Science.gov

Sample records for quadrupole resonance nqr

  1. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  2. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  3. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  4. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  5. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  6. Detecting body cavity bombs with nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  7. Nuclear Quadrupole Resonance Studies in MICA

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Rhadakrishna, S.; Marino, R. A.

    1986-02-01

    Aluminum-27 NQR transitions were detected in Muscovite Mica at room temperature using double resonance by level crossing (DRLC) techniques. Three lines were observed with frequencies of 572.5, 1052.0, and 1624.5 kHz. These lines are assigned to the octahedrally coordinated site, AlO4(OH)2. The corresponding quadrupole coupling constant, e2q Q/h, and asymmetry parameter, η, are 3554.8 kHz and 0.265, respectively. The remaining tetrahedrally coordinated sites, AlO4, gave no discernible signal, perhaps due to the greater 27Al- 1H distance.

  8. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  9. Nuclear quadrupole resonance lineshape analysis for different motional models: stochastic Liouville approach.

    PubMed

    Kruk, D; Earle, K A; Mielczarek, A; Kubica, A; Milewska, A; Moscicki, J

    2011-12-14

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000)] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed. PMID:22168707

  10. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  11. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  12. 14 N NQR spectrum of sildenafil citrate

    NASA Astrophysics Data System (ADS)

    Stephenson, David; Singh, Nadia

    2015-04-01

    The 14N nuclear quadrupole resonance (NQR) spectrum of sildenafil citrate tablets has been recorded allowing the quadrupole coupling constants and asymmetry parameters of all six unique nitrogen atoms in its structure to be determined. A density function calculation gives results that are largely in agreement with the experimental values.

  13. A bi-symmetric square wave Zeeman modulator for nuclear quadrupole resonance.

    PubMed

    Mao, D; Petersen, G L; Bray, P J

    1992-11-01

    A simple circuit has been designed to generate a bi-symmetric square wave Zeeman modulation for the detection of nuclear quadrupole resonance. The square waveform not only provides an optimum result among bi-symmetric modulation waveforms, but also allows the observation of the Zeeman perturbed NQR powder pattern without the need for an extra external magnetic field.

  14. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  15. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGES

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  16. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  17. A novel power amplification scheme for nuclear magnetic resonance/nuclear quadrupole resonance systems.

    PubMed

    Zhang, Xinwang; Schemm, Nathan; Balkır, Sina

    2011-03-01

    Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)-based chemical analysis systems have been widely utilized in various areas such as medicine, security, and academic research. In these applications, the power amplifier stage plays a key role in generating the required oscillating magnetic fields within a radio frequency coil that serves as the probe. However, the bulky size and relatively low efficiency of the traditional power amplification schemes employed present a bottleneck for the realization of compact sized and portable NMR and NQR systems. To address this problem, this work presents a class D voltage-switching power amplification scheme with novel fast-start and fast-stop functions that are suitable for generating ideal NMR and NQR excitation signals. Compared to the traditional analog power amplifiers (PAs), the proposed switched-mode PA can achieve significant improvement on the power efficiency as well as the physical volume. A PA circuit for portable NQR-based explosive detection systems has been designed and built using the proposed scheme with 1 kW possible maximum output power and 10 MHz maximum operating frequency. Test results show that the presented PA achieves more than 60% measured efficiency within a highly compact volume while sustaining fast start and stop of excitation signals in the order of microseconds.

  18. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  19. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  20. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  1. The fluorinated (10, 0) boron nitride nanotube: a computational nuclear magnetic resonance and nuclear quadrupole resonance study.

    PubMed

    Seif, Ahmad; Boshra, Asadollah; Bodaghi, Ali

    2010-01-01

    Quantum chemical calculations at the level of density functional theory (DFT) were carried out to investigate the influence of fluorination boron and nitrogen nuclear magnetic resonance (NMR) and also nuclear quadrupole resonance (NQR) parameters in the (10, 0) single-wall boron nitride nanotube (SWBNNT). To achieve this aim three models of (10, 0) boron nitride nanotubes (BNNTs), raw and two F-attached (exohedral and endohedral) derivatives were studied. The results of calculations showed that while the boron atom chemically bonded to F atom has the largest chemical shielding isotropy (CSI); it has the smallest quadrupole coupling constant (CQ) value among the other boron nuclei.

  2. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  3. Nuclear quadrupole resonance study of local bonding in glassy As{sub x}Se{sub 1-x}

    SciTech Connect

    Ahn, Eungho; Williams, G. A.; Taylor, P. C.

    2006-11-01

    Nuclear quadrupole resonance (NQR) experiments were performed on glassy As{sub x}Se{sub 1-x} to study the local structural order. The bonding in As{sub x}Se{sub 1-x} is governed by preferential bonding (chemical ordering) between arsenic and selenium at arsenic concentrations x{<=}0.40; however, the bonding for higher arsenic concentrations is governed mostly by statistical considerations. At concentrations x{>=}0.45 the glasses are inhomogeneous with the presence of local regions of different composition. Measurements of the NQR spin echo intensity identify regions formed by arsenic atoms bonded to zero, one, two, or three selenium atoms. The NQR spectral line shapes and the longitudinal relaxation times suggest that these regions have a more ordered structure as compared to the homogeneous samples with low arsenic content. The existence of a small concentration of crystalline inclusions in amorphous As{sub 0.60}Se{sub 0.40} is also suggested.

  4. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  5. NQR Characteristics of an RDX Plastic Explosives Simulant.

    PubMed

    Turecek, J; Schwitter, B; Miljak, D; Stancl, M

    2012-12-01

    For reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive. The highly discriminating bulk detection characteristics of nuclear quadrupole resonance (NQR) especially constrain simulant design. This paper describes the development of an inexplosive RDX simulant suited to a wide range of measurement methods, including NQR. Measurements are presented that confirm an RDX NQR response from the simulant. The potential use of the simulant for field testing a prototype handheld NQR-based RDX detector is analyzed. Only modest changes in prototype operation during field testing would be required to account for the use of simulant rather than real explosive. PMID:23204647

  6. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  7. Utilization of pure nuclear quadrupole resonance spectroscopy for the study of pharmaceutical crystal forms.

    PubMed

    Pérez, S C; Cerioni, L; Wolfenson, A E; Faudone, S; Cuffini, S L

    2005-07-14

    Solid-state physical characterization of a pharmaceutical substance is necessary for successful development and approval of the final product. Different physical analytical techniques are available to do so: X-ray diffraction (XRD), IR, Raman, DSC, TG and NMR. Moreover, all of them detect the presence of excipients perturbing the analysis of the pure substance in low doses. In order to study polymorphism and pseudo polymorphism of drug, this paper introduces possible applications of pure nuclear quadrupole resonance, as a non-destructive technique in qualitative and quantitative approaches. Chlorpropamide and diclofenac sodium were used as examples. Unlike the mentioned techniques, the nuclear quadrupole resonance (NQR) signal of pharmaceutical compounds is not perturbed by the presence of solid excipient or other substances unless they possess resonance frequencies in the same frequency range of the compound studied.

  8. Noise-resilient multi-frequency surface sensor for nuclear quadrupole resonance.

    PubMed

    Peshkovsky, A S; Cattena, C J; Cerioni, L M; Osán, T M; Forguez, J G; Peresson, W J; Pusiol, D J

    2008-10-01

    A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection. These modes have smooth distributions of the amplitudes of the corresponding radiofrequency magnetic fields everywhere along the sensor's surface. The phases of the fields, on the other hand, are cyclically shifted across the sensor's surface. Noise signals coming from distant sources, therefore, induce equal-magnitude cyclically phase-shifted currents in different parts of the sensor. When such cyclically phase-shifted currents arrive at the mode connection point, they destructively interfere with each other and are cancelled out. NQR signals of polycrystalline or disordered substances, however, are efficiently detected by these modes because they are insensitive to the phases of the excitation/detection. No blind spots exist along the sensor's surface. The sensor can be used for simultaneous detection of one or more substances in locations with environmental noise.

  9. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php.

  10. 14N Quadrupole Resonance in the presence of a weak static magnetic field. Direct determination of the electric field gradient tensor

    NASA Astrophysics Data System (ADS)

    Aissani, Sarra; Guendouz, Laouès; Canet, Daniel

    2014-02-01

    The electric field gradient tensor (considered here at the level of a nitrogen nucleus) can be described by two parameters: the largest element in the (x, y, z) principal axis system, denoted by Vzz, and the asymmetry parameter η=(Vyy-Vxx)/Vzz. The frequencies of the three nitrogen-14 NQR transitions depend on both parameters and two of them are, a priori, necessary for their determination. We demonstrate that, if a weak static magnetic field is applied during a NQR experiment, both parameters can be obtained from a single transition thus alleviating the difficulties for finding out 14N Quadrupole Resonance lines.

  11. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  12. WURST-QCPMG sequence and "spin-lock" in 14N nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Gregorovič, Alan; Apih, Tomaž

    2013-08-01

    14N nuclear quadrupole resonance (NQR) is a promising method for the analysis of pharmaceuticals or for the detection of nitrogen based illicit compounds, but so far, the technique is still not widely used, mostly due to the very low sensitivity. This problem is already acute in the preliminary NQR stage, when a compound is being examined for the first time and the NQR frequencies are being searched for, by scanning a wide frequency range step-by-step. In the present work, we experimentally show how to increase the efficiency of this initial stage by using a combination of a wideband excitation achieved with frequency swept pulses (WURST) and a "spin-lock" state obtained with a quadrupolar-CPMG (QCPMG) sequence. In the first part we show that WURST pulses provide a much larger excitation bandwidth compared to common rectangular pulses. This increased bandwidth allows to increase the frequency step and reduces the total number of steps in a scanning stage. In the second part we show that the "spin-lock" decay time T2eff obtained with the WURST-QCPMG combination is practically identical with the T2eff obtained with the most common "spin-lock" sequence, the SLSE, despite a very different nature and length of excitation pulses. This allows for a substantial S/N increase through echo averaging in every individual step and really allows to exploit all the advantages of the wider excitation in the NQR frequency scanning stage. Our experimental results were obtained on a sample of trinitrotoluene, but identical behavior is expected for all compounds where a "spin-lock" state can be created.

  13. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  14. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  15. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu

    NASA Astrophysics Data System (ADS)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

    2012-07-01

    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  16. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    SciTech Connect

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  17. Coulomb disorder effects on angle-resolved photoemission and nuclear quadrupole resonance spectra in cuprates

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Khaliullin, Giniyat; Sushkov, Oleg P.

    2009-09-01

    The role of Coulomb disorder, either of extrinsic origin or introduced by dopant ions in undoped and lightly doped cuprates, is studied. We demonstrate that charged surface defects in an insulator lead to a Gaussian broadening of the angle-resolved photoemisson spectroscopy (ARPES) lines. The effect is due to the long-range nature of the Coulomb interaction. A tiny surface concentration of defects about a fraction of one percent is sufficient to explain the line broadening observed in Sr2CuO2Cl2 , La2CuO4 , and Ca2CuO2Cl2 . Due to the Coulomb screening, the ARPES spectra evolve dramatically with doping, changing their shape from a broad Gaussian form to narrow Lorentzian ones. To understand the screening mechanism and the line-shape evolution in detail, we perform Hartree-Fock simulations with random positions of surface defects and dopant ions. To check validity of the model we calculate the nuclear quadrupole resonance (NQR) line shapes as a function of doping and reproduce the experimentally observed NQR spectra. Our study also indicates opening of a substantial Coulomb gap at the chemical potential. For a surface CuO2 layer the value of the gap is on the order of 10 meV while in the bulk it is reduced to the value about a few meV.

  18. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  19. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  20. Signal processing for NQR discrimination of buried land mines

    NASA Astrophysics Data System (ADS)

    Tantum, Stacy L.; Collins, Leslie M.; Carin, Lawrence; Gorodnitsky, Irina; Hibbs, Andrew D.; Walsh, David O.; Barrall, Geoffrey A.; Gregory, David M.; Matthews, Robert; Vierkotter, Stephie A.

    1999-08-01

    Nuclear quadrupole resonance (NQR) is a technique that discriminates mines from clutter by exploiting unique properties of explosives, rather than the attributes of the mine that exist in many forms of anthropic clutter. After exciting the explosive with a properly designed electromagnetic-induction (EMI) system, one attempts to sense late-time spin echoes, which are characterized by radiation at particular frequencies. It is this narrow-band radiation that indicates the presence of explosives, since this effect is not seen in most clutter, both natural and anthropic. However, this problem is complicated by several issues. First, the late-time radiation if often very weak, particularly for TNT, and therefore the signal-to-noise ratio must be high for extracting the NQR response. Further, the frequency at which the explosive radiates is often a strong function of the background environment, and therefore in practice the NQR radiation frequency is not known a priori. Finally, at the frequencies of interest, there is a significant amount of background radiation, which induces radio frequency interference (RFI). In this paper we discuss several signal processing tools we have developed to enhance the utility of NQR explosives detection. In particular, with regard to the RFI, we exposure least-mean-squares algorithms which have proven well suited to extracting background interference. Algorithm performance is assessed through consideration of actual measured data. With regard to the detection of the NQR electromagnetic echo, we consider a Bayesian discrimination algorithm. The performance of the Bayesian algorithm is presented, again using measured NQR data.

  1. Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ≤x ≤0.02 ) studied by 59Co nuclear quadrupole resonance measurements

    NASA Astrophysics Data System (ADS)

    Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

    2015-02-01

    In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

  2. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  3. Development of a quadrupole resonance confirmation system

    NASA Astrophysics Data System (ADS)

    Barrall, Geoffrey A.; Derby, Kevin A.; Drew, Adam J.; Ermolaev, Konstantine V.; Huo, Shouqin; Lathrop, Daniel K.; Petrov, Todor R.; Steiger, Matthew J.; Stewart, Stanley H.; Turner, Peter J.

    2004-09-01

    Quantum Magnetics has developed a Quadrupole Resonance (QR) system for the detection of anti-tank and anti-vehicle landmines. The QR confirmation sensor (QRCS) is a part of the Army GSTAMIDS Block 1 program and is designed to confirm the presence of landmines initially flagged by a primary sensor system. The ultimate goal is to significantly reduce the number of sites that require neutralization or other time consuming investigation into the presence of a landmine. Government tests in 2002 and 2003 demonstrated the performance of the system in a wide variety of conditions including high radio frequency interference (RFI) and piezo electric ringing (PER) environments. Field test results are presented along with an overall description of the system design and methods used to solve prior issues with RFI and PER.

  4. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  5. Asymmetry parameter studies for systems containing the 35Cl nucleus from Zeeman NQR data

    NASA Astrophysics Data System (ADS)

    Raman, K. V.

    1995-02-01

    A review of Zeeman nuclear quadrupole resonance (NQR) work on systems containing the 35Cl nucleus is presented. In the case of the 35cl nucleus with spin I = {3}/{2}, owing to the existence of ± m degeneracy in the absence of a magnetic field (Kramer's degeneracy), there exists only one pure NQR frequency which is related to the two electric field gradient (EFG) parameters, η and e2qQ, by the formula, v = ( {e 2qQ }/{2h})(1 + ( {η 2}/{3})) {1}/{2}. Hence it is necessary to study the Zeeman effect to obtain both these parameters. Zeeman NQR studies have been carried out by many workers using single crystals and powder specimens, and these are discussed here. The computer simulation method for powder η values is also presented in this paper. The numerical computation program for an IBM 370-158 computer used to simulate the powder Zeeman spectrum is also discussed briefly. The paper also presents two-dimensional Zeeman NQR and Zeeman perturbed spin-echo envelope modulation (ZSEEM) studies on 35Cl systems. Very recently, two-dimensional NQR experiments based on the principle of nutation spectroscopy have been carried out with zero applied magnetic field on {3}/{2} spin nuclei. This method is also discussed in this review. The relationship between the asymmetry parameter (η) and bond properties is also discussed.

  6. Spin 3/2 Zeeman perturbed NQR in the presence of slow sample rotation.

    PubMed

    Panguluri, R P; Suits, B H

    2006-09-01

    Theoretical and experimental results are presented for the case of Zeeman perturbed nuclear quadrupole resonance (NQR) using spin-3/2 nuclei with a small Zeeman interaction, gammaB0, while the sample is very slowly rotated. It is found that the decay envelope for a simple two-pulse echo measurement can be strongly affected even though the sample may rotate only a few degrees or less during the course of the measurement. To lowest order the decay envelope can be described using a one dimensional function of the product of gammaB0, the rotation rate, and the square of the pulse spacing. Aside from an indirect and weak dependence on the quadrupole asymmetry parameter, eta, the result is independent of the NQR frequency. Identical results are expected for a stationary sample in a small rotating magnetic field. The effect seen here may be used to advantage to measure rotational motion, for example of particles in fluids, or may be an additional complication for some Zeeman perturbed NQR measurements, including some NQR detection and imaging methods.

  7. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  8. NQR investigation and characterization of cocrystals and crystal polymorphs

    NASA Astrophysics Data System (ADS)

    Seliger, Janez; Žagar, Veselko; Asaji, Tetsuo

    2013-05-01

    The application of 14N NQR to the study of cocrystals and crystal polymorphs is reviewed. In ferroelectric and antiferroelectric organic cocrystals 14N NQR is used to determine proton position in an N-H...O hydrogen bond and proton displacement below TC. In cocrystal isonicitinamide - oxalic acid (2:1) 14N NQR is used to distinguish between two polymorphs and to determine the type of the hydrogen bond (N-...H-O). The difference in the 14N NQR spectra of cocrystal formers and cocrystal is investigated in case of carbamazepine, saccharin and carbamazepine - saccharin (1:1). The experimental resolution allows an unambiguous distinction between the 14N NQR spectrum of the cocrystal and the 14N NQR spectra of the cocrystal formers. The possibility of application of NQR and double resonance for the determination of the inhomogeneity of the sample and for the study of the life time of an unstable polymorph is discussed.

  9. A Cu NQR study in a d-electron heavy-fermion system, CaCu3Ru4O12

    NASA Astrophysics Data System (ADS)

    Kato, Harukazu; Tsuruta, Takuya; Nishioka, Takashi; Matsumura, Masahiro; Sakai, Hironori; Kambe, Shinsaku

    2007-11-01

    Cu nuclear quadrupole resonance (NQR) studies have been carried out for CaCu3Ru4O12, which has been suggested to show a heavy-fermion-like behavior although it possess no f electron. A Lorentzian shape of the Cu NQR line with a narrow width implies that no magnetic ordering appears, at least, down to 5 K. The spin lattice relaxation rate of the Cu nuclei probes a change of the Cu 3d electron nature, resulting in the Fermi liquid state at a low temperature. These facts strongly support that the heavy fermion picture is available in the concerned compound.

  10. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. 75As-NQR study of the hybridization gap semiconductor CeOs4As12

    NASA Astrophysics Data System (ADS)

    Yogi, M.; Higa, N.; Niki, H.; Kawata, T.; Sekine, C.

    2016-02-01

    We performed an 75As nuclear quadrupole resonance (NQR) measurement on CeOs4As12. The 75As-NQR spectrum shape demonstrates that the Ce-site filling fraction of our high-pressure synthesized sample is close to unity. A presence of the c — f hybridization gap is confirmed from the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1. An increase of 1/T1 below ∼3 K indicates a development of the spin fluctuations. The 1/T1 for CeOs4As12 shows similar behavior as that for CeOs4Sb12 with different magnitude of the c — f hybridization gap. An absence of phase transition in CeOs4As12 may be caused by the increase of the c — f hybridization, which increases the gap magnitude and reduces the residual density of state inside the gap.

  12. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  13. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance

    SciTech Connect

    Hintenlang, D.E.; Jamil, K.; Iselin, L.H.

    1992-01-01

    Radiation effects on urea, thiourea, guanidine carbonate and guanine sulfate were evaluated for both photon and neutron irradiations. Hydration of these materials typically provides a greatly increased sensitivity to both forms of radiation exposure, although not all materials lend themselves to this treatment without changing the chemical structure of the compound. Urea was found to be the most stable hydrated compound and provides the best sensitivity for quantifying radiation effects using NQR techniques. Urea permits a straight-forward quantification of each of the important parameters of the observed NQR signal, the FID. Several advanced data analysis methods were developed to assist in quantifying NQR spectra, both from urea and materials having more complex molecular structures, such as thiourea and guanidine sulfate. Unfortunately, these analysis techniques are frequently quite time consuming for the complex NQR spectra that result from some of these materials. The simpler analysis afforded by urea has therefore made it the prime candidate for an NQR dosimetry material. The moderate sensitivity of hydrated urea to photon irradiation does not permit this material to achieve the levels of performance required for a personnel dosimeter. It does, however, demonstrate acceptable sensitivity over dose ranges where it could provide a good biological dosimeter for several areas of radiation processing. The demonstrated photon sensitivity could permit hydrated urea to be used in applications such as food irradiation dosimetry. This material also exhibits a good sensitivity to neutron irradiation. The precise correlation between neutron exposure and the parameters of the resulting NQR spectra are currently being developed.

  14. Weakly coordinating anions: crystallographic and NQR studies of halogen-metal bonding in silver, thallium, sodium, and potassium halomethanesulfonates.

    PubMed

    Wulfsberg, Gary; Parks, Katherine D; Rutherford, Richard; Jackson, Debra Jones; Jones, Frank E; Derrick, Dana; Ilsley, William; Strauss, Steven H; Miller, Susie M; Anderson, Oren P; Babushkina, T A; Gushchin, S I; Kravchenko, E A; Morgunov, V G

    2002-04-22

    35Cl, (79,81)Br, and (127)I NQR (nuclear quadrupole resonance) spectroscopy in conjunction with X-ray crystallography is potentially one of the best ways of characterizing secondary bonding of metal cations such as Ag(+) to halogen donor atoms on the surfaces of very weakly coordinating anions. We have determined the X-ray crystal structure of Ag(O(3)SCH(2)Cl) (a = 13.241(3) A; b = 7.544(2) A; c = 4.925(2) A; orthorhombic; space group Pnma; Z = 4) and compared it with the known structure of Ag(O(3)SCH(2)Br) (Charbonnier, F.; Faure, R.; Loiseleur, H. Acta Crystallogr., Sect. B 1978, 34, 3598-3601). The halogen atom in each is apical (three-coordinate), being weakly coordinated to two silver ions. (127)I NQR studies on Ag(O(3)SCH(2)I) show the expected NQR consequences of three-coordination of iodine: substantially reduced NQR frequencies nu(1) and nu(2) and a fairly small NQR asymmetry parameter eta. The reduction of the halogen NQR frequency of the coordinating halogen atom in Ag(O(3)SCH(2)X) becomes more substantial in the series X = Cl < Br < I, indicating that the coordination to Ag(+) strengthens in this series, as expected from hard-soft acid-base principles. The numbers of electrons donated by the organic iodine atom to Ag(+) have been estimated; these indicate that the bonding to the cation is weak but not insignificant. We have not found any evidence for the bonding of these organohalogen atoms to another soft-acid metal ion, thallium. A scheme for recycling of thallium halide wastes is included.

  15. Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel

    2013-01-01

    The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810

  16. Electronic structure and biological activity of chosen DDT-type insecticides studied by 35Cl-NQR.

    PubMed

    Jadzyn, Maciej; Nogaj, Bolesław

    2009-02-01

    A correlation between the electronic structure and biological activity of chosen dichlorodiphenyltrichloroethane (DDT)-type insecticides: 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene, 2,2-bis(4-chlorophenyl)ethanoic acid and 4,4'-dichlorobenzophenone (used in agriculture) has been analysed on the basis of the (35)Cl-nuclear quadrupole resonance (NQR) spectroscopy. The (35)Cl-NQR resonance frequencies measured at 77 K have been correlated with the lethal dose (LD(50)) parameter that characterises the biological activity of these insecticides.

  17. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  18. Sensitivity of nuclear-quadrupole double-resonance detection of half-integer spin nuclei

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-10-01

    The sensitivity of the Slusher and Hahn's nuclear quadrupole double resonance technique is calculated in general for an arbitrary nuclear spin S of the quadrupole nuclei and for an arbitrary asymmetry parameter η of the electric field gradient tensor. The nuclear spin S = 5/2 ( 17O, 25Mg, …) is treated in details. The influence of the cross-relaxation rate between the quadrupole nuclei and the abundant spin system on the sensitivity of double resonance is discussed. The results of the theoretical analysis are applied in the analysis of the 1H- 17O nuclear quadrupole double resonance spectra in p-toluenesulfonamide and 2-nitrobenzoic acid. The 17O nuclear quadrupole resonance frequencies from a sulfonamide group are determined for the first time. The proton-oxygen cross-relaxation rates and the proton local frequency in zero external magnetic field are experimentally determined from the nuclear quadrupole double resonance spectra.

