Sample records for quadrupole resonance signals

  1. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  2. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  3. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TonThat, D.M.; Clarke, J.

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux lockedmore » operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}« less

  4. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  5. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  6. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  7. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  9. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  10. Detection of Quadrupole Interactions by Muon Level Crossing Resonance

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    1992-02-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and

  11. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  12. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  13. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  14. Detection of nuclear resonance signals: modification of the receiver operating characteristics using feedback.

    PubMed

    Blauch, A J; Schiano, J L; Ginsberg, M D

    2000-06-01

    The performance of a nuclear resonance detection system can be quantified using binary detection theory. Within this framework, signal averaging increases the probability of a correct detection and decreases the probability of a false alarm by reducing the variance of the noise in the average signal. In conjunction with signal averaging, we propose another method based on feedback control concepts that further improves detection performance. By maximizing the nuclear resonance signal amplitude, feedback raises the probability of correct detection. Furthermore, information generated by the feedback algorithm can be used to reduce the probability of false alarm. We discuss the advantages afforded by feedback that cannot be obtained using signal averaging. As an example, we show how this method is applicable to the detection of explosives using nuclear quadrupole resonance. Copyright 2000 Academic Press.

  15. Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    NASA Astrophysics Data System (ADS)

    Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.

    2018-06-01

    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.

  16. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  17. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators.

    PubMed

    Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui

    2018-05-14

    Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.

  18. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  19. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  20. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  1. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  2. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  3. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    DTIC Science & Technology

    2015-08-11

    location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling

  4. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies.

    PubMed

    Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L

    2018-05-28

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.

  5. A versatile computer-controlled pulsed nuclear quadrupole resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Fisher, Gregory; MacNamara, Ernesto; Santini, Robert E.; Raftery, Daniel

    1999-12-01

    A new, pulsed nuclear quadrupole resonance (NQR) spectrometer capable of performing a variety of pulsed and swept experiments is described. The spectrometer features phase locked, superheterodyne detection using a commercial spectrum analyzer and a fully automatic, computer-controlled tuning and matching network. The tuning and matching network employs stepper motors which turn high power air gap capacitors in a "moving grid" optimization strategy to minimize the reflected power from a directional coupler. In the duplexer circuit, digitally controlled relays are used to switch different lengths of coax cable appropriate for the different radio frequencies. A home-built pulse programmer card controls the timing of radio frequency pulses sent to the probe, while data acquisition and control software is written in Microsoft Quick Basic. Spin-echo acquisition experiments are typically used to acquire the data, although a variety of pulse sequences can be employed. Scan times range from one to several hours depending upon the step resolution and the spectral range required for each experiment. Pure NQR spectra of NaNO2 and 3-aminopyridine are discussed.

  6. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  7. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  8. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa 5

    DOE PAGES

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; ...

    2016-10-10

    PuCoGa 5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (T c ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa 5, concentrating on the system's normal state properties near to T c and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographicallymore » inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn 5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  9. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu

    NASA Astrophysics Data System (ADS)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

    2012-07-01

    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  10. Induced CMB quadrupole from pointing offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris, E-mail: adammoss@phas.ubc.ca, E-mail: dscott@phas.ubc.ca, E-mail: krs@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between themore » pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.« less

  11. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGES

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  12. Didactic discussion of stochastic resonance effects and weak signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adair, R.K.

    1996-12-01

    A simple, paradigmatic, model is used to illustrate some general properties of effects subsumed under the label stochastic resonance. In particular, analyses of the transparent model show that (1) a small amount of noise added to a much larger signal can greatly increase the response to the signal, but (2) a weak signal added to much larger noise will not generate a substantial added response. The conclusions drawn from the model illustrate the general result that stochastic resonance effects do not provide an avenue for signals that are much smaller than noise to affect biology. A further analysis demonstrates themore » effects of small signals in the shifting of biologically important chemical equilibria under conditions where stochastic resonance effects are significant.« less

  13. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  14. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip Thomas

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necess-itating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent frac-tion of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  15. Exploiting vibrational resonance in weak-signal detection

    NASA Astrophysics Data System (ADS)

    Ren, Yuhao; Pan, Yan; Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2017-08-01

    In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the same amplitude but with different frequencies into a generalized correlation detector, we show that the detection probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The compared results indicate that the VR method can achieve a higher detection probability for a wider variety of noise distributions.

  16. Exploiting vibrational resonance in weak-signal detection.

    PubMed

    Ren, Yuhao; Pan, Yan; Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2017-08-01

    In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the same amplitude but with different frequencies into a generalized correlation detector, we show that the detection probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The compared results indicate that the VR method can achieve a higher detection probability for a wider variety of noise distributions.

  17. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  18. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistrymore » program.« less

  19. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magda, Karoly

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less

  20. Weak quadrupole moments

    NASA Astrophysics Data System (ADS)

    Lackenby, B. G. C.; Flambaum, V. V.

    2018-07-01

    We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.

  1. The effect of the cosmological constant on a quadrupole signal in the linearized approximation

    NASA Astrophysics Data System (ADS)

    Somlai, László Ábel; Vasúth, Mátyás

    In this study the effects of a nonzero cosmological constant Λ on a quadrupole gravitational wave (GW) signal are analyzed. The linearized approximation of general relativity was used, so the perturbed metric can be written as the sum of hGW GWs and hΛ background term, originated from Λ. The ΛhGW term was also included in this study. To derive physically relevant consequences of Λ≠0 comoving coordinates are used. In these coordinates, the equations of motion (EoMs) are not self-consistent so the result of the linearized theory has to be transformed to the FRW frame. The luminosity distance and the same order of the magnitude of frequency in accordance with the detected GWs were used to demonstrate the effects of the cosmological constant.

  2. Microscopic evidence for magnetic ordering in NdCu3Ru4O12 : 63,65Cu nuclear quadrupole resonance study

    NASA Astrophysics Data System (ADS)

    Yogi, M.; Niki, H.; Hedo, M.; Komesu, S.; Nakama, T.

    2018-05-01

    We have conducted 63,65Cu nuclear quadrupole resonance (NQR) measurements on A-site ordered perovskite compounds LaCu3Ru4O12 and NdCu3Ru4O12 to investigate their ground state and spin fluctuations. While there is only one Cu site in the crystal structure, multiple NQR resonance lines were observed. This is presumed to be due to the presence of slight distortion and lattice defects in the samples. The nuclear spin-lattice relaxation rate divided by temperature, 1 /T1 T , for LaCu3Ru4O12 showed almost constant value indicating the Fermi-liquid state. A remarkable increase in 1 /T1 T due to spin fluctuations was observed in NdCu3Ru4O12 . Furthermore, an evident magnetic phase transition at TM = 0.6 K was revealed from the distinct peak of 1 /T1 T and the broadening of the NQR spectrum.

  3. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less

  4. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  6. Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO

    NASA Astrophysics Data System (ADS)

    Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.

    2002-03-01

    The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.

  7. Investigating a Quadrant Surface Coil Array for NQR Remote Sensing

    DTIC Science & Technology

    2014-10-23

    UNCLASSIFIED 1  Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR

  8. Harvesting wind energy to detect weak signals using mechanical stochastic resonance.

    PubMed

    Breen, Barbara J; Rix, Jillian G; Ross, Samuel J; Yu, Yue; Lindner, John F; Mathewson, Nathan; Wainwright, Elliot R; Wilson, Ian

    2016-12-01

    Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The regime of the experiment is readily accessible, with wind speeds ∼20 m/s and signal frequencies ∼1 Hz. We readily obtain signal-to-noise ratios on the order of 10 dB.

  9. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    NASA Astrophysics Data System (ADS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  10. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, D. J.; Block, B. P.; Rubin, M.

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less

  11. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator.

    PubMed

    Ding, Yunhong; Huang, Bo; Peucheret, Christophe; Xu, Jing; Ou, Haiyan; Zhang, Xinliang; Huang, Dexiu

    2014-03-10

    Ultra-wide band signal generation using a silicon microring resonator tuned to an NRZ-DPSK modulated optical carrier is proposed and demonstrated. The scheme is shown to enable the generation of UWB signals with switchable polarity and tunable bandwidth by simply tuning the coupling regions of the microring resonator. Monocycle pulses with both negative and positive polarities are successfully synthesized experimentally.

  12. [Detection of Weak Speech Signals from Strong Noise Background Based on Adaptive Stochastic Resonance].

    PubMed

    Lu, Huanhuan; Wang, Fuzhong; Zhang, Huichun

    2016-04-01

    Traditional speech detection methods regard the noise as a jamming signal to filter,but under the strong noise background,these methods lost part of the original speech signal while eliminating noise.Stochastic resonance can use noise energy to amplify the weak signal and suppress the noise.According to stochastic resonance theory,a new method based on adaptive stochastic resonance to extract weak speech signals is proposed.This method,combined with twice sampling,realizes the detection of weak speech signals from strong noise.The parameters of the systema,b are adjusted adaptively by evaluating the signal-to-noise ratio of the output signal,and then the weak speech signal is optimally detected.Experimental simulation analysis showed that under the background of strong noise,the output signal-to-noise ratio increased from the initial value-7dB to about 0.86 dB,with the gain of signalto-noise ratio is 7.86 dB.This method obviously raises the signal-to-noise ratio of the output speech signals,which gives a new idea to detect the weak speech signals in strong noise environment.

  13. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  14. Harmonic stochastic resonance-enhanced signal detecting in NW small-world neural network

    NASA Astrophysics Data System (ADS)

    Wang, Dao-Guang; Liang, Xiao-Ming; Wang, Jing; Yang, Cheng-Fang; Liu, Kai; Lü, Hua-Ping

    2010-11-01

    The harmonic stochastic resonance-enhanced signal detecting in Newman-Watts small-world neural network is studied using the Hodgkin-Huxley dynamical equation with noise. If the connection probability p, coupling strength gsyn and noise intensity D matches well, higher order resonance will be found and an optimal signal-to-noise ratio will be obtained. Then, the reasons are given to explain the mechanism of this appearance.

  15. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  16. Wavelet signatures of K-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p‧) scattering off 146, 148, 150Nd

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Jingo, M.; Kleinig, W.; Krugmann, A.; Krumbolz, A. M.; Kvasil, J.; Mabiala, J.; Mira, J. P.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Papka, P.; Reinhard, P.-G.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.; Usman, I. T.

    2018-04-01

    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146, 148, 150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0 , 1 and K = 2 components.

  17. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  18. Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Mehrotra, Nitin

    2018-04-01

    Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.

  19. Computer simulation of magnetic resonance spectra employing homotopy.

    PubMed

    Gates, K E; Griffin, M; Hanson, G R; Burrage, K

    1998-11-01

    Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.

  20. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  1. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  2. Design of an rf quadrupole for Landau damping

    NASA Astrophysics Data System (ADS)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  3. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  4. Implementation of Dipolar Resonant Excitation for Collision Induced Dissociation with Ion Mobility/Time-of-Flight MS

    PubMed Central

    Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44% and 84%, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared to beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis. PMID:24470195

  5. Small-signal model for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1985-01-01

    The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.

  6. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  7. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  8. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces

    DOE PAGES

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; ...

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymore » in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens’ metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.« less

  9. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  10. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Lloyd A.

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu +/ 65Cu + is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurementsmore » for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr +/ 53Cr + (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr + signal to 0.12% for the ratio of 51V + to 52Cr +. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li + signal becomes apparent. Space charge effects are consistent with the disturbances seen.« less

  11. Investigation of Ion Transmission Effects on Intact Protein Quantification in a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Appulage, Dananjaya Kalu; McAllister, Erin A.; Schug, Kevin A.

    2017-09-01

    Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N2, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. [Figure not available: see fulltext.

  12. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    PubMed

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  13. Enhancing Raman signals through electromagnetic hot zones induced by magnetic dipole resonance of metal-free nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li

    2017-11-01

    In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.

  14. Understanding spin configuration in the geometrically frustrated magnet TbB 4: A resonant soft X-ray scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Jang, H.; Kang, B. Y.

    The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less

  15. Understanding spin configuration in the geometrically frustrated magnet TbB 4: A resonant soft X-ray scattering study

    DOE PAGES

    Huang, H.; Jang, H.; Kang, B. Y.; ...

    2018-05-05

    The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less

  16. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  17. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.

    PubMed

    Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong

    2015-01-20

    A novel "wave" signal-smoothing and mercury-removing device has been developed for laser ablation quadrupole and multiple collector ICPMS analysis. With the wave stabilizer that has been developed, the signal stability was improved by a factor of 6.6-10 and no oscillation of the signal intensity was observed at a repetition rate of 1 Hz. Another advantage of the wave stabilizer is that the signal decay time is similar to that without the signal-smoothing device (increased by only 1-2 s for a signal decay of approximately 4 orders of magnitude). Most of the normalized elemental signals (relative to those without the stabilizer) lie within the range of 0.95-1.0 with the wave stabilizer. Thus, the wave stabilizer device does not significantly affect the aerosol transport efficiency. These findings indicate that this device is well-suited for routine optimization of ICPMS, as well as low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. With the wave signal-smoothing and mercury-removing device, the mercury gas background is reduced by 1 order of magnitude. More importantly, the (202)Hg signal intensity produced in the sulfide standard MASS-1 by laser ablation is reduced from 256 to 0.7 mV by the use of the wave signal-smoothing and mercury-removing device. This result suggests that the mercury is almost completely removed from the sample aerosol particles produced by laser ablation with the operation of the wave mercury-removing device. The wave mercury-removing device that we have designed is very important for Pb isotope ratio and accessory mineral U-Pb dating analysis, where removal of the mercury from the background gas and sample aerosol particles is highly desired. The wave signal-smoothing and mercury-removing device was applied successfully to the determination of the (206)Pb/(204)Pb isotope ratio in samples with low Pb content and/or high Hg content.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  19. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  20. A unified formulation of dichroic signals using the Borrmann effect and twisted photon beams.

    PubMed

    Collins, Stephen P; Lovesey, Stephen W

    2018-05-21

    Dichroic X-ray signals derived from the Borrmann effect and a twisted photon beam with topological charge l = 1 are formulated with an effective wavevector. The unification applies for non-magnetic and magnetic materials. Electronic degrees of freedom associated with an ion are encapsulated in multipoles previously used to interpret conventional dichroism and Bragg diffraction enhanced by an atomic resonance. A dichroic signal exploiting the Borrmann effect with a linearly polarized beam presents charge-like multipoles that include a hexadecapole. A difference between dichroic signals obtained with a twisted beam carrying spin polarization (circular polarization) and opposite winding numbers presents charge-like atomic multipoles, whereas a twisted beam carrying linear polarization alone presents magnetic (time-odd) multipoles. Charge-like multipoles include a quadrupole, and magnetic multipoles include a dipole and an octupole. We discuss the practicalities and relative merits of spectroscopy exploiting the two remarkably closely-related processes. Signals using beams with topological charges l ≥ 2 present additional atomic multipoles.

  1. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    DTIC Science & Technology

    2016-02-13

    switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil

  3. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  4. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  5. Highly Dynamic Anion-Quadrupole Networks in Proteins.

    PubMed

    Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome

    2016-11-01

    The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.

  6. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  7. Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen.

    PubMed

    Korchak, Sergey; Yang, Shengjun; Mamone, Salvatore; Glöggler, Stefan

    2018-05-01

    Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para -hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para -hydrogen directly in a high magnetic field without the need for field cycling.

  8. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  9. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  10. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  11. Borman effect in resonant diffraction of X-rays

    NASA Astrophysics Data System (ADS)

    Oreshko, A. P.

    2013-08-01

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  12. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  13. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  14. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  15. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  16. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  17. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-04-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  18. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-06-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  19. Interference effect on a heavy Higgs resonance signal in the γ γ and Z Z channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jeonghyeon; Yoon, Yeo Woong; Jung, Sunghoon

    2016-03-24

    The resonance-continuum interference is usually neglected when the width of a resonance is small compared to the resonance mass. We reexamine this standard by studying the interference effects in high-resolution decay channels, γγ and ZZ, of the heavy Higgs boson H in nearly aligned two-Higgs-doublet models. For the H with a sub-percent width-to-mass ratio, we find that, in the parameter space where the LHC 14 TeV ZZ resonance search can be sensitive, the interference effects can modify the ZZ signal rate by O(10)% and the exclusion reach by O(10) GeV. In other parameter space where the ZZ or γγ signalmore » rate is smaller, the LHC 14 TeV reach is absent, but a resonance shape can be much more dramatically changed. In particular, the γγ signal rate can change by O(100)%. Relevant to such parameter space, we suggest variables that can characterize a general resonance shape. Furthermore, we also illustrate the relevance of the width on the interference by adding nonstandard decay modes of the heavy Higgs boson.« less

  20. Identifying or measuring selected substances or toxins in a subject using resonant raman signals

    NASA Technical Reports Server (NTRS)

    Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)

    2005-01-01

    Methods and systems of the present invention identify the presence of and/or the concentration of a selected analyte in a subject by: (a) illuminating a selected region of the eye of a subject with an optical excitation beam, wherein the excitation beam wavelength is selected to generate a resonant Raman spectrum of the selected analyte with a signal strength that is at least 100 times greater than Raman spectrums generated by non-resonant wavelengths and/or relative to signals of normal constituents present in the selected region of the eye; (b) detecting a resonant Raman spectrum corresponding to the selected illuminated region of the eye; and (c) identifying the presence, absence and/or the concentration of the selected analyte in the subject based on said detecting step. The apparatus may also be configured to be able to obtain biometric data of the eye to identify (confirm the identity of) the subject.

  1. A low noise photoelectric signal acquisition system applying in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Lu, Qilin; Zhang, Xian; Zhao, Xinghua; Yang, Dan; Zhou, Binquan; Hu, Zhaohui

    2017-10-01

    The nuclear magnetic resonance gyroscope serves as a new generation of strong support for the development of high-tech weapons, it solves the core problem that limits the development of the long-playing seamless navigation and positioning. In the NMR gyroscope, the output signal with atomic precession frequency is detected by the probe light, the final crucial photoelectric signal of the probe light directly decides the quality of the gyro signal. But the output signal has high sensitivity, resolution and measurement accuracy for the photoelectric detection system. In order to detect the measured signal better, this paper proposed a weak photoelectric signal rapid acquisition system, which has high SNR and the frequency of responded signal is up to 100 KHz to let the weak output signal with high frequency of the NMR gyroscope can be detected better.

  2. Initial clinical experience with a quadrupole butterfly coil for spinal injection interventions in an open MRI system at 1.0 tesla.

    PubMed

    Jonczyk, Martin; Hamm, Bernd; Heinrich, Andreas; Thomas, Andreas; Rathke, Hendrik; Schnackenburg, Bernhard; Güttler, Felix; Teichgräber, Ulf K M; de Bucourt, Maximilian

    2014-02-01

    To report our initial clinical experience with a new magnetic resonance imaging (MRI) quadrupole coil that allows interventions in prone position. Fifteen patients (seven women, eight men; average age, 42.8 years) were treated in the same 1.0-Tesla Panorama High Field Open (HFO) MRI system (Panorama HFO) using a quadrupole butterfly coil (Bfly) and compared with 15 patients matched for sex, age, and MR intervention using the MultiPurposeL coil (MPL), performed in conventional lateral decubitus position (all, Philips Medical Systems, Best, The Netherlands). All interventions were performed with a near-real-time proton density turbo spin echo (PD TSE) sequence (time to repeat/time to echo/flip angle/acquisition time, 600 ms/10 ms/90°/3 s/image). Qualitative and quantitative image analyses were performed, including signal intensity, signal-to-noise and contrast-to-noise ratio (SNR, CNR), contrast, and full width at half maximum (FWHM) measurements. Contrast differed significantly between the needle and muscles (Bfly 0.27/MPL 0.17), as well as the needle and periradicular fat (0.13/0.24) during the intervention (both, p=0.029), as well as the CNR between muscles and the needle (10.61/5.23; p=0.010), although the FWHM values did not (2.4/2.2; p=0.754). The signal intensity of the needle in interventional imaging (1152.9/793.2; p=0.006) and the postinterventional SNR values of subcutaneous fat (15.3/28.6; p=0.007), muscles (6.6/11.8; p=0.011), and the CNR between these tissues (8.7/17.5; p=0.004) yielded significant differences. The new coil is a valid alternative for MR-guided interventions in an open MRI system at 1.0 tesla, especially if patients cannot (or prefer not to) be in a lateral decubitus position or if prone positioning yields better access to the target zone.

  3. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  4. Theory of electronic structures and nuclear quadrupole interactions in molecular solids and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit

    We have investigated, using the Hartree-Fock Roothaan variational procedure, the electronic structures and associated nuclear quadrupole interactions (NQI) for the molecular solids, RDX (C3H6N6O6),/ /beta- HMX(C4H8N8O8), Cocaine (C17H21NO4), Cocaine Hydrochloride (C17H21NO4HCl) and Heroin (C21H23NO5) and for the (111) surface of silicon with adsorbed radioactive 111In atom and negative cadmium ion containing the excited nucleus 111Cd/* resulting from electron capture by lllIn. Our investigations indicate that for the ring 14N NQI parameters in RDX and β-HMX there is very good agreement between theory and experiment. For the peripheral 14N nuclei in NO2 groups, while the calculated electronic structures do explain the much weaker quadrupole coupling constants for these nuclei relative to the ring 14N nuclei, there are significant differences between theory and experiment. The influence of intermolecular interactions between adjacent molecules in the solid is invoked as a possible source for these differences. For the controlled substances, Cocaine and Heroin, again very good agreement is obtained between theory and experiment. For Cocaine Hydrochloride theory is able to explain the much smaller observed 14N nuclear quadrupole resonance frequency as compared to pure Cocaine. However there are significant differences between theory and experiment for the 14N and 35Cl quadrupole resonance frequencies. The influence of intermolecular interactions is one of the factors suggested to explain the difference. For the silicon (111) surface, the observed 111Cd/* NQI parameters, with the cadmium nucleus assumed to be located at the same site as the 111In nucleus from which it is generated, can be successfully explained by theory with the indium atom located at the two distinct sites available with the DAS model for the 7 x 7 reconstructed (111) surface. Some quantitative differences still remain, one of the main factor suggested for their explanation being a need for a

  5. A study of spin isovector giant resonances with the208Pb(n, p)208Tl reaction

    NASA Astrophysics Data System (ADS)

    Moinester, M. A.; Trudel, A.; Raywood, K.; Yen, S.; Spicer, B. M.; Abegg, R.; Alford, W. P.; Auerbach, N.; Celler, A.; Frekers, D.; Häusser, O.; Helmer, R. L.; Henderson, R.; Hicks, K. H.; Jackson, K. P.; Jeppesen, R. G.; King, N. S. P.; Long, S.; Miller, C. A.; Vetterli, M.; Watson, J.; Yavin, A. I.

    1989-10-01

    The208Pb(n, p)208Tl reaction was studied at 198 and 458 MeV in a search for isovector spin giant resonances. Peaks at 5.1 MeV and 13.6 MeV excitation in208Tl are observed and discussed as candidates for the T> spin giant dipole resonance (SGDR), the spin isovector monopole resonance (SIVM), and the spin isovector quadrupole resonance (SIVQ).

  6. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies† †Electronic supplementary information (ESI) available: 13C SSNMR spectra, powder X-ray diffractograms. See DOI: 10.1039/c8sc01094c

    PubMed Central

    Cerreia Vioglio, P.; Szell, P. M. J.; Chierotti, M. R.; Gobetto, R.

    2018-01-01

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81Br NQR to characterize the electronic changes in the C–Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance (dBr···N). Notably, 79/81Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81Br NQR resonances. PMID:29899948

  7. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (quadrupole contained not only protonated molecules from mometasone, but also PPG interference. At enhanced resolution only selected mometasone peaks were transmitted, and no interference from PPG was detected. Sensitivity of the instrument was demonstrated with 10 femtograms of descarboethoxyloratadine injected on-column, for which a signal-to-noise (S/N) ratio of 24 was obtained for MRM chromatograms at both unit and enhanced resolution. Absolute signals obtained at enhanced resolution were about one-third those obtained at unit mass resolution. However, S/N was maintained at enhanced resolution due to the proportional decrease in noise level. Finally, the stability of the instrument operating at enhanced resolution was demonstrated during an overnight 17 h period that was used to validate a liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for

  8. Experimental determination of quantum-well lifetime effect on large-signal resonant tunneling diode switching time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Growden, Tyler A.; Berger, Paul R., E-mail: pberger@ieee.org; Brown, E. R.

    An experimental determination is presented of the effect the quantum-well lifetime has on a large-signal resonant tunneling diode (RTD) switching time. Traditional vertical In{sub 0.53}Ga{sub 0.47}As/AlAs RTDs were grown, fabricated, and characterized. The switching time was measured with a high-speed oscilloscope and found to be close to the sum of the calculated RC-limited 10%–90% switching time and the quantum-well quasibound-state lifetime. This method displays experimental evidence that the two intrinsic resonant-tunneling characteristic times act independently, and that the quasibound-state lifetime then serves as a quantum-limit on the large-signal speed of RTDs.

  9. [A new method of distinguishing weak and overlapping signals of proton magnetic resonance spectroscopy].

    PubMed

    Jiang, Gang; Quan, Hong; Wang, Cheng; Gong, Qiyong

    2012-12-01

    In this paper, a new method of combining translation invariant (TI) and wavelet-threshold (WT) algorithm to distinguish weak and overlapping signals of proton magnetic resonance spectroscopy (1H-MRS) is presented. First, the 1H-MRS spectrum signal is transformed into wavelet domain and then its wavelet coefficients are obtained. Then, the TI method and WT method are applied to detect the weak signals overlapped by the strong ones. Through the analysis of the simulation data, we can see that both frequency and amplitude information of small-signals can be obtained accurately by the algorithm, and through the combination with the method of signal fitting, quantitative calculation of the area under weak signals peaks can be realized.

  10. Thermally assisted infrared multiphoton photodissociation in a quadrupole ion trap.

    PubMed

    Payne, A H; Glish, G L

    2001-08-01

    Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (< or = 10(-5) Torr) is not that required for optimal performance of the QITMS (10(-3) Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an approximately 1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.

  11. Identification of Spurious Signals from Permeable Ffowcs Williams and Hawkings Surfaces

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.; Boyd, David D., Jr.; Nark, Douglas M.; Wiedemann, Karl E.

    2017-01-01

    Integral forms of the permeable surface formulation of the Ffowcs Williams and Hawkings (FW-H) equation often require an input in the form of a near field Computational Fluid Dynamics (CFD) solution to predict noise in the near or far field from various types of geometries. The FW-H equation involves three source terms; two surface terms (monopole and dipole) and a volume term (quadrupole). Many solutions to the FW-H equation, such as several of Farassat's formulations, neglect the quadrupole term. Neglecting the quadrupole term in permeable surface formulations leads to inaccuracies called spurious signals. This paper explores the concept of spurious signals, explains how they are generated by specifying the acoustic and hydrodynamic surface properties individually, and provides methods to determine their presence, regardless of whether a correction algorithm is employed. A potential approach based on the equivalent sources method (ESM) and the sensitivity of Formulation 1A (Formulation S1A) is also discussed for the removal of spurious signals.

  12. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.

    2018-01-01

    By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.

  13. Variable Permanent Magnet Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.; Iwashita, Y.; /Kyoto U.

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four partsmore » and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.« less

  14. Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-10-01

    A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni x (NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2-4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.

  15. Generalized stochastic resonance for a fractional harmonic oscillator with bias-signal-modulated trichotomous noise

    NASA Astrophysics Data System (ADS)

    Lin, Lifeng; Wang, Huiqi; Huang, Xipei; Wen, Yongxian

    2018-03-01

    For a fractional linear oscillator subjected to both parametric excitation of trichotomous noise and external excitation of bias-signal-modulated trichotomous noise, the generalized stochastic resonance (GSR) phenomena are investigated in this paper in case the noises are cross-correlative. First, the generalized Shapiro-Loginov formula and generalized fractional Shapiro-Loginov formula are derived. Then, by using the generalized (fractional) Shapiro-Loginov formula and the Laplace transformation technique, the exact expression of the first-order moment of the system’s steady response is obtained. The numerical results show that the evolution of the output amplitude amplification is nonmonotonic with the frequency of periodic signal, the noise parameters, and the fractional order. The GSR phenomena, including single-peak GSR, double-peak GSR and triple-peak GSR, are observed in this system. In addition, the interplay of the multiplicative trichotomous noise, bias-signal-modulated trichotomous noise and memory can induce and diversify the stochastic multi-resonance (SMR) phenomena, and the two kinds of trichotomous noises play opposite roles on the GSR.

  16. Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.

    2018-05-01

    We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He, O 16 ,22 ,24 , and Ca,4840. These resonance modes have been widely observed in experiment. In addition, we use a renormalized chiral potential Vlow-k, based on the N3LO two-body potential by Entem and Machleidt [Phys. Rev. C 68, 041001 (2011), 10.1103/PhysRevC.68.041001]. This introduces a dependency on the cutoff parameter used in the normalization procedure as reported in previous works by other groups. While NNLOsat can reasonably reproduce observed multipole resonances, it is not possible to find a single cutoff parameter for the Vlow-k potential that simultaneously describes the different types of resonance modes. The sensitivity to the cutoff parameter can be explained by missing induced three-body forces in the calculations. Our results for neutron-rich O,2422 show a mixing nature of isoscalar and isovector resonances in the dipole channel at low energies. We predict that 22O and 24O have low-energy isoscalar quadrupole resonances at energies lower than 5 MeV.

  17. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  18. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  19. Microfluidic quadrupole and floating concentration gradient.

    PubMed

    Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David

    2011-09-06

    The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.

  20. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  1. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    NASA Astrophysics Data System (ADS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  2. How resonance-continuum interference changes 750 GeV diphoton excess: Signal enhancement and peak shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Sunghoon; Song, Jeonghyeon; Yoon, Yeo Woong

    2016-05-02

    A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ~50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. Furthermore,more » we find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by O (1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.« less

  3. Resonant Polarization Spectroscopy for Hot X-ray Plasmas

    DOE PAGES

    Chen, Guo -Xin

    2016-04-28

    X-ray line polarization spectroscopy is a method of choice for probing hot plasma conditions. The precise roles of resonant structures in this method have not been realized and fully understood. With a sophisticated relativistic close coupling Dirac R-matrix calculation of polarized radiation of the quadrupole magnetic M2 line at 2.717 Å in Ba 46+, we revealed the nature of resonant structures in x-ray line polarization spectroscopy. We found that signatures with a heavy resonance forest imprinting on polarization may be used for a sensitive new spectroscopic method. The resonant polarization spectrum was used to determine or constrain the directional beammore » electron distribution of the laboratory Ba plasma. Lastly, our results provide a start of resonant polarization spectroscopy as a method for diagnostics of laboratory, fusion and astrophysical plasma source conditions.« less

  4. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  5. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  6. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  7. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  8. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelc, D.; Grafe, H. -J.; Gu, G. D.

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  9. Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4

    DOE PAGES

    Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...

    2017-02-15

    In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less

  10. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  11. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  12. Periodic modulation-based stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatography-mass spectrometry signal of granisetron in plasma

    NASA Astrophysics Data System (ADS)

    Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei

    2007-05-01

    The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.

  13. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  14. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  15. Stochastic resonance in an underdamped system with FitzHug-Nagumo potential for weak signal detection

    NASA Astrophysics Data System (ADS)

    López, Cristian; Zhong, Wei; Lu, Siliang; Cong, Feiyun; Cortese, Ignacio

    2017-12-01

    Vibration signals are widely used for bearing fault detection and diagnosis. When signals are acquired in the field, usually, the faulty periodic signal is weak and is concealed by noise. Various de-noising methods have been developed to extract the target signal from the raw signal. Stochastic resonance (SR) is a technique that changed the traditional denoising process, in which the weak periodic fault signal can be identified by adding an expression, the potential, to the raw signal and solving a differential equation problem. However, current SR methods have some deficiencies such us limited filtering performance, low frequency input signal and sequential search for optimum parameters. Consequently, in this study, we explore the application of SR based on the FitzHug-Nagumo (FHN) potential in rolling bearing vibration signals. Besides, we improve the search of the SR optimum parameters by the use of particle swarm optimization (PSO). The effectiveness of the proposed method is verified by using both simulated and real bearing data sets.

  16. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  17. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  18. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    NASA Astrophysics Data System (ADS)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  19. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  20. Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    PubMed Central

    Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane

    2017-01-01

    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024

  1. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  2. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor); Brennen, Reid A. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  3. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Chutjian, Ara (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  4. The quadrupole ionosphere

    NASA Technical Reports Server (NTRS)

    Rishbeth, H.

    1986-01-01

    The principal features that might exist in the terrestrial paleoionosphere, if the geomagnetic field were to assume a quadrupole form during a polarity reversal are discussed. Complicated phenomena would be expected to occur at magnetic equators and magnetospherically-driven plasma convection might occur at latitudes where the magnetic field is steeply inclined. The influence of magnetic field strength on ionospheric structure is considered in general terms.

  5. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.

    PubMed

    Vogt, Jochen; Huck, Christian; Neubrech, Frank; Toma, Andrea; Gerbert, David; Pucci, Annemarie

    2015-09-07

    We report on the impact of the differing spectral near- and far-field properties of resonantly excited gold nanoantennas on the vibrational signal enhancement in surface-enhanced infrared absorption (SEIRA). The knowledge on both spectral characteristics is of considerable importance for the optimization of plasmonic nanostructures for surface-enhanced spectroscopy techniques. From infrared micro-spectroscopic measurements, we simultaneously obtain spectral information on the plasmonic far-field response and, via SEIRA spectroscopy of a test molecule, on the near-field enhancement. The molecular test layer of 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was deposited on the surface of gold nanoantennas with different lengths and thus different far-field resonance energies. We carefully studied the Fano-type vibrational lines in a broad spectral window, in particular, how the various vibrational signals are enhanced in relation to the ratio of the far-field plasmonic resonance and the molecular vibrational frequencies. As a detailed experimental proof of former simulation studies, we show the clearly red-shifted maximum SEIRA enhancement compared to the far-field resonance.

  6. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  7. The recovery of weak impulsive signals based on stochastic resonance and moving least squares fitting.

    PubMed

    Jiang, Kuosheng; Xu, Guanghua; Liang, Lin; Tao, Tangfei; Gu, Fengshou

    2014-07-29

    In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test.

  8. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with

  9. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  10. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  11. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  12. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  13. Pulsed Multiple Reaction Monitoring Approach to Enhancing Sensitivity of a Tandem Quadrupole Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, Mikhail E.; Prasad, Satendra; Prior, David C.

    2011-02-23

    Liquid chromatography (LC)-triple quadrupole mass spectrometers operating in a Multiple Reaction Monitoring (MRM) mode are increasingly used for quantitative analysis of low abundance analytes in highly complex biochemical matrices. After development and selection of optimum MRM transition, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an Ion Funnel Trapmore » (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several reference peptides. The sensitivity improvement observed with the IFT coupled to the triple quadrupole instrument is based on several unique features. First, ion accumulation in the radio frequency (RF) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density per unit time compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed up to 5-fold enhanced peak amplitude and 2-3 fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~ 4 to ~ 8.« less

  14. Quadrupole mass spectrometer driver with higher signal levels

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2003-01-01

    Driving a quadrapole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  15. Coherent resonance stop bands in alternating gradient beam transport

    NASA Astrophysics Data System (ADS)

    Ito, K.; Okamoto, H.; Tokashiki, Y.; Fukushima, K.

    2017-06-01

    An extensive experimental study is performed to confirm fundamental resonance bands of an intense hadron beam propagating through an alternating gradient linear transport channel. The present work focuses on the most common lattice geometry called "FODO" or "doublet" that consists of two quadrupoles of opposite polarities. The tabletop ion-trap system "S-POD" (Simulator of Particle Orbit Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-particle beam in a periodic focusing potential. In contrast with conventional experimental approaches relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature does not essentially change depending on these geometric factors. A few clear stop bands of low-order resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore, unavoidable at high beam density. The instability of the third-order coherent mode generates relatively weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our interpretations of experimental data are supported by theoretical

  16. Form factors of the d*(2380 ) resonance

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Shen, Pengnian; Zhang, Zongye

    2018-06-01

    In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.

  17. Study of a micro chamber quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jinchan; Zhang Xiaobing; Mao Fuming

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less

  18. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    NASA Astrophysics Data System (ADS)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  19. Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis.

    PubMed

    Liu, Jinjun; Leng, Yonggang; Lai, Zhihui; Fan, Shengbo

    2018-04-25

    Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method.

  20. Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis

    PubMed Central

    Leng, Yonggang; Fan, Shengbo

    2018-01-01

    Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method. PMID:29693577

  1. Plasmon Resonance Methods in GPCR Signaling and Other Membrane Events

    PubMed Central

    Alves, I.D.; Park, C.K.; Hruby, V.J.

    2005-01-01

    The existence of surface guided electromagnetic waves has been theoretically predicted from Maxwell’s equations and investigated during the first decades of the 20th century. However, it is only since the late 1960’s that they have attracted the interest of surface physicists and earned the moniker of “surface plasmon”. With the advent of commercially available instruments and well established theories, the technique has been used to study a wide variety of biochemical and biotechnological phenomena. Spectral response of the resonance condition serves as a sensitive indicator of the optical properties of thin films immobilized within a wavelength of the surface. This enhanced surface sensitivity has provided a boon to the surface sciences, and fosters collaboration between surface chemistry, physics and the ongoing biological and biotechnological revolution. Since then, techniques based on surface plasmons such as Surface Plasmon Resonance (SPR), SPR Imaging, Plasmon Waveguide Resonance (PWR) and others, have been increasingly used to determine the affinity and kinetics of a wide variety of real time molecular interactions such as protein-protein, lipid-protein and ligand-protein, without the need for a molecular tag or label. The physical-chemical methodologies used to immobilize membranes at the surface of these optical devices are reviewed, pointing out advantages and limitations of each method. The paper serves to summarize both historical and more recent developments of these technologies for investigating structure-function aspects of these molecular interactions, and regulation of specific events in signal transduction by G-protein coupled receptors (GPCRs). PMID:16101432

  2. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  3. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    NASA Astrophysics Data System (ADS)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  4. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  5. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    PubMed

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  6. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  7. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  8. Ferrimagnetic resonance signal produced by frictional heating: A new indicator of paleoseismicity

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tatsuro; Mizoguchi, Kazuo; Shimamoto, Toshihiko

    2005-12-01

    High-speed fault slips during earthquakes may generate sufficient frictional heat to produce fused fault rocks such as pseudotachylyte. We have carried out high-speed slip tests using natural fault gouge to judge whether or not frictional heating universally occurs during seismic fault slips. In our shearing tests, natural fault gouge is put between two cylindrical silica glasses and sheared under a fixed axial stress of 0.61 MPa. Despite such a low stress near the Earth's surface, a darkened cohesive material resembling pseudotachylyte is made from the fault gouge along the edge of a circular shear plane when shearing at a high speed of 1500 rpm (the maximum slip rate reaches ˜1.96 m/s at the edge). Electron spin resonance measurements reveal that the darkened cohesive material has a strong ferrimagnetic resonance (FMR) signal, which is derived from bulky trivalent iron ions in ferrimagnetic iron oxides (γ-Fe2O3). The FMR signal is produced by the thermal dehydration of antiferromagnetic iron oxides (γ-FeOOH) in the fault gouge. This may be applicable to the detection of past heating during seismic fault slip. We thus attempt to reconstruct the temperature of frictional heat generated on the Nojima fault plane in the 1995 Kobe earthquake (M = 7.3) by inversion using the FMR signal. The computer simulation indicates that the frictional heat generated on the Nojima fault plane at ˜390 m depth may have attained ˜390°C during the 1995 Kobe earthquake. The temperature in the fault plane may have returned to its initial state after ˜1 year. This result suggests that a heat flow anomaly generated by faulting may be difficult to detect.

  9. Generalized energy detector for weak random signals via vibrational resonance

    NASA Astrophysics Data System (ADS)

    Ren, Yuhao; Pan, Yan; Duan, Fabing

    2018-03-01

    In this paper, the generalized energy (GE) detector is investigated for detecting weak random signals via vibrational resonance (VR). By artificially injecting the high-frequency sinusoidal interferences into an array of GE statistics formed for the detector, we show that the normalized asymptotic efficacy can be maximized when the interference intensity takes an appropriate non-zero value. It is demonstrated that the normalized asymptotic efficacy of the dead-zone-limiter detector, aided by the VR mechanism, outperforms that of the GE detector without the help of high-frequency interferences. Moreover, the maximum normalized asymptotic efficacy of dead-zone-limiter detectors can approach a quarter of the second-order Fisher information for a wide range of non-Gaussian noise types.

  10. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  11. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  12. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  13. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.

    PubMed

    Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling

    2014-05-15

    Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  15. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  16. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  17. Neutral Pion Electroproduction in the Δ Resonance Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villano, Anthony

    2007-11-01

    The electroproduction of baryon resonances at high Q 2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π 0 particles. Differential cross sections are extracted for exclusive π 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A 3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor Gmore » $$*\\atop{M}$$ is extracted along with the scalar to magnetic dipole ratio C2/M1.« less

  18. {open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, S.F.; Petschek, R.G.; Singer, K.D.

    1997-10-01

    We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light formore » which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.« less

  19. Thermal noise in aqueous quadrupole micro- and nano-traps

    DOE PAGES

    Park, Jae; Krstić, Predrag S.

    2012-02-27

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less

  20. Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.

    PubMed

    Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R

    2011-05-25

    Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.

  1. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  2. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    PubMed Central

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  3. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, andmore » a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.« less

  4. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  5. Signal acquisition module design for multi-channel surface magnetic resonance sounding system

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.

  6. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the lattermore » signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.« less

  7. Persistent free radical ESR signals in marine bivalve tissues. [Electron Spin Resonance (ESR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlorn, R.J.; Mendez, A.T.; Higashi, R.

    1992-08-01

    Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at themore » Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.« less

  8. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection.

    PubMed

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-08-28

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  9. Phase-encoded single-voxel magnetic resonance spectroscopy for suppressing outer volume signals at 7 Tesla.

    PubMed

    Li, Ningzhi; An, Li; Johnson, Christopher; Shen, Jun

    2017-01-01

    Due to imperfect slice profiles, unwanted signals from outside the selected voxel may significantly contaminate metabolite signals acquired using in vivo magnetic resonance spectroscopy (MRS). The use of outer volume suppression may exceed the SAR threshold, especially at high field. We propose using phase-encoding gradients after radiofrequency (RF) excitation to spatially encode unwanted signals originating from outside of the selected single voxel. Phase-encoding gradients were added to a standard single voxel point-resolved spectroscopy (PRESS) sequence which selects a 2 × 2 × 2 cm 3 voxel. Subsequent spatial Fourier transform was used to encode outer volume signals. Phantom and in vivo experiments were performed using both phase-encoded PRESS and standard PRESS at 7 Tesla. Quantification was performed using fitting software developed in-house. Both phantom and in vivo studies showed that spectra from the phase-encoded PRESS sequence were relatively immune from contamination by oil signals and have more accurate quantification results than spectra from standard PRESS spectra of the same voxel. The proposed phase-encoded single-voxel PRESS method can significantly suppress outer volume signals that may appear in the spectra of standard PRESS without increasing RF power deposition.

  10. Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, I.C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arisemore » from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.« less

  11. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  12. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2017-12-09

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  13. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  14. Influence of resonant collisions on the self-broadening of acetylene

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2017-03-01

    Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.

  15. Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling

    PubMed Central

    Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380

  16. Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toru; Kato, Toshinori

    2002-04-01

    Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.

  17. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  18. Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-05-01

    We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.

  19. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    PubMed Central

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-01-01

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671

  20. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  1. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  2. Low-profile wireless passive resonators for sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xun; An, Linan

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less

  3. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  4. Oligonucleotide gas-phase hydrogen/deuterium exchange with D2S in the collision cell of a quadrupole-Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Mo, Jingjie; Håkansson, Kristina

    2007-10-15

    We have implemented gas-phase hydrogen/deuterium exchange (HDX) experiments in the external collision cell of a hybrid quadrupole-Fourier transform ion cyclotron resonance mass spectrometer. In this configuration, multiply charged oligonucleotide anions undergo significant exchange with D(2)S at reaction intervals ranging from 0.11 to 60.1 s. For DNA homohexamers, relative exchange rates were dC(6) approximately dA(6) > dG(6) > dT(6), correlating with the gas-phase acidities of nucleobases (C > A > T > G), except for guanine. Our results are consistent with a relay mechanism in which D(2)S interacts with both a backbone phosphate group and a neutral nucleobase through hydrogen bonding. We propose that the faster exchange of polyguanosine compared to polythymidine is due to the larger size of guanine and the orientation of its labile hydrogens, which may result in gas-phase conformations more favorable for forming complexes with D(2)S. Similar trends were observed for RNA homohexamers, although their HDX rates were faster than for DNA, suggesting they can also exchange via another relay process involving the 2'-hydroxyl group. HDX of DNA duplexes further supports the involvement of nucleobase hydrogens because duplexes exchanged slower than their corresponding single strands, presumably due to the intermolecular hydrogen bonds between nucleobases. This work constitutes the first investigation of the mechanisms of oligonucleotide gas-phase HDX. Our results on duplexes show promise for application of this strategy to the characterization of structured nucleic acids.

  5. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study*

    PubMed Central

    da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto

    2015-01-01

    Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746

  6. Terahertz absorber based on Fano-like resonance of inverted quadrangular frustum pyramid metal grooves and sensor application

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Sun, Bo

    2018-07-01

    We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.

  7. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  8. Mass selectivity of dipolar resonant excitation in a linear quadrupole ion trap.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-03-15

    For mass analysis, linear quadrupole ion traps operate with dipolar excitation of ions for either axial or radial ejection. There have been comparatively few computer simulations of this process. We introduce a new concept, the excitation contour, S(q), the fraction of the excited ions that reach the trap electrodes when trapped at q values near that corresponding to the excitation frequency. Ion trajectory calculations are used to calculate S(q). Ions are given Gaussian distributions of initial positions in x and y, and thermal initial velocity distributions. To model gas damping, a drag force is added to the equations of motion. The effects of the initial conditions, ejection Mathieu parameter q, scan speed, excitation voltage and collisional damping, are modeled. We find that, with no buffer gas, the mass resolution is mostly determined by the excitation time and is given by R~dβ/dq qn, where β(q) determines the oscillation frequency, and n is the number of cycles of the trapping radio frequency during the excitation or ejection time. The highest resolution at a given scan speed is reached with the lowest excitation amplitude that gives ejection. The addition of a buffer gas can increase the mass resolution. The simulation results are in broad agreement with experiments. The excitation contour, S(q), introduced here, is a useful tool for studying the ejection process. The excitation strength, excitation time and buffer gas pressure interact in a complex way but, when set properly, a mass resolution R0.5 of at least 10,000 can be obtained at a mass-to-charge ratio of 609. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  10. Strong dipole and higher multi-pole Mie resonance modes with all-dielectric nanoring metasurfaces structure

    NASA Astrophysics Data System (ADS)

    Zhu, Huihui; Jing, Xufeng; Zhou, Pengwei

    2018-01-01

    Strong electric and magnetic dipole in infrared region and higher order multi-pole resonance at visible wavelengths are observed in all-dielectric nanoring metasurfaces. We discuss some of the parameters that influence the optical response of the dielectric nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. Dipole, quadrupole, six-pole and ten-pole resonance modes can be found in the silicon nanoring at resonance wavelength. The transmission spectrum of nanoring with high Q-factor and contrast is achieved with appropriate parameters. Further the nanoring is used to application of sensing in which the sensitivity reaches 228 nm/RIU. This research is an important step to understand resonance in silicon nanoring and paves way for designing some optic devices such as sensor, nanoantennas, and photovoltaics.

  11. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  12. New perspectives in laser analytics: Resonance-enhanced multiphoton ionization in a Paul ion trap combined with a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald

    1995-04-01

    A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.

  13. Research on the output bit error rate of 2DPSK signal based on stochastic resonance theory

    NASA Astrophysics Data System (ADS)

    Yan, Daqin; Wang, Fuzhong; Wang, Shuo

    2017-12-01

    Binary differential phase-shift keying (2DPSK) signal is mainly used for high speed data transmission. However, the bit error rate of digital signal receiver is high in the case of wicked channel environment. In view of this situation, a novel method based on stochastic resonance (SR) is proposed, which is aimed to reduce the bit error rate of 2DPSK signal by coherent demodulation receiving. According to the theory of SR, a nonlinear receiver model is established, which is used to receive 2DPSK signal under small signal-to-noise ratio (SNR) circumstances (between -15 dB and 5 dB), and compared with the conventional demodulation method. The experimental results demonstrate that when the input SNR is in the range of -15 dB to 5 dB, the output bit error rate of nonlinear system model based on SR has a significant decline compared to the conventional model. It could reduce 86.15% when the input SNR equals -7 dB. Meanwhile, the peak value of the output signal spectrum is 4.25 times as that of the conventional model. Consequently, the output signal of the system is more likely to be detected and the accuracy can be greatly improved.

  14. Nanopolyaniline as immobilization template for signal enhancement of surface plasmon resonance biosensor - A preliminary study

    NASA Astrophysics Data System (ADS)

    Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita

    2012-07-01

    A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.

  15. High frequency signal acquisition using a smartphone in an undergraduate teaching laboratory: Applications in ultrasonic resonance spectra.

    PubMed

    Sturtevant, Blake T; Pantea, Cristian; Sinha, Dipen N

    2016-10-01

    A simple and inexpensive approach to acquiring signals in the megahertz frequency range using a smartphone is described. The approach is general, applicable to electromagnetic as well as acoustic measurements, and makes available to undergraduate teaching laboratories experiments that are traditionally inaccessible due to the expensive equipment that are required. This paper focuses on megahertz range ultrasonic resonance spectra in liquids and solids, although there is virtually no upper limit on frequencies measurable using this technique. Acoustic resonance measurements in water and Fluorinert in a one dimensional (1D) resonant cavity were conducted and used to calculate sound speed. The technique is shown to have a precision and accuracy significantly better than one percent in liquid sound speed. Measurements of 3D resonances in an isotropic solid sphere were also made and used to determine the bulk and shear moduli of the sample. The elastic moduli determined from the solid resonance measurements agreed with those determined using a research grade vector network analyzer to better than 0.5%. The apparatus and measurement technique described can thus make research grade measurements using standardly available laboratory equipment for a cost that is two-to-three orders of magnitude less than the traditional measurement equipment used for these measurements.

  16. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    PubMed Central

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  17. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  18. Resonance-Based Sparse Signal Decomposition and its Application in Mechanical Fault Diagnosis: A Review.

    PubMed

    Huang, Wentao; Sun, Hongjian; Wang, Weijie

    2017-06-03

    Mechanical equipment is the heart of industry. For this reason, mechanical fault diagnosis has drawn considerable attention. In terms of the rich information hidden in fault vibration signals, the processing and analysis techniques of vibration signals have become a crucial research issue in the field of mechanical fault diagnosis. Based on the theory of sparse decomposition, Selesnick proposed a novel nonlinear signal processing method: resonance-based sparse signal decomposition (RSSD). Since being put forward, RSSD has become widely recognized, and many RSSD-based methods have been developed to guide mechanical fault diagnosis. This paper attempts to summarize and review the theoretical developments and application advances of RSSD in mechanical fault diagnosis, and to provide a more comprehensive reference for those interested in RSSD and mechanical fault diagnosis. Followed by a brief introduction of RSSD's theoretical foundation, based on different optimization directions, applications of RSSD in mechanical fault diagnosis are categorized into five aspects: original RSSD, parameter optimized RSSD, subband optimized RSSD, integrated optimized RSSD, and RSSD combined with other methods. On this basis, outstanding issues in current RSSD study are also pointed out, as well as corresponding instructional solutions. We hope this review will provide an insightful reference for researchers and readers who are interested in RSSD and mechanical fault diagnosis.

  19. Resonance-Based Sparse Signal Decomposition and Its Application in Mechanical Fault Diagnosis: A Review

    PubMed Central

    Huang, Wentao; Sun, Hongjian; Wang, Weijie

    2017-01-01

    Mechanical equipment is the heart of industry. For this reason, mechanical fault diagnosis has drawn considerable attention. In terms of the rich information hidden in fault vibration signals, the processing and analysis techniques of vibration signals have become a crucial research issue in the field of mechanical fault diagnosis. Based on the theory of sparse decomposition, Selesnick proposed a novel nonlinear signal processing method: resonance-based sparse signal decomposition (RSSD). Since being put forward, RSSD has become widely recognized, and many RSSD-based methods have been developed to guide mechanical fault diagnosis. This paper attempts to summarize and review the theoretical developments and application advances of RSSD in mechanical fault diagnosis, and to provide a more comprehensive reference for those interested in RSSD and mechanical fault diagnosis. Followed by a brief introduction of RSSD’s theoretical foundation, based on different optimization directions, applications of RSSD in mechanical fault diagnosis are categorized into five aspects: original RSSD, parameter optimized RSSD, subband optimized RSSD, integrated optimized RSSD, and RSSD combined with other methods. On this basis, outstanding issues in current RSSD study are also pointed out, as well as corresponding instructional solutions. We hope this review will provide an insightful reference for researchers and readers who are interested in RSSD and mechanical fault diagnosis. PMID:28587198

  20. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  1. Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a

    DOE PAGES

    DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...

    2016-03-09

    The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less

  2. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  3. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  4. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  5. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  6. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such asmore » lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.« less

  7. Ultra-high-Q three-dimensional photonic crystal nano-resonators.

    PubMed

    Tang, Lingling; Yoshie, Tomoyuki

    2007-12-10

    Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.

  8. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  9. Parameter-induced stochastic resonance with a periodic signal

    NASA Astrophysics Data System (ADS)

    Li, Jian-Long; Xu, Bo-Hou

    2006-12-01

    In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter-induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.

  10. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples.

    PubMed

    Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai

    2009-09-01

    The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.

  11. The MQXA quadrupoles for the LHC low-beta insertions

    NASA Astrophysics Data System (ADS)

    Ajima, Y.; Higashi, N.; Iida, M.; Kimura, N.; Nakamoto, T.; Ogitsu, T.; Ohhata, H.; Ohuchi, N.; Shintomi, T.; Sugawara, S.; Sugita, K.; Tanaka, K.; Taylor, T.; Terashima, A.; Tsuchiya, K.; Yamamoto, A.

    2005-09-01

    High-performance superconducting quadrupole magnets, MQXA, for the LHC low-beta insertions have been designed, manufactured in series and tested. The design field gradient of the quadrupole, which has a coil aperture of diameter 70 mm, was 240 T/m at 1.9 K; its effective length is 6.37 m, and it is required to operate reliably at up to 215 T/m when subjected to radiation heat deposit in the coils of up to 5 W/m. The series of 20 magnets has been produced in industry, and tested at KEK. The magnet design is explained, and the construction and performance of the series units, in terms of training, field quality and geometry, are presented.

  12. All-dielectric frequency selective surface design based on dielectric resonator

    NASA Astrophysics Data System (ADS)

    Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang

    2016-06-01

    In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).

  13. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  14. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  15. Magnetic quench antenna for MQXF quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  16. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is

  17. Analysis of Magnetic Resonance Image Signal Fluctuations Acquired During MR-Guided Radiotherapy.

    PubMed

    Breto, Adrian L; Padgett, Kyle R; Ford, John C; Kwon, Deukwoo; Chang, Channing; Fuss, Martin; Stoyanova, Radka; Mellon, Eric A

    2018-03-28

    Magnetic resonance-guided radiotherapy (MRgRT) is a new and evolving treatment modality that allows unprecedented visualization of the tumor and surrounding anatomy. MRgRT includes daily 3D magnetic resonance imaging (MRI) for setup and rapidly repeated near real-time MRI scans during treatment for target tracking. One of the more exciting potential benefits of MRgRT is the ability to analyze serial MRIs to monitor treatment response or predict outcomes. A typical radiation treatment (RT) over the span of 10-15 minutes on the MRIdian system (ViewRay, Cleveland, OH) yields thousands of "cine" images, each acquired in 250 ms. This unique data allows for a glimpse in image intensity changes during RT delivery. In this report, we analyze cine images from a single fraction RT of a glioblastoma patient on the ViewRay platform in order to characterize the dynamic signal changes occurring during RT therapy. The individual frames in the cines were saved into DICOM format and read into an MIM image analysis platform (MIM Software, Cleveland, OH) as a time series. The three possible states of the three Cobalt-60 radiation sources-OFF, READY, and ON-were also recorded. An in-house Java plugin for MIM was created in order to perform principal component analysis (PCA) on each of the datasets. The analysis resulted in first PC, related to monotonous signal increase over the course of the treatment fraction. We found several distortion patterns in the data that we postulate result from the perturbation of the magnetic field due to the moving metal parts in the platform while treatment was being administered. The largest variations were detected when all Cobalt-60 sources were OFF. During this phase of the treatment, the gantry and multi-leaf collimators (MLCs) are moving. Conversely, when all Cobalt-60 sources were in the ON position, the image signal fluctuations were minimal, relating to very little mechanical motion. At this phase, the gantry, the MLCs, and sources are fixed

  18. Analysis of Magnetic Resonance Image Signal Fluctuations Acquired During MR-Guided Radiotherapy

    PubMed Central

    Breto, Adrian L; Padgett, Kyle R; Ford, John C; Kwon, Deukwoo; Chang, Channing; Fuss, Martin; Mellon, Eric A

    2018-01-01

    Magnetic resonance-guided radiotherapy (MRgRT) is a new and evolving treatment modality that allows unprecedented visualization of the tumor and surrounding anatomy. MRgRT includes daily 3D magnetic resonance imaging (MRI) for setup and rapidly repeated near real-time MRI scans during treatment for target tracking. One of the more exciting potential benefits of MRgRT is the ability to analyze serial MRIs to monitor treatment response or predict outcomes. A typical radiation treatment (RT) over the span of 10-15 minutes on the MRIdian system (ViewRay, Cleveland, OH) yields thousands of “cine” images, each acquired in 250 ms. This unique data allows for a glimpse in image intensity changes during RT delivery. In this report, we analyze cine images from a single fraction RT of a glioblastoma patient on the ViewRay platform in order to characterize the dynamic signal changes occurring during RT therapy. The individual frames in the cines were saved into DICOM format and read into an MIM image analysis platform (MIM Software, Cleveland, OH) as a time series. The three possible states of the three Cobalt-60 radiation sources—OFF, READY, and ON—were also recorded. An in-house Java plugin for MIM was created in order to perform principal component analysis (PCA) on each of the datasets. The analysis resulted in first PC, related to monotonous signal increase over the course of the treatment fraction. We found several distortion patterns in the data that we postulate result from the perturbation of the magnetic field due to the moving metal parts in the platform while treatment was being administered. The largest variations were detected when all Cobalt-60 sources were OFF. During this phase of the treatment, the gantry and multi-leaf collimators (MLCs) are moving. Conversely, when all Cobalt-60 sources were in the ON position, the image signal fluctuations were minimal, relating to very little mechanical motion. At this phase, the gantry, the MLCs, and sources

  19. Transverse-rapidity yt dependence of the nonjet azimuth quadrupole from 62- and 200-GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David T.; Prindle, Duncan J.; Trainor, Thomas A.

    2015-06-01

    Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a "perfect liquid" is formed in heavy-ion collisions at the Relativistic Heavy Ion Collider. However, conventional v2 methods based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution. In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted by v2{2D} . We establish systematic variations of the NJ quadrupole on yt, centrality, and collision energy. We adopt transverse-rapidity yt as both a velocity measure and a logarithmic alternative to transverse momentum pt. Based on NJ-quadrupole trends, we derive a completely factorized universal parametrization of quantity v2{2D} (yt,b ,√{sN N}) which describes the centrality, yt, and energy dependence. From yt-differential v2(yt) data we isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appears to be uncorrelated with a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole trends have interesting implications for hydro interpretations.

  20. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  1. Manual method of visually identifying candidate signals for a targeted peptide.

    PubMed

    Filimonov, Aleksey; Kopylov, Arthur; Lisitsa, Andrey; Archakov, Alexander

    2018-04-15

    The purpose of this study is to improve peptide signal identification in groups of extracted ion chromatograms (XICs) obtained with the liquid chromatography-selected reaction monitoring (LC-SRM) technique and a triple quadrupole mass spectrometer (QqQ) operating in one of the supported multiple reaction monitoring (MRM) modes. The imperfection of quadrupole mass analyzers causes ion interference, which impedes the identification of peptide signals as chromatographic peak groups in relevant retention time intervals. To investigate this problem in depth, the QqQ conversion of the eluate into XIC groups was considered as the consecutive transformations of the particles' abundances as the corresponding functions of retention time. In this study, the hypothesis that, during this conversion, the same chromatographic profile should be preserved as an implicit sign in each chromatographic peak of the signal was confirmed for peptides. To examine chromatographic profiles, continuous transformations of XIC groups were derived and implemented in srm2prot Express software (s2pe, http://msr.ibmc.msk.ru/s2pe). Because of ion interference, several peptide-like signals may appear in one XIC group. Therefore, these signals must be considered candidates for a targeted peptide's signal and should be resolved after identification. The theoretical investigation of intensity functions as XICs that are not distorted by noise produced three rules for Identifying Candidate Signals for a targeted Peptide (ICSP, http://msr.ibmc.msk.ru/ICSP) that constitute the proposed manual visual method. We theoretically and experimentally compared this method with the conventional semiempirical intuitive technique and found that the former significantly streamlines peptide signal identification and avoids typical errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-28

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  3. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  4. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    PubMed

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  5. Non-Gaussian, non-dynamical stochastic resonance

    NASA Astrophysics Data System (ADS)

    Szczepaniec, Krzysztof; Dybiec, Bartłomiej

    2013-11-01

    The classical model revealing stochastic resonance is a motion of an overdamped particle in a double-well fourth order potential when combined action of noise and external periodic driving results in amplifying of weak signals. Resonance behavior can also be observed in non-dynamical systems. The simplest example is a threshold triggered device. It consists of a periodic modulated input and noise. Every time an output crosses the threshold the signal is recorded. Such a digitally filtered signal is sensitive to the noise intensity. There exists the optimal value of the noise intensity resulting in the "most" periodic output. Here, we explore properties of the non-dynamical stochastic resonance in non-equilibrium situations, i.e. when the Gaussian noise is replaced by an α-stable noise. We demonstrate that non-equilibrium α-stable noises, depending on noise parameters, can either weaken or enhance the non-dynamical stochastic resonance.

  6. Low-voltage differentially-signaled modulators.

    PubMed

    Zortman, William A; Lentine, Anthony L; Trotter, Douglas C; Watts, Michael R

    2011-12-19

    For exascale computing applications, viable optical solutions will need to operate using low voltage signaling and with low power consumption. In this work, the first differentially signaled silicon resonator is demonstrated which can provide a 5dB extinction ratio using 3fJ/bit and 500mV signal amplitude at 10Gbps. Modulation with asymmetric voltage amplitudes as low as 150mV with 3dB extinction are demonstrated at 10Gbps as well. Differentially signaled resonators simplify and expand the design space for modulator implementation and require no special drivers.

  7. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Fischer, Peer; Krämer, Steffen

    2016-09-01

    Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.

  8. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J., E-mail: Jieliu@aps.anl.gov; Jaski, M., E-mail: jaski@aps.anl.gov; Borland, M., E-mail: borland@aps.anl.gov

    2016-07-27

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based onmore » the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.« less

  9. Simulation of Thermographic Responses of Delaminations in Composites with Quadrupole Method

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.; Cramer, K. Elliott

    2016-01-01

    The application of the quadrupole method for simulating thermal responses of delaminations in carbon fiber reinforced epoxy composites materials is presented. The method solves for the flux at the interface containing the delamination. From the interface flux, the temperature at the surface is calculated. While the results presented are for single sided measurements, with ash heating, expansion of the technique to arbitrary temporal flux heating or through transmission measurements is simple. The quadrupole method is shown to have two distinct advantages relative to finite element or finite difference techniques. First, it is straight forward to incorporate arbitrary shaped delaminations into the simulation. Second, the quadrupole method enables calculation of the thermal response at only the times of interest. This, combined with a significant reduction in the number of degrees of freedom for the same simulation quality, results in a reduction of the computation time by at least an order of magnitude. Therefore, it is a more viable technique for model based inversion of thermographic data. Results for simulations of delaminations in composites are presented and compared to measurements and finite element method results.

  10. Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model

    PubMed Central

    Harada, Kuniaki; Honmou, Osamu; Liu, He; Bando, Michio; Houkin, Kiyohiro; Kocsis, Jeffery D.

    2008-01-01

    Proton magnetic resonance spectroscopy (1-H MRS) has revealed changes of metabolites in acute cerebral infarction. Although the drastic changes of lactate and N-acetyl-aspartate have been reported to be useful indicators of the ischemic damage in both humans and experimental animals, lipid signals are also detected by the short echo time sequence 1–5 days after ischemia. The objective of this study was to find a novel technique to isolate lactate signals from lipid signals in the ischemic brain. First, MRS was used to study the lipid and lactate components of a spherical phantom in vitro, and parameters were established to separate these components in vitro. Then, MR measurements were obtained from the brains of middle cerebral artery occlusion rats. All MR measurements were performed using a 7-T (300 MHz), 18.3-cm-bore superconducting magnet (Oxford Magnet Technologies) interfaced to a Unity INOVA Imaging System (Varian Technologies). T2-weighted images were obtained from a 1.0-mm-thick coronal section using a 3-cm field of view. It is well known that lipid has a shorter and lactate a longer T2 relaxation time. These distinct magnetic characteristics allowed us to separate the lactate signal from the lipid signal. Thus, adjustment of the echo time is essential to analyze the metabolites in acute cerebral infarction, which may be useful in both the clinic and laboratory. PMID:17196558

  11. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  12. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  13. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  14. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    NASA Astrophysics Data System (ADS)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  15. Year-2017 nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Pyykkö, Pekka

    2018-05-01

    A 'year-2017' set of nuclear quadrupole moments, Q, is presented. Compared to the previous, 'year-2008' set, a major revision of the value, or an improvement of the accuracy is reported for 21H, 37, 3918Ar, 39, 40, 4119K, 6730Zn, 48Cd, 49In, 50Sn (Mössbauer state), 51Sb, 87Fr and 90Th. Slight improvements or valuable reconfirmations exist for 4Be, 6C, 16S, 17Cl, 33As, 35Br, 53I, 54Xe, 56Ba, 57La and 72Hf.

  16. MQXFS1 Quadrupole Fabrication Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Anerella, M.; Bossert, R.

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  17. Micromechanical Signal Processors

    NASA Astrophysics Data System (ADS)

    Nguyen, Clark Tu-Cuong

    Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller

  18. The nuclear electric quadrupole moment of antimony from the molecular method.

    PubMed

    Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas

    2006-08-14

    Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.

  19. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  20. Search for Quadrupole Strength in the Electroexcitation of the Delta+ (1232)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Mertz; C. Vellidis; Ricardo Alarcon

    2001-04-01

    High precision 1H(e, e'p)pi0 measurements at Q2 = 0.126. (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N --> Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole (I = 3/2) amplitude ratios, RSM = (-6.5 +/- 0.2stat+sys+/-2.5mod)% and REM = 9-2.1 +/-0.2stat+sys +/-2.0mod)%, are dominated by model error. Previous RSM and REM results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

  1. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  2. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  3. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  4. A Perspective on Studying G-Protein–Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms

    PubMed Central

    van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J.; Goedhart, Joachim; Bruchas, Michael R.; Bouvier, Michel

    2015-01-01

    The last frontier for a complete understanding of G-protein–coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)–based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. PMID:25972446

  5. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  6. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  7. Adaptation of a 3-D Quadrupole Ion Trap for Dipolar DC Collisional Activation

    PubMed Central

    Prentice, Boone M.; Santini, Robert E.; McLuckey, Scott A.

    2011-01-01

    Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry. PMID:21953251

  8. Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, Auralee; Biedron, Sandra; Bowring, Daniel

    2016-06-01

    As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequencymore » of the RFQ.« less

  9. Effects of specimen resonances on acoustic-ultrasonic testing

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.

    1983-01-01

    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.

  10. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  11. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization

    PubMed Central

    2015-01-01

    Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins. PMID:25208235

  12. A magnetic resonance study of MoS(2) fullerene-like nanoparticles.

    PubMed

    Panich, A M; Shames, A I; Rosentsveig, R; Tenne, R

    2009-09-30

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS(2) nanoparticles. Spectra of bulk 2H-MoS(2) samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS(2) reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS(2) exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS(2) ones.

  13. A magnetic resonance study of MoS2 fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Shames, A. I.; Rosentsveig, R.; Tenne, R.

    2009-09-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS2 nanoparticles. Spectra of bulk 2H-MoS2 samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS2 reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS2 exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS2 ones.

  14. Autapse-induced multiple stochastic resonances in a modular neuronal network

    NASA Astrophysics Data System (ADS)

    Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui

    2017-08-01

    This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.

  15. Millimeter-wave detection using resonant tunnelling diodes

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.

    1990-01-01

    A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.

  16. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    PubMed

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  17. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  18. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  19. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms.

    PubMed

    van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W

    2015-09-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  1. Liposomes with High Refractive Index Encapsulants as Tunable Signal Amplification Tools in Surface Plasmon Resonance Spectroscopy.

    PubMed

    Fenzl, Christoph; Hirsch, Thomas; Baeumner, Antje J

    2015-11-03

    One major goal in the surface plasmon resonance (SPR) technique is the reliable detection of small molecules as well as low analyte concentrations. This can be achieved by a viable signal amplification strategy. We therefore investigated optimal liposome characteristics for use as a signal enhancement system for SPR sensors, as liposomes excel not only at versatility but also at colloidal stability and ease of functionalization. These characteristics include the encapsulation of high refractive index markers, lipid composition, liposome size, and surface modifications to best match the requirements of the SPR system. Our studies of the binding of biotinylated liposomes to surface-immobilized streptavidin show that the refractive index of the encapsulant has a major influence on the SPR signal and outweighs the influence of the thin lipid bilayer. Thus, the signal amplification properties of liposomes can be adjusted to the respective needs of any analytical task by simply exchanging the encapsulant solution. In this work, a maximum enhancement factor of 23 was achieved by encapsulating a 500 mM sucrose solution. Dose-response studies with and without liposome enhancement revealed an improvement of the limit of detection from 10 nmol L(-1) to 320 pmol L(-1) streptavidin concentration with a much higher sensitivity of 3 mRIU per logarithmic unit of the concentration between 500 pmol L(-1) and 10 nmol L(-1).

  2. Acoustic resonance phase locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  3. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  4. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  5. Super-contrast photoacoustic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin

    2018-02-01

    In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.

  6. Field stabilization studies for a radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Gaur, R.; Kumar, V.

    2014-07-01

    The Radio Frequency Quadrupole (RFQ) linear accelerator is an accelerator that efficiently focuses, bunches and accelerates a high intensity DC beam from an ion source, for various applications. Unlike other conventional RF linear accelerators, the electromagnetic mode used for its operation is not the lowest frequency mode supported by the structure. In a four vane type RFQ, there are several undesired electromagnetic modes having frequency close to that of the operating mode. While designing an RFQ accelerator, care must be taken to ensure that the frequencies of these nearby modes are sufficiently separated from the operating mode. If the undesired nearby modes have frequencies close to the operating mode, the electromagnetic field pattern in the presence of geometrical errors will not be stabilized to the desired field profile, and will be perturbed by the nearby modes. This will affect the beam dynamics and reduce the beam transmission. In this paper, we present a detailed study of the electromagnetic modes supported, which is followed by calculations for implementation of suitable techniques to make the desired operating mode stable against mixing with unwanted modes for an RFQ being designed for the proposed Indian Spallation Neutron Source (ISNS) project at Raja Ramanna Centre for Advanced Technology, Indore. Resonant coupling scheme, along with dipole stabilization rods has been proposed to increase the mode separation. The paper discusses the details of a generalized optimization procedure that has been used for the design of mode stabilization scheme.

  7. In Vivo Application of Proton-Electron Double-Resonance Imaging

    PubMed Central

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  8. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  9. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  10. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  11. Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Shi, Ping; Qian, Xuan; Li, Wei; Ji, Yang

    2016-11-01

    The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).

  12. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  13. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less

  14. Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzdensky, Dmitri A.; Kulsrud, Russell M.

    2006-06-15

    A quadrupole pattern of the out-of-plane component of the magnetic field inside a reconnection region is seen as an important signature of the Hall-magnetohydrodynamic regime of reconnection. It has been first observed in numerical simulations and just recently confirmed in the Magnetic Reconnection Experiment [Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsin, Phys. Rev. Lett. 95, 055003 (2005)] and also seen in spacecraft observations of Earth's magnetosphere. In this study, the physical origin of the quadrupole field is analyzed and traced to a current of electrons that flows along the lines in and out ofmore » the inner reconnection region to maintain charge neutrality. The role of the quadrupole magnetic field in the overall dynamics of the reconnection process is discussed. In addition, the bipolar poloidal electric field is estimated and its effect on ion motions is emphasized.« less

  15. Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.

    PubMed

    Peng, Ying; Hansen, Brett J; Quist, Hannah; Zhang, Zhiping; Wang, Miao; Hawkins, Aaron R; Austin, Daniel E

    2011-07-15

    We present the design and results for a new radio-frequency ion trap mass analyzer, the coaxial ion trap, in which both toroidal and quadrupolar trapping regions are created simultaneously. The device is composed of two parallel ceramic plates, the facing surfaces of which are lithographically patterned with concentric metal rings and covered with a thin film of germanium. Experiments demonstrate that ions can be trapped in either region, transferred from the toroidal to the quadrupolar region, and mass-selectively ejected from the quadrupolar region to a detector. Ions trapped in the toroidal region can be transferred to the quadrupole region using an applied ac signal in the radial direction, although it appears that the mechanism of this transfer does not involve resonance with the ion secular frequency, and the process is not mass selective. Ions in the quadrupole trapping region are mass analyzed using dipole resonant ejection. Multiple transfer steps and mass analysis scans are possible on a single population of ions, as from a single ionization/trapping event. The device demonstrates better mass resolving power than the radially ejecting halo ion trap and better sensitivity than the planar quadrupole ion trap.

  16. Electron Spin Resonance at the Level of 1 04 Spins Using Low Impedance Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Sigillito, A. J.; Lyon, S. A.; Petta, J. R.

    2017-01-01

    We report on electron spin resonance measurements of phosphorus donors localized in a 200 μ m2 area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design, we are able to detect around 2 ×1 04 spins with a signal-to-noise ratio of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1-10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Because of the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

  17. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  18. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  19. Electric-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)

    1994-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  20. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  1. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  2. Low-loss resonance modes in a gain-assisted plasmonic multimer

    NASA Astrophysics Data System (ADS)

    Pan, Gui-Ming; Yang, Da-Jie; Zhou, Li; Hao, Zhong-Hua

    2018-03-01

    We theoretically study the properties of optical losses in a plasmonic multimer and find modes with lower radiative losses due to the cancellation of the dipole moment. High order plasmonic resonances, including electric quadrupole and magnetic dipole resonances, can be achieved by the reduction of symmetry in a multimer. Meanwhile, the dipole moment can be significantly reduced in these high order modes, and consequently, the radiative losses decrease efficiently. The low-loss modes can lead to a lower gain threshold in the gain-assisted nanosystem. In particular, compared with the electric dipolar mode in a single nanoshell, the gain threshold of the electric quadrupolar and magnetic dipolar modes in a multimer can drop by 57.66% and 59.22%, respectively. On the other hand, the gain threshold can reflect the extent of the optical losses of the plasmonic mode in a nanosystem. These findings may have potential applications in the design of a nanolaser, plasmon waveguide and photo-thermal device.

  3. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  4. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    NASA Astrophysics Data System (ADS)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  5. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  6. Observation of a quadrupole interaction for cubic imperfections exhibiting a dynamic Jahn-Teller effect.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).

  7. A large-signal dynamic simulation for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.

  8. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    NASA Technical Reports Server (NTRS)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  9. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  10. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  12. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  13. Improved Tracking of an Atomic-Clock Resonance Transition

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  14. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  15. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  16. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Tsuruda, Kazuisao; Diebold, Sebastian; Hisatake, Shintaro; Fujita, Masayuki; Nagatsuma, Tadao

    2017-09-01

    In this paper, we report on a terahertz (THz) sensing system. Compared to previously reported systems, it has increased system sensitivity and reduced size. Both are achieved by using a photonic crystal (PC) cavity as a resonator and compact resonant tunneling diodes (RTDs) as signal source and as detector. The measured quality factor of the PC cavity is higher than 10,000, and its resonant frequency is 318 GHz. To demonstrate the operation of the refractive index sensing system, dielectric tapes of various thicknesses are attached to the PC cavity and the change in the resonator's refractive index is measured. The figure of merit of refractive index sensing using the developed system is one order higher than that of previous studies, which used metallic metamaterial resonators. The frequency of the RTD-based source can be swept from 316 to 321 GHz by varying the RTD direct current voltage. This effect is used to realize a compact frequency tunable signal source. Measurements using a commercial signal source and detector are carried out to verify the accuracy of the data obtained using RTDs as a signal source and as a detector.

  17. Off-resonance NOVEL

    NASA Astrophysics Data System (ADS)

    Jain, Sheetal K.; Mathies, Guinevere; Griffin, Robert G.

    2017-10-01

    Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γe/γn, where γ 's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω0-n where n ˜ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating 1H NMR enhancements of ˜430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω0I and ω1S are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω1S e f f, matches ω0I. By using this generalized off-resonance matching condition, we generate 1H NMR signal enhancement factors of 266 (˜70% of the on-resonance NOVEL enhancement) with ω1S/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to 1H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.

  18. Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Li, X.; Zhang, X.

    2016-02-01

    Plasmonic nanostructures confine light to sub-wavelength scales, resulting in drastically enhanced light-matter interactions. Recent interest has focused on controlled symmetry breaking to create higher-order multipole plasmonic modes that store electromagnetic energy more efficiently than dipole modes. Here we demonstrate that four-beam holographic lithography enables fabrication of large-area plasmonic crystals with near-field coupled plasmons as well as deliberately broken symmetry to sustain multipole modes and Fano-resonances. Compared with the spectrally broad dipole modes we demonstrate an order of magnitude improved Q-factors (Q = 21) when the quadrupole mode is activated. We further demonstrate continuous tuning of the Fano-resonances using the polarization state ofmore » the incident light beam. The demonstrated technique opens possibilities to extend the rich physics of multipole plasmonic modes to wafer-scale applications that demand low-cost and high-throughput.« less

  19. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  20. The importance of correcting for signal drift in diffusion MRI.

    PubMed

    Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn

    2017-01-01

    To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285-299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Resonant beam behavior studies in the Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Holmes, J.; Galambos, J.; Fedotov, A.; Wei, J.; Macek, R.

    2003-07-01

    We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  2. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  3. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  4. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  5. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, J. G.; Cremaldi, L. M.; Hart, T. L.

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittancemore » is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.« less

  6. An alternate protocol to achieve stochastic and deterministic resonances

    NASA Astrophysics Data System (ADS)

    Tiwari, Ishant; Dave, Darshil; Phogat, Richa; Khera, Neev; Parmananda, P.

    2017-10-01

    Periodic and Aperiodic Stochastic Resonance (SR) and Deterministic Resonance (DR) are studied in this paper. To check for the ubiquitousness of the phenomena, two unrelated systems, namely, FitzHugh-Nagumo and a particle in a bistable potential well, are studied. Instead of the conventional scenario of noise amplitude (in the case of SR) or chaotic signal amplitude (in the case of DR) variation, a tunable system parameter ("a" in the case of FitzHugh-Nagumo model and the damping coefficient "j" in the bistable model) is regulated. The operating values of these parameters are defined as the "setpoint" of the system throughout the present work. Our results indicate that there exists an optimal value of the setpoint for which maximum information transfer between the input and the output signals takes place. This information transfer from the input sub-threshold signal to the output dynamics is quantified by the normalised cross-correlation coefficient ( | CCC | ). | CCC | as a function of the setpoint exhibits a unimodal variation which is characteristic of SR (or DR). Furthermore, | CCC | is computed for a grid of noise (or chaotic signal) amplitude and setpoint values. The heat map of | CCC | over this grid yields the presence of a resonance region in the noise-setpoint plane for which the maximum enhancement of the input sub-threshold signal is observed. This resonance region could be possibly used to explain how organisms maintain their signal detection efficacy with fluctuating amounts of noise present in their environment. Interestingly, the method of regulating the setpoint without changing the noise amplitude was not able to induce Coherence Resonance (CR). A possible, qualitative reasoning for this is provided.

  7. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    NASA Astrophysics Data System (ADS)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  8. Development of a radio-frequency quadrupole cooler for high beam currents

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  9. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  10. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging.

    PubMed

    Moriguchi, Yoshiya; Noda, Takamasa; Nakayashiki, Kosei; Takata, Yohei; Setoyama, Shiori; Kawasaki, Shingo; Kunisato, Yoshihiko; Mishima, Kazuo; Nakagome, Kazuyuki; Hanakawa, Takashi

    2017-10-01

    Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Incidental magnetic resonance imaging signal changes in the extensor carpi radialis brevis origin are more common with age.

    PubMed

    van Leeuwen, Wouter F; Janssen, Stein J; Ring, David; Chen, Neal

    2016-07-01

    Patients with enthesopathy of the extensor carpi radialis brevis (ECRB) demonstrate signal changes on magnetic resonance imaging (MRI). It is likely that these MRI changes persist for many years or may be permanent, regardless of symptoms, and represent an estimation of disease prevalence. We tested the hypothesis that the prevalence of incidental signal changes in the ECRB origin increases with age. We searched MRI reports of 3374 patients who underwent an MRI scan, including the elbow, for signal changes in the ECRB origin. Medical records were reviewed for symptoms consistent with ECRB enthesopathy. Prevalences of incidental and symptomatic signal changes were calculated and stratified by age. We used multivariate logistic regression analysis to test whether age, sex, and race were independently associated with ECRB enthesopathy and calculated odds ratios. Signal changes in ECRB origin were identified on MRI scans of 369 of 3374 patients (11%) without a clinical suspicion of tennis elbow. The prevalence increased from 5.7% in patients aged between 18 and 30 years up to 16% in patients aged 71 years and older. Older age (odds ratio, 1.04; P <.001) was independently associated with the incidental finding of ECRB enthesopathy on elbow MRI scans. Increased MRI signal in the ECRB origin is common in symptomatic and in asymptomatic elbows. Our findings support the concept that ECRB enthesopathy is a highly prevalent, self-limited process that seems to affect a minimum of 1 in approximately every 7 people. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Ultrasensitive Sample Quantitation via Selected Reaction Monitoring Using CITP/CZE-ESI-Triple Quadrupole MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenchen; Lee, Cheng S.; Smith, Richard D.

    2012-11-10

    We demonstrate the direct coupling of transient capillary isotachophoresis/ capillary zone electrophoresis (CITP/CZE) with a high sensitivity triple quadrupole mass spectrometer operating in selected reaction monitoring (SRM) mode for sample quantitation. The capability of CITP/CZE for in situ sample enrichment and separation has been shown to significantly improve the analytical figures of merit. A linear dynamic range spanning more than 4 orders of magnitude was observed. An average signal-to-noise ratio (S/N) of 49.6 was observed for 50 attomoles of targeted peptide in the presence of a complex and much more abundant bovine serum albumin (BSA) digest products. A correlation ofmore » variation (CV) less than 10 % for peak area was measured from triplicate sample analyses at 50 pM peptide concentration, showing good reproducibility of this online CITP/CZE-SRM mass spectrometry (MS) platform, and with limit of quantitation (LOQ) demonstrated to be well below 50 pM.« less

  13. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases.

    PubMed

    Figini, Matteo; Alexander, Daniel C; Redaelli, Veronica; Fasano, Fabrizio; Grisoli, Marina; Baselli, Giuseppe; Gambetti, Pierluigi; Tagliavini, Fabrizio; Bizzi, Alberto

    2015-01-01

    In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy

  14. Beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Gaur, Rahul; Kumar, Vinit

    2018-05-01

    We present the beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz H- radio frequency quadrupole (RFQ) accelerator for the proposed Indian Spallation Neutron Source project. We have followed a design approach, where the emittance growth and the losses are minimized by keeping the tune depression ratio larger than 0.5. The transverse cross-section of RFQ is designed at a frequency lower than the operating frequency, so that the tuners have their nominal position inside the RFQ cavity. This has resulted in an improvement of the tuning range, and the efficiency of tuners to correct the field errors in the RFQ. The vane-tip modulations have been modelled in CST-MWS code, and its effect on the field flatness and the resonant frequency has been studied. The deterioration in the field flatness due to vane-tip modulations is reduced to an acceptable level with the help of tuners. Details of the error study and the higher order mode study along with mode stabilization technique are also described in the paper.

  15. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    NASA Astrophysics Data System (ADS)

    Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.

    2018-01-01

    Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  16. Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes.

    PubMed

    Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M

    2017-06-23

    We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.

  17. On the structure and radiation chemistry of iron phosphate glasses: New insights from electron spin resonance, Mössbauer, and evolved-gas mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.; Merzbacher, C. I.; Bibler, N. E.; Imagawa, H.; Uchiyama, S.; Namiki, A.; Marasinghe, G. K.; Mesko, M.; Karabulut, M.

    1998-05-01

    Several vitreous forms for immobilization of plutonium and/or high-level nuclear wastes have been surveyed by electron spin resonance (ESR) to gain insights into their atomic-scale structures and to look for signs of radiolytic decomposition resulting from exposures to γ-ray doses of 30 MGy. While preliminary results are reported for Defense Waste Processing Facility (DWPF) borosilicate compositions and an experimental lanthanum-silicate glass, this paper focusses primarily on a class of glasses containing 40-75 mol% P 2O 5 and up to 40 mol% Fe 2O 3. Each of the six diverse compositions investigated displayed characteristic ESR signals (not resembling those of the iron-containing phosphorus-free glasses) comprising combinations of an extremely broad "X resonance" and a narrow "Z resonance", both centered near g=2.00 and both displaying nearly perfect Lorentzian line shapes (peak-to-peak derivative widths ˜300-600 mT and ˜30 mT, respectively, at 300 K). The X-resonance intensities in the air-melted glasses correlated linearly with Fe:P ratio up to [Fe 2O 3]/[P 2O 5] ≈ 0.6, where intensity values ˜1 spin/phosphorus were reached. Mössbauer studies showed that the [Fe 3+]/[Fe] tot ratio could be varied from 0.82 to 0.49 by raising the melting temperature in air from 1150°C to 1450°C and/or by employing mildly reducing atmospheres. The combined X + Z-resonance intensities were reduced to zero for [Fe 3+]/[Fe] tot less than ˜0.6, leaving only a much weaker spectrum attributable to Fe 3+ ions. The X and Z ESR signals of the iron phosphate glasses resemble nothing else in the literature except the correspondingly denoted signals in an iron-free amorphous peroxyborate (APB) preparation. The X and Z resonances in the latter are deemed to arise from superoxide ions (O 2-) in the borate network and in a separated Na 2O 2 phase, respectively. An asymmetric Z resonance signal attributable to interstitial O 2- species was a radiation-induced manifestation in phosphate

  18. Phase transition studied by 7Li nuclear magnetic resonance in LiXSO4 (X = K, Rb, Cs and NH4) single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Choh, Sung Ho; Jeong, Se-Young

    2000-11-01

    The temperature dependences of 7Li nuclear magnetic resonance in LiXSO4 (X = K, Rb, Cs, and NH4) single crystals grown by the slow evaporation method have been investigated by employing a Bruker FT NMR spectrometer. From the experimental data, the nuclear quadrupole constant, the asymmetry parameter and the principal axes of the EFG tensor were determined, and the results were compared with the crystal structure. The temperature dependences of the quadrupole parameters were explained with a single torsional mode of the Li-O bond by the Bayer theory. All the LiO4 tetrahedra in four different crystals showed torsional motion about the X-axis of the EFG tensor. Based on these results, the differences in atomic weight of X in the LiXSO4 single crystals are responsible for the differences in the torsional angular frequencies.

  19. Signal intensity of lanthanum carbonate on magnetic resonance images: phantom study.

    PubMed

    Nakamura, Shinichi; Awai, Kazuo; Komi, Masanori; Morita, Kosuke; Namimoto, Tomohiro; Yanaga, Yumi; Utsunomiya, Daisuke; Date, Shuji; Yamashita, Yasuyuki

    2011-06-01

    Lanthanum carbonate (LC) is used to treat hyperphosphatemia. The purpose of this study was to investigate the signal intensity (SI) of LC on magnetic resonance imaging (MRI) scans of phantoms. LC tablets were thoroughly ground and mixed with distilled water or edible agar (0.05, 0.25, 0.5, and 2.5 mg/ml) in plastic bottles. Four intact tablets were placed in plastic bottles that did or did not contain distilled water or agar. Two radiologists consensually evaluated T1- and T2-weighted images (WIs) obtained with 1.5- and 3.0-T MRI systems for the SI of unground and ground tablets. On T1- and T2WI, the SIs of the LC suspensions and the solvents alone were similar; the SIs of unground tablets alone and of the air were also similar. Unground tablets in phantoms filled with solvent exhibited lower SI than the solvent. Ground tablets in suspension were not visualized on MRI or computed tomography. These results remained unchanged regardless of differences in magnetic field strength or the solvent used. Ground LC had no contrast enhancement effect on T1WI; on T2WI it did not affect the SI of the solvent. Unground LC tablets may be visualized as a "filling defect" on MRI.

  20. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  1. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    NASA Astrophysics Data System (ADS)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  2. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  3. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  4. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  5. Low noise cryogenic dielectric resonator oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor)

    1988-01-01

    A microwave oscillator is provided which can operate at a temperature of many degrees above absolute zero while providing very low phase noise that has heretofore generally required temperatures within a few degrees K. The oscillator includes a ring-shaped resonant element of ruby (sapphire plus chromium) or iron sapphire crystal, lying adjacent to a resonator element of sapphire, so that the regenerator element lies directly in the magnetic field of the resonator element. The resonator element is substantially devoid of contact with electrically conductive material. Microwave energy of a pump frequency (e.g., 31 GHz) is outputted from the regenerator element, while signal energy (e.g., 10 GHz) is outputted from the resonator element.

  6. LHC signals from cascade decays of warped vector resonances

    DOE PAGES

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi; ...

    2017-05-15

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  7. LHC signals from cascade decays of warped vector resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  8. Coherent Raman scattering with incoherent light for a multiply resonant mixture: Theory

    NASA Astrophysics Data System (ADS)

    Kirkwood, Jason C.; Ulness, Darin J.; Stimson, Michael J.; Albrecht, A. C.

    1998-02-01

    The theory for coherent Raman scattering (CRS) with broadband incoherent light is presented for a multiply resonant, multicomponent mixture of molecules that exhibits simultaneous multiple resonances with the frequencies of the driving fields. All possible pairwise hyperpolarizability contributions to the signal intensity are included in the theoretical treatment-(resonant-resonant, resonant-nonresonant, and nonresonant-nonresonant correlations between chromophores) and it is shown how the different types of correlations manifest themselves as differently behaved components of the signal intensity. The Raman resonances are modeled as Lorentzians in the frequency domain, as is the spectral density of the incoherent light. The analytic results for this multiply resonant mixture are presented and applied to a specific binary mixture. These analytic results will be used to recover frequencies and dephasing times in a series of experiments on multiply resonant mixtures.

  9. Study on signal intensity of low field nuclear magnetic resonance via an indirect coupling measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Ying; Wang, Ning; Jin, Yi-Rong; Deng, Hui; Tian, Ye; Lang, Pei-Lin; Li, Jie; Chen, Ying-Fei; Zheng, Dong-Ning

    2013-04-01

    We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-Tc superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.

  10. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  11. Expansion of linear range of Pound-Drever-Hall signal.

    PubMed

    Miyoki, Shinji; Telada, Souich; Uchiyama, Takashi

    2010-10-01

    We propose new solutions for expanding the linear signal range between the laser frequency deviation (or mirror position) and the voltage signal derived by the Pound-Drever-Hall (PDH) method for optical Fabry-Perot cavity resonance control. One solution is to perform not in-phase demodulation but near-Q-phase demodulation. Another solution is to take a suitable combination of signals demodulated by odd-harmonic modulation frequencies in the in phase. Although the PDH signal sensitivity will be diminished, the PDH signal linear range can be extended. From a practical standpoint, it is desirable that a sideband frequency for the PDH method is near the FP cavity resonance.

  12. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of bothmore » tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.« less

  13. The quadrupole model for rigid-body gravity simulations

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2013-07-01

    We introduce two new models for gravitational simulations of systems of non-spherical bodies, such as comets and asteroids. In both models, one body (the "primary") may be represented by any convenient means, to arbitrary accuracy. In our first model, all of the other bodies are represented by small gravitational "molecules" consisting of a few point masses, rigidly linked together. In our second model, all of the other bodies are treated as point quadrupoles, with gravitational potentials including spherical harmonic terms up to the third degree (rather than only the first degree, as for ideal spheres or point masses). This quadrupole formulation may be regarded as a generalization of MacCullagh's approximation. Both models permit the efficient calculation of the interaction energy, the force, and the torque acting on a small body in an arbitrary external gravitational potential. We test both models for the cases of a triaxial ellipsoid, a rectangular parallelepiped, and "duplex" combinations of two spheres, all in a point-mass potential. These examples were chosen in order to compare the accuracy of our technique with known analytical results, but the ellipsoid and duplex are also useful models for comets and asteroids. We find that both approaches show significant promise for more efficient gravitational simulations of binary asteroids, for example. An appendix also describes the duplex model in detail.

  14. Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).

    PubMed

    Hansson, G; Karlsson, H; Laurell, F

    2001-10-20

    We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.

  15. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    PubMed

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  16. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    PubMed Central

    Xiong, Jijun; Wu, Guozhu; Tan, Qiulin; Wei, Tanyong; Wu, Dezhi; Shen, Sanmin; Dong, Helei; Zhang, Wendong

    2016-01-01

    The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C. PMID:27916920

  17. Perfluorocarbon Particle Size Influences Magnetic Resonance Signal and Immunological Properties of Dendritic Cells

    PubMed Central

    Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia

    2011-01-01

    The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551

  18. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    PubMed

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. System and method for regulating resonant inverters

    DOEpatents

    Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  20. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  1. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  2. First Principles Modeling of RFQ Cooling System and Resonant Frequency Responses for Fermilab’s PIP-II Injector Test

    DOE PAGES

    Edelen, J. P.; Edelen, A. L.; Bowring, D.; ...

    2016-12-23

    In this study we develop an a priori method for simulating dynamic resonant frequency and temperature responses in a radio frequency quadrupole (RFQ) and its associated water-based cooling system respectively. Our model provides a computationally efficient means to evaluate the transient response of the RFQ over a large range of system parameters. The model was constructed prior to the delivery of the PIP-II Injector Test RFQ and was used to aid in the design of the water-based cooling system, data acquisition system, and resonance control system. Now that the model has been validated with experimental data, it can confidently bemore » used to aid in the design of future RFQ resonance controllers and their associated water-based cooling systems. Finally, without any empirical fitting, it has demonstrated the ability to predict absolute temperature and frequency changes to 11% accuracy on average, and relative changes to 7% accuracy.« less

  3. Silicon technology compatible photonic molecules for compact optical signal processing

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-01

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (QT), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high QT. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ˜55 GHz.

  4. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  5. a Fascinating Two-Photon Process: Magnetically Induced Quadrupole Second Harmonic Genaration

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masahiro

    1990-10-01

    After a short prologue, recalling the memory of the first meeting with Professor Bloembergen, the author reviews a topic of a second harmonic generation in centrosymmetric medium, that is, magnetically induced quadrupole SHG. A pictorial description of the process is presented together with a few suggestions for future experiment.

  6. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  7. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  8. ISR effects for resonant Higgs production at future lepton colliders

    DOE PAGES

    Greco, Mario; Han, Tao; Liu, Zhen

    2016-11-04

    We study the effects of the initial state radiation on themore » $s$-channel Higgs boson resonant production at $$\\mu^+\\mu^-$$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $$h\\rightarrow b\\bar b,\\ WW^*$$. In conclusion, our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.« less

  9. ImagingReso: A Tool for Neutron Resonance Imaging

    DOE PAGES

    Zhang, Yuxuan; Bilheux, Jean -Christophe

    2017-11-01

    ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less

  10. Preliminary Design of the Vacuum System for FAIR Super FRS Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Akhter, J.; Pal, G.; Datta, A.; Sarma, P. R.; Bhunia, U.; Roy, S.; Bhattacharyya, S.; Nandi, C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The Super-Conducting Fragment Separator (Super FRS) of the Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt is a large-acceptance superonducting fragment separator. The separator consists of large dipole, quadrupole and hexapole superconducting magnets. The long quadrupole magnet cryostat houses the helium chamber, which has the magnet iron and NbTi superconducting coil. The magnet weighs about 30 tons. The helium chamber is enclosed in vacuum inside the magnet cryostat. Multilayer Insulation (MLI) will be wrapped around the thermal shield to reduce radiation loss. Polyster of MLI comprises the major component responsible for outgassing. In order to reduce outgassing, pumping at elevated temperatures has to be carried out. In view of the large size and weight of the magnet, a seal off approach might not be operationally feasible. Continuous pumping of the cryostat has also been examined. Pump has been kept at a distance from the magnet considering the effect of stray magnetic fields. Oil free turbo molecular pump and scroll pump combination will be used to pump down the cryostat. The ultimate heat load of the cryostat will be highly dependent on the pressure attained. Radiation and conduction plays an important role in the heat transfer at low temperatures. This paper presents the vacuum design of the long quadrupole magnet cryostat and estimates the heat load of the cryostat.

  11. Characterization of Transducers and Resonators under High Drive Levels

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, X.; Sigel, D. A.; Gradziel, M. J.; Askins, S. A.; Dolgin, B. P.; Bar-Cohen, Y.

    2001-01-01

    In many applications, piezoelectric transducers are driven at AC voltage levels well beyond the level for which the material was nominally characterized. In this paper we describe an experimental setup that allows for the determination of the main transducer or resonator properties under large AC drive. A sinusoidal voltage from a waveform generator is amplified and applied across the transducer/resonator in series with a known high power resistor. The amplitude of applied voltage and the amplitude and the relative phase of the current through the resistor are monitored on a digital scope. The frequency of the applied signal is swept through resonance and the voltage/current signals are recorded. After corrections for the series resistance and parasitic elements the technique allows for the determination of the complex impedance spectra of the sample as a function of frequency. In addition, access to the current signal allows for the direct investigation of non-linear effects through the application of Fourier transform techniques on the current signal. Our results indicate that care is required when interpreting impedance data at high drive level due to the frequency dependence of the dissipated power. Although the transducer/resonator at a single frequency and after many cycles may reach thermal equilibrium, the spectra as a whole cannot be considered an isothermal measurement due to the temperature change with frequency. Methods to correct for this effect will be discussed. Results determined from resonators of both soft and hard PZT and a ultrasonic horn transducer are presented.

  12. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  13. Impact of resonance decays on critical point signals in net-proton fluctuations

    DOE PAGES

    Bluhm, Marcus; Nahrgang, Marlene; Bass, Steffen A.; ...

    2017-04-03

    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants.

  14. Hands-on resonance-enhanced photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2001-10-01

    The design of an improved photoacoustic converter cell using kitchen equipment is described. It operates by changing manually the Helmholtz resonance frequency of bottles by adjusting the distance between the bottleneck and the outer ear. The experiment helps to gain insights in ear performance, in photoacoustic detection methods, in resonance phenomena and their role for detecting small periodic signals in the presence of noise.

  15. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  16. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project.

    PubMed

    Dechoudhury, S; Naik, V; Mondal, M; Chatterjee, A; Pandey, H K; Mandi, T K; Bandyopadhyay, A; Karmakar, P; Bhattacharjee, S; Chouhan, P S; Ali, S; Srivastava, S C L; Chakrabarti, A

    2010-02-01

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q < or = 14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O(5+) beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  17. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  18. Resonant spatiotemporal learning in large random recurrent networks.

    PubMed

    Daucé, Emmanuel; Quoy, Mathias; Doyon, Bernard

    2002-09-01

    Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present

  19. Noise in nonlinear nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by

  20. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  1. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions.

    PubMed

    Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E

    2007-07-19

    Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.

  2. Lock-in detection for pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.

    2012-04-01

    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.

  3. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  4. The modeling of MMI structures for signal processing applications

    NASA Astrophysics Data System (ADS)

    Le, Thanh Trung; Cahill, Laurence W.

    2008-02-01

    Microring resonators are promising candidates for photonic signal processing applications. However, almost all resonators that have been reported so far use directional couplers or 2×2 multimode interference (MMI) couplers as the coupling element between the ring and the bus waveguides. In this paper, instead of using 2×2 couplers, novel structures for microring resonators based on 3×3 MMI couplers are proposed. The characteristics of the device are derived using the modal propagation method. The device parameters are optimized by using numerical methods. Optical switches and filters using Silicon on Insulator (SOI) then have been designed and analyzed. This device can become a new basic component for further applications in optical signal processing. The paper concludes with some further examples of photonic signal processing circuits based on MMI couplers.

  5. Optical filter having coupled whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Maleki, Lutfollah (Inventor); Handley, Timothy A. (Inventor)

    2006-01-01

    Optical filters having at least two coupled whispering-gallery-mode (WGM) optical resonators to produce a second order or higher order filter function with a desired spectral profile. At least one of the coupled WGM optical resonators may be tunable by a control signal to adjust the filtering function.

  6. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  7. Dipole-quadrupole dynamics during magnetic field reversals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gissinger, Christophe

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less

  8. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  9. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  10. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  11. Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.

    2011-05-01

    The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.

  12. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  13. Electron spin resonance for the detection of long-range spin nematic order

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  14. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  15. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  16. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  17. Possible resonance effect of axionic dark matter in Josephson junctions.

    PubMed

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  18. Quench Protection of SC Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  19. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    PubMed

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    PubMed Central

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434

  1. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is eithermore » surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.« less

  2. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  3. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  4. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  5. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  6. Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles

    NASA Astrophysics Data System (ADS)

    Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick

    2017-06-01

    The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.

  7. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  8. Local correction of quadrupole errors at LHC interaction regions using action and phase jump analysis on turn-by-turn beam position data

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando; García Bonilla, Alba Carolina; Tomás García, Rogelio

    2017-11-01

    This article shows that the effect of all quadrupole errors present in an interaction region with low β * can be modeled by an equivalent magnetic kick, which can be estimated from action and phase jumps found on beam position data. This equivalent kick is used to find the strengths that certain normal and skew quadrupoles located on the IR must have to make an effective correction in that region. Additionally, averaging techniques to reduce noise on beam position data, which allows precise estimates of equivalent kicks, are presented and mathematically justified. The complete procedure is tested with simulated data obtained from madx and 2015-LHC experimental data. The analyses performed in the experimental data indicate that the strengths of the IR skew quadrupole correctors and normal quadrupole correctors can be estimated within a 10% uncertainty. Finally, the effect of IR corrections in the β* is studied, and a correction scheme that returns this parameter to its designed value is proposed.

  9. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulatingmore » hardedge nonlinear fringe effects in quadrupoles.« less

  10. Wavelength dependent vertical integration of nanoplasmonic circuits utilizing coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Nielsen, M.; Elezzabi, A. Y.

    2013-03-01

    To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.

  11. Electro-Mechanical Resonance Curves

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2018-03-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This is the sort of project that should provide a fascinating research experience for the introductory physics student. In this article I will discuss the galvanometers that I used in this work, and will show a resonance curve for one of them.

  12. Modeling of Yb3+/Er3+-codoped microring resonators

    NASA Astrophysics Data System (ADS)

    Vallés, Juan A.; Gălătuş, Ramona

    2015-03-01

    The performance of a highly Yb3+/Er3+-codoped phosphate glass add-drop microring resonator is numerically analyzed. The model assumes resonant behaviour of both pump and signal powers and the dependences of pump intensity build-up inside the microring resonator and of the signal transfer functions to the device through and drop ports are evaluated. Detailed equations for the evolution of the rare-earth ions levels population densities and the propagation of the optical powers inside the microring resonator are included in the model. Moreover, due to the high dopant concentrations considered, the microscopic statistical formalism based on the statistical average of the excitation probability of the Er3+ ion in a microscopic level has been used to describe energy-transfer inter-atomic mechanisms. Realistic parameters and working conditions are used for the calculations. Requirements to achieve amplification and laser oscillation within these devices are obtainable as a function of rare earth ions concentration and coupling losses.

  13. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less

  14. A flexible surface-coil-type resonator using triaxial cable

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Ono, Mitsuhiro

    1997-09-01

    This note describes a newly developed flexible surface-coil-type resonator (FSCR) used for electron paramagnetic resonance (EPR) measurements. A conventional FSCR has used a balanced transmission line made by coaxial lines. The new resonator uses triaxial cable in order to avoid anisotropy of flexure of the transmission line. Experimental results show that the EPR signal measured with the triaxial FSCR is 35% stronger than that measured with the conventional FSCR.

  15. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: I. How much of the data is theoretically interpretable by search engines?

    PubMed

    Chalkley, Robert J; Baker, Peter R; Hansen, Kirk C; Medzihradszky, Katalin F; Allen, Nadia P; Rexach, Michael; Burlingame, Alma L

    2005-08-01

    An in-depth analysis of a multidimensional chromatography-mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight (QqTOF) geometry instrument was carried out. A total of 3269 CID spectra were acquired. Through manual verification of database search results and de novo interpretation of spectra 2368 spectra could be confidently determined as predicted tryptic peptides. A detailed analysis of the non-matching spectra was also carried out, highlighting what the non-matching spectra in a database search typically are composed of. The results of this comprehensive dataset study demonstrate that QqTOF instruments produce information-rich data of which a high percentage of the data is readily interpretable.

  16. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines

    PubMed Central

    Yi, Xiaofeng; Fan, Tiehu; Tian, Baofeng

    2018-01-01

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects. PMID:29534007

  17. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines.

    PubMed

    Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong

    2018-03-13

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.

  18. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    PubMed

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  19. Solid-state (127)I NMR and GIPAW DFT study of metal iodides and their hydrates: structure, symmetry, and higher-order quadrupole-induced effects.

    PubMed

    Widdifield, Cory M; Bryce, David L

    2010-10-14

    Central-transition (127)I solid-state nuclear magnetic resonance (SSNMR) spectra are presented for several anhydrous group 2 metal iodides (MgI(2), CaI(2), SrI(2), and BaI(2)), hydrates (BaI(2)·2H(2)O and SrI(2)·6H(2)O), and CdI(2) (4H polytype). Variable offset cumulative spectrum data acquisition coupled with echo pulse sequences and an 'ultrahigh' applied field of 21.1 T were usually suitable to acquire high-quality spectra. Spectral analysis revealed iodine-127 nuclear quadrupole coupling constants (C(Q)((127)I)) ranging in magnitude from 43.5 (CaI(2)) to 214 MHz (one site in SrI(2)). For very large C(Q), analytical second-order perturbation theory could not be used to reliably extract chemical shifts and a treatment which includes quadrupolar effects exactly was required (Bain, A. D. Mol. Phys. 2003, 101, 3163). Differences between second-order and exact modeling allowed us to observe 'higher-order' quadrupole-induced effects for the first time. This finding will have implications for the interpretation of SSNMR spectra of quadrupolar nuclei with large quadrupole moments. In favorable situations (i.e., C(Q)((127)I) < 120 MHz), measurements were also performed at 11.75 T which when combined with the 21.1 T data allowed us to measure iodine chemical shift (CS) tensor spans in the range from 60 (BaI(2)·2H(2)O) to 300 ppm (one site in BaI(2)). These measurements represent the first complete characterizations (i.e., electric field gradient and CS tensors as well as their relative orientation) of noncubic iodide sites using (127)I SSNMR. In select cases, the SSNMR data are supported with (127)I NQR measurements. We also summarize a variety of trends in the halogen SSNMR parameters for group 2 metal halides. Gauge-including projector-augmented wave DFT computations are employed to complement the experimental observations, to predict potential structures for the two hydrates, and to highlight the sensitivity of C(Q)((127)I) to minute structural changes, which has

  20. Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae).

    PubMed

    Jonsson, Thorin; Chivers, Benedict D; Robson Brown, Kate; Sarria-S, Fabio A; Walker, Matthew; Montealegre-Z, Fernando

    2017-08-15

    Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta , a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system. © 2017. Published by The Company of Biologists Ltd.

  1. Modeling noisy resonant system response

    NASA Astrophysics Data System (ADS)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  2. A note on the electric quadrupole and higher electric moments of ozone (O3)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    2012-02-01

    We have obtained accurate ab initio and density functional theory values for the quadrupole, octopole and hexadecapole electric moments of the cyclic and open forms of ozone. Our best values have been calculated at the coupled cluster level of theory with molecule-specific basis sets. For the quadrupole moment (Θαβ/ea02) they are Θyy = -1.366 (cyclic), Θxx = -1.202, Θyy = 1.426 and Θxx = -0.223 (open). For the octopole (Ωαβγ/ea03) and hexadecapole (Φαβγδ/ea04) moments our best results are Ωzzz = 2.25, Φyyyy = 19.53 (cyclic), Ωxxz = 3.28, Ωzzz = -2.97, Φxxxx = -6.00, Φyyyy = -3.90 and Φzzzz = -3.54 (open).

  3. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Improved tolerance to off-resonance in spectral-spatial EPI of hyperpolarized [1-13 C]pyruvate and metabolites.

    PubMed

    Lau, Justin Y C; Geraghty, Benjamin J; Chen, Albert P; Cunningham, Charles H

    2018-09-01

    For 13 C echo-planar imaging (EPI) with spectral-spatial excitation, main field inhomogeneity can result in reduced flip angle and spatial artifacts. A hybrid time-resolved pulse sequence, multi-echo spectral-spatial EPI, is proposed combining broader spectral-spatial passbands for greater off-resonance tolerance with a multi-echo acquisition to separate signals from potentially co-excited resonances. The performance of the imaging sequence and the reconstruction pipeline were evaluated for 1 H imaging using a series of increasingly dilute 1,4-dioxane solutions and for 13 C imaging using an ethylene glycol phantom. Hyperpolarized [1- 13 C]pyruvate was administered to two healthy rats. Multi-echo data of the rat kidneys were acquired to test realistic cases of off-resonance. Analysis of separated images of water and 1,4-dioxane following multi-echo signal decomposition showed water-to-dioxane 1 H signal ratios that were in agreement with the independent measurements by 1 H spectroscopy for all four concentrations of 1,4-dioxane. The 13 C signal ratio of two co-excited resonances of ethylene glycol was accurately recovered after correction for the spectral profile of the redesigned spectral-spatial pulse. In vivo, successful separation of lactate and pyruvate-hydrate signals was achieved for all except the early time points during which signal variations exceeded the temporal resolution of the multi-echo acquisition. Improved tolerance to off-resonance in the new 13 C data acquisition pipeline was demonstrated in vitro and in vivo. Magn Reson Med 80:925-934, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  5. The quadrupole moments of Cd and Zn isotopes - an apology

    NASA Astrophysics Data System (ADS)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  6. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  7. Simplified limits on resonances at the LHC

    NASA Astrophysics Data System (ADS)

    Chivukula, R. Sekhar; Ittisamai, Pawin; Mohan, Kirtimaan; Simmons, Elizabeth H.

    2016-11-01

    In the earliest stages of evaluating new collider data, especially if a small excess may be present, it would be useful to have a method for comparing the data with entire classes of models, to get an immediate sense of which classes could conceivably be relevant. In this paper, we propose a method that applies when the new physics invoked to explain the excess corresponds to the production and decay of a single, relatively narrow, s -channel resonance. A simplifed model of the resonance allows us to convert an estimated signal cross section into general bounds on the product of the branching ratios corresponding to the dominant production and decay modes. This quickly reveals whether a given class of models could possibly produce a signal of the required size at the LHC. Our work sets up a general framework, outlines how it operates for resonances with different numbers of production and decay modes, and analyzes cases of current experimental interest, including resonances decaying to dibosons, diphotons, dileptons, or dijets. If the LHC experiments were to report their searches for new resonances beyond the standard model in the simplified limits variable ζ defined in this paper, that would make it far easier to avoid blind alleys and home in on the most likely candidate models to explain any observed excesses.

  8. Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen.

    PubMed

    Zhang, Yan; Sun, Guoqiang; Yang, Hongmei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2016-05-15

    Herein, a photoelectrochemical (PEC) immunoassay is constructed for squamous cell carcinoma antigen (SCCA) detection using zinc oxide nanoflower-bismuth sulfide (Bi2S3) composites as photoactive materials and reduced graphene oxide (rGO) as signal labels. Horseradish peroxidase is used to block sites against nonspecific binding, and then participated in luminol-based chemiluminescence (CL) system. The induced CL emission is acted as an inner light source to excite photoactive materials, simplifying the instrument. A novel signal amplification strategy is stem from rGO because of the rGO acts as an energy acceptor, while luminol serves as a donor to rGO, triggering the CL resonance energy transfer phenomenon between luminol and rGO. Thus, the efficient CL emission to photoactive materials decreases. Furthermore, the signal amplification caused by rGO labeled signal antibodies is related to photogenerated electron-hole pairs: perfect matching of energy levels between rGO and Bi2S3 makes rGO a sink to capture photogenerated electrons from Bi2S3; the increased steric hindrance hinders the electron donor to the surface of Bi2S3 for reaction with the photogenerated holes. On the basis of the novel signal amplification strategy, the proposed immunosensor exhibits excellent analytical performance for PEC detection of SCCA, ranging from 0.8 pg mL(-1) to 80 ng mL(-1) with a low detection limit of 0.21 pg mL(-1). Meanwhile, the designed signal amplification strategy provides a general format for future development of PEC assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Stand-off detection of vapor phase explosives by resonance enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ehlerding, Anneli; Johansson, Ida; Wallin, Sara; Östmark, Henric

    2010-10-01

    Stand-off measurements on nitromethane (NM), 2,4-DNT and 2,4,6-TNT in vapor phase using resonance Raman spectroscopy have been performed. The Raman cross sections for NM, DNT and TNT in vapor phase have been measured in the wavelength range 210-300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The measurements show that the signal is greatly enhanced, up to 250.000 times for 2,4-DNT and 60.000 times for 2,4,6-TNT compared to the non-resonant signal at 532 nm. For NM the resonance enhancement enabled realistic outdoor measurements in vapor phase at 13 m distance. This all indicate a potential for resonance Raman spectroscopy as a stand-off technique for detection of vapor phase explosives.

  10. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  11. Combining Absorption and Dispersion Signals to Improve Signal-to-noise for Rapid Scan EPR Imaging

    PubMed Central

    Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.

    2010-01-01

    Direct detection of the rapid scan EPR signal with quadrature detection and without automatic frequency control provides both the absorption and dispersion components of the signal. The use of a cross-loop resonator results in similar signal-to-noise in the two channels. The dispersion signal can be converted to an equivalent absorption signal by means of Kramers-Kronig relations. The converted signal is added to the directly-measured absorption signal. Since the noise in the two channels is not correlated, this procedure increases the signal-to-noise ratio of the resultant absorption signal by up to a factor of √2. The utility of this method was demonstrated for 2D spectral-spatial imaging of a phantom containing 3 tubes of LiPc with different oxygen concentrations and therefore different linewidths. PMID:20181505

  12. Search for the pentaquark resonance signature in lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. G. Lasscock; J. Hedditch; Derek Leinweber

    2005-02-01

    Claims concerning the possible discovery of the {Theta}{sup +} pentaquark, with minimal quark content uudd{bar s}, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large 20{sup 3} x 40 lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquarkmore » states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.« less

  13. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    PubMed

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  14. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  15. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    PubMed

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  16. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    PubMed Central

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  17. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  18. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessarymore » to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.« less

  19. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  20. Stripline split-ring resonator with integrated optogalvanic sample cell

    NASA Astrophysics Data System (ADS)

    Persson, Anders; Berglund, Martin; Thornell, Greger; Possnert, Göran; Salehpour, Mehran

    2014-04-01

    Intracavity optogalvanic spectroscopy (ICOGS) has been proposed as a method for unambiguous detection of rare isotopes. Of particular interest is 14C, where detection of extremely low concentrations in the 1:1015 range (14C: 12C), is of interest in, e.g., radiocarbon dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enables improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio, and precision.

  1. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    PubMed

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  2. Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.

    2010-11-01

    Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.

  3. Behavioral Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  4. Stochastic resonance in feedforward acupuncture networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  5. Use of a Designed Peptide Array To Infer Dissociation Trends for Nontryptic Peptides in Quadrupole Ion Trap and Quadrupole Time-of-Flight Mass Spectrometry

    DOE PAGES

    Gaucher, Sara P.; Morrow, Jeffrey A.; Faulon, Jean-Loup M.

    2007-09-14

    Observed peptide gas-phase fragmentation patterns are a complex function of many variables. In order to systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends weremore » observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. In conclusion, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot.« less

  6. NQRS Data for C24H20BRb (Subst. No. 1578)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BRb (Subst. No. 1578)

  7. NQRS Data for H4INO3 (Subst. No. 2276)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for H4INO3 (Subst. No. 2276)

  8. NQRS Data for D4INO4 (Subst. No. 2163)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for D4INO4 (Subst. No. 2163)

  9. NQRS Data for H4INO4 (Subst. No. 2277)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for H4INO4 (Subst. No. 2277)

  10. Nqrs Data for C2H5NO2 (Subst. No. 0554)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C2H5NO2 (Subst. No. 0554)

  11. NQRS Data for Ga3LaPd2 (Subst. No. 2229)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for Ga3LaPd2 (Subst. No. 2229)

  12. NQRS Data for CoLa4LiO8(Subst. No. 1970)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa4LiO8 (Subst. No. 1970)

  13. NQRS Data for AlDO28Si13 (Subst. No. 0033)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO28Si13 (Subst. No. 0033)

  14. NQRS Data for AlDO70Si34 (Subst. No. 0035)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO70Si34 (Subst. No. 0035)

  15. NQRS Data for AlDO28Si13 (Subst. No. 0034)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO28Si13 (Subst. No. 0034)

  16. NQRS Data for AlDO2 [Al(OD)O] (Subst. No. 0032)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO2 [Al(OD)O] (Subst. No. 0032)

  17. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $$Nb_3Sn$$ Quadrupole for the High-Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, S.; et al.

    The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less

  18. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  19. Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA

    NASA Astrophysics Data System (ADS)

    Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.

    2018-02-01

    A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.

  20. Stochastic resonance based on modulation instability in spatiotemporal chaos.

    PubMed

    Han, Jing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu

    2017-04-03

    A novel dynamic of stochastic resonance in spatiotemporal chaos is presented, which is based on modulation instability of perturbed partially coherent wave. The noise immunity of chaos can be reinforced through this effect and used to restore the coherent signal information buried in chaotic perturbation. A theoretical model with fluctuations term is derived from the complex Ginzburg-Landau equation via Wigner transform. It shows that through weakening the nonlinear threshold and triggering energy redistribution, the coherent component dominates the instability damped by incoherent component. The spatiotemporal output showing the properties of stochastic resonance may provide a potential application of signal encryption and restoration.

  1. Electron spin resonance in the superconducting state of Ba0.6K0.4Fe2As2

    NASA Astrophysics Data System (ADS)

    Dlamini, Zolile Wiseman; Srinivasan, A.; Ma, Yanwei; Srinivasu, V. V.

    2018-05-01

    We report the observation of electron spin resonance (ESR) signals in a single crystal of Ba0.6K0.4Fe2As2 grown by self-flux method. We observed two narrow resonant absorption signals at g-values of 4.3 and 1.99. Significantly, these signals are stronger in intensity at 5 K. They become weaker as the temperature is increased and finally vanish at Tc. The resonance at g = 4.3 (signal I) shows different temperature dependence of intensity for parallel and perpendicular orientations of the magnetic field to the iron arsenide plane. However, the resonance at g = 1.99 (signal 2) does not show much difference in temperature dependence of intensity for the two orientations. Further, temperature dependence of the linewidth of the two signals are also different. We propose that these two signals have their origin in fluctuations in the spin system as magnetic fluctuations are believed to be the origin of superconductivity in iron pnictides. Temperature dependence of intensity of signal I is indicative of Fe cluster formation in the scenario of coexistence of spin density wave and superconducting phase for this composition of the crystal.

  2. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin

    2008-03-01

    Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.

  3. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  4. Terahertz molecular resonance of cancer DNA.

    PubMed

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  5. Terahertz molecular resonance of cancer DNA

    NASA Astrophysics Data System (ADS)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  6. Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.

    1992-01-01

    Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken

  7. Investigating electrical resonance in eddy-current array probes

    NASA Astrophysics Data System (ADS)

    Hughes, R.; Fan, Y.; Dixon, S.

    2016-02-01

    The sensitivity enhancing effects of eddy-current testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.

  8. Electro-Mechanical Resonance Curves

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2018-01-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This…

  9. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  10. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    PubMed

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. 40Ar/36Ar geochronology on a quadrupole mass spectrometer: Where are we going?

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Wijbrans, J. R.; Kuiper, K. F.; Fenton, C. R.; Williams, A. J.

    2009-04-01

    40Ar/39Ar analysis has passed many milestones since its first application (Wänke & König, 1959). From the early all-glass Reynolds-type vacuum system to today's high quality, bakeable all-metal piping and valve systems, the evolution of ultra