie, Z.; Wu, Y. P.; ...

    2018-02-22

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  15. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    PubMed

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  16. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  17. Dipole-quadrupole dynamics during magnetic field reversals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gissinger, Christophe

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less

  18. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    NASA Astrophysics Data System (ADS)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  19. Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.

    PubMed

    Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong

    2017-02-28

    The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.

  20. Lower limb joint moment during walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.