  19. NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity

    NASA Astrophysics Data System (ADS)

    Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.

    2004-07-01

    The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.

  20. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

    2014-09-22

    Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable β form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline < theobromine < caffeine according to increasing electric field gradient (EFG) at the N(1) and N(7) sites, respectively, reflects the changes in biological activity profile of compounds from the methylxanthines series (different pharmacological effects). This difference is elucidated on the basis of the ability to form intra- and intermolecular interactions (hydrogen bonds and π···π stacking interactions). The introduction of methyl groups to xanthine restricts the ability of nitrogen atoms to participate in strong hydrogen bonds; as a result, the dominating effect shifts from hydrogen bond (theobromine) to π···π stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld

  1. Revision of Spin Echoes in Pure Nuclear Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Meriles, C. A.

    2001-04-01

    Goldman's spin-1/2 formalism has been used for describing the response of an I=3/2 spin system to a two-pulse sequence in a pure nuclear quadrupole resonance experiment. A detailed analysis of the polarization evolution and quadrupolar echo generation is carried out through the use of explicit expressions for secular homo- and heteronuclear dipolar interactions. In striking contrast with previous studies, it is predicted that Van Vleck's second moments governing a classical solid-echo or Hahn sequence differ from those obtained by equivalent means in magnetic resonance. In fact, it is shown that, although measured moments still complement each other, the combined use of standard sequences does not allow the separate determination of homo- and heteronuclear dipolar contributions to the linewidth, not even in an indirect manner. In this context, the importance and potential usefulness of a crossed coil probe are also briefly discussed.

  2. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  3. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGES

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  4. 93Nb Nuclear Quadrupole Resonance in Orthorhombic Phase of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Abe, Yoshihito

    1982-05-01

    The 93Nb NQR has been investigated in one phase of NbBr5 which was identified to be orthorhombic by the X-ray analysis. The resonance frequencies have been measured between 4.2 K and 423 K, its melting point. The coupling constant showed a positive temperature dependence up to melting point. The temperature dependence of the coupling constant is compared between NbBr5 and NbCl5 from the view point of π-bond character.

  5. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  6. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  7. Quadrupole-induced resonant-particle transport in a pure electron plasma.

    PubMed

    Gilson, E P; Fajans, J

    2003-01-10

    Small transverse magnetic quadrupole fields sharply degrade the confinement of non-neutral plasmas held in Malmberg-Penning traps. For example, a quadrupole magnetic field of only 0.02 G/cm doubles the diffusion rate in a trap with a 100 G axial magnetic field. Larger quadrupole fields noticeably change the shape of the plasma. The transport is greatest at an orbital resonance. These results cast doubt on plans to use magnetic quadrupole neutral atom traps to confine antihydrogen atoms created in double-well positron/antiproton Malmberg-Penning traps.

  8. Dipole and Quadrupole Plasmon Resonances in Gold Nanoring Structures

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Zhang, Hui; Roller, Eva-Maria; Liedl, Tim; Govorov, Alexander O.

    2014-03-01

    The quest for light manipulation in metallic nanostructures has grown greatly over the past decade to create novel optical devices for applications ranging from metamaterials and cloaking to optical sensing and plasmonic waveguides. Nanoring geometries, which are composed of metallic nanospheres, play an important role as the building blocks of plasmonic devices. We have shown that the plasmon resonance modes, which can be observed in absorption and scattering, not only depend on the dielectric function of the material, but also are strongly related to the size and shape of the structures and to the projection of the incident electromagnetic wave. By use of the finite element method, we have simulated ring geometries that are composed of different numbers of gold nanoparticles. The ring structures assembled experimentally have varying radii of nanoparticles and form symmetric and asymmetric geometries. This randomness in sizes and shapes influences the plasmonic spectrum of a ring, which consists of longitudinal and transverse plasmons and electric dipole and quadrupole modes. Moreover, the simulation predicts magnetic dipole radiation resulting from the circulation of current density. This work has been supported under the grant from Volkswagen Foundation

  9. A systematic study on hydrogen bond interactions in sulfabenzamide: DFT calculations of the N-14, O-17, and H-2 NQR parameters.

    PubMed

    Nozad, Ahmad G; Najafi, Hamidreza; Meftah, Sakineh; Aghazadeh, Mustafa

    2009-02-01

    A systematic computational study was carried out to characterize the hydrogen bond, HB, interactions of sulfabenzamide crystal structure by DFT calculations of electric field gradient, EFG, tensors at the sites of 14N, 17O, and 2H nuclei. The computations were performed with the B3LYP and B3PW91 DFT methods and 6-311+G and 6-311++G* standard basis sets using the Gaussian 98 package. To perform the calculations, a hydrogen-bonded heptameric cluster of sulfabenzamide was created by X-ray coordinates where the hydrogen atom positions were optimized and the EFG tensors were calculated for the target molecule. Additional optimization and EFG calculations were also performed for crystalline monomer and an isolated gas-phase sulfabenzamide. The calculated EFG tensors were converted to the experimentally measurable nuclear quadrupole resonance, NQR, parameters: quadrupole coupling constant, C(Q), and asymmetry parameter, eta(Q). The results reveal that the geometrical and NQR parameters of the optimized isolated gas-phase and crystalline phase are different. In addition, the difference between the calculated NQR parameters of the monomer and the target molecule shows how much H-bonding interactions affect the EFG tensors of each nucleus. The evaluated NQR parameters reveal that due to the contribution of the target molecule to N-H...O and C-H...O hydrogen bond interactions, the EFG tensors at the sites of N1, O3 and H1 undergo significant changes from monomer to the target molecule in cluster. These features reveal the major role of N-H...O type intermolecular HBs in cluster model of sulfabenzamide which the presence of these interactions can lead to polymorphism directly related to the drug activity and related properties.

  10. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range.

    PubMed

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57MHz with a center frequency of 97.5MHz with a return loss of ⩽-15dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method.

  11. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57 MHz with a center frequency of 97.5 MHz with a return loss of ⩽-15 dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100 μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method.

  12. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range.

    PubMed

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57MHz with a center frequency of 97.5MHz with a return loss of ⩽-15dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method. PMID:27591955

  13. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.

  14. Measurement of in-situ stress in salt and rock using NQR techniques

    SciTech Connect

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-12-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

  15. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-10-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions.

  16. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams

    PubMed Central

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Omura, Tatsuya; Sasaki, Keiji

    2016-01-01

    We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions. PMID:27734923

  17. 35Cl NQR study of lattice dynamic and magnetic property of a crystalline coordination polymer {CuCA(phz)(H 2O) 2} n

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuma; Terao, Takeshi; Asaji, Tetsuo

    2007-01-01

    Copper(II) compounds {CuCA(phz)(H 2O) 2} n (H 2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H 2O) 2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣ J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm -1 from the T1 value of the range 20-210 K. Comparing this value with that of J = -1.84 cm -1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H 2O) 2} n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.

  18. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). PMID:25910551

  19. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  20. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  1. Dipole–quadrupole Förster resonance in cesium Rydberg gas

    NASA Astrophysics Data System (ADS)

    Maineult, Wilfried; Pelle, Bruno; Faoro, Riccardo; Arimondo, Ennio; Pillet, Pierre; Cheinet, Patrick

    2016-11-01

    The resonant energy transfer between two close particles, also known as Förster resonance in atomic or biological systems, is usually associated with dipole–dipole interaction. In Rydberg atoms, it is a widely used tool to enhance the interactions between particles. Here, we observe a resonant energy transfer between Rydberg atoms that cannot be attributed to a dipole–dipole interaction, owing to selection rules, and comes instead from an efficient dipole–quadrupole process. We compare the measured probability transfer with a theoretical model including quadrupolar terms and find very good agreement with our measurement. Further studies of those multipolar resonances should probe their dependences on various parameters (quantum numbers, relative orientation of the atoms), and may find some applications in quantum procedures where dipole–dipole resonance cannot be used, for instance where the states of interest have a difference in angular momentum of two.

  2. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  3. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  4. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  5. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α ,α‧ γ) and (γ ,γ‧) experiments were performed on 124Sn. In both reactions, Jπ =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ ,γ‧) experiment, while the (α ,α‧ γ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  6. Resonance excitation of ions stored in a quadrupole ion trap. Part IV. Theory of quadrupolar excitation

    NASA Astrophysics Data System (ADS)

    Alfred, Roland L.; Londry, Frank A.; March, Raymond E.

    1993-06-01

    A new theoretical treatment is presented for quadrupolar resonance excitation of ions stored in a quadrupole ion trap. When the ratio of the tickle voltage amplitude to that of the drive potential is small, the equation of ion motion can be expressed in the form of a perturbation series. Exact and approximate solutions to the first-order perturbation eqations are presented. Ion trajectories calculated from these solutions are compared with those calculated by numerical integration. The resonance conditions were found to correspond to a series of angular frequencies given by [omega]u,n = n + [beta]u - [infinity] < n < [infinity]. Some of these, [beta]z[Omega], (1 + [beta]z)[Omega](1 - [beta]z)[Omega] [beta],[Omega], had been observed previously in simulation studies.

  7. Simplest photonuclear reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances: Semimicroscopic description

    SciTech Connect

    Tulupov, B. A.; Urin, M. H.

    2012-09-15

    A semimicroscopic approach based on the continuum version of the random-phase approximation (CRPA) and on a semiphenomenological inclusion of the fragmentation effect is applied to describing cross sections for photoabsorption and direct plus semidirect and inverse reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances. In addition to the spinless part of the Landau-Migdal interaction and a partly self-consistent phenomenological mean field of the nucleus, that version of the approach which is used here takes into account isovector separable velocity-dependent forces, as well as the effect of the fragmentation shift of the giant-resonance energy. The results obtained by calculating various features of the aforementioned cross sections for a number of magic and semimagic medium-mass nuclei are compared with respective experimental data.

  8. A theoretical study of 17O, 14N and 2H nuclear quadrupole coupling tensors in the real crystalline structure of acetaminophen

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Esrafili, Mehdi D.; Hadipour, Nasser L.

    2007-03-01

    A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, tensors in the acetaminophen real crystalline structure. To include the hydrogen bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through the various molecular clusters. The calculations were performed with the B3LYP method and 6-311++G ∗∗ and 6-311+G ∗ standard basis sets using the Gaussian 98 suite of programs. Calculated EFG tensors were used to evaluate the 17O, 14N, and 2H nuclear quadrupole resonance, NQR, parameters in acetaminophen crystalline structure, which are in good agreement with the available experimental data. The difference between the calculated NQR parameters of the monomer and molecular clusters shows how much hydrogen bonding interactions affect the EFG tensors of each nucleus. These results indicate that both O-H⋯O and N-H⋯O hydrogen bonding have major influence on the NQR parameters. Moreover, the quantum chemical calculation indicated that the intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of quadrupole coupling principal components in the molecular frame axes.

  9. The study of polymorphic states of paradichlorobenzene by means of nuclear quadrupole resonance relaxometry.

    PubMed

    Sinyavsky, N Ya; Mershiev, I G; Kupriyanova, G S

    2016-09-01

    The article describes the results of the experimental study of the molecular crystal of paradichlorobenzene in α- and β-phases by means of NQR-relaxometry with the inversion of Laplace transformation. The anisotropy effect of the pore space of wood on the distribution of times of the spin-lattice relaxation of p-C6H4Cl2 in the pores of pre-impregnated with the molten sample is shown. It was established that the increase in the T1 spin-lattice relaxation time of (35)Cl nucleus in the wood pores (channels) is observed in the case when the radio frequency field B1 is parallel to the tracheid's of wood. The NQR T1ρ dispersion analysis of paradichlorobenzene in α-phase was carried out for the first time. PMID:27494233

  10. SP(6,R) Symmetry and the Giant Quadrupole Resonance in MAGNESIUM-24.

    NASA Astrophysics Data System (ADS)

    Reske, Edward John

    1984-06-01

    Microscopic nuclear calculations are approached by partitioning the many-nucleon Hilbert space as a direct sum of symplectic bands. Computational techniques and algorithms which utilize commutator methods, and which are more powerful than the more straight-forward purely shell-model approach, are developed for calculating the matrix elements of two-body operators within such an Sp(6,R) (R-HOOK) U(3) symmetry-adapted basis. These techniques may be generalized to n-body operators of any n. These computational tools are applied to the study of the Giant Quadrupole Resonance in ('24)Mg: the final calculation presented uses a microscopic Hamiltonian consisting of the kinetic energy plus the semi-realistic two-body Brink -Boeker B1 potential within a space consisting of three symplectic bands up to 6(H/2PI)(omega) total excitation.

  11. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  12. Fluctuation properties of the strength function associated with the giant quadrupole resonance in {sup 208}Pb

    SciTech Connect

    Aiba, Hirokazu; Matsuo, Masayuki; Nishizaki, Shigeru; Suzuki, Toru

    2011-02-15

    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in {sup 208}Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in {sup 40}Ca, where at the intermediate energy scale of about 1.7 MeV, a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.

  13. Methods of spectral estimation in local nuclear quadrupole resonance with a dispersion

    NASA Astrophysics Data System (ADS)

    Grechishkin, V. S.; Grechishkina, R. V.; Persichkin, A. A.; Shpilevoi, A. A.

    2002-10-01

    The spectral estimation in local nuclear quadrupole resonance at a high noise level is performed for the first time using the modern techniques of linear prediction (LPSVD) and matrix pencil (ITMPM). The fast Fourier transform with signal accumulation does not ensure the required sensitivity in the case of weak signals when the object and the receiver of the spectrometer are spaced widely apart or when there is an effect of adverse factors (screening, interference, random disturbance, etc.), which is typical of remote monitoring in actual practice. It is demonstrated that the use of the proposed techniques considerably increases the efficiency of spectral estimation in this field of solid-state spectroscopy and, in particular, avoids the phase errors arising in usual experiments at a signal-to-noise ratio of less than 0.5.

  14. Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials

    NASA Astrophysics Data System (ADS)

    Xu, Xu-Dong; Zhang, Shi-Sheng; Signoracci, A. J.; Smith, M. S.; Li, Z. P.

    2015-08-01

    Background: Resonances with pronounced single-particle characteristics are crucial for quantitative descriptions of exotic nuclei near and beyond the drip lines, and often impact halo formation and nucleon decay processes. Since the majority of nuclei are deformed, the interplay between deformation and orbital structure near threshold can lead to improved descriptions of exotic nuclei. Purpose: Develop a method to study single-particle resonant orbital structure in the Dirac equation with a quadrupole-deformed Woods-Saxon potential. Determine the structure evolution of bound and resonant levels with deformation in this scheme, and examine the impact on halo formation in loosely bound systems, with a focus on the recent halo candidate nucleus 37Mg. Method: Analytical continuation of the coupling constant (ACCC) method is developed on the basis of the Dirac equation with a deformed Woods-Saxon potential. The scalar and vector terms in the deformed potential are determined by the energies of the valence neutron and nearby orbitals, which are extracted from a self-consistent relativistic Hartree-Bogoliubov (RHB) calculation with the PC-PK1 density functional. Results: We compare the energies and widths of resonant orbitals in the recent halo nucleus candidate 37Mg using the ACCC method based on the Dirac coupled-channel equations with those determined from the scattering phase shift (SPS) method. It is found that the results from the two methods agree well for narrow resonances, whereas the SPS method fails for broad resonances. Nilsson levels for bound and resonant orbitals from the ACCC method are calculated over a wide range of deformations and show some decisive hints of halo formation in 37Mg. Conclusions: In our ACCC model for deformed potentials in the coupled-channel Dirac equations, the crossing of the configuration 1 /2 [321 ] and 5 /2 [312 ] orbitals at a deformation of approximately 0.5 enhances the probability to occupy the 1 /2 [321 ] orbital coming from

  15. Nuclear quadrupole resonance: a technique to control hydration processes in the pharmaceutical industry.

    PubMed

    Limandri, Silvina; Visñovezky, Claudia; Pérez, Silvina C; Schurrer, Clemar A; Wolfenson, Alberto E; Ferro, Maribel; Cuffini, Silvia L; de Souza, Joel Gonçalves; Aguiar, F Armani; de Gaitani, C Masetto

    2011-03-01

    Pharmaceuticals can exist in many solid forms, which can have different physical and chemical properties. These solid forms include polymorphs, solvates, amorphous, and hydrates. Particularly, hydration process can be quite common since pharmaceutical solids can be in contact with water during manufacturing process and can also be exposed to water during storage. In the present work, it is proved that NQR technique is capable of detecting different hydrated forms not only in the pure raw material but also in the final product (tablets), being in this way a useful technique for quality control. This technique was also used to study the dehydration process from pentahydrate to trihydrate.

  16. Noble Gas Detection Using Resonance Ionization Spectroscopy and a Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Hurst, G. S.

    1983-10-01

    The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. Resonance ionization spectroscopy and its use for the detection of single atoms has been reviewed.' More recently, our efforts at ORNL have turned to the problem of direct counting of noble gas atoms2,3,4 as an alternative to decay counting of particular isotopes of noble gas species. For broader applications, the ORNL group is trying to develop a facility for counting a few rare gas atoms of a given isotopic variety in a sample. The detection of a small number of 81Kr atoms (<1000) is very important for groundwater dating, polar ice-cap dating, and nuclear waste disposal applications, and solar neutrino research. The ultimate goal is to count a small number (e.g., 100 to 1,000) of selected atoms having mass number A, even when mixed with 1012 or more atoms having mass number ± 1. The experimental schematic is shown in Figure 1. The concept for counting noble gas atoms with isotopic selectivity is to utilize a laser for ionizing atoms of a selected atomic

  17. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  18. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  19. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  20. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors. PMID:26565822

  1. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

  2. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device.

  3. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  4. Determination of the magnitude and sign of the 185,187Re nuclear electric quadrupole coupling constants using nuclear acoustic resonance

    NASA Astrophysics Data System (ADS)

    Sundfors, R. K.

    1990-08-01

    Acoustic nuclear electric quadrupole resonance spectra and the magnitude and sign of the coupling constants for 185Re and 187Re in rhenium-metal single crystals have been measured using nuclear acoustic resonance (NAR) in a small magnetic field. These measurements were carried out using a NAR reflection bridge spectrometer in the 37-41 MHz frequency range and at 4.2 and 77.8 K. In this hexagonal crystal, the dynamic coupling between acoustic waves and the Re nuclear spin systems is shown to be via the dynamic quadrupole interaction, which is responsible for the observation of both Δm=+/-1 and +/-2 transitions between the +/-3/2 energy levels and the mixed +/-1/2 energy levels. Magnetic-resonance second moments for angular-independent indirect exchange broadening and angular-dependent static electric quadrupole broadening (from a spread in the electric quadrupole coupling constant value) are determined from the measured linewidths.

  5. Statistical signal processing for detection of buried land mines using quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Tantum, Stacy L.; Collins, Leslie M.; Carin, Lawrence

    2000-08-01

    Quadrupole resonance (QR) is a technique that discriminates mines from clutter by exploiting unique properties of explosives, rather than the attributes of the mine that exist in many forms of anthropic clutter. After exciting the explosive with a properly designed electromagnetic-induction (EMI) system, one attempts to sense late-time spin echoes, which are characterized by radiation at particular frequencies. It is this narrow-band radiation that indicates the present of explosives, since this effect is not seen in most clutter, both natural and anthropic. However, explosives detection via QR is complicated by several practical issues. First, the late-time radiation is often very weak, particularly for TNT, and therefore the signal- to-noise ratio must be high for extracting the QR response. Further, the frequency at which the radiation occurs is often a strong function of the background environment, and therefore in practice the QR radiation frequency is not known a priori. Also, at frequencies of interest, there is a significant amount of background radiation, which induces radio frequency interference (RFI). In addition, the response properties of the system are sensitive to the height of the sensor above the ground, and the QR sensor effectively becomes 'de-tuned'. Finally, present QR systems cannot detect the explosive in metal-cased mines, thus the system and associated signal processing must be extended to also operate as a metal detector. Previously, we have shown that adaptive noise cancellation techniques, in particular, the least-mean-square algorithm, provide an effective means of RFI mitigation and can dramatically improve QR detection. In this paper we discuss several signal processing tools we have developed to further enhance the utility of QR explosives detection. In particular, with regard to the uncertainties concerning the background environment and sensor height, we explore statistical signal processing strategies to rigorously account for

  6. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  7. Quadrupole moments in chiral material DyFe3(BO3)4 observed by resonant x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Usui, Tomoyasu; Joly, Yves; Suzuki, Motohiro; Wakabayashi, Yusuke; Kimura, Tsuyoshi; Tanaka, Yoshikazu

    2016-04-01

    By means of circularly polarized x rays at the Dy L3 and Fe K absorption edges, the chiral structure of the electric quadrupole was investigated for a single crystal of DyFe3(BO3)4, in which both Dy and Fe ions exhibit a spiral arrangement. The integrated intensity of the resonant x-ray diffraction of space-group forbidden reflections 004 and 005 is interpreted within the electric dipole transitions from Dy 2 p3/2 to 5 d and Fe 1 s to 4 p , respectively. We have confirmed that the handedness of the crystal observed at Dy L3 and Fe K edges is consistent with that observed at Dy M5 edge reported in a previous study. The electric quadrupole moments of Dy 5 d and Fe 4 p are derived by analyzing the azimuth scans of the diffracted intensity. The temperature profiles of the integrated intensity of 004 at the Dy L3 and the Fe K edges are similar to those of Dy-O and Fe-O bond lengths, while the temperature dependence at the Dy M5 edge does not match the bond-length behavior. The results indicate that the helix chiral orientations of quadrupole moments due to Dy 5 d and Fe 4 p electrons are more strongly coupled to the ligands states than Dy 4 f electrons.

  8. Part I. Analyzing the distribution of gas law questions in chemistry textbooks. Part II. Chlorine-35 NQR spectra of group 1 and silver dichloromethanesulfonates

    NASA Astrophysics Data System (ADS)

    Gillette, Gabriel

    Part I. Two studies involving the gas law questions in eight high school and Advanced Placement/college chemistry textbooks were performed using loglinear analysis to look for associations among six variables. These variables included Bloom's Taxonomy (higher-order, lower-order), Book Type (high school, college), Question Format (multiple-choice, problem, short answer), Question Placement (in-chapter, end-of-chapter, test bank), Representation (macroscopic, microscopic, symbolic), and Arkansas Science Standard (conceptual, mathematical; gas laws, pressure conversion, stoichiometry). The first study, involving the conceptual gas law questions, found the Book Type and Question Placement variables had the biggest impact, each appearing in 5 of the 11 significant associations. The second study, involving the mathematical gas law questions, found the Question Placement had the biggest impact, appearing in 7 of the 11 significant associations, followed by Book Type and the Arkansas Science Standard variables, which appeared in 5 of the 11 significant associations. These studies showed that compared to the high school books, college books have fewer multiple-choice questions (compared to short-answer and problem questions), fewer in-chapter questions (compared to end-of-chapter and test bank questions), fewer questions in the chapters and more questions at the end of the chapters and fewer multiple-choice questions in and at the end of the books and more multiple-choice questions in the test banks. Part II. The dichloromethanesulfonate salts of several +1 charged cations, M+Cl2CHSO3 - (M = Li, Na, K, Rb Ag, Cs Tl) were synthesized and studied by 35Cl nuclear quadrupole resonance (NQR). Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, which was neutralized with the metal carbonates to produce the corresponding metal dichloromethanesulfonate salts. This study completed the NQR investigation of the family of chloroacetates

  9. New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer.

    PubMed

    Kang, Hyuk; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2014-08-01

    A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained. This simple and powerful method is applicable to any type of double-resonance spectroscopy in a cold quadrupole ion trap and was applied to UV-UV hole-burning spectroscopy of protonated adenine dimer. It was found that protonated adenine dimer has multiple conformers/tautomers, each with multiple excited states with drastically different excited state dynamics.

  10. Characterization of solid phases and study of transformation kinetics in m-chlorofluorobenzene by 35Cl nuclear quadrupole resonance.

    PubMed

    Pérez, Silvina; Wolfenson, Alberto

    2012-02-01

    Polymorphism is of widespread occurrence in the world of molecular crystals. In this work we present experimental results showing the existence of four solid phases in m-chlorofluorobenzene. A glass structure is achieved by quenching the liquid phase at 77 K. This glassy state crystallizes in a disordered phase at T~143 K, which in turn transforms to the high-temperature stable phase (phase I) at T~153 K. Depending on the thermal history of the sample, a different ordered phase (phase III) can be obtained. The disorder is attributed to a molecular orientational disorder. There is no evidence of molecular reorientation in any phase. A study of the disorder-order phase transformation kinetics, using nuclear quadrupole resonance, is presented. The results are analyzed following Cahn's theory. Nucleation seems to take place at grain boundaries. Growth rates for different temperatures have been determined.

  11. Electron density distribution in cladribine (2-chloro-2‧-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Latosińska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

    2009-07-01

    2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

  12. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S.; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M.; Steuber, Julia; Fritz, Günter

    2014-01-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA–NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1–377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution. PMID:25005105

  13. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae.

    PubMed

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M; Steuber, Julia; Fritz, Günter

    2014-07-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA-NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1-377 was solved in space groups C222₁ and P2₁ by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution.

  14. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  15. 63Cu NQR spectra of dicoordinated Cu(I) cations with imidazole and pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Khajenhouri, Fereidoun; Motallebi, Shahrock; Lucken, Edwin A. C.

    1995-02-01

    The 63Cu NQR spectra of five dicoordinated complex cations of Cu(I) with substituted imidazoles as ligands and six analogous complexes with substituted pyrazoles as ligands are reported. The structures of four of these complexes have been previously determined and the relationship of their 63Cu resonance frequency to the average CuN bond length is compared to that of the analogous lutidine or collidine complexes. It is concluded that there are probably significant differences between the electronic structures of the pyridine complexes and those of the pyrazole or imidazole series.

  16. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  17. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Kaplan, Desmond A; Hartmer, Ralf; Speir, J Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A

    2008-01-01

    Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

  18. A new technique for unbiased external ion accumulation in a quadrupole two-dimensional ion trap for electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Belov, M E; Nikolaev, E N; Alving, K; Smith, R D

    2001-01-01

    External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.

  19. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  20. Stability and molecular dynamics of chloroxylenol (API of antiseptics and drugs) in solid state studied by 35Cl-NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Tomczak, M. A.; Kasprzak, J.

    2009-02-01

    Thermal stability of 4-chloro-3,5-dimethyl-phenol (chloroxylenol) in solid state has been studied by 35Cl-NQR spectroscopy. Two NQR resonance lines at the frequencies 34.348 and 34.415 MHz at 77 K have been assigned to chlorine atoms from two crystallographically inequivalent molecules on the basis of the B3LYP/6-311++G∗∗ results. The temperature dependence of the resonance frequency and full width at half maximum suggest the occurrence of small-angle torsional oscillations of the mean activation energy of 3.83 kJ/mol and rotation of both methyl groups around their symmetry axis C3 with the activation energies 12.49 and 11.27 kJ/mol for CH3 in molecule A and B, respectively. B3LYP/6-311++G∗∗ method reproduced very well the activation energies of both motions.

  1. Nuclear Quadrupole Resonance Study of the High-T c Related Cu Oxide La4BaCu5O13+δ

    NASA Astrophysics Data System (ADS)

    Ohno, Takashi; Yasuoka, Hiroshi; Ueda, Yutaka

    1994-10-01

    63Cu and 65Cu NQR line shapes, spin-spin and spin-lattice relaxation rates in a high-T c related Cu oxide, La4BaCu5O13+δ, have been measured to clarify the difference between superconducting and non-superconducting Cu oxides from a microscopic view point. Although there are two crystallographically inequivalent Cu sites, only one pair of 63Cu and 65Cu NQR frequency spectra was observed. From the detailed study of the Fourier transformed spin-echo signal and that of the envelope decay, we attribute the above fact to an accidental coincidence of the NQR frequencies for these two sites. It is shown that the spin-lattice relaxation is manifested by the magnetic interactions in the measured temperature range of 1.4 K 420 K. The relaxation rate, 1/63T1, increases monotonically with increasing temperature, obeying 1/63T1=aT+bT3 above about 80 K, but shows a small swelling at low temperatures, suggesting a magnetic instability.

  2. Three-dimensional high-inductance birdcage coil for NQR applications.

    PubMed

    Peshkovsky, A S; Cerioni, L; Osan, T M; Avdievich, N I; Pusiol, D J

    2006-09-01

    A birdcage coil capable of operating simultaneously and independently in three orthogonal dimensions has been developed. A co-rotational end-ring mode producing an RF field in the longitudinal direction was utilized in addition to the two common transverse orthogonal modes. Two conductor turns were used for each of the coil's windows, increasing its inductance by a factor of four, thereby, making the coil suitable for low-frequency applications. Two or three-frequency detection can be easily carried out with this device. Orthogonality of the coil's channels allows arbitrarily close frequency positioning of each resonant mode, potentially useful in wide-line NQR studies, in which simultaneous excitation/detection of signals from three adjacent regions of a single wide line can be performed. The coil's performance was evaluated using a three-dimensional scheme, in which a circularly polarized experiment was combined with a linearly polarized measurement at another frequency, resulting in SNR improvement by 55%.

  3. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using (75)As-nuclear quadrupole resonance.

    PubMed

    Kotegawa, Hisashi; Nakahara, Shingo; Akamatsu, Rui; Tou, Hideki; Sugawara, Hitoshi; Harima, Hisatomo

    2015-03-20

    Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P(c) between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T(1) reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T(1) in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor. PMID:25839303

  4. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using (75)As-nuclear quadrupole resonance.

    PubMed

    Kotegawa, Hisashi; Nakahara, Shingo; Akamatsu, Rui; Tou, Hideki; Sugawara, Hitoshi; Harima, Hisatomo

    2015-03-20

    Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P(c) between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T(1) reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T(1) in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.

  5. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  6. Nuclear Quadrupole Double Resonance Investigation of the Anomalous Temperature Coefficients of the Strong Hydrogen Bonds in Sodium and Potassium Deuterium Diacetate.

    NASA Astrophysics Data System (ADS)

    Shaw, Eric Max

    This thesis was directed at learning more about the unusual electronic environment near hydrogen within strong hydrogen bonds. "Strong" hydrogen bonds are unique in that the hydrogen atom is symmetrically located, or nearly so, between two electronegative atoms; the bond energies are relatively large. In a "normal" hydrogen bond the hydrogen atom is bonded to, and thus physically closer to, a parent atom, and only weakly attracted to another electronegative atom; bond energies are typically small. To examine these bonds, deuterium was substituted for hydrogen and the electric quadrupole coupling constant (QCC) of deuterium was measured using field cycling nuclear magnetic resonance. The electric quadrupole moment of deuterium is sensitive to changes in the surrounding electric field gradient, and is thus a good probe of the immediate electronic structure. The results show that the temperature dependence of the QCC is opposite to, and much larger than, what one would normally expect to observe for deuterium. The QCC is found to decrease strongly with decreasing temperature. This project was the first to study in detail the temperature dependence of deuterium QCCs in strong hydrogen bonds. The magnitude of the deuterium QCCs for the diacetates was found to be strongly depressed relative to typical values for deuterium. These results parallel large shifts in the infrared vibrational frequencies observed in many molecules which contain strong hydrogen bonds. The asymmetry parameter, which is a measure of the departure from axial symmetry of the electric field gradient (EFG) at deuterium, was found to be unusually large for what are known to be linear, or nearly linear, three-center bonds. Based on ab initio Hartree-Fock calculations aimed at determining the EFG at H in the archetypal bifluoride ion, F-H-F^-, the electronic charge density is drastically depleted at H. It is believed that the large reduction in the charge density allows the deuterium EFG to be highly

  7. Nuclear Magnetic resonance quadrupole relaxation studies of chloride binding to the isolated hemoglobins from trout (Salmo irideus).

    PubMed

    Chiancone, E; Norne, J E; Forsén, S; Brunori, M; Antonini, E

    1975-02-01

    NMR studies of chloride binding to the main components of trout blood, Hb Trout I and Hb Trout IV, indicate that although the affinity of chloride is high for both hemoglobins, the characteristics of the binding process are markedly differnet. In Hb Trout IV chemical exchange at the chloride binding site(s) is fast and quadrupole effects determine the linewidth; chloride binding has a definite pH dependence, but there is no significant oxygen linkage. In contrast Hb Trout I represents a unique case of slow chemical exchange, which may depend on unusual stereoche mical characteristics of the chloride binding site; chloride binding is pH independent, but shows a significant oxygen linkage, which may be attributed to changes of the lifetime of chloride at the binding site. The chloride binding properties displayed by Hb Trout I and IV have been compared with those of normal and modified human hemoglobins and discussed in terms of the structural differences in the C- and N-terminal regions of the alpha- and beta-chains. PMID:236050

  8. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  9. Identification of chloride-binding sites in hemoglobin by nuclear-magnetic-resonance quadrupole-relaxation studies of hemoglobin digests.

    PubMed

    Chiancone, E; Norne, J E; Forsén, S; Bonaventura, J; Brunori, M; Antonini, E; Wyman, J

    1975-07-01

    35Cl minus-nuclear magnetic resonance (NMR) studies indicate that various digests of human hemoglobin with carboxypeptidase A and B, or a combination of the two, may be used for the identification of chloride binding sites. All the digestion products contain, like hemoglobin itself, at least two classes of binding sites, one of high, the others of low affinity. The pH dependence of the excess linewidth of the 35Cl minus NMR signal indicates that in the simple digests with either carboxypeptidase A or B, chloride is bound with high affinity at or near His-beta146-Asp-beta94 and at or near Val-alpha1-Arg-alpha141. The high-affinity sites show, in the case of the simple digests, a strong oxygen linkage which is lost in the forms digested with both carboxypeptidase A and B; this linkage may thus be correlated to the presence of conformational changes. Organic phosphates, like inositol hexaphosphate, show competition for some of the high-affinity chloride binding sites in hemoglobin and in the simple digests. This competition is likewise lost in the doubly digested hemoglobins. PMID:236

  10. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    NASA Astrophysics Data System (ADS)

    Shimada, Rintaro; Hamaguchi, Hiro-o.

    2014-05-01

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute-solvent dipole-dipole and dipole-quadrupole interactions. It is shown that the infrared active modes arise from the dipole-dipole interaction, whereas Raman active modes from the dipole-quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  11. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect

    Shimada, Rintaro; Hamaguchi, Hiro-o

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  12. NQR investigation of pressure-induced charge transfer in oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} ({delta} = 0.38)

    SciTech Connect

    Reyes, A.P.; Ahrens, E.T.; Hammel, P.C.; Heffner, R.H.; Takigawa, M.

    1992-03-01

    Measurements of the pressure dependence of {sup 63}Cu nuclear quadrupole frequency in YBa{sub 2}Cu{sub 3}O{sub 6.62} from ambient pressure up to 1.5 GPa at 4k have been performed. {Tc} was found to increase with pressure: d{Tc}/dp {approximately} 5 K/GPa. All observed NQR lines are linear in pressure: dln{nu}{sub Q}/dp=z. We found positive z for the empty chain sites, consistent with ionic (Cu{sup 1+}) configuration in which the atom simply feels a squeezing lattice. Planar coppers close to the empty chains have positive z, while those that are close to full chains have z {approximately} 0. We present an analysis of the NQR result on the basis of the charge transfer model in which the mobile charges migrate from the chain to the plane sites. We deduced that a transfer of 0.021 holes to the O(2,3) sites would explain the result in YBa{sub 2}Cu{sub 3}O{sub 6.62}, whereas only 0.007 holes transfer in fully oxygenated YBa{sub 2}Cu{sub 3}O{sub 7}.

  13. Detection of an Unconventional Superconducting Phase in the Vicinity of the Strong First-Order Magnetic Transition in CrAs Using As 75 -Nuclear Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Kotegawa, Hisashi; Nakahara, Shingo; Akamatsu, Rui; Tou, Hideki; Sugawara, Hitoshi; Harima, Hisatomo

    2015-03-01

    Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure Pc between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1 /T1 reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1 /T1 in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.

  14. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  15. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    SciTech Connect

    Carretta, P.; Corti, M.; Rigamonti, A. )

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  16. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts

    SciTech Connect

    Not Available

    1991-01-14

    Copper and cobalt are the key elements in syngas conversion catalyst systems used for higher alcohol synthesis. Their proximity and synergy sensitively control the selectivity and efficiency of the process. It is believed that their outer electronic charge distribution which is responsible for their electrical and magnetic properties might be governing their catalytic properties also. To examine the correlation between catalytic and magnetic properties, a series of copper cobalt catalysts (Co/Cu ratio 5:1 to 5:5) with and without a support were prepared. The nuclear quadrupole resonance spectrum of copper and (zero-field) nuclear magnetic resonance spectrum of cobalt and magnetization and hysteresis character of the catalyst were analyzed. Similar to the catalytic results, the magnetic results also were found to be very sensitive to the preparation technique. The results indicate possible electron exchange between copper and cobalt, and cobalt and the support Titania.

  17. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  18. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2016-12-01

    The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  19. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  1. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  2. Mutual effect of ligands in nitrido and nitroso complexes of osmium and ruthenium from NQR data

    SciTech Connect

    Kravchenko. E.A.; Burtsev, M.Yu.; Sinitsyn, M.N.; Svetlov, A.A.; Kokunov, Ya.V.; Buslaev, A.

    1987-11-01

    The purpose of this investigation was to study by NQR the spectral results of the mutual ligand effect in complex compounds having various types of short bonds. The authors obtained the /sup 35/Cl, /sup 81/Br, and /sup 127/I NQR spectra of a large number of halogen complexes of osmium and ruthenium having short Os=N and M in equilibrium NO bonds of the following types: R(OsNHal/sub 4/) (R = (Ph/sub 4/P)/sup +/, (Bu/sub 4/N)/sup +/; Hal = Cl/sup -/, Br/sup -/, I/sup -/), K/sub 2/(OsNCl/sub 5/), Rb/sub 2/(OsNBr/sub 5/), (NH/sub 4/)/sub 2/(OsNBr/sub 5/), K(OsNHal/sub 4/L) (Hal = Cl/sup -/, Br/sup -/; L = H/sub 2/O, CH/sub 3/CN), K/sub 2/(MNOHal/sub 5/) (M = Os, Ru; Hal = Cl/sup -/, Br/sup -/, I/sup -/). The experimental NQR values measured are connected by the Townes and Dailey theory with the chemical bond characteristics i, sigma, ..pi.., the degree of the ionic, the sigma-covalent, and the ..pi..-covalent natures respectively ( i + sigma + ..pi.. = 1).

  3. Quadrupole photoionization of hydrogen atoms in Debye plasmas

    SciTech Connect

    Lin, C. Y.; Ho, Y. K.

    2010-09-15

    Although a great deal of effort has been devoted to investigating dipole photoionization of plasma-embedded atoms, far less is known about the corresponding quadrupole transitions. In the present work, quadrupole photoionization processes for the ground and excited states of hydrogen atoms in Debye plasma are explored using the method of complex coordinate rotation. The plasma shielding effects on the quadrupole photoionization cross sections are reported for a variety of Debye screening lengths and compared to the dipole results accordingly. Under the perturbation of plasma screening, shape resonances and Cooper-type minima occurring in both dipole and quadrupole photoionization cross sections are presented and discussed. Comparisons are made to other theoretical calculations for the dipole photoionization with good agreement. The present quadrupole results are the first predictions for hydrogen photoionization in Debye plasmas.

  4. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  5. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  6. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  7. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  8. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry.

    PubMed

    Bianco, Giuliana; Abate, Salvatore; Labella, Cristiana; Cataldi, Tommaso R I

    2009-04-01

    Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI-FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in-source ion trap collision-induced dissociation (CID) of the protonated molecules, [M+H](+). A retro-Diels-Alder (RDA) process along with ring-contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH(3)NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO(2) or CO. The uracil derivatives showed a loss of a ketene unit (CH(2)CO, 42 Da) from the protonated molecule along with the loss of H(2)O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N-acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. PMID:19260028

  9. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  10. Linac quadrupole connections

    SciTech Connect

    Stiening, R.

    1984-07-12

    Linac type QC and QCH quadrupoles are mounted on the accelerator with their power connection side facing the injector. The connections are on the top of the magnet. The correct polarity for magnets is shown. The magnetic centers of all magnets are measured. If the magnetic center is above the geometric center, the distance delta y is positive. If the magnetic center is to the right of the geometric center, the distance delta x is positive.

  11. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  12. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  13. Space charge induced nonlinear effects in quadrupole ion traps.

    PubMed

    Guo, Dan; Wang, Yuzhuo; Xiong, Xingchuang; Zhang, Hua; Zhang, Xiaohua; Yuan, Tao; Fang, Xiang; Xu, Wei

    2014-03-01

    A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an "ocean wave" shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

  14. Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    SciTech Connect

    Baek, Seung H

    2009-01-01

    We report {sup 209}Bi nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U{sub 3}Bi{sub 4}Ni{sub 3}. The {sup 209}Bi nuclear-spin-lattice relaxation rate (T{sub 1}{sup -1}) shows activated behavior and is well fit by a spin gap of 220 K. The {sup 209}Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

  15. Temperature and baric dependence of nuclear quadruple resonance spectra in indium and gallium monoselenides

    NASA Astrophysics Data System (ADS)

    Khandozhko, Victor; Raranskii, Nikolai; Balazjuk, Vitaly; Samila, Andriy; Kovalyuk, Zahar

    2013-12-01

    Pulsed radiospectroscopy method has been used to study nuclear quadruple resonance (NQR) spectra of 69Ga and 115In isotopes in the layered semiconductors GaSe and InSe. It has been found that in GaSe and InSe there is a considerable temperature dependence of NQR frequency which in the temperature range of 250 to 390 K is practically linear with conversion slope 1.54 kHz/degree for 69Ga and 2.35 kHz/degree for 115In. In the same crystals the effect of uniaxial pressure on NQR spectra applied along the optical axis с up to the values of 500 kg/сm2 has been studied. A strong attenuation of NQR spectra intensity with increase in pressure on layered crystal package has been established. The unvaried multiplicity of resonance spectra indicates the absence of structural transformations in these layered crystals over the investigated range of temperatures and pressures.

  16. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements.

  17. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  18. Hybrid quadrupole excitons and polaritons in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy

    In this thesis I consider novel type of materials such as hybrid organic/inorganic heteoro-structures and polystyrene micro-spheres/inorganic composites. The organic/inorganic compound is presented by DCM2:CA:PS/cuprous oxide material. Using "solid state solvent" mechanism I propose to bring the Frenkel exciton (FE) of the DCM2 into resonance with 1S quadrupole Wanier-Mott exciton (WE) in cuprous oxide. This two types of the excitons form new type of quadrupole-dipole hybrid exciton. This hybrid is characterized by long lifetime and big oscillator strength inherited from the organic FE. In the part I of the thesis I investigate the enhancement of the quadrupole properties generic to cuprous oxide exciton by means of such resonant hybridization. I consider enhancement of photo-thermal bi-stability and second harmonic generation. The second part is devoted to the problems of light-matter interaction in cuprous oxide crystals such as weak interaction with LA phonons and whispering gallery modes (WGM) in adjacent layer of polystyrene micro-spheres. While the first effect is likely to impeded BEC of the polaritons, the second mechanism provides necessary temporal coherence. It is possible by trapping the light part of the polariton into resonant WGM through big gradient of the evanescent tail which provides big lifetime of such evanescent polariton. Due to big gradient of the evanescent field it couples "naturally" to the quadrupole WE in cuprous oxide.

  19. 79Br Nuclear Quadrupole Relaxation in the High Temperature Modification of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Sekiya, Harutaka; Ishikawa, Chiaki; Abe, Yoshihito

    1992-06-01

    The spin-lattice relaxation time of 79Br NQR has been measured between 4.2 K and room temperature. The result is compared with that of 35Cl NQR in NbCl5. The origin of the relaxation is attributed to the quadrupolar interaction and the temperature dependence is explained by the Raman process. The Debye temperature is determined to be 94 K and the relaxation time is related with the NQR frequency through the covalency.

  20. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  1. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  2. N.Q.R measurements of low energy Chiral structures in powdered glassy As2Se3

    NASA Astrophysics Data System (ADS)

    Nelson, Chris

    2012-02-01

    Experimental and theoretical work on the As-chalcogen glasses have shown that in the glassy state the local cylindrical symmetry associated with the elemental pyramidal unit is preserved. Here we introduce a local paracrystalline model of glassy As2Se3. This model is based on a tight binding calculation of the electric field gradient (EFG) at the core of an As atom located at the apex of the pyramidal structure. This EFG is shown to be hyper sensitive to the bond angles and bond lengths the As atom forms with the chalcogen nearest neighbors, as well as the hybrid angle formed with second neighbor As atoms. A continuous variation of the bonding parameters produces a unique set of these pyramidal units which are shown to fit the NQR data for powdered glassy samples. The best fit to the NQR data indicates that the pyramidal units organize themselves into Chiral structures in the glass. A plot of the electronic energy per molecular site shows that the chiral structures have on average a lower electronic energy than a random configuration.

  3. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.

    PubMed

    Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

    2014-12-01

    Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.

  4. Analytic formula for quadrupole-quadrupole matrix elements

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.

    1990-12-01

    An analytic formula is reported for general matrix elements of the microscopic quadrupole-quadrupole operator in the U(3)-boson approximation. The complete infinite-dimensional basis of A-fermion wave functions is compatible with the harmonic-oscillator shell model and consists of np-nh configurations, with spurious center-of-mass excitations removed, which are symmetry adapted to the Elliott U(3) and symplectic Sp(3,R) models. The formula expresses the general Q2.Q2 matrix element with respect to this complete orthonormal basis as a Racah SU(3) U coefficient times a closed-shell matrix element. An oscillator closed-shell matrix element of Q2.Q2 is a square root of a rational function of the integer quantum numbers of the U(3) basis.

  5. First Observation of a Quadrupole Cooper Minimum in the Photoionization of Xe 5p

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. C.; Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D. W.; Rolles, D.; Yu, S. W.; Manson, S. T.

    2006-05-01

    The nondipole photoelectron angular distribution parameter ξ (= 3δ+γ) for xenon 5p1/2 and 5p3/2 has been studied experimentally in the 80 - 200 eV range. In addition, calculations have been performed using the relativistic-random-phase approximation (RRPA) methodology with all relativistic single excitation/ionization channels down to 4s coupled in both the dipole and quadrupole manifolds. The results show significant disagreement between theory and experiment above about 130 eV photon energy, in contradistinction to the Xe 5s case where rather good agreement is found. Since it is known that the dipole amplitudes are well-represented by RRPA, the difficulty must be in the quadrupole channels. It was expected that the quadrupole channels should be accurate as well since the f-wave is resonant in Xe and the main quadrupole transitions, the 5p->kf, are included in the calculation. However, we have found that these transitions each have a quadrupole Cooper minimum in the energy region of interest, so that quadrupole satellites, which are not included in the RRPA calculation, become important. This might be the first experimental indication of a quadrupole Cooper minimum.

  6. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  7. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  8. Nuclear quadrupole moment of the {sup 99}Tc ground state

    SciTech Connect

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-05-15

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2{sup +} ground state of {sup 99}Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc{sub 2} and ZrTc{sub 2}. If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the {sup 99}Tc ground state quadrupole moment could be further reduced.

  9. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, September 14--December 15, 1990

    SciTech Connect

    Not Available

    1991-01-14

    Copper and cobalt are the key elements in syngas conversion catalyst systems used for higher alcohol synthesis. Their proximity and synergy sensitively control the selectivity and efficiency of the process. It is believed that their outer electronic charge distribution which is responsible for their electrical and magnetic properties might be governing their catalytic properties also. To examine the correlation between catalytic and magnetic properties, a series of copper cobalt catalysts (Co/Cu ratio 5:1 to 5:5) with and without a support were prepared. The nuclear quadrupole resonance spectrum of copper and (zero-field) nuclear magnetic resonance spectrum of cobalt and magnetization and hysteresis character of the catalyst were analyzed. Similar to the catalytic results, the magnetic results also were found to be very sensitive to the preparation technique. The results indicate possible electron exchange between copper and cobalt, and cobalt and the support Titania.

  10. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  11. An innovative method for the non-destructive identification of photodegradation products in solid state: 1H-14N NMR-NQR and DFT/QTAIM study of photodegradation of nifedipine (anti-hypertensive) to nitrosonifedipine (potential anti-oxidative).

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Zagar, V

    2012-08-30

    Stability of the antihypertensive drug nifedipine (NIF) has been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT). Photodegradation of NIF to its metabolite in vivo nitrosonifedipine, NO-NIF (antioxidative agent) upon long term daylight exposure was detected and the changes in the molecular structure of NIF were analysed. The photoconversion of NIF to NO-NIF in solid was found to be accompanied with the electron density redistribution at nitrogen sites (NH to N and NO(2) to NO) and proved to be successfully detected with identification of photoproducts by (1)H-(14)N NQDR and DFT methods. The increase in the e(2)qQ/h and η describing EFG tendency towards non-spherical symmetry was significantly greater upon the reduction of NO(2) site than upon hydrogen abstraction from NH site. The level of sensitivity of detection of the photodegradation product was about 1% of the original sample. The Quantum Theory of Atoms in Molecules (QTAIM) analysis has been found useful in predicting photoreactive sites in the molecules and finding the explanation of differences in reactivity between parent NIF and its photoproduct NO-NIF. Using NIF as a model, this study demonstrates the suitability of NQDR supported by DFT for non-destructive determination of the photodegradation products in solid state.

  12. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  13. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  14. Electrostatic quadrupoles for heavy-ion fusion

    SciTech Connect

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed.

  15. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.

    PubMed

    Braun, Daniel; Schmollngruber, Michael; Steinhauser, Othmar

    2016-09-21

    Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface. PMID:27546227

  16. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.

    PubMed

    Braun, Daniel; Schmollngruber, Michael; Steinhauser, Othmar

    2016-09-21

    Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface.

  17. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  18. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  19. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  20. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  1. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  2. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  3. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  4. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  5. "Fast excitation" CID in a quadrupole ion trap mass spectrometer.

    PubMed

    Murrell, J; Despeyroux, D; Lammert, S A; Stephenson, J L; Goeringer, D E

    2003-07-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.

  6. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  7. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  8. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    SciTech Connect

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  9. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  10. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    SciTech Connect

    Fries, Pascal H.; Belorizky, Elie

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  11. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    NASA Astrophysics Data System (ADS)

    Fries, Pascal H.; Belorizky, Elie

    2015-07-01

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R1 of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R1 vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S-I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole 14N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of 27Al (S = 5/2) nuclei is also explained.

  12. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  13. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  14. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  15. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  16. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model.

  17. Resonant spectra of quadrupolar anions

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  18. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  19. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  20. A preliminary quadrupole asymmetry study of a β=0.12 superconducting single spoke cavity

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of β=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a β=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  1. Mechanism of metallization and superconductivity suppression in YBa2(Cu0.97 Zn0.03)3 O6.92 revealed by 67Zn NQR

    NASA Astrophysics Data System (ADS)

    Pelc, D.; Požek, M.; Despoja, V.; Sunko, D. K.

    2015-08-01

    We measure the nuclear quadrupole resonance signal on the Zn site in nearly optimally doped YBa2Cu3O6.92, when Cu is substituted by 3% of isotopically pure 67Zn. We observe that Zn creates large insulating islands, confirming two earlier conjectures: that doping provokes an orbital transition in the CuO2 plane, which is locally reversed by Zn substitution, and that the islands are antiferromagnetic. Also, we find that the Zn impurity locally induces a breaking of the D4 symmetry. Cluster and DFT calculations show that the D4 symmetry breaking is due to the same partial lifting of degeneracy of the nearest-neighbor oxygen sites as in the LTT transition in {La}{}2-xBaxCuO4, similarly well-known to strongly suppress superconductivity (SC). These results show that in-plane oxygen 2p5 orbital configurations are principally involved in the metallicity and SC of all high-Tc cuprates, and provide a qualitative symmetry-based constraint on the SC mechanism.

  2. Bifacial Metasurface with Quadrupole Optical Response

    NASA Astrophysics Data System (ADS)

    Shevchenko, Andriy; Kivijärvi, Ville; Grahn, Patrick; Kaivola, Matti; Lindfors, Klas

    2015-08-01

    We design, fabricate, and characterize a metasurface, whose multipole optical response depends significantly on the illumination direction. The metasurface is composed of gold-nanodisc dimers embedded in glass. In spite of their nanoscale size, the dimers exhibit a dominating electric-current-quadrupole response in a wide range of wavelengths around 700 nm when illuminated from one side, and a primarily electric-dipole response when illuminated from the opposite side. This leads to two consequences. First, the reflection coefficient of the metasurface considerably differs for the two sides of illumination. Second, quadrupole excitation results in a significant local enhancement of both electric and magnetic fields around the dimers. Our experimental spectroscopic data are in good agreement with simulations obtained using a multipole expansion model.

  3. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-06-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  4. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2007-08-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  5. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  6. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  7. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  8. LHC INTERACTION REGION QUADRUPOLE ERROR IMPACT STUDIES

    SciTech Connect

    FISCHER,W.; PTITSIN,V.; WEI,J.

    1999-09-07

    The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper the authors study the impact of the expected field errors of these magnets on the dynamic aperture. The authors investigate different magnet arrangements and error strength. Based on the results they propose and evaluate a corrector layout to meet the required dynamic aperture performance in a companion paper.

  9. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  10. Cu NQR Study of Impurity-doped YBa_2(Cu_1-xM_x)_4O8 (M=Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Machi, Takato; Watanabe, Nobuaki; Koshizuka, Naoki

    2001-03-01

    We report Cu NQR measurements of ^63Cu(2) nuclear spin-lattice relaxation curves for the impurity-doped powdered YBa_2(Cu_1-xM_x)_4O8 (M=Ni, x=0 ~0.042 M=Zn, x=0 ~0.022) from 4.2 K to 300 K. We estimated the host and the impurity-induced Cu nuclear spin-lattice relaxation times from the nonexponential recovery curves. Near the superconductor-to-semiconductor transition at the critical impurity concentration, we observed that the wipeout effect works at low temperature and that the pseudo spin-gap behavior of the host Cu nuclear spin-lattice relaxation rate (1/T_1T)_HOST is suppressed. We associate these results with the localization effect in conduction. This work was supported by New Energy and Industrial Technology Development Organization (NEDO) as Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications.

  11. Two-color photoexcitation of Rydberg states via an electric quadrupole transition

    SciTech Connect

    Li Leping; Gu Quanli; Knee, J. L.; Wright, J. D.; DiSciacca, J. M.; Morgan, T. J.

    2008-03-15

    We report the observation of an electric quadrupole transition between the 4s{sup '}[1/2]{sub 0}{sup o} and 3d[3/2]{sub 2}{sup o} states in the spectrum of argon and use it in the first step of a scheme to excite Rydberg states. The initial identification of the transition is based on one-color, two-photon photoionization. A different experiment utilizing two-color, two-photon photoexcitation to Rydberg states confirms the identification. Despite the unavoidable background of one-color, two-photon photoionization, the latter experimental technique makes possible two-photon spectroscopy of Rydberg states using a resonant intermediate state populated by an electric quadrupole transition.

  12. Applications of Nanoscale NMR Using Ensembles of NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Bucher, Dominik; Glenn, David; Walsworth, Ronald

    2016-05-01

    Ensembles of nitrogen vacancy (NV) centers in diamond are now the frontier modality for nuclear magnetic resonance (NMR) signals at length-scales of microns to Angstroms. Promising applications including NMR and nuclear quadrupole resonance (NQR) spectroscopy in sub-nanoliter volumes, studies of diffusion and transport in small samples of biological tissue, and magnetic resonance imaging (MRI) of individual biological cells and molecules. Here, we describe recent progress toward such applications.

  13. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  14. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  15. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  16. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  17. Low-temperature order in the heavy-fermion compound CeCu{sub 6}

    SciTech Connect

    Pollack, L.; Hoch, M.J.R.; Jin, C.; Smith, E.N.; Parpia, J.M.; Hawthorne, D.L.; Geller, D.A.; Lee, D.M.; Richardson, R.C.; Hinks, D.G.; Bucher, E.

    1995-12-01

    We have used nuclear-quadrupole-resonance (NQR) techniques to study Cu nuclei in two single-crystal samples of CeCu{sub 6} between 200 {mu}K and 20 mK. We present measurements of the NQR intensities and spin-lattice relaxation times, {ital T}{sub 1}, at frequencies corresponding to three different sites in the crystal. Below 5 mK we observe deviations from standard metallic behavior in both signal intensity and spin-lattice relaxation times. These deviations are unusual in that they are site dependent; they reveal the presence of one or more types of order in this system.

  18. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  19. Pulsed power supply system for the fast quadrupoles in the AGS

    SciTech Connect

    Nawrocky, R.J.; Lambiase, R.F.

    1983-01-01

    In the acceleration of polarized protons in the AGS, a number of depolarizing resonances will be encountered. Depolarization due to the so-called intrinsic resonances will be minimized by crossing each resonance in less than one beam revolution period (approx. 2 ..mu..s). This will be accomplished with a set of twelve fast tune-shifting quadrupoles distributed symmetrically around the ring. During a typical acceleration cycle, the fast quads will be energized with a burst of alternating polarity, fast rise/slow fall triangular current pulses. The amplitude of these pulses will vary from 160 A to about 2700 A peak. This paper describes the development of the pulsed power supply for the fast quads, the construction of a prototype modulator, and some of the initial test results obtained with the prototype.

  20. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  1. SSC Quadrupole Magnet Performance at LBL

    SciTech Connect

    Lietzke, A.F.; Barale, P.; Benjegerdes, r.; Caspi, S.; Cortella, J.; Dell'Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scalan, R.; Taylor, C.E.; Wandesforde, A.

    1992-10-01

    Lawrence Berkeley Laboratory (LBL) contracted to design, construct, and test four short (1m) models and six full-size (5m) models of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211 Tesla/meter). The training performance of these magnets is summarized. Magnets were tested in a horizontal boiling helium (1 Atm) cryostat. The magnetic, strain-gage and training responses to two thermal cycles were measured. The quadrupole gradient, and relative multipole purity were determined from Fourier analysis of the rotating coil signals. Magnetic and strain-gage measurements were taken on-the-fly. The voltage-tap data was analyzed to determine quench-origin and propagation characteristics. Quench-training proceeded at 4.3K until a plateau was achieved or sub-cooling (2.5K) was used to accelerate the training process. The early short (1m) magnets were also trained at 1.8K (10kA) to help identify potential weak areas. The MIITs were calculated to compare various magnet protection methods. Except for modest training above the anticipated SSC operating point, the magnets performed very well and proved to be self-protecting. Some design flaws were identified and corrected. The last two 1 m models and all the 5m models have been reinstalled in cryostats at the SSC Laboratory, retested and used to achieve various milestones in their program.

  2. Quadrupole Polarizabilities in A ~150 Superdeformed Bands

    NASA Astrophysics Data System (ADS)

    Satula, Wojciech; Nazarewicz, Witold; Dobaczewski, Jacek; Dudek, Jerzy

    1996-10-01

    In this study, the quadrupole and hexadecapole moments of superdeformed (SD) bands in the A ~150 mass region have been analyzed in the cranking Skyrme-Hartree-Fock model. The analysis shows that the relative quadrupole moments, δ Q_20(X_A)≡ Q_20(X_A)-Q_20(^152Dy;yrast), follow experimental trends rather well and that they can be written as a sum of independent contributions from the single-particle/hole states around the doubly-magic SD core of ^152Dy with a surpisingly high accuracy. For more than 90% of the SD bands considered, the deviation |δ Q_20 ( X_A) - sum_Nn_zΛδ q^[Nn_zΛ]| is less than 0.04 b. It suggests that the SD high-spin bands around ^152Dy are excellent examples of an almost undisturbed single-particle motion, i.e., can be described by the extreme shell model.

  3. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  4. Experimental results of the betatron sum resonance

    SciTech Connect

    Wang, Y.; Ball, M.; Brabson, B.

    1993-06-01

    The experimental observations of motion near the betatron sum resonance, {nu}{sub x} + 2{nu}{sub z} = 13, are presented. A fast quadrupole (Panofsky-style ferrite picture-frame magnet with a pulsed power supplier) producing a betatron tune shift of the order of 0.03 at rise time of 1 {mu}s was used. This quadrupole was used to produce betatron tunes which jumped past and then crossed back through a betatron sum resonance line. The beam response as function of initial betatron amplitudes were recorded turn by turn. The correlated growth of the action variables, J{sub x} and J{sub z}, was observed. The phase space plots in the resonance frame reveal the features of particle motion near the nonlinear sum resonance region.

  5. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  7. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  8. Feedback damper system for quadrupole oscillations after transition at RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brennan, J.M.; Schultheiss, C.

    2008-06-23

    The heavy ion beam at RHIC undergoes strong quadrupole oscillations just after it crosses transition, which leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed.

  9. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  10. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  11. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  12. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.

  13. Improving IRMPD in a quadrupole ion trap.

    PubMed

    Newsome, G Asher; Glish, Gary L

    2009-06-01

    A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 x 10(-3) Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5-10 ms at a bath gas pressure of 3.3 x 10(-4) Torr and in 3-25 ms at 1.0 x 10(-3) Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.

  14. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691

  15. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  16. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  17. Cryostat design for SSC quadrupole magnets

    SciTech Connect

    Lehmann, G.A.; Grut, K.E.; Hiller, M.W.; Huang, X.; Stutzki, D.T.; Waynert, J.A.

    1994-12-31

    The baseline design of the SSC Collider Quadrupole Magnet (CQM) cryostat is complete. The cryostat is designed to minimize cost and maximize system reliability. Many components have already been procured. Material characterization and component tests for many of the parts have been completed or are ongoing. The first CQM cryostat will be assembled in September of 1993. This paper describes the cryostat design for the CQM developed at Babcock & Wilcox (B&W). The CQM cryostat operates at cryogenic temperatures with a very stringent heat load budget. The cryostat supports the cold mass within the cryostat and insulates the cold mass against heating by conduction, thermal radiation and residual gas conduction. A description of the major components highlighting the key design features is given. The tradeoff studies performed for each component are summarized. The results of a static thermal analysis of the cryostat are presented.

  18. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  19. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  20. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  1. Towards ferromagnetic quantum criticality in FeGa3 -xGex :71Ga NQR as a zero-field microscopic probe

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Wagner-Reetz, M.; Cardoso-Gil, R.; Gille, P.; Steglich, F.; Grin, Y.; Baenitz, M.

    2016-02-01

    71Ga NQR, magnetization, and specific-heat measurements have been performed on polycrystalline Ge-doped FeGa3 samples. A crossover from an insulator to a correlated local moment metal in the low-doping regime and the evolution of itinerant ferromagnet upon further doping is found. For the nearly critical concentration at the threshold of ferromagnetic order, xC=0.15, 71(1 /T1T ) exhibits a pronounced T-4 /3 power law over two orders of magnitude in temperature, which indicates three-dimensional quantum critical ferromagnetic fluctuations. Furthermore, for the ordered x =0.2 sample (TC≈6 K), 71(1 /T1T ) could be fitted well in the frame of Moriya's self-consistent renormalization theory for weakly ferromagnetic systems with 1 /T1T ˜χ . In contrast to this, the low-doping regime nicely displays local moment behavior where 1 /T1T ˜χ2 is valid. For T →0 , the Sommerfeld ratio γ =(C /T ) is enhanced (70 mJ /mole K2 for x =0.1 ) , which indicates the formation of heavy 3 d electrons.

  2. Automated beam based alignment of the ALS quadrupoles

    SciTech Connect

    Portmann, G.; Robin, D.; Schachinger, L.

    1995-04-01

    Knowing the electrical offset of the storage ring beam position monitors (BPM) to an adjacent quadrupole magnetic center is important in order to correct the orbit in the ring. The authors describe a simple, fast and reliable technique to measure the BPM electrical centers relative to the quadrupole magnetic centers. By varying individual quadrupole magnets and observing the effects on the orbit they were able to measure the BPM offsets in half the horizontal and vertical BPMs (48) in the ALS. These offsets were measured to an accuracy of better than 50{mu}m. The technique is completely automated and takes less than 3 hours for the whole ring.

  3. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  4. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  5. Polarization-Insensitive Magnetic Quadrupole-Shaped and Electric Quadrupole-Shaped Fano Resonances Based on a Plasmonic Composite Structure

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Bao, Li; Han-Xiao, Li; Hui, Liu; Meng-Qi, Chen; Dong-Dong, Li; Chang-Chun, Yan; Dao-Hua, Zhang

    2016-07-01

    Not Available Supported by the National Innovative Projects for College Students under Grant No 201310320025, the National Natural Science Foundation of China under Grant Nos 61401182 and 61372057, and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

  6. Thermal Analysis of the ILC Superconductin Quadrupole

    SciTech Connect

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.

  7. Adjustable rare earth quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Tanabe, J.; Halbach, K.; Koehler, G.; Green, M.I.

    1987-03-01

    A prototype permanent-magnet drift tube quadrupole with adjustable field strength has been constructed and tested. The magnet uses iron pole pieces to provide the required field shape along with rare earth permanent-magnet material (samarium cobalt) to energize the magnet. A unique feature of the configuration is the adjustability of the field, accomplished by rotating the outer rings consisting of permanent magnets and iron. In contrast with a previous prototype magnet, this new design uses ball bearings in place of slide bearings to eliminate potential failures. The rotation is now achieved with a bevel gear mechanism. The prototype design also incorporates a new drift tube shell vacuum seal to allow easy disassembly. Tests were made of the magnetic properties and the mechanical performance of this magnet. Field errors are extremely small, and the magnet passed an accelerated ten year lifetime test. It is planned to use this type of magnet to replace 24 of the SuperHILAC prestripper drift tubes.

  8. Autonomously Calibrating a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Bornstein, Benjamin J.

    2009-01-01

    A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

  9. Nuclear Quadrupole Coupling Constants in Niobium Pentachloride and Related Compounds (I) Halogen Nuclei

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki

    1982-02-01

    35Cl NQR spectrum in NbCl5 has been investigated from 4.2 K to 480 K. The lines of about 7 MHz have larger multiplicity and show positive temperature dependence in contrast to the usual negative one for the line of about 13 MHz. The former lines are further separated into two groups having different temperature dependences. The expressions for the chlorine coupling constant are derived according to Townes-Dailey’s method on the basis of the pπ-dπ bond. The NQR data are analysed and the lines are assigned to the axial, equatorial and bridging chlorine atoms in the Nb2Cl10 dimer. The theory is applied to other related compounds.

  10. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  11. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  12. The phase diagrams and doped-hole segregation in La{sub 2}CuO{sub 4+{delta}} and La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} (x {le} 0.15, {delta} {le} 0.12)

    SciTech Connect

    Johnston, D.C.; Borsa, F.; Canfield, P.C.

    1993-10-31

    The magnetic and structural phase diagrams of the La{sub 2}CuO{sub 4+{delta}} system and the La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} are reviewed, with emphasis on recent results obtained from magnetic and structural neutron diffraction, thermogravimetric analysis, iodometric titration, magnetic susceptibility {chi}(T), and {sup 129}La nuclear quadrupole resonance (NQR) measurements.

  13. Two-photon excitation of low-lying electronic quadrupole states in atomic clusters

    SciTech Connect

    Nesterenko, V. O.; Reinhard, P.-G.; Halfmann, T.; Pavlov, L. I.

    2006-02-15

    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the time-dependent local density approximation calculations. As a test case, the deformed cluster Na{sub 11}{sup +} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2x10{sup 10}-2x10{sup 11} W/cm{sup 2} and pulse duration T=200-500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow us to gather full mean-field spectra of valence electrons near the Fermi energy. Besides, the scheme allows us to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.

  14. H-mode accelerating structures with permanent-magnet quadrupole beam focusing

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Rybarcyk, L. J.; O'Hara, J. F.; Olivas, E. R.; Wangler, T. P.

    2012-09-01

    We have developed high-efficiency normal-conducting rf accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H-mode structures with PMQ focusing for higher beam velocities are also presented. H-PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

  15. Dipole-Quadrupole Interference in the Photoionization of Cadmium Autoionizing Levels

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Bauman, R. P.; Thompson, D. B.; Caldwell, C. D.; Krause, M. O.; Frigo, S. P.; Wilson, M.

    1998-05-01

    At soft x-ray energies (>1 keV) deviations from the dipole approximation may be readily observed in photoelectron angular distributions as 10% dipole-quadrupole interference effects. In the vacuum ultraviolet region the effect is much more difficult to observe since the interference term, which scales as the photon energy, is two orders of magnitude smaller. By measuring energy spectra we have succeeded in measuring a dipole-quadrupole interference resonance between J=1 and J=2 autoionizing levels in cadmium. The effects are 0.5% of the well-known(J.Jimenez-Mier, C.D.Caldwell, M.O.Krause, Phys.Rev.A 39), 95 (1989). dipole spectrum, in excellent agreement with theory. As well as being of interest in their own own right, the experiments provide an absolute reference for recent Cd (e,2e) experiments(N.L.S.Martin, D.B.Thompson, R.P.Bauman and M.Wilson, Phys. Rev. A 50), 3878 (1994)..

  16. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    SciTech Connect

    Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.; Benna, M.; Mahaffy, P. R.

    2011-12-15

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  17. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  18. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  19. Novel methods for detecting buried explosive devices

    SciTech Connect

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M.; Hibbs, A.D.; Rayner, T.J.

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  20. Novel methods for detecting buried explosive devices

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Burlage, Robert S.; Patek, David R.; Smith, Cyrus M.; Hibbs, Andrew D.; Rayner, Timothy J.

    1997-07-01

    Oak Ridge National Laboratory and Quantum Magnetics, Inc. are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, one has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  1. Ion cloud model for a linear quadrupole ion trap.

    PubMed

    Douglas, Don J; Konenkov, Nikolai V

    2012-01-01

    If large numbers of ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies of ions to decrease. Ions then appear at higher apparent masses when resonantly ejected for mass analysis. In principle, to calculate mass shifts requires calculating the positions of all ions, interacting with each other, at all times, with a self-consistent space charge field. Here, we propose a simpler model for the ion cloud in the case where mass shifts and frequency shifts are relatively small (ca 0.2% and 0.4%, respectively), the trapping field is much stronger (ca × 10(2)) than the space charge field and space charge only causes small perturbations to the ion motion. The self-consistent field problem need not be considered. As test ions move with times long compared to a cycle of the trapping field, the motion of individual ions can be ignored. Static positions of the ions in the cloud are used. To generate an ion cloud, trajectories of N (ca 10,000) ions are calculated for random times between 10 and 100 cycles of the trapping radio frequency field. The ions are then distributed axially randomly in a trap four times the field radius, r(0) in length. The potential and electric field from the ion cloud are calculated from the ion positions. Near the trap center (distances r< 1r(0)), the potential and electric fields from space charge are not cylindrically symmetric, but are quite symmetric for greater values of r. Trajectories of test ions, oscillation frequencies and mass shifts can then be calculated in the trapping field, including the space charge field. Mass shifts are in good agreement with experiments for reasonable values of the initial positions and speeds of the ions. Agreement with earlier analytical models for the ion cloud, based on a uniform occupation of phase space, or a thermal (Boltzmann) distribution of ions trapped in the effective potential [D. Douglas and N.V. Konenkov, Rapid Commun. Mass Spectrom. 26, 2105 (2012)] is

  2. OPERATIONAL MEASUREMENT OF COUPLING BY SKEW QUADRUPOLE MODULATION.

    SciTech Connect

    LUO.Y.CAMERON,P.LEE,R.ET AL.

    2004-07-05

    The measurement and correction of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of the skew quadrupole families the two eigentune modulations are precisely measured with a high resolution phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation direction are determined. The residual linear coupling could be corrected according the measurement. We report the results from the dedicated beam studies carried on at RHIC injection, store and on the ramp. A capability of measuring coupling on the ramp opens possibility of continuous coupling corrections during acceleration.

  3. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  4. Mechanical design of a large bore quadrupole triplet magnet

    SciTech Connect

    Abbott, S.; Caylor, R.; Fong, E.; Tanabe, J.

    1987-03-01

    The mechanical design and construction of a 1 meter bore, low gradient quadrupole triplet is described. The magnet will be used for focussing a proton beam in accelerator studies of neutral particle at the Los Alamos National Laboratory. A significant feature of this magnet design is the precision location of the coil conductors within the steel yoke tube. Each of the quadrupole coils have been fabricated from water cooled aluminum conductor, wound in a cosine 2-theta geometry. The conductor bundles have been wound to a positional accuracy within +-0.050 cm which was required to reduce the harmonic content to less than 0.04% of the quadrupole field. Important aspects of the design, construction and assembly are described.

  5. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  6. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  7. A quadrupole/time-of-flight mass spectrometry study of Trp-cage's conformation.

    PubMed

    Lin, Mingxiang; Ahmed, Zeeshan; Taormina, Christopher R; Somayajula, Kasi V

    2007-02-01

    Trp-cage is a synthetic 20-residue miniprotein that uses tertiary contacts to stabilize its native conformation. NMR, circular dichroism (CD), and UV-resonance Raman spectroscopy were used to probe its energy landscape. In this quadrupole/time-of-flight study, electrospray ionization charge state distribution (CSD) and solution-phase H/D exchange are used to probe Trp-cage's tertiary structure. The CSDs of Trp-cage and its mutant provide spectra showing a pH-dependent conformation change. Solution-phase H/D exchange in 30% deuterated trifluoroethanol solution of the wild type shows increased protection of one labile hydrogen in the native state. Together, CSDs and solution-phase H/D exchange are demonstrated to constitute a simple but effective means to follow conformation changes in a small tertiary protein. PMID:17067814

  8. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  9. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  10. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  11. Quadrupole Collective Inertia in Nuclear Fission: Cranking Approximation

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Dobaczewski, J.; Nazarewicz, Witold

    2011-01-01

    Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in ^{256}Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.

  12. Simple loss scaling laws for quadrupoles and higher-order multipoles used in antihydrogen traps

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Deutsch, A.; Chapman, S. F.; Gomberoff, K.; Wurtele, J. S.; Werf, D. P. van der

    2006-10-18

    Simple scaling laws strongly suggest that for antihydrogen relevant parameters, quadrupole magnetic fields will transport particles into, or near to, the trap walls. Consequently quadrupoles are a poor choice for antihydrogen trapping. Higher order multipoles lead to much less transport.

  13. Fermi resonance in dynamical tunneling in a chaotic billiard

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Kim, Ji-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-08-01

    We elucidate that Fermi resonance ever plays a decisive role in dynamical tunneling in a chaotic billiard. Interacting with each other through an avoided crossing, a pair of eigenfunctions are coupled through tunneling channels for dynamical tunneling. In this case, the tunneling channels are an islands chain and its pair unstable periodic orbit, which equals the quantum number difference of the eigenfunctions. This phenomenon of dynamical tunneling is confirmed in a quadrupole billiard in relation with Fermi resonance.

  14. Etude par resonance quadripolaire des noyaux 63-Cu et 75-As de complexes tetrameres de la triethylarsine avec des halogenures de cuivre(I)

    NASA Astrophysics Data System (ADS)

    Ribas, J.; Durand, M.; Jugie, G.

    1983-12-01

    63-Cu and 75-As quadrupole resonance results have been obtained for the tetrameric triethylarsine copper(I) halides (Cl, Br and I). Unusual behaviours of the temperature dependence of the 63-Cu and 75-As quadrupole resonance lines have been observed simultaneously. Between 77 and 300 K, the chlorine derivative undergoes two structural phase changes at 93 and 173 K, while phase transformations occur at 152 and 86 K respectively for the bromine and iodine derivatives.

  15. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  16. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  17. The low-energy quadrupole mode of nuclei

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2015-08-01

    The phenomenological classification of collective quadrupole excitations by means of the Bohr-Hamiltonian (BH) is reviewed with focus on signatures for triaxility. The variants of the microscopic BH derived by means of the Adiabatic Time-Dependent Mean Field theory from the Pairing-plus-quadrupole-quadrupole interaction, the Shell Correction Method, the Skyrme Energy Density Functional, the Relativistic Mean Field Theory and the Gogny interaction are discussed and applications to concrete nuclides reviewed. The Generator Coordinate Method for the five-dimensional quadrupole deformation space and first applications to triaxial nuclei are presented. The phenomenological classification in the framework of the Interacting Boson Model is discussed with a critical view on the boson number counting rule. The recent success in calculating the model parameters by mapping the mean field deformation energy surface on the bosonic one is discussed and the applications listed. A critical assessment of the models is given with focus on the limitations due to the adiabatic approximation. The Tidal Wave approach and the Triaxial Projected Shell Model are presented as practical approaches to calculate spectral properties outside the adiabatic region.

  18. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  19. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  20. Driving a quadrupole mass spectrometer via an isolating stage

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2002-01-01

    Driving a quadrupole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  1. Resonant transmission of light in chains of high-index dielectric particles

    NASA Astrophysics Data System (ADS)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  2. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres.

    PubMed

    Zang, Yashu; He, Xu; Li, Jing; Yin, Jun; Li, Kongyi; Yue, Chuang; Wu, Zhiming; Wu, Suntao; Kang, Junyong

    2013-01-21

    Periodic Ag nanoball (NB) arrays on ZnO hollow nanosphere (HNS) supporting structures were fabricated in a large area by a laser irradiation method. The optimized laser power and spherical supporting structure of ZnO with a certain size and separation were employed to aggregate a sputtering-deposited Ag nano-film into an ordered, large-area, and two dimensional Ag NB array. A significant band edge (BE) emission enhancement of ZnO HNSs was achieved on this Ag NB/ZnO HNS hybrid structure and the mechanism was revealed by further experimental and theoretical analyses. With successfully fabricating the direct-contact structure of a Ag NB on the top of each ZnO HNS, the highly localized quadrupole mode surface plasmon resonance (SPR), realized on the metal NBs in the ultraviolet region, can effectively improve the BE emission of ZnO through strong coupling with the excitons of ZnO. Compared with the dipole mode SPR, the quadrupole mode SPR is insensitive to the metal nanoparticle's size and has a resonance frequency in the BE region of the wide band gap materials, hence, it can be potentially applied in related optoelectronic devices. PMID:23196786

  3. Nuclear Quadrupole Coupling Constants in Niobium Pentachloride and Related Compounds (II) Transition Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki

    1982-02-01

    93Nb NQR spectrum in NbCl5 has been investigated from 4.2 K to 480 K. The coupling constant shows an unusual positive temperature dependence at low temperatures. The EFG tensor is calculated with the d2sp3 octahedral bond functions. The experimental data are analysed in terms of the contributions from the σ- and π-bonds. It is shown that the positive temperature dependence can be explained by the pπ-dπ bond mechanism. The theory is also applied to the related compounds and the consistency with the analysis of the halogen coupling constants is shown.

  4. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Mustapha, B.; Barcikowski, A.; Dickerson, C.; Kolomiets, A. A.; Kondrashev, S. A.; Luo, Y.; Paskvan, D.; Perry, A.; Schrage, D.; Sharamentov, S. I.; Sommer, R.; Toter, W.; Zinkann, G.

    2012-11-01

    The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ). While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW) RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS). Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE) copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O5+ ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  5. Anion binding properties of human serum albumin from halide ion quadrupole relaxation.

    PubMed

    Norne, J E; Hjalmarsson, S G; Lindman, B; Zeppezauer, M

    1975-07-29

    The nuclear magnetic quadrupole relaxation enhancement of 35Cl-, 81Br-, and 12I- anions on binding to human serum albumin has been studied under conditions of variable protein and anion concentration and also in the presence of simple inorganic, amphiphilic, and complex anions which compete with the halide ions for the protein anion binding sites. Two classes of anion binding sites with greatly different binding constans were identified. Experiments at variable halide ion concentration were employed to determin the Cl- and I- binding constants. By means of 35 Cl nuclear magnetic resonance (NMR) the relative affinity for different anions was determined by competition experiments for both the strong and the weak anion binding sites. Anion binding follows the sequence SO42- smaller than F- smaller than CH3COO- smaller than Ci- smaller Br- smaller than NO3- smaller than I- smaller than ClO4- smaller than SCN- smaller than Pt(CN)42- smaller than Au(CN)2- smaller than CH3(CH2)11OSO3- for the high affinity sites, and the sequence SO42- congruent to F- congruent to Cl- smaller CH3COO- smaller than NO3- smaller than Br- smaller than I- smaller than ClO4- smaller than SCN- for the low affinity sites. These series are nearly identical with the well-known lyotropic series. Consequently, those effects of anions on proteins described by the lyotropic series can be correlated with the affinities of the anions for binding to the protein. The data suggest that the physical nature of the interaction is the same for both types of biding sites, and that the differences in affinity between different binding sites must be explained in terms of tertiary structure. Analogous experiments performed using 127I- quadrupole relaxation gave results very similar to those obtained with 35Cl-. A comparison between the Cl-, Br- and I- ions revealed that, as a result of the increasing affinity for the weak anion binding sites in the series Cl- smaller than Br- smaller than I-, Cl- is much more

  6. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    PubMed Central

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport. PMID:22247650

  7. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  8. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.

    PubMed

    Javadian, Soheila; Taghavi, Fariba; Yari, Faramarz; Hashemianzadeh, Seyed Majid

    2012-09-01

    In this study, the mechanism of the temperature-dependent phase transition of confined water inside a (9,9) single-walled carbon nanotube (SWCNT) was studied using the hierarchical multi-scale modeling techniques of molecular dynamics (MD) and density functional theory (DFT). The MD calculations verify the formation of hexagonal ice nanotubes at the phase transition temperature T(c)=275K by a sharp change in the location of the oxygen atoms inside the SWCNT. Natural bond orbital (NBO) analysis provides evidence of considerable intermolecular charge transfer during the phase transition and verifies that the ice nanotube contains two different forms of hydrogen bonding due to confinement. Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) analyses were used to demonstrate the fundamental influence of intermolecular hydrogen bonding interactions on the formation and electronic structure of ice nanotubes. In addition, the NQR analysis revealed that the rearrangement of nano-confined water molecules during the phase transition could be detected directly by the orientation of ¹⁷O atom EFG tensor components related to the molecular frame axes. The effects of nanoscale confinements in ice nanotubes and water clusters were analyzed by experimentally observable NMR and NQR parameters. These findings showed a close relationship between the phase behavior and orientation of the electronic structure in nanoscale structures and demonstrate the usefulness of NBO and NQR parameters for detecting phase transition phenomena in nanoscale confining environments.

  9. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  10. Measurement reports for the cryogenically-cooled drift tube quadrupoles

    SciTech Connect

    1993-12-31

    This compilation contains quadrupole measurement reports for LANL type A and type E drift tube cryoquads. The cryoquad information gives s/n, vendor, field strength, phase, b3/b2, b4/b2, b5/b2, b6/b2, center wire location. The measurements for the harmonic measuring system gives time and date of measurements, magnet p/n, coil p/n, coil radii, coil turns, low and high gain, and temperature. Quadrupole information includes effective B` X L, and magnetic center. Bucked and unbucked calculations give signal in {mu}V{center_dot}sec, field in Tesla{center_dot}meter, B(n)/B(2), absolute and relative phase.

  11. Development and test of LARP technological quadrupole (TQC) magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  12. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  13. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  14. Superferric quadrupoles for FAIR Super FRS energy buncher

    NASA Astrophysics Data System (ADS)

    Pal, G.; Bhunia, U.; Akhter, J.; Nandi, C.; Datta, A.; Sarma, P. R.; Roy, S.; Bajirao, S.; Bhattacharyya, S.; Bhattacharyya, T. K.; Dey, M. K.; Mallik, C.; Bhandari, R. K.

    2012-12-01

    The quadrupole magnets for FAIR Super FRS energy buncher have large usable aperture, high magnetic pole-tip field and high gradient field quality. The iron-dominated magnets with superconducting coils have to be used in this application. The NbTi coil, laminated iron, and support structure of about 22 tons is immersed in liquid helium. The 4.5 K helium chamber is completely covered with a thermal shield cooled by helium at 50-80 K on its outer and inner surface. The helium chamber and thermal shield is enclosed in a vacuum shell. The paper presents design details of the long quadrupole. Coupled thermal, magnetic and structural analysis was carried out to design the magnet iron, magnet coil, helium vessel and support links and ensure the required gradient field quality is achieved. The paper also presents the design of support links and outer vacuum chamber.

  15. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  16. Detection of the quadrupole hyperfine structure in HCNH(+)

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Yoder, J. T.

    1992-01-01

    We report the first measurement of the electric quadrupole hyperfine structure of HCNH(+). The J = 1-0 transition of this interstellar molecular ion was observed toward the cold, dark cloud TMC-1, using the NRAO 12 m telescope at 74 GHz. The three hyperfine components of this transition were clearly detected and resolved, enabling the first experimental determination of the quadrupole coupling constant eqQ of HCNH(+). The value of this constant is calculated to be eqQ = -0.49 +/- 0.07 MHz. The column density of HCNH(+) toward TMC-1 was found to be N(tot) about 2.8 x 10 exp 13/sq cm, corresponding to a fractional abundance relative to H2 of f about 3 x 10 exp -9. This abundance is at least one order of magnitude higher than the predictions of ion-molecule chemistry. Detection of the hyperfine structure clearly establishes the presence of HCNH(+) in interstellar space.

  17. Specification of multipole tolerances for the APS quadrupole magnet

    SciTech Connect

    Kramer, S.L.

    1988-08-01

    This note will address a proposed method for specifying the multipole tolerance for the design and production of APS quadrupole magnets. The tolerances for the multipole components for the quadrupole magnets will be set to that level which reduces the dynamic aperture by about 10--15% from the ideal machine dynamic aperture (as specified in CDR-87). This level may appear rather stringent, especially compared to the 50--60% reduction resulting from quad placement errors. However, when all tolerances are taken together, the residual dynamic aperture would be prohibitively small and commissioning would be difficult if these tolerances were at twice this level. The dynamic aperture was determined using the numerical tracking program RACETRACK.

  18. SKEW QUADRUPOLES IN RHIC DIPOLE MAGNETS AT HIGH FIELDS.

    SciTech Connect

    JAIN, A.; GUPTA, P.; THOMPSON, P.; WANDERER, P.

    1995-06-11

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RDIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  19. Quadrupole moments of wobbling excitations in 163Lu

    SciTech Connect

    Gorgen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Hagemann, G.B.; Hubel, H.; Lee, I.Y.; Macchiavelli, A.O.; Sletten, G.; Ward, D.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of {sup 163}Lu have been measured in a Gammasphere experiment using the Doppler-shift attenuation method. The bands are interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments were extracted for the 0-phonon yrast band and, for the first time, for the 1-phonon wobbling band. The very similar results found for both bands suggest a similar intrinsic structure confirming the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the strength of the inter-band transitions remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared.

  20. Improved performance of a quadrupole based glow discharge mass spectrometer

    SciTech Connect

    Valiga, R.E.; Duckworth, D.C.; Smith, D.H.

    1995-12-31

    Glow discharge mass spectrometry (GDMS) has experienced most of its commercial success in trace multi-element analysis using sector-based mass spectrometry. In most cases, the mass resolution available with these instruments allows elements of interest to be analyzed, even in the presence of polyatomic interferences (e.g., ArC+, ArN+, ArO+). Because quadrupole mass filters have little more than unit resolution, background equivalent concentrations (BEC`s) for many elements can be quite high (1-100 ppm). Because of this, many have discounted quadrupole GDMS as a useful trace analysis technique. In this work, the authors have explored methods of reducing the polyatomic interferences.

  1. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.; /Fermilab

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  2. Quadrupole association and dissociation of hydrogen in the early Universe

    NASA Astrophysics Data System (ADS)

    Forrey, Robert C.

    2016-10-01

    Radiative association and photodissociation rates are calculated for quadrupole transitions of H2. A complete set of bound and unbound states are included in a self-consistent master equation to obtain steady-state concentrations for a dilute system of hydrogen atoms and molecules. Phenomenological rate constants computed from the steady-state concentrations satisfy detailed balance for any combination of matter and radiation temperature. Simple formulas are derived for expressing the steady-state distributions in terms of equilibrium distributions. The rate constant for radiative association is found to be generally small for all temperature combinations. The photodissociation rate constant for quadrupole transitions is found to dominate the rate constants for other H2 photodestruction mechanisms for {T}{{R}} ≤slant 3000 K. Implications for the formation and destruction of H2 in the early Universe are discussed.

  3. Isolated versus Condensed Anion Structure II; the Influence of the Cations (1,3-propanediammonium, 1,4-phenylendiammonium, and n-propylammonium) on Structures and Phase Transitions of CdBr2-4Salts A 79,81Br NQR and X-ray Structure Analysis

    NASA Astrophysics Data System (ADS)

    Ishihara, Hideta; Dou, Shi-qi; Horiuchi, Keizo; Krishnan, V. G.; Paulus, Helmut; Fuess, Hartmut; Weiss, Alarich

    1996-12-01

    The influence of the cations on the condensation of anions CdBr42- in salts (A')CdBr4 (II) and (A)2CdBr4 (II) is studied by 79,81Br NQR and X-ray crystal structure determinations. (A')CdBr4 : A' = [H3N(CH2)3NH3]2+ (1) crystallizes with a layer-type anion structure at 298 K and A' = [1,4-(H3N)2C6H4]2+ (2) crystallizes with a chain-type anion structure at 298 K. (A)2 CdBr4 : A = [n-H3C(CH2)2NH3]+ (3) crystallizes with a layer-type anion structure at 293 K. (1) shows successive phase transitions at 328, 363, and 495 K according to the NQR and DSC measurements. Phase IV of (1): at 298 K orthorhombic, Pnma, Z = 4,a = 772.1 (4), b = 1905.4(9), c = 789.8(4) pm. 81Br NQR spectrum showed a doublet at 77 K (phase IV) with ν1= 61.177 and ν2 = 45.934 MHz and also a doublet at 350 K (phase III) with ν1= 57.581 and ν2 = 48.747 MHz. (2): at 295 K orthorhombic, Pnma, Z = 4, a = 802.5(3), b = 1775.1(6), c = 881.9(3) pm; the five-coordinated Cd atom and one-dimensional [CdBr4]2- anion chain structure was observed. This coordination and chain structure are very rare for (A')CdX4 (II) or (A)2CdX4 (II). Two 81Br NQR lines were observed at 77 K: ν1= 70.159 and ν3 = 40.056 MHz. One more line appeared at 85 K: ν2 = 53.622 MHz. A 81Br NQR triplet was observed at 273 K: ν1 = 67.919, ν2 = 56.317, and ν3 = 40.907 MHz. (3) shows successive phase transitions at 121, 135, 165, and 208 K according to the NQR, DSC, and DTA measurements. Phase I of (3): at 293 K orthorhombic, Cmca, Z = 4, a = 783.4(4), b = 2480.2(10), c = 806.5(4) pm. 81Br NQR doublet was observed at 77 K (phase V) and at 300 K (Phase I) with ν1 = 61.060 and ν2 = 54.098 MHz (77 K); v1 = 55.835 and ν2 = 55.964 MHz (373 K). No NQR line could be observed in phases II, III, and IV.

  4. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  5. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  6. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  7. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  8. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  9. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    SciTech Connect

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  10. Design and Measurement of the NSLS II Quadrupole Prototypes

    SciTech Connect

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  11. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  12. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  13. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  14. Perfect 2-d quadrupole fields from permanent magnets

    SciTech Connect

    Lee, E.P.; Vella, M.

    1996-04-01

    Consider the 13-beam channel array shown in Figure 1. It is asserted that, under mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 beam channel boxes. An identical quadrupole field (for {bar H}, not {bar B}) is also centered in each of the 4 boxes containing 4 magnetic wedges located near the center of the system. An iron yoke ({mu} = {infinity}) with the displayed zig-zag shape provides a boundary condition (H{sub {parallel}} = 0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array can be readily drawn for any number of beams. The quadrupole gradient in the beam channels is B{prime} = M{sub o}/2b, where M{sub o} is the remnant field of the magnetic wedges, and the channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing one beam, has diameter 2{radical}2 b (viewed from 45{degree} tilt) so its area is 8 b{sup 2}. A significant advantage of this design over those using dipolar blocks is the large fraction of cross section devoted to beam channels (50% vs 25%). Application to a heavy ion fusion driver is discussed.

  15. Parametric-Resonance Ionization Cooling in Twin-Helix.

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney

    2011-09-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.

  16. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  17. Testing of NB3SN Quadrupole Coils Using Magnetic Mirror Structure

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V. S.; Kashikhin, V. V.; Lamm, M. J.; Novitski, I.; Tartaglia, M.; Tompkins, J. C.; Turrioni, D.; Yamada, R.

    2010-04-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb3Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  18. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  19. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  20. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  1. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  2. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  3. The compensation of quadrupole errors and space charge effects by using trim quadrupoles

    NASA Astrophysics Data System (ADS)

    An, YuWen; Wang, Sheng

    2011-12-01

    The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.

  4. Electron-Induced Dissociation of Peptides in a Triple Quadrupole Mass Spectrometer Retrofitted with an Electromagnetostatic Cell

    NASA Astrophysics Data System (ADS)

    Voinov, Valery G.; Bennett, Samuel E.; Barofsky, Douglas F.

    2015-05-01

    Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples.

  5. Electron-induced dissociation of peptides in a triple quadrupole mass spectrometer retrofitted with an electromagnetostatic cell.

    PubMed

    Voinov, Valery G; Bennett, Samuel E; Barofsky, Douglas F

    2015-05-01

    Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples. PMID:25652934

  6. CMB quadrupole suppression. I. Initial conditions of inflationary perturbations

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    We investigate the issue of initial conditions of curvature and tensor perturbations at the beginning of slow roll inflation and their effect on the power spectra. Renormalizability and small backreaction constrain the high k behavior of the Bogoliubov coefficients that define these initial conditions. We introduce a transfer function D(k) which encodes the effect of generic initial conditions on the power spectra. The constraint from renormalizability and small backreaction entails that D(k)(less-or-similar sign){mu}{sup 2}/k{sup 2} for large k, implying that observable effects from initial conditions are more prominent in the low multipoles. This behavior affects the CMB quadrupole by the observed amount {approx}10%-20% when {mu} is of the order of the energy scale of inflation. The effects on high l-multipoles are suppressed by a factor {approx}1/l{sup 2} due to the falloff of D(k) for large wave vectors k. We show that the determination of generic initial conditions for the fluctuations is equivalent to the scattering problem by a potential V({eta}) localized just prior to the slow roll stage. Such potential leads to a transfer function D(k) which automatically obeys the renormalizability and small backreaction constraints. We find that an attractive potential V({eta}) yields a suppression of the lower CMB multipoles. Both for curvature and tensor modes, the quadrupole suppression depends only on the energy scale of V({eta}), and on the time interval where V({eta}) is nonzero. A suppression of the quadrupole for curvature perturbations consistent with the data is obtained when the scale of the potential is of the order of k{sub Q}{sup 2} where k{sub Q} is the wave vector whose physical wavelength is the Hubble radius today.

  7. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  8. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  9. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  10. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  11. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  12. Quench margin measurement in Nb3Sn quadrupole magnet

    SciTech Connect

    Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2008-08-01

    One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

  13. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  14. Fission decay of the isoscalar giant quadrupole resonance in 24Mg

    NASA Astrophysics Data System (ADS)

    Lawitzki, S.; Pade, D.; Gonsior, B.; Uhlhorn, C. D.; Brandenburg, S.; Harakeh, M. N.; Wilschut, H. W.

    1986-07-01

    The 24Mg(α, α‧) 12C+ 12C reaction was studied by measuring 12C fragments in coincidence with inelastically scattered α-particles at Eα = 120 MeV. Both 12C fragments were identified using the ΔE - E technique. The measured angular correlations indicate that the 12C gs+ 12C gs decay channel is dominated by decay of L = 2 strength, which yields an integrated fraction of 0.14% of the E2 EWSR strength in comparison with 22.2% of the E2 EWSR strength observed in singles inelastic α-scattering experiments in the same excitation energy region.

  15. Design, fabrication, and beam commissioning of a continuous-wave four-rod rf quadrupole

    NASA Astrophysics Data System (ADS)

    Yin, X. J.; Yuan, Y. J.; Xia, J. W.; He, Y.; Zhao, H. W.; Zhang, X. H.; Du, H.; Li, Z. S.; Li, X. N.; Jiang, P. Y.; Yang, Y. Q.; Ma, L. Z.; Wu, J. X.; Xu, Z.; Sun, L. T.; Zhang, W.; Zhang, X. Z.; Meng, J.; Zhou, Z. Z.; Yao, Q. G.; Cai, G. Z.; Lu, W.; Wang, H. N.; Chen, W. J.; Zhang, Y.; Xu, X. W.; Xie, W. J.; Lu, Y. R.; Zhu, K.; Liu, G.; Yan, X. Q.; Gao, S. L.; Wang, Z.; Chen, J. E.

    2016-01-01

    A new heavy-ion linac within a continuous-wave (CW) 4-rod radio-frequency quadrupole (RFQ) was designed and constructed as the injector for the separated-sector cyclotron (SSC) at the Heavy Ion Research Facility at Lanzhou (HIRFL). In this paper, we present the development of and the beam commissioning results for the 53.667 MHz CW RFQ. In the beam dynamics design, the transverse phase advance at zero current, σ0 ⊥ , is maintained at a relatively high level compared with the longitudinal phase advance (σ0 ∥ ) to avoid parametric resonance. A quasi-equipartitioning design strategy was applied to control the emittance growth and beam loss. The installation error of the electrodes was checked using a FARO 3D measurement arm during the manufacturing procedure. This method represents a new approach to measuring the position shifts of electrodes in a laboratory environment and provides information regarding the manufacturing quality. The experimental results of rf measurements exhibited general agreement with the simulation results obtained using CST code. During on-line beam testing of the RFQ, two kinds of ion beams (40Ar 8 + and 16O5+ ) were transported and accelerated to 142.8 keV /u , respectively. These results demonstrate that the SSC-Linac has made a significant progress. And the design scheme and technology experiences developed in this work can be applied to other future CW RFQs.

  16. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis.

    PubMed

    Astani, Elahe K; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L

    2016-07-01

    A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction. PMID:27337388

  17. Multitude of 2+ discrete states in 124Sn observed via the (17O 17O'γ) reaction: Evidence for pygmy quadrupole states

    NASA Astrophysics Data System (ADS)

    Pellegri, L.; Bracco, A.; Tsoneva, N.; Avigo, R.; Benzoni, G.; Blasi, N.; Bottoni, S.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Lenske, H.; Million, B.; Morales, A. I.; Nicolini, R.; Wieland, O.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Ciemała, M.; de Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Isocrate, R.; Kmiecik, M.; Krzysiek, M.; Lunardi, S.; Maj, A.; Mazurek, K.; Mengoni, D.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Siebeck, B.; Siem, S.; Ur, C.; Valiente-Dobón, J. J.

    2015-07-01

    A multitude of discrete 2+ states in 124Sn with energy up to 5 MeV were populated and identified with the (17O, 17O'γ) reaction at 340 MeV. Cross sections were compared with distorted wave Born approximation predictions and in general a good agreement was found. The measured energy and intensity distributions of the 2+ states are very similar to the predictions based on self-consistent density functional theory and extended QRPA approach accounting for multiphonon degrees of freedom. This provides evidence of the excitation of the pygmy quadrupole resonance in skin nuclei.

  18. Performance of Nb3Sn Quadrupole Under High Stress

    SciTech Connect

    Felice, H.; Bajko, M.; Bingham, B.; Bordini, B.; Bottura, L.; Caspi, S.; Rijk, G. De; Dietderich, D.; Ferracin, P.; Giloux, C.; Godeke, A.; Hafalia, R.; Milanese, A.; Rossi, L.; Sabbi, G. L.

    2010-08-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb{sub 3}Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb{sub 3}Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb{sub 3}Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.

  19. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    SciTech Connect

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  20. Adjustable permanent quadrupoles for the next linear collider

    SciTech Connect

    James T. Volk et al.

    2001-06-22

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.

  1. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  2. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    NASA Astrophysics Data System (ADS)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  3. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  4. Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping.

    PubMed

    Fajans, J; Bertsche, W; Burke, K; Chapman, S F; van der Werf, D P

    2005-10-01

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  5. Effects of Extreme Magnetic Quadrupole Fields on Penning Traps and the Consequences for Antihydrogen Trapping

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Chapman, S.F.; Werf, D.P. van der

    2005-10-07

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  6. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  7. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  8. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  9. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  10. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  11. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  12. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  13. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  14. COMPENSATION OF FAST KICKER ROLLS WITH SKEW QUADRUPOLES

    SciTech Connect

    Pinayev, I.

    2011-03-28

    The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump. The third generation light sources implement top-up operation firstly introduced at Advanced Photon Source. In this mode the circulating beam current is supported near constant by frequent injection of small charge, while photon beam is delivered for users. The beam perturbations caused by the mismatched injection bump can provide undesired noise in the user data. Usually the injection trigger is distributed to the users end stations so that those affected would be able to blank data acquisition. Nevertheless, as good operational practice such transients should be suppressed as much as possible. In the horizontal plane (which is commonly used for injection) one can adjust individual kicker strength as well as trigger delay while observing motion of the stored beam centroid. In the vertical plane such means are unavailable in the most cases. The possible solutions include dedicated weak vertical kickers and motorized adjustment of the roll angle of the injection kickers. Both abovementioned approaches are expensive and can significantly deteriorate reliability. We suggest two employ two skew quadrupoles (to correct both angle and position) placed inside the injection bump. In this case the beam position itself serves as measure of the kicker strength (assuming that kickers are well matched) and vertical kicks from the skew quadrupoles will be self synchronized with injection bump

  15. Stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Hänggi, Peter; Jung, Peter; Marchesoni, Fabio

    1998-01-01

    Over the last two decades, stochastic resonance has continuously attracted considerable attention. The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The effect requires three basic ingredients: (i) an energetic activation barrier or, more generally, a form of threshold; (ii) a weak coherent input (such as a periodic signal); (iii) a source of noise that is inherent in the system, or that adds to the coherent input. Given these features, the response of the system undergoes resonance-like behavior as a function of the noise level; hence the name stochastic resonance. The underlying mechanism is fairly simple and robust. As a consequence, stochastic resonance has been observed in a large variety of systems, including bistable ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. In this paper, the authors report, interpret, and extend much of the current understanding of the theory and physics of stochastic resonance. They introduce the readers to the basic features of stochastic resonance and its recent history. Definitions of the characteristic quantities that are important to quantify stochastic resonance, together with the most important tools necessary to actually compute those quantities, are presented. The essence of classical stochastic resonance theory is presented, and important applications of stochastic resonance in nonlinear optics, solid state devices, and neurophysiology are described and put into context with stochastic resonance theory. More elaborate and recent developments of stochastic resonance theory are discussed, ranging from fundamental quantum properties-being important at low temperatures-over spatiotemporal aspects in spatially distributed systems, to realizations in chaotic maps. In conclusion the authors summarize the achievements

  16. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  17. Auxiliary Frequency Parametric Excitation of Quadrupole Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel (Inventor); Block, Bruce (Inventor); Rubin, Martin (Inventor); Zurbuchen, Thomas (Inventor)

    2013-01-01

    The apparatus introduces a second adjustable resonant point in a QMS at a frequency that is close to a multiple of the fundamental frequency by adjusting driving point impedance characteristics of the QMS. The apparatus measures the first and second resonant point of the QMS to account for changes in the operational characteristics of the QMS.

  18. New Microscopic Mechanism for Secondary Relaxation in Glasses

    SciTech Connect

    Zuriaga, M.; Pardo, L. C.; Tamarit, J. Ll.; Veglio, N.; Barrio, M.; Lunkenheimer, P.; Loidl, A.; Bermejo, F. J.

    2009-08-14

    The dynamics of simple molecular systems showing glassy properties has been explored by dielectric spectroscopy and nuclear quadrupole resonance (NQR) on the halogenomethanes CBr{sub 2}Cl{sub 2} and CBrCl{sub 3} in their low-temperature monoclinic phases. The dielectric spectra display features which correspond to alpha- and beta-relaxation processes, commonly observed in canonical glass formers. NQR experiments, also performed in the ergodic monoclinic phase of CCl{sub 4}, enable the determination of the microscopic mechanism underlying the beta dynamics in these simple model glasses: Molecules that are nonequivalent with respect to their molecular environment perform reorientational jumps at different time scales. Thus our findings reveal another mechanism that can give rise to typical beta-relaxation behavior, raising some doubt about the existence of a universal explanation of this phenomenon.

  19. Effects of charge inhomogeneities on elementary excitations in La2-xSrxCuO₄

    DOE PAGES

    Park, S. R.; Hamann, A.; Pintschovius, L.; Lamago, D.; Khaliullin, G.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.; Reznik, D.

    2011-12-12

    Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La2-xSrxCuO₄ by inelastic neutron scattering. Both our results as well as previously reported angle-dependentmore » momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.« less

  20. Effects of charge inhomogeneities on elementary excitations in La2-xSrxCuO₄

    SciTech Connect

    Park, S. R.; Hamann, A.; Pintschovius, L.; Lamago, D.; Khaliullin, G.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.; Reznik, D.

    2011-12-12

    Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La2-xSrxCuO₄ by inelastic neutron scattering. Both our results as well as previously reported angle-dependent momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.

  1. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    SciTech Connect

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from XEFT predictions to order N3LO.

  2. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  3. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  4. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect

    Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2014-02-15

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  5. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  6. Uranus' (3-0) H2 quadrupole line profiles

    NASA Astrophysics Data System (ADS)

    Trafton, L.

    1987-04-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  7. Super Strong Permanent Magnet Quadrupole for a Linear Collider

    SciTech Connect

    Mihara, Takanori

    2004-02-19

    The field strength generated by permanent magnets has been further extended by the introduction of saturated iron. A permanent magnet quadrupole (PMQ) lens with such saturated iron is one of the candidates for the final focus lens for an e{sup +}e{sup -} Linear Collider accelerator, because of its compactness and low power consumption. The first prototype of the PMQ has been fabricated and demonstrated to have an integrated strength of 28.5T with an overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered: its negative temperature coefficient of field strength and its fixed strength. A thermal compensation material is being tested to cure the first problem. The other problem may be solved by rotating sectioned magnet bricks, but that may lead to movement of the magnetic center and introduction of multipoles beyond some strict requirements.

  8. Nb3Sn Quadrupole Magnets for the LHC IR

    SciTech Connect

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.r.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-08-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC). At present, Nb{sub 3}Sn is the only practical conductor which can meet these requirements. Since Nb{sub 3}Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  9. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  10. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  11. Massive higher spin states in string theory and gravitational quadrupoles

    SciTech Connect

    Giannakis, I. |; Liu, J.T.; Porrati, M. ||

    1999-05-01

    In this paper we study three point functions of the type II superstring involving one graviton and two massive states, focusing in particular on the spin- (7) /(2) fermions at the first mass level. Defining a gravitational quadrupole {open_quotes}{ital h} factor,{close_quotes} we find that the nonminimal interactions of string states in general are parametrized by h{ne}1, in contrast with the preferred field theory value of h=1 (for tree-level unitarity). This difference arises from the fact that consistent gravitational interactions of strings are related to the presence of a complete tower of massive states, not present in the ordinary field theory case. {copyright} {ital 1999} {ital The American Physical Society}

  12. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  13. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  14. Dynamics of [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] by means of {sup 1}H NMR relaxometry and quadrupole relaxation enhancement

    SciTech Connect

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-28

    {sup 1}H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] are presented. Two motional processes have been identified from the {sup 1}H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10{sup −8} s-10{sup −9} s and of about 10{sup −5} s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating {sup 1}H-{sup 14}N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the {sup 14}N nuclei in [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] have been determined. The {sup 1}H-{sup 14}N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as “quadrupole peaks”) has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  15. Production techniques for the Superconducting Super Collider Low Energy Booster quadrupole magnet

    SciTech Connect

    Morrison, M.E.; Behrsing, G.U.; Fulton, R.L.

    1994-07-01

    The manufacturing techniques used for a prototype quadrupole magnet, developed at Lawrence Berkeley Laboratory (LBL) for the Superconducting Super Collider (SSC) Low Energy Booster (LEB), are described. The SSC LEB Ring employs 96 dipoles and 90 quadrupoles connected in series to form the magnetic lattice, requiring the use of a 21.9 mm x 23.0 mm hollow conductor for the quadrupoles. Due to the large conductor size and small bend radii required, development of special fixtures was necessary. A unique coil-forming method with close attention paid to tooling design and special assembly procedures was required to manufacture this prototype to stringent specifications.

  16. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  17. Reconstruction of the number and positions of dipoles and quadrupoles using an algebraic method

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki

    2008-11-01

    Localization of dipoles and quadrupoles is important in inverse potential analysis, since they can effectively express spatially extended sources with a small number of parmeters. This paper proposes an algebraic method for reconstruction of pole positions as well as the number of dipole-quadrupoles without providing an initial parameter guess or iterative computing forward solutions. It is also shown that a magnetoencephalography inverse problem with a source model of dipole-quadrupoles in 3D space is reduced into the same problem as in 2D space.

  18. On the dipole and quadrupole kinematic anisotropy in the brightness of the cosmic background radiation

    SciTech Connect

    De Bernardis, P.; Epifani, M.; Guarini, G.; Masi, S.; Melchiorri, F. )

    1990-04-01

    This paper studies the dipole and quadrupole anisotropy brightness arising from the motion of the observer in the presence of a pure Planckian spectrum and in the case of a submillimeter excess. It is found that the dipole anisotropy is enhanced in the case of the excess measured by the Japanese-U.S. groups, while it is decreased in the case of the excess found by the Canadian group. The quadrupole term is absent in the radio region, while it acquires detectable values in the IR. Comparisons are made with the observational values, and the possibility of observing the quadrupole pattern in the presence of galactic dust contamination is discussed. 15 refs.

  19. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  20. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  1. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  2. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  3. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    SciTech Connect

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-07-15

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling.

  4. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  5. A compact beam focusing and steering element using quadrupoles with independently excited poles

    NASA Astrophysics Data System (ADS)

    Grime, Geoffrey W.

    2013-07-01

    Beam steering elements for accelerator beam transport are conventionally and conveniently incorporated into beamlines by fitting magnetic dipole elements around the vacuum tube of the line. Two steerers in each plane (X and Y) together with a quadrupole doublet constitute a module providing full control of the direction, position and focus of the beam. In some installations however, there may be insufficient space on the beamline to mount separate steerer elements. To provide steering capabilities in such a situation we have used a magnetic quadrupole doublet with the coils of each pole independently excited to synthesise the desired combination of quadrupole, horizontal dipole and vertical dipole fields. This paper describes the quadrupole steerer and its multichannel power supply and presents calculated magnetic field distributions together with raytracing simulation of its performance.

  6. Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

    NASA Astrophysics Data System (ADS)

    Matsuyanagi, Kenichi; Matsuo, Masayuki; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi

    2016-06-01

    We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schrödinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.

  7. Design and operation of a laminar-flow electrostatic-quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-06-20

    This report deals with the design principles involved in the design of a laminar-flow electrostatic-quadrupole-focused acceleration column. In particular, attention will be paid to making the parameters suitable for incorporation into a DC MEQALAC design.

  8. Fission Quadrupole Mass Parameters in HF+BCS and HFB Methods

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Staszczak, A.; Nazarewicz, Witold

    2009-01-01

    The self-consistent Hartree-Fock+BCS and Hartree-Fock-Bogoliubov methods are compared at large nuclear deformations. The calculations are carried out for the fission pathway and quadrupole mass parameter of ^{252}Fm.

  9. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Not Available

    2010-11-29

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  10. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y.

    2010-12-01

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  11. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  12. Quadrupole collectivity in neutron-rich Cd isotopes

    NASA Astrophysics Data System (ADS)

    Bönig, S.; Kröll, Th; Ilieva, S.; Scheck, M.; Is411; Is477; Is524; Miniball Collaborations

    2015-02-01

    The proximity to the closed shells at Z = 50 and N = 82 makes the neutron-rich Cd isotopes a perfect test case for nuclear theories. The energy of the first excited 2+-state in the even 122-128 shows an irregular behaviour as the Cd isotopes exhibit only a slight increase for 122Cd to 126Cd and even a decrease from 126Cd to 128Cd. This anomaly can so far not be reproduced by shell model calculations. Only beyond mean field calculations with a resultant prolate deformation are capable to describe this anomalous behaviour. In order to gain more information about the neutron-rich Cd isotopes a Coulomb excitation experiment was performed with MINIBALL at REX-ISOLDE, CERN. The extracted transition strengths B (E2,0+gs → 2+1) for 122,124,126,128Cd agree with beyond mean field calculations. The spectroscopic quadrupole moments Qs (2+1) are compared with measurements on odd neutron-rich Cd isotopes.

  13. On the formation of the South Pacific quadrupole mode

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Wang, Faming

    2016-08-01

    The formation process of the South Pacific (SP) quadrupole (SPQ) mode was investigated in this study based on observations and reanalysis data. The SPQ is the dominant mode of the sea surface temperature (SST)-surface wind covariability in the SP after removing the ENSO-related signals. The positive phase of the SPQ is characterized by a warm SST anomaly (SSTA) west of the South American coast, a cool SSTA in its southwest, a positive SSTA southeast of New Zealand, and a negative SSTA off the southeast coast of Australia, overlain by cyclonic wind anomalies. The anomalous cyclonic winds weaken the mean southeast trade winds in the southeast SP and the westerlies in the high latitudes of the SP, increasing the SSTAs at the two positive poles through decreased evaporation and latent heat flux (LHF) loss. The southeast wind anomalies advect dry and cold air to the negative pole in the central SP, which reduces the SSTA there by increasing the LHF loss. Off the southeast coast of Australia, the southwest wind anomalies induce equatorward Ekman currents and advect cold water. The resulting oceanic horizontal advection is the main contributor to the negative SSTAs there. In addition to the above processes, cloud cover change can enhance the initial SSTAs in the southeast SP by affecting shortwave radiation. The decay of the SPQ is mainly due to LHF changes.

  14. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    SciTech Connect

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.

  15. Effects of Coulomb quadrupole excitation in heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.

    2016-09-01

    For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.

  16. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  17. Modal response of 4-rod type radio frequency quadrupole linac.

    PubMed

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  18. Modal response of 4-rod type radio frequency quadrupole linac

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  19. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  20. A toroidal trap for cold {}^{87}{Rb} atoms using an rf-dressed quadrupole trap

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Mishra, S. R.; Ram, S. P.; Tiwari, S. K.; Rawat, H. S.

    2016-04-01

    We demonstrate the trapping of cold {}87{Rb} atoms in a toroidal geometry using a radio frequency (rf) dressed quadrupole magnetic trap formed by superposing a strong rf-field on a quadrupole trap. This rf-dressed quadrupole trap has the minimum potential away from the quadrupole trap centre on a circular path which facilitates trapping in toroidal geometry. In these experiments, the laser cooled atoms were first trapped in a quadrupole trap, then cooled evaporatively using a weak rf-field, and finally trapped in an rf-dressed quadrupole trap. The radius of the toroid could be varied by varying the frequency of the dressing rf-field. It has also been demonstrated that a single rf source and an antenna can be used for the rf-evaporative cooling as well as for the rf-dressing of atoms. The atoms trapped in the toroidal trap may have applications in the realization of an atom gyroscope as well as in studying the quantum gases in low dimensions.

  1. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  2. Resonance conditions

    NASA Astrophysics Data System (ADS)

    Rebusco, P.

    2005-11-01

    Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we show which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

  3. Contemporary research with nuclear resonance fluorescence at the S-DALINAC

    SciTech Connect

    Zweidinger, M.; Beck, T.; Beller, J.; Gayer, U.; Mertes, L.; Pai, H.; Pietralla, N.; Ries, P.; Romig, C.; Werner, V.

    2015-02-24

    In the last decades many nuclear resonance fluorescence experiments aiming for low-lying dipole excitations were performed at the Darmstadt High Intensity Photon Setup at S-DALINAC facility. On the electric dipole side, quadrupole-octupole coupled states and the Pygmy Dipole Resonance are of particular interest. On the magnetic dipole side, the so-called scissors mode is in the focus of interest. Furthermore, using the method of resonant self absorption, the decay behavior of J{sup π} = 1{sup −} states was investigated in {sup 140}Ce.

  4. Autostereogram resonators

    NASA Astrophysics Data System (ADS)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  5. Two-point anisotropies in WMAP and the cosmic quadrupole

    NASA Astrophysics Data System (ADS)

    Gaztañaga, E.; Wagg, J.; Multamäki, T.; Montaña, A.; Hughes, D. H.

    2003-11-01

    Large-scale modes in the temperature anisotropy power spectrum Cl measured by the Wilkinson Microwave Anisotropy Probe (WMAP) seem to have lower amplitudes (C2, C3 and C4) than that expected in the so-called concordance Λ-cold dark matter (ΛCDM) model. In particular, the quadrupole C2 is reported to have a smaller value than allowed by cosmic variance. This has been interpreted as a possible indication of new physics. In this paper, we re-analyse the WMAP data using the two-point angular correlation and its higher-order moments. This method, which requires a full covariance analysis, is more direct and provides better sampling of the largest modes than the standard harmonic decomposition. We show that the WMAP data are in good agreement (~=30 per cent probability) with a ΛCDM model when the WMAP data are considered as a particular realization drawn from a set of realistic ΛCDM simulations with the corresponding covariance. This is also true for the higher-order moments, shown here up to sixth order, which are consistent with the Gaussian hypothesis. The sky mask plays a major role in assessing the significance of these agreements. We recover the best-fitting model for the low-order multipoles based on the two-point correlation with different assumptions for the covariance. Assuming that the observations are a fair sample of the true model, we find C2= 123 +/- 233, C3= 217 +/- 241 and C4= 212 +/- 162 (in μK2). The errors increase by about a factor of 5 if we assume the ΛCDM model. If we exclude the Galactic plane |b| < 30 from our analysis, we recover very similar values within the errors (i.e. C2= 172, C3= 89, C4= 129). This indicates that the Galactic plane is not responsible for the lack of large-scale power in the WMAP data.

  6. Disruption of planetary orbits through evection resonance with an external companion: circumbinary planets and multiplanet systems

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2016-07-01

    Planets around binary stars and those in multiplanet systems may experience resonant eccentricity excitation and disruption due to perturbations from a distant stellar companion. This `evection resonance' occurs when the apsidal precession frequency of the planet, driven by the quadrupole associated with the inner binary or the other planets, matches the orbital frequency of the external companion. We develop an analytic theory to study the effects of evection resonance on circumbinary planets and multiplanet systems. We derive the general conditions for effective eccentricity excitation or resonance capture of the planet as the system undergoes long-term evolution. Applying to circumbinary planets, we show that inward planet migration may lead to eccentricity growth due to evection resonance with an external perturber, and planets around shrinking binaries may not survive the resonant eccentricity growth. On the other hand, significant eccentricity excitation in multiplanet systems occurs in limited parameter space of planet and binary semimajor axes, and requires the planetary migration to be sufficiently slow.

  7. Two Alternate High Gradient Quadrupoles; An Upgraded Tevatron IR and A"Pipe" Design

    SciTech Connect

    McInturff, A.D.; Oort, J.M. van; Scanlan, R.M.

    1995-04-01

    With the U.S. cancellation of the SSC project, the only large approved hadron accelerator project is CERN's LHC. One of the more critical elements in the performance of a collider is the quadrupole lens at the beam collision points. These quadrupoles, usually referred to as the 'insertion quads' normally form a set of triplets around the interaction region. Their focal power directly affects the luminosity available at the crossing point In order to achieve as high a gradient as possible, the CERN design team has proposed a very efficient high gradient quadrupole which is based on a graded four-layer winding structure. At Fermilab's Tevatron, an upgraded two layer winding quadrupole has been in operation since 1989, and has provided a 50% higher gradient than its predecessor. The quadrupole was basically state of the art when it was designed in 1985. Since then however, improvements have been made in cabling, conductor perfonnance, etc. Naturally, operation of a modernized version of this .design can provide higher capabilities. This improved two layer design can serve as an alternative to the more intricate graded four layer design now envisioned for the LHC, provided it can obtain the proposed gradient. A high gradient quadrupole with a 'pipe' layout can be considered as a possible candidate for future large collider insertion regions. It is possible to fine-tune the design to obtain a good field-quality, the conductor is well cooled in case of a large radiation heat load, and the overall structure is smaller than a conventional quadrupole with a comparable field gradient.

  8. Fabrication and Test of 90-mm Nb3Sn Quadrupole Model Based on Dipole-type Collar

    SciTech Connect

    Bossert, R.; Andreev, N.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, M.; Velev, G.; Zlobin, A.V.; /Fermilab

    2010-07-29

    A series of 90-mm TQC quadrupole models with a collar-based mechanical structure has been fabricated and tested within the framework of the US-LHC Accelerator Research Program (LARP) using quadrupole-symmetric stainless steel collar laminations. This paper describes the design features, construction and test of TQC02Eb, the first TQC made with dipole-type collar and collaring techniques. Magnet test includes quench performance and field quality measurements at 4.5 and 1.9 K. Results of model performance for TQC quadrupoles based on dipole-type and quadrupole-type collars are compared and discussed.

  9. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  10. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  11. Resonant diffraction of synchrotron radiation in rubidium dihydrophosphate crystals

    SciTech Connect

    Mukhamedzhanov, E. Kh.; Kovalchuk, M. V.; Borisov, M. M.; Ovchinnikova, E. N.; Troshkov, E. V.; Dmitrienko, V. E.

    2010-03-15

    Purely resonant Bragg reflections 006, 55bar 0, and 666 in a rubidium dihydrophosphate (RbH{sub 2}PO{sub 4}) crystal at the K edge of rubidium have been experimentally and theoretically investigated. These reflections remain forbidden when the resonant dipole-dipole (E1E1) contribution to the resonant atomic factor is taken into account; they may be due to the dipole-quadrupole (E1E2) transitions as well as to the anisotropy atomic factor, which is caused by thermal atomic displacements (thermally induced contribution) and/or local jumps of hydrogen atoms. A numerical simulation showed that, at room temperature (experimental conditions), the thermally induced contribution to the 'forbidden' reflections is dominant.

  12. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy

    SciTech Connect

    Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R.

    2012-11-28

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  13. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-01

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  14. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy.

    PubMed

    Bernadotte, Stephan; Atkins, Andrew J; Jacob, Christoph R

    2012-11-28

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  15. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    SciTech Connect

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  16. Design desiderata for a laminar flow quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-01-01

    The Pierce design acceleration column has been widely used to accelerate high current beams. It operates well in the space charge limited condition, and will produce beams with a temperature comparable with that of the source. It is restricted in current density, however, by the Child-Langmuir relation. If the ion source itself is not the limiting constraint, then the achievable current density is limited by the electric field at which sparking occurs. One sees clearly that the achievable current density decreases as one goes to higher voltages. This can be easily overcome by using electrostatic quadrupole focusing in the acceleration column. Now it can be shown that the space charge limited current density in a constant energy quadrupole transport channel is greater than that if one assumes that the electric fields on the quadrupoles can be as high in the ion source extraction electric fields. In practice, this is a conservative assumption. It follows that if the beam can be transported a large distance at the C-L current density limit, it can surely be accelerated as it goes from quadrupole to quadrupole. Hence, the necessity of having a high gradient acceleration column goes away.

  17. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  18. K{beta} resonant x-ray emission spectra in MnF{sub 2}

    SciTech Connect

    Taguchi, M.; Parlebas, J. C.; Uozumi, T.; Kotani, A.; Kao, C.-C.

    2000-01-15

    We report experimental and theoretical results on Mn K{beta} resonant x-ray emission spectra (K{beta} RXES) at the pre-edge region of K-edge x-ray absorption spectroscopy in a powdered MnF{sub 2} sample. The experimental results are studied theoretically in terms of coherent second-order optical process, using a MnF{sub 6}{sup -4} cluster model with the effects of intra-atomic multiplet coupling and interatomic hybridization in the space of three configurations and taking into account both the Mn 1s-3d quadrupole excitation and the Mn 1s-4p dipole excitation. The agreement between theory and experiment is good. Moreover, we show that if the sample is a single crystal the resonant x-ray emission spectroscopy caused by the quadrupole excitation has a strong sensitivity to the angle of the incident photon. (c) 2000 The American Physical Society.

  19. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  20. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ∼1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  1. Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates

    SciTech Connect

    Kasamatsu, Kenichi; Tsubota, Makoto; Ueda, Masahito

    2004-04-01

    We theoretically investigate quadrupolar collective excitations in two-component Bose-Einstein condensates and their nonlinear dynamics associated with harmonic generation and mode coupling. Under the Thomas-Fermi approximation and the quadratic polynomial ansatz for density fluctuations, the linear analysis of the superfluid hydrodynamic equations predicts excitation frequencies of three normal modes constituted from monopole and quadrupole oscillations, and those of three scissors modes. These six modes are bifurcated into in-phase and out-of-phase modes by the intercomponent interaction, yielding the nonlinear dynamics that are absent in a single-component condensate. We obtain analytically the resonance conditions for the second-harmonic generation in terms of the trap aspect ratio and the strength of intercomponent interaction. The numerical simulation of the coupled Gross-Pitaevskii equations vindicates the validity of the analytical results and reveals the dynamics of the second-harmonic generation and nonlinear mode coupling that lead to nonlinear oscillations of the condensate with damping and recurrence reminiscent of the Fermi-Pasta-Ulam problem.

  2. Test results of the LARP Nb$_3$Sn quadrupole HQ03a

    DOE PAGES

    DiMarco, J.; G. Ambrosio; Chlachidze, G.; Bossert, R.; Holik, T.; Orris, D.; Stoynev, S.; Strauss, T.; Sylvester, C.; Tartaglia, M.; et al

    2016-03-09

    The US LHC Accelerator Research Program (LARP) has been developing $Nb_3Sn$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a testmore » results, including training, mechanical performance, field quality and quench studies.« less

  3. Effects of Large Nuclear Quadrupoles on Dielectric Properties of Glasses at Very Low Temperatures

    NASA Astrophysics Data System (ADS)

    Luck, A.; Fleischmann, A.; Reiser, A.; Enss, C.

    2014-12-01

    The universal behaviour of amorphous solids at low temperatures, governed by atomic tunneling systems as described by the standard tunneling model, has long been a generally accepted fact. In the last years, however, measurements of dielectric two-pulse polarization echoes have revealed that nuclear quadrupole moments involved in atomic tunneling systems can cause specific material-dependent effects in magnetic fields. We have performed measurements of the dielectric properties of the two multicomponent glasses N-KZFS11 and HY-1, containing several percent of tantalum oxide and holmium oxide respectively. As 181Ta and 165Ho both carry very large nuclear quadrupole moments, these glasses are ideal candidates to study the influence of nuclear quadrupole moments on the properties of glasses at very low temperatures. Our measurements not only show unique dielectric behaviour in both glasses, but also differ significantly from various predictions of the standard tunneling model.

  4. Calculations and measurements for the SLAC SLC positron return quadrupole magnet

    SciTech Connect

    Early, R.A.; Cobb, J.K.

    1986-09-01

    The three-dimensional magnetostatic computer program TOSCA, running on the NMFECC CRAY X-MP computer, was used to compute the integral of gradient length for the SLC type QT4 positron return line quadrupole magnet. Since the bore diameter of the magnet is 12.7 centimeters, and the length is only 10.16 centimeters, three dimensional effects are important. POISSON calculations were done on a two-dimensional model to obtain magnetic shimming which assured enough positive twelve pole to offset end effects, while TOSCA was used to estimate the effective length of the quadrupole. No corrections were required on the magnet as built. Measurements showed that the required integrated gradient was achieved for the given current, and that integrated higher harmonics were generally less than 0.1% of the quadrupole component.

  5. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    NASA Astrophysics Data System (ADS)

    Paar, V.; Brant, S.; Canto, L. F.; Leander, G.; Vouk, M.

    1982-04-01

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  6. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  7. Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

    NASA Astrophysics Data System (ADS)

    Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2015-12-01

    The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.

  8. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-05-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  9. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  10. Triaxial rotor model description of quadrupole interference in collective nuclei: The P3 term

    NASA Astrophysics Data System (ADS)

    Allmond, J. M.; Wood, J. L.; Kulp, W. D.

    2009-08-01

    The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the P3 term, P3=<01||T̂(E2)||21><21||T̂(E2)||22><22||T̂(E2)||01>, which is a standard measure of quadrupole interference in collective nuclei. It is shown that the model naturally explains nuclei with anomalous signs for their P3 terms. Measurements of Q(21) in multiple-step Coulomb excitation can be significantly dependent on the sign of this term. The example of Pt194 is considered.

  11. Degree of accuracy in determining the nuclear electric quadrupole moment of radium

    SciTech Connect

    Bieron, Jacek; Pyykkoe, Pekka

    2005-03-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the atomic expectation values responsible for the hyperfine splittings of the 7s7p {sup 3}P{sub 1,2} and {sup 1}P{sub 1} levels of radium. Calculated electric field gradients, together with the experimental electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q({sup 223}Ra) of 1.21(0.03) barn. This value is in good agreement with the semiempirical determination based on neutral radium hyperfine and fine structure, but differs from the latest result from an alkali-like radium ion.

  12. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  13. Quadrupole moments of some doubly-even molibden nuclei and the onset of collectivity

    SciTech Connect

    Turkan, N.; Ibis, I.; Maras, I.

    2012-07-15

    A good description of the quadrupole moments is obtained by investigating {sup 94,96,98,100,102,104,106,108}Mo isotopes in terms of the interacting boson model. After the positiveparity states and electromagnetic-transition rates B(E2) of even-mass Mo nuclei were calculated it was seen that there is a good agreement between the obtained results and some previous experimental data. At the end of the quadrupole moment calculations it was proved that the results agree well with the previous experimental data.

  14. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  15. Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field

    SciTech Connect

    Fonseca, I. C.; Bakke, K.

    2015-06-15

    The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.

  16. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  17. Quadrupole and hexadecapole couplings for {sup 127}I in Li{sup 127}I

    SciTech Connect

    Thyssen, Jorn; Schwerdtfeger, Peter; Bender, Michael; Nazarewicz, Witold; Semmes, Paul B.

    2001-02-01

    The quadrupole and hexadecapole coupling constants for {sup 127}I in LiI were determined from relativistic Dirac-Fock electronic structure and self-consistent nuclear structure calculations. While the calculated quadrupole coupling constant agrees with the experimental value, the predicted hexadecapole coupling constant ranges between +6 and +20 mHz, which is of opposite sign and about three orders of magnitude smaller than the value deduced from recent high resolution radio-frequency molecular beam measurements [J. Cederberg, D. Olson, A. Nelson, D. Laine, P. Zimmer, M. Welge, M. Feig, T. Ho''ft, and N. London, J. Chem. Phys. 110, 2431 (1999)].

  18. Quadrupole and hexadecapole couplings for 127I in Li127I

    NASA Astrophysics Data System (ADS)

    Thyssen, Jørn; Schwerdtfeger, Peter; Bender, Michael; Nazarewicz, Witold; Semmes, Paul B.

    2001-02-01

    The quadrupole and hexadecapole coupling constants for 127I in LiI were determined from relativistic Dirac-Fock electronic structure and self-consistent nuclear structure calculations. While the calculated quadrupole coupling constant agrees with the experimental value, the predicted hexadecapole coupling constant ranges between +6 and +20 mHz, which is of opposite sign and about three orders of magnitude smaller than the value deduced from recent high resolution radio-frequency molecular beam measurements [J. Cederberg, D. Olson, A. Nelson, D. Laine, P. Zimmer, M. Welge, M. Feig, T. Höft, and N. London, J. Chem. Phys. 110, 2431 (1999)].

  19. 3 mm Anisotropy Measurement: On the Quadrupole Component in theCosmic Background Radiation

    SciTech Connect

    Lubin, Philip M.; Epstein, Gerald L.; Smoot, George F.

    1982-11-01

    We have mapped the large-scale anisotropy in the cosmic background radiation at 3 mm wavelength using a liquid-helium-cooled balloon-borne radiometer sensitive enough to detect the dipole in one gondola rotation (1 minute). Statistical errors on the dipole and quadrupole components are below 0.1 mK with less than 0.1 m K galactic contribution. We find a dipole consistent with previous measurements but disagree with recent quadrupole reports. The measurement is also useful in searching for spectral distortions.

  20. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  1. Competition between Quadrupole and Magnetic Kondo Effects in Non-Kramers Doublet Systems

    NASA Astrophysics Data System (ADS)

    Kusunose, Hiroaki; Onimaru, Takahiro

    2015-03-01

    We discuss possible competition between magnetic and quadrupole Kondo effects in non-Kramers doublet systems in cubic symmetry. The quadrupole Kondo effect leads to non-Fermi-liquid (NFL) ground state, while the magnetic one favors ordinary Fermi-liquid (FL) ground state. In terms of the j-j coupling scheme, we argue that the orbital fluctuation must develop in the vicinity of the NFL-FL boundary. A change of temperature dependence of the f-electron entropy in both the FL and NFL regimes is demonstrated by the Wilson's numerical renormalization-group (NRG) method on the basis of the extended two-channel Kondo exchange model. We present implications to PrT2X20 (T=Ti, V, Ir; X=Al, Zn) systems which exhibit both quadrupole ordering and peculiar superconductivity. We discuss how the magnetic field lifts the non-Kramers degeneracy. Our model also represents the alternative FL state accompanied by a free magnetic spin, as a consequence of stronger competition between the magnetic and the quadrupole Kondo effects.

  2. Quadrupole moments of odd-A 53-63Mn: Onset of collectivity towards N = 40

    NASA Astrophysics Data System (ADS)

    Babcock, C.; Heylen, H.; Bissell, M. L.; Blaum, K.; Campbell, P.; Cheal, B.; Fedorov, D.; Garcia Ruiz, R. F.; Geithner, W.; Gins, W.; Day Goodacre, T.; Grob, L. K.; Kowalska, M.; Lenzi, S. M.; Maass, B.; Malbrunot-Ettenauer, S.; Marsh, B.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Rossel, R.; Rothe, S.; Sánchez, R.; Tsunoda, Y.; Wraith, C.; Xie, L.; Yang, X. F.

    2016-09-01

    The spectroscopic quadrupole moments of the odd-even Mn isotopes between N = 28 and N = 38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE's cooler and buncher (ISCOOL) was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1 νg9/2 and 2 νd5/2 orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N = 36 onwards. Specifically, the inclusion of the 2 νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N = 40 and Z = 28, leading to an increase in deformation above N = 36.

  3. THE FORTUITOUS LATITUDE OF THE PIERRE AUGER OBSERVATORY AND TELESCOPE ARRAY FOR RECONSTRUCTING THE QUADRUPOLE MOMENT

    SciTech Connect

    Denton, Peter B.; Weiler, Thomas J. E-mail: tom.weiler@vanderbilt.edu

    2015-03-20

    Determining anisotropies in the arrival directions of cosmic rays at the highest energy is an important task in astrophysics. It is common and useful to partition the sky into spherical harmonics as a measure of anisotropy. The two lowest nontrivial spherical harmonics, the dipole and the quadrupole, are of particular interest, since these distributions encapsulate a dominant single source and a plane of sources, as well as offering relatively high statistics. The best experiments for the detection of ultra high energy cosmic rays currently are all ground-based, with highly nonuniform exposures on the sky resulting from the fixed experimental locations on the Earth. This nonuniform exposure increases the complexity and error in inferring anisotropies. It turns out that there is an optimal latitude for an experiment at which nonuniform exposure does not diminish the inference of the quadrupole moment. We derive the optimal latitude and find that (presumably by a fortuitous coincidence) this optimal latitude runs through the largest cosmic ray experiment, the Pierre Auger Observatory (PAO) in the Southern Hemisphere, and close to the largest cosmic ray experiment in the Northern Hemisphere, the Telescope Array (TA). Consequently, assuming a quadrupole distribution, PAO and TA can reconstruct the cosmic ray quadrupole distribution to a high precision without concern for their partial sky exposure.

  4. Recent approaches to quadrupole collectivity: models, solutions and applications based on the Bohr hamiltonian

    NASA Astrophysics Data System (ADS)

    Buganu, Petricǎ; Fortunato, Lorenzo

    2016-09-01

    We review and discuss several recent approaches to quadrupole collectivity and developments of collective models and their solutions with many applications, examples and references. We focus in particular on analytic and approximate solutions of the Bohr hamiltonian of the last decade, because most of the previously published material has been already reviewed in other publications.

  5. Spin-Orbit Activated Interchannel Coupling Effect in Dipole and Quadrupole Photoionization

    NASA Astrophysics Data System (ADS)

    Kumar, S. Sunil; Deschmukh, P. C.; Banerjee, T.; Manson, S. T.

    2008-05-01

    Spin-orbit activated interchannel coupling has been found to affect photoelectron parameters in both the dipole and quadrupole manifolds [1-3]. This effect has been reported in the dipole photoionization parameters of 3d subshells of Xe [1], Ba [1, 3] and Cs [1, 3] and quadrupole spin-polarization parameters of Xe 3d [2]. In the present work, dipole and quadrupole photoionization from 4d and 4p subshells of Xe and 5d and 5p subshells of Rn have been investigated. The effect is significant in dipole photoionization of Xe 4d and Rn 5d, and in quadrupole photoionization of Xe 4p and of Rn 5p states. [1] M. Ya. Amusia, L. V. Chernysheva, S. T. Manson, A. M. Msezane, and V. Radojevic, Phys. Rev. Lett. 88 093002 (2002). [2] M. Ya. Amusia, N. A. Cherepkov, L. V. Chernysheva, Z. Felfli and A. Z. Msezane, J. Phys. B 38 1133 (2005). [3] T. Richter, E. Heinecke, P. Zimmermann, K. Godehusen, M. Yalcinkaya, D. Cubaynes, and M. Meyer, Phys. Rev. Lett. 98 143002 (2007).

  6. Analysis of magnetic measurements of short model quadrupoles for the LHC low-b insertions

    SciTech Connect

    Bossert, R.; and others

    1998-07-01

    The first two short models of the MQXB quadrupole magnets for the LHC interaction regions have been built and tested at Fermilab. In this paper we present the magnetic field measurement results and compare them with expectations based on as-built dimensional parameters and with a preliminary table of field quality requirements.

  7. Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kovach, P.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore,, J.; Nobreaga, F.; Novitsky, I.; Peggs, S.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2008-08-17

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb{sub 3}Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  8. Classical Monte Carlo Study for Antiferro Quadrupole Orders in a Diamond Lattice

    NASA Astrophysics Data System (ADS)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2016-09-01

    We investigate antiferro quadrupole orders in a diamond lattice under magnetic fields by Monte Carlo simulations for two types of classical effective models. One is an XY model with Z3 anisotropy, and the other is a two-component ϕ4 model with a third-order anisotropy. We confirm that the universality class of the zero-field transition is that for the three-dimensional XY model. Magnetic field corresponds to a Z3 field in the effective model, and under this field, we find that collinear and canted antiferro-quadrupole orders compete. Each phase is characterized by symmetry breaking in the sector of (sublattice Z2) otimes (reflection Z2 for the order parameter). When Z3 anisotropy and magnetic field vary, it turns out that this system is a good playground for various multicritical points; bicritical and tetracritical points emerge in a finite field. Another important finding is about the scaling of parasitic ferro quadrupole order at the zero-field critical point. This is the secondary order parameter induced by the primary antiferro order, and its critical exponent β' = 0.815 clearly differs from the expected value that is twice the value for the primary order parameter. The corresponding correlation length exponent is also different, ν' = 0.597(12). We also discuss relation of the present effective quadrupole models with the 3-state Potts model as well as implication to understanding of orbital orders in Pr-based 1-2-20 compounds.

  9. 57Fe quadrupole splitting and isomer shift in various oxyhemoglobins: study using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Berkovsky, A. L.; Kumar, A.; Kundu, S.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2010-04-01

    A comparative study of normal human, rabbit and pig oxyhemoglobins and oxyhemoglobin from patients with chronic myeloleukemia and multiple myeloma using Mössbauer spectroscopy with a high velocity resolution demonstrated small variations of the 57Fe quadrupole splitting and isomer shift. These variations may be a result of small structural differences in the heme iron stereochemistry of various hemoglobins.

  10. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  11. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  12. Joint and angle-covariant spin measurements with a quadrupole magnetic field

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1994-01-01

    We study a Stern-Gerlach type setup, with a quadrupole magnetic field, for neutral particles of arbitrary spin. The Hamiltonian is of a form proposed for joint measurements of the incompatible observables. The measurement results are discussed, showing the limitation of such Hamiltonians. Some remarks are made on the relevance of covariance as a criterion for measurement schemes.

  13. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    SciTech Connect

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  14. Calculation of tune vs amplitudes for the new low beta quadrupoles

    SciTech Connect

    Visnjic, V.V.

    1990-07-18

    I calculate the tune as function of amplitude due to higher multipole errors (in particular the dodecapole) in the new low beta quadrupoles. The results indicate that these multipoles are not expected to give rise to serious problems for the next Tevatron Collide run with two interaction regions.

  15. Coil Creep and Skew-Quadrupole Field Components in the Tevatron

    SciTech Connect

    Annala, G.; Harding, D.J.; Syphers, M.J.; /Fermilab

    2011-07-11

    During the start-up of Run II of the Tevatron Collider program, several issues surfaced which were not present, or not seen as detrimental, during Run I. These included the repeated deterioration of the closed orbit requiring orbit smoothing every two weeks or so, the inability to correct the closed orbit to desired positions due to various correctors running at maximum limits, regions of systematically strong vertical dipole corrections, and the identification of very strong coupling between the two transverse degrees-of-freedom. It became apparent that many of the problems being experienced operationally were connected to a deterioration of the main dipole magnet alignment, and remedial actions were undertaken. However, the alignment alone was not enough to explain the corrector strengths required to handle transverse coupling. With one exception, strong coupling had generally not been an issue in the Tevatron during Run I. Based on experience with the Main Ring, the Tevatron was designed with a very strong skew quadrupole circuit to compensate any quadrupole alignment and skew quadrupole field errors that might present themselves. The circuit was composed of 48 correctors placed evenly throughout the arcs, 8 per sector, evenly placed in every other cell. Other smaller circuits were installed but not initially needed or commissioned. These smaller circuits were composed of individual skew quadrupole correctors on either side of the long straight sections. These circuits were tuned by first bringing the horizontal and vertical tunes near each other. The skew quadrupoles were then adjusted to minimize tune split, usually to less than 0.003. Initially, the main skew quad circuit (designated T:SQ) could accomplish this global decoupling with only 4% of its possible current, and the smaller circuits were not required at all. The start-up of Run Ib was complicated by what was later discovered to be a rolled triplet quadrupole magnet in one of the Interaction Regions

  16. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    SciTech Connect

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  17. The magnetic properties of the SLC intersection region superconducting quadrupole triplets

    SciTech Connect

    McInturff, A.D.; Carson, J.A.; Fisk, H.E.; Erickson, R.A.

    1987-09-25

    The measured magnetic field parameters of the quadrupoles which comprise the final triplet lens system for the SLAC Linear Collider intersection region are presented here. The minimum design gradient specifications for these quadrupoles are 1.7T/cm at 4.6K and 1.6T/cm at 4.6K in a 0.6T external solenoidal field. These gradients are about three times larger than those available with the conventional iron/copper quadrupoles now used in the SLC. Superconducting quadrupoles of two lengths have been specified for the SLC triplets. The effective magnetic length of type Q/sub 1/ is 66.498 +- 0.305cm and of Q/sub 2/ is 121.106 +- 0.61cm. The superconducting performance characteristics of the quadrupoles that have been measured are: maximum critical current as a function of bath temperature, rate of change of magnetic field, and as a percentage of the ''short sample''. ''Short sample'' performance is defined as the current reached by the cable in a perpendicular magnetic field equal to the peak field in the winding at bath temperature. The maximum gradient achieved during testing was 2.04T/cm (4.25K) and 2.07T/cm (3.2K). This represented 95% of the strand critical current value. The magnetic length of the first Q/sub 2/ was measured to be 120.85 +- .1 cm. The Fourier harmonic coefficients of the magnetic field were measured as a function of current and are reported. 3 refs., 5 figs., 7 tabs.

  18. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  19. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  20. Multipole plasmon resonances in self-assembled metal hollow-nanospheres.

    PubMed

    Yin, Jun; Zang, Yashu; Xu, Binbin; Li, Shuping; Kang, Junyong; Fang, Yanyan; Wu, Zhihao; Li, Jing

    2014-04-21

    Recently, multipole plasmonic mode resonances in metal hollow structures, such as dipole, quadrupole, and octupole modes, have been widely investigated by researchers with the aim for potential applications in bio-sensing, fluorescence, nanolasers or nonlinear nano-photonics. Here, in this work, the multipole plasmon resonances in self-assembled metal hollow-nanospheres (HNSs) are theoretically and experimentally demonstrated and the hot spots originating from the higher order mode plasmonic resonance and interparticle coupling effect are proposed to be used for Raman scattering enhancements. Dipole, quadrupole, octupole and hexadecapole mode plasmonic resonances were clearly resolved in the extinction spectra of these Ag HNS arrays showing good agreement with the theoretical simulation results. Strong regular hot spots were obtained around the surface and in the gaps of the Ag HNSs through the higher order mode plasmonic resonances and corresponding interparticle coupling effect between the HNSs. Maximum local field intensity was accomplished by optimizing the size of as well as the coupling distance between the HNSs and then it was applied to SERS sensing. Raman mapping also demonstrated these self-assembled plasmonic cavity arrays to be a stable and uniform SERS-active substrate.

  1. Beam engineering for selective and enhanced coupling to multipolar resonances

    NASA Astrophysics Data System (ADS)

    Das, Tanya; Iyer, Prasad P.; DeCrescent, Ryan A.; Schuller, Jon A.

    2015-12-01

    Multipolar electromagnetic phenomena in subwavelength resonators are at the heart of metamaterial science and technology. In this Rapid Communication, we demonstrate selective and enhanced coupling to specific multipole resonances via beam engineering. We first derive an analytical method for determining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique, we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. This work enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  2. Resonant X-ray emission with a standing wave excitation

    PubMed Central

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  3. Resonant X-ray emission with a standing wave excitation.

    PubMed

    Ruotsalainen, Kari O; Honkanen, Ari-Pekka; Collins, Stephen P; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

  4. Electron spin echo envelope modulation of molecular motions of deuterium nuclei.

    PubMed

    Syryamina, V N; Maryasov, A G; Bowman, M K; Dzuba, S A

    2015-12-01

    Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy is a powerful technique for the study of hyperfine interactions between an unpaired electron and nearby nuclei in solids, and is employed in quantitative structural studies. Here, we describe the use of ESEEM to study the slow motion of deuterium nuclei using their nuclear quadrupole resonance (NQR) line shapes. Two ESEEM techniques were employed: the conventional three-pulse ESEEM experiment, π/2 - τ - π/2 - T- π/2 - τ - echo, and the four-pulse ESEEM, π/2 - τ - π/2 - T/2 - π - T/2 - π/2 - τ - echo, with the time variable T scanned in both cases. The nitroxide free radical 4-tert-butyliminomethyl-2,2,5,5-tetramethyl(d12)-3-imidazoline-1-oxyl with four deuterated methyl groups was investigated in a glassy ortho-terphenyl matrix over a wide temperature range. It was shown that four-pulse ESEEM allowed measurement of the nearly pure (2)H NQR line shape. Between 90K and 120K, the ESEEM spectra change drastically. At low temperatures, four-pulse ESEEM spectra show a Pake-like pattern, which evolves into a single line at higher temperatures, which is typical for NQR of rotating methyl CD3 groups. Comparison with literature data on NQR allows estimation of the reorientation rate, k. At ∼100K, where the spectral changes are most pronounced, k was found to be ∼10(5)s(-1). The spectral linewidths for the three-pulse ESEEM were found to decrease similarly with increasing temperature; so the three-pulse technique is also capable to detect motion of this type. The ESEEM approach, along with site-directed spin labeling, may be useful for detection of motional transitions near the spin labels in biological systems, when information on motion is required in a wide temperature range. PMID:26583529

  5. Electron spin echo envelope modulation of molecular motions of deuterium nuclei

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Maryasov, A. G.; Bowman, M. K.; Dzuba, S. A.

    2015-12-01

    Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy is a powerful technique for the study of hyperfine interactions between an unpaired electron and nearby nuclei in solids, and is employed in quantitative structural studies. Here, we describe the use of ESEEM to study the slow motion of deuterium nuclei using their nuclear quadrupole resonance (NQR) line shapes. Two ESEEM techniques were employed: the conventional three-pulse ESEEM experiment, π/2 - τ - π/2 - T- π/2 - τ - echo, and the four-pulse ESEEM, π/2 - τ - π/2 - T/2 - π - T/2 - π/2 - τ - echo, with the time variable T scanned in both cases. The nitroxide free radical 4-tert-butyliminomethyl-2,2,5,5-tetramethyl(d12)-3-imidazoline-1-oxyl with four deuterated methyl groups was investigated in a glassy ortho-terphenyl matrix over a wide temperature range. It was shown that four-pulse ESEEM allowed measurement of the nearly pure 2H NQR line shape. Between 90 K and 120 K, the ESEEM spectra change drastically. At low temperatures, four-pulse ESEEM spectra show a Pake-like pattern, which evolves into a single line at higher temperatures, which is typical for NQR of rotating methyl CD3 groups. Comparison with literature data on NQR allows estimation of the reorientation rate, k. At ∼100 K, where the spectral changes are most pronounced, k was found to be ∼105 s-1. The spectral linewidths for the three-pulse ESEEM were found to decrease similarly with increasing temperature; so the three-pulse technique is also capable to detect motion of this type. The ESEEM approach, along with site-directed spin labeling, may be useful for detection of motional transitions near the spin labels in biological systems, when information on motion is required in a wide temperature range.

  6. Static quadrupole moment of high-spin isomers in the doubly-odd {sup 214}Fr nucleus

    SciTech Connect

    Neyens, G.; Van Asbroeck, I.; Coussement, R.

    1995-06-01

    We have determined the spectroscopic quadrupole moment of two high-spin isomers ({ital I}=11 {h_bar} and {ital I}=32 {h_bar}) which have recently been identified in the doubly-odd {sup 214}Fr nucleus. The data have been extracted from a series of former level mixing spectroscopy (LEMS) measurements which had been performed to measure quadrupole moments of high-spin isomers in {sup 211,212,213}Fr isotopes. The quadrupole frequencies were measured in natural and enriched poly- and single-crystalline T1 at different temperatures.

  7. Quadrupole Strong Focusing for Transport of Space-Charge Dominated Electron Beams in Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Nichols, Kimberley E. L.

    Analysis of quadrupole focusing lattices for high-frequency TWT's is presented. This work is motivated by recent work performed at the Naval Research Laboratory (NRL) which demonstrated an advantageous case for strong focusing employing a Halbach quadrupole lattice. Using realistic Permanent Magnet Quadruple (PMQ) field cancellation, the advantage of using PMQ to transport higher current densities than Permanent Periodic Magnet (PPM) lattices disappears, while other advantages for employing quadrupole focusing remain. This dissertation gives a comprehensive analysis of the applicability of PMQ focusing in vacuum electronic devices.

  8. Application of a quadrupole mass filter to laser ionization mass spectrometry: synchronization between the laser pulse and the mass scan

    NASA Astrophysics Data System (ADS)

    Kuzuya, M.; Ohoka, Y.; Katoh, H.; Sakanashi, H.

    1998-01-01

    A quadrupole-based laser ionization mass spectrometry system was developed by combining a commercial quadrupole mass filter with a laser microprobe instrument, which employs a pulse generator that synchronizes the laser pulse with the quadrupole mass scan to detect the pulsed ion signals generated by laser induced ionization. Mass spectra were measured for several solid samples of pure metals (Al,Cu), metal alloys (Inconel 601, brass), and ceramics (BN). Reproducible spectra, with relative standard deviations of the ion signals less than 1%, were obtained with this system. Moreover, isotope abundance ratios were measured and compared with the natural abundance ratios.

  9. Acoustic self-induced transparency for transverse waves in a system with resonant and quasi-resonant transitions

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.

    2009-07-01

    A theoretical analysis of acoustic self-induced transparency is presented for transverse elastic waves propagating perpendicular to an applied magnetic field through a crystal with spin-3/2 paramagnetic impurities. The interaction between an acoustic pulse and magnetic field is described by Maxwell-Bloch-type equations for a system with transitions inhomogeneously broadened because of a quadrupole Stark shift. If the pulse carrier frequency is resonant with one transition and quasi-resonant with another transition, then the evolution of a one-dimensional pulse is described by an integrable Konno-Kameyama-Sanuki (KKS) equation. The underlying physics of its soliton solution and the corresponding behavior of the medium are analyzed. Self-focusing and self-trapping conditions are found for a pulse of finite transverse size. In the latter regime, the pulse stretches along the propagation direction, transforming into a “hollow bullet,” while its transverse size remains constant.

  10. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping

  11. Study of the extra-ionic electron distributions in semi-metallic structures by nuclear quadrupole resonance techniques

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1976-01-01

    A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.

  12. Relativistic calculations of magnetic resonance parameters: background and some recent developments.

    PubMed

    Autschbach, Jochen

    2014-03-13

    This article outlines some basic concepts of relativistic quantum chemistry and recent developments of relativistic methods for the calculation of the molecular properties that define the basic parameters of magnetic resonance spectroscopic techniques, i.e. nuclear magnetic resonance shielding, indirect nuclear spin-spin coupling and electric field gradients (nuclear quadrupole coupling), as well as with electron paramagnetic resonance g-factors and electron-nucleus hyperfine coupling. Density functional theory (DFT) has been very successful in molecular property calculations, despite a number of problems related to approximations in the functionals. In particular, for heavy-element systems, the large electron count and the need for a relativistic treatment often render the application of correlated wave function ab initio methods impracticable. Selected applications of DFT in relativistic calculation of magnetic resonance parameters are reviewed.

  13. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  14. The resonant X-ray diffraction in Co-Akermanite: Theory and experiment

    SciTech Connect

    Bindi, L.; Dmitrienko, V. E.; Ovchinnikova, E. N.; Soedzhima, Yu.

    2006-12-15

    The structural factors for X-ray resonant diffraction near the K-absorption edge of cobalt in Co-akermanite have been calculated with allowance for the known data about its incommensurate 2D modulation. It is shown that the local symmetry of Co atoms in the basic structure does not allow any pure resonant reflections in the dipole-dipole approximation. However, pure resonant reflections of the h00 (h = 2n + 1) type are possible owing to the dipole-quadrupole contribution. The 5D formalism is used for the incommensurately modulated structure. It is shown that the displacement terms in the anisotropic tensor atomic factors could mainly contribute to the first-order satellites, providing pure resonant satellite reflections of the hhlm0 (m = 2n + 1) or h00mm-bar (h = 2n + 1) types.

  15. Neutral Pion Electroproduction in the Δ Resonance Region

    SciTech Connect

    Villano, Anthony

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π0 particles. Differential cross sections are extracted for exclusive π0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G$*\\atop{M}$ is extracted along with the scalar to magnetic dipole ratio C2/M1.

  16. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  17. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time.

  18. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  19. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider

    SciTech Connect

    James T Volk et al.

    2001-09-24

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0-20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype.

  20. Fabrication and test of LARP technological quadrupole models of TQC series

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; /Fermilab /LBL, Berkeley /Brookhaven

    2008-08-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  1. Triaxial rotor model description of quadrupole interference in collective nuclei: The P{sub 3} term

    SciTech Connect

    Allmond, J. M.; Wood, J. L.; Kulp, W. D.

    2009-08-15

    The triaxial rotor model with independent inertia and electric quadrupole tensors is applied to the P{sub 3} term, P{sub 3}=<0{sub 1}||T(E2)||2{sub 1}><2{sub 1}||T(E2)||2{sub 2}><2{sub 2}||T(E2)||0{sub 1}>, which is a standard measure of quadrupole interference in collective nuclei. It is shown that the model naturally explains nuclei with anomalous signs for their P{sub 3} terms. Measurements of Q(2{sub 1}) in multiple-step Coulomb excitation can be significantly dependent on the sign of this term. The example of {sup 194}Pt is considered.

  2. Quench performance of superconducting quadrupole magnets for the new Fermilab low beta insertion

    SciTech Connect

    Gourlay, S.A.; Carson, J.A.; Hanft, R.; Jaffery, T.S.; Koepke, K.; Lamm, M.J.; Mantsch, P.M.; McInturff, A.D.; Mokhtarani, A.; Orris, D.; Peterson, T.

    1991-05-01

    Construction and testing of the components for the new Tevatron D0/B0 low beta insertion has been nearly completed. The devices include superconducting cold iron quadrupoles utilizing a 2-shell, cos2{theta} coil geometry with a 7.6 cm aperture. The maximum design gradient is 1.41 T/cm at an operating current of 4832 A. They have the highest current density with the highest peak field on the winding of any quadrupole yet built. This paper summarizes the quench performance and ramp rate sensitivity of the 2-shell design and relates the performance characteristics to the relevant aspects of design and fabrication. 8 refs., 6 figs., 3 tabs.

  3. Effects of quadrupole fringe fields in final focus systems for linear colliders

    NASA Astrophysics Data System (ADS)

    Patecki, Marcin; Tomás, Rogelio

    2014-10-01

    Quadrupole fringe fields in the final focus system can be a source of aberrations in the interaction point transverse beam sizes. This paper investigates the fringe field impact on the transverse beam size in the ATF2, ILC, and CLIC lattices in the linear and non-linear regimes. The linear effects are studied by replacing the hard-edge quadrupolar field by the more realistic gradient fall-off. To address the nonlinear effects, the fringe fields are represented as high order kicks added to both sides of the hard-edge magnets. It will be shown that the linear fringe fields effects can be easily cured by tuning the quadrupole strengths. On the other hand, mitigation of the nonlinear fringe fields effects is more difficult and requires use of octupole magnets or, alternatively, increasing the value of interaction point horizontal beta function βx*.

  4. Accurate determination of the nuclear quadrupole moment of xenon from the molecular method

    NASA Astrophysics Data System (ADS)

    Canella, Guilherme A.; Santiago, Régis T.; Haiduke, Roberto L. A.

    2016-09-01

    This study provides a new determination of the nuclear electric quadrupole moment (NQM) for 131Xe, which is achieved by the molecular method. Dirac-Coulomb Coupled Cluster calculations with a Gaunt correction (DC+G-CC) of electric field gradients (EFGs) and experimental nuclear quadrupole coupling constants of six molecular systems (XeH+, XeCuF, XeCuCl, XeAgF, XeAgCl and XeAuF) were considered. The best NQM obtained by our DC+G-CCSD-T EFGs was -114.6(1.1) mbarn, which is recommended as the new reference value for this nuclide given the high level electron structure calculations done here.

  5. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  6. Limits on the diurnal variation of H2 quadrupole features in Neptune

    NASA Astrophysics Data System (ADS)

    Smith, W. H.; Schempp, W. V.; Baines, K. H.

    1989-08-01

    Spectral profiles of the H2 S4(0) and S4(1) lines are presented for Neptune on three consecutive nights; no variation is detected in the equivalent widths of the H2 4-0 features to within an observational uncertainty of about 20 percent. Comparisons with previous H2 quadrupole observations indicate that no secular trends have been detected over about 15 yr. The equivalent-width error limits are interpreted in terms of the maximum variability of Neptunian tropospheric aerosols. Specifically, the error bars for the globally averaged equivalent widths of the two H2 quadrupole absorption features constrain the bottom of the visible atmosphere, as defined by a bright optically infinite isotropically scattering cloud, to be 2.9 + or - 0.6 bars, while the methane haze opacity is constrained to be 0.30 + or - 0.25.

  7. Effects of line shifts and the ion quadrupole contribution of spectral line asymmetries.

    SciTech Connect

    Gunderson, M. A.; Delamater, N. D.; Kilcrease, D. P.; Haynes, D. A.

    2002-01-01

    Line asymmetries and the corresponding shift of spectral lines due to the electron penetration of the radiator orbitals and the ion quadrupole contribution become more significant with increasing principal quantum number and increasing electron density. The mean field static shift due to electron penetration of the orbitals gives rise to an overall shift of the line to lower energy and a significant asymmetry near line center, but does not generate much redhlue far wing asymmetry. The ion quadrupole contribution results in a small blue shift of the spectral line and a small change in asymmetry near line center, but it gives rise to a significant redhlue wing asymmetry in the far wings of the line. Experimental data fiom recent spherical implosion experiments on OMEGA shows evidence of the mean field static shift and may also show the effects of level interactions between the Ar Lyman -{gamma}, -{delta}, -{var_epsilon} lines and also the Ar He -{gamma}, -{delta} lines.

  8. Quadrupole shape dynamics from the viewpoint of a theory of large-amplitude collective motion

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Hinohara, N.; Sato, K.; Matsuyanagi, K.; Nakatsukasa, T.; Yoshida, K.

    2014-05-01

    Low-lying quadrupole shape dynamics is a typical manifestation of large-amplitude collective motion in finite nuclei. To describe the dynamics on a microscopic foundation, we have formulated a consistent scheme in which the Bohr collective Hamiltonian for the five-dimensional quadrupole shape variables is derived on the basis of the time-dependent Hartree-Fock-Bogoliubov theory. It enables us to incorporate the Thouless-Valatin effect on the shape inertial functions, which has been neglected in previous microscopic Bohr Hamiltonian approaches. Quantitative successes are illustrated for the low-lying spectra in 68Se, 30-34Mg and 58-64Cr, which display shape-coexistence, shape-mixing and shape-transitional behavior.

  9. Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings

    SciTech Connect

    Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G.; Giloux, C.; Perez, J. G.; Karppinen, M.

    2009-08-16

    It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.

  10. Quadrupole effects in tetragonal crystals PrCu₂Si₂ and DyCu₂Si₂.

    PubMed

    Mitsumoto, Keisuke; Goto, Saori; Nemoto, Yuichi; Akatsu, Mitsuhiro; Goto, Terutaka; Dung, Nguyen D; Matsuda, Tatsuma D; Haga, Yoshinori; Takeuchi, Tetsuya; Sugiyama, Kiyohiro; Settai, Rikio; Onuki, Yoshichika

    2013-07-24

    We have investigated quadrupole effects in tetragonal crystals of PrCu2Si2 and DyCu2Si2 by means of low-temperature ultrasonic measurements. The elastic constant C44 of PrCu2Si2 exhibits pronounced softening below 70 K down to a Néel temperature TN = 20 K, which is described in terms of a quadrupole susceptibility for a Γ5 doublet ground state and a Γ3 singlet first excited state located at 15.6 K in the crystalline electric field scheme. The C44 and C66 of DyCu2Si2 also show softening below 70 K down to TN1 = 9.7 K. A low-lying pseudo-sextet state consisting of three Kramers doublets of Γ6⊕2Γ7 brings about softening of C44 and C66 in DyCu2Si2.

  11. NMR study of electric quadrupole interactions in GdCo 2

    NASA Astrophysics Data System (ADS)

    Barata, A. C.; Guimarães, A. P.

    1985-05-01

    Quadrupole oscillations have been observed with 59Co pulsed NMR in the intermetallic compound GdCo 2. From these oscillations the nuclear electric quadrupole interaction (EQI) has been studied as a function of temperature in the range 4-312 K. The value measured at 4 K, ν Q=672±3 kHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432±10 kHz at 312 K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200 K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in othr transition metal systems.

  12. Search for Quadrupole Strength in the Electroexcitation of the Delta+ (1232)

    SciTech Connect

    C. Mertz; C. Vellidis; Ricardo Alarcon; David Barkhuff; Aron Bernstein; William Bertozzi; Volker Burkert; Jian-Ping Chen; Joseph Comfort; George Dodson; S. Dolfini; K. Dow; Manouchehr Farkhondeh; John Finn; Shalev Gilad; Ralf Gothe; Xiaodong Jiang; Kyungseon Joo; N.I. Kaloskamis; A. Karabarbounis; James Kelly; Stanley Kowalski; C. Kunz; R.W. Lourie; Justin McIntyre; Brian Milbrath; Rory Miskimen; Joseph Mitchell; Costas Papanicolas; Charles Perdrisat; Adam Sarty; Jeffrey Shaw; S.B. Soong; D. Tieger; Christoph Tschalaer; William Turchinetz; Paul Ulmer; Scott Van Verst; Glen Warren; Lawrence Weinstein; Steven Williamson; Rhett Woo; Alaen Young

    2001-04-01

    High precision 1H(e, e'p)pi0 measurements at Q2 = 0.126. (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N --> Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole (I = 3/2) amplitude ratios, RSM = (-6.5 +/- 0.2stat+sys+/-2.5mod)% and REM = 9-2.1 +/-0.2stat+sys +/-2.0mod)%, are dominated by model error. Previous RSM and REM results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

  13. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    SciTech Connect

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  14. A note on the electric quadrupole and higher electric moments of ozone (O3)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2012-02-01

    We have obtained accurate ab initio and density functional theory values for the quadrupole, octopole and hexadecapole electric moments of the cyclic and open forms of ozone. Our best values have been calculated at the coupled cluster level of theory with molecule-specific basis sets. For the quadrupole moment (Θαβ/ea02) they are Θyy = -1.366 (cyclic), Θxx = -1.202, Θyy = 1.426 and Θxx = -0.223 (open). For the octopole (Ωαβγ/ea03) and hexadecapole (Φαβγδ/ea04) moments our best results are Ωzzz = 2.25, Φyyyy = 19.53 (cyclic), Ωxxz = 3.28, Ωzzz = -2.97, Φxxxx = -6.00, Φyyyy = -3.90 and Φzzzz = -3.54 (open).

  15. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  16. Longitudinal quadrupole instability and control in the Frascati DAΦNE electron ring

    NASA Astrophysics Data System (ADS)

    Drago, A.; Gallo, A.; Ghigo, A.; Zobov, M.; Fox, J. D.; Teytelman, D.

    2003-05-01

    A longitudinal quadrupole (q-pole) instability was limiting the maximum stable current in the DAΦNE e- ring at a level of ˜700 800 mA. In order to investigate the phenomenon, the instability threshold has been measured as a function of various machine parameters as radio frequency voltage (Vrf), momentum compaction (αc), number of bunches, fill pattern, etc. An unexpected interaction with the longitudinal feedback system, built to control the dipole motion, has been found and a proper feedback tuning has allowed increasing the threshold. The maximum stable beam current has now exceeded 1.80A and it is no longer limited by the quadrupole instability.

  17. Nuclear charge radii and electric quadrupole moments of even-even isotopes

    SciTech Connect

    Nerlo-Pomorska, B.; Mach, B.

    1995-07-01

    Isotope shifts of the charge mean-square radii and electric quadrupole moments of even-even nuclei with 20{le}{Zeta}{le}98 are calculated using a dynamical microscopic model. A single-particle Nilsson potential with the Seo set of correction terms, pairing forces in the BCS formalism, and a long-range interaction in the local approximation are used. A collective Hamiltionian is obtained using a generator coordinate method with the Gaussian overlap approximation. The potential energy of the nucleus consists of a microscopic-macroscopic Strutinsky energy and a zero-point vibrational term. A liquid droplet model is used for the macroscopic part of the potential. A BCS wave function is taken as a generator function, and two collective variables, quadrupole and hexadecapole deformations, serve as the generator coordinates. In general, good agreement between the theory and experimental data is achieved. 16 refs., 8 figs., 1 tab.

  18. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect

    Sabbi, GianLuca; Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; McInturff, Alfred; Novitski, Igor; Zlobin, Alexander

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  19. Ion collision crosssection measurements in quadrupole ion traps using a time-frequency analysis method.

    PubMed

    He, Muyi; Guo, Dan; Chen, Yu; Xiong, Xingchuang; Fang, Xiang; Xu, Wei

    2014-12-01

    In this study, a method for measuring ion collision crosssections (CCSs) was proposed through time-frequency analysis of ion trajectories in quadrupole ion traps. A linear ion trap with added high-order electric fields was designed and simulated. With the presence of high-order electric fields and ion-neutral collisions, ion secular motion frequency within the quadrupole ion trap will be a function of ion motion amplitude, thus a function of time and ion CCS. A direct relationship was then established between ion CCS and ion motion frequency with respect to time, which could be obtained through time-frequency analysis of ion trajectories (or ion motion induced image currents). To confirm the proposed theory, realistic ion trajectory simulations were performed, where the CCSs of bradykinin, angiotensin I and II, and ubiquitin ions were calculated from simulated ion trajectories. As an example, differentiation of isomeric ubiquitin ions was also demonstrated in the simulations. PMID:25319271

  20. CONSTRAINING THE QUADRUPOLE MOMENT OF STELLAR-MASS BLACK HOLE CANDIDATES WITH THE CONTINUUM FITTING METHOD

    SciTech Connect

    Bambi, Cosimo; Barausse, Enrico E-mail: barausse@umd.edu

    2011-04-20

    Black holes in general relativity are known as Kerr black holes and are characterized solely by two parameters, the mass M and the spin J. All the higher multipole moments of the gravitational field are functions of these two parameters. For instance, the quadrupole moment is Q = -J {sup 2}/M, which implies that a measurement of M, J, and Q for black hole candidates would allow one to test whether these objects are really black holes as described by general relativity. While future gravitational-wave experiments will be able to test the Kerr nature of these objects with very high accuracy, in this paper we show that it is possible to put constraints on the quadrupole moment of stellar-mass black hole candidates by using presently available X-ray data of the thermal spectrum of their accretion disk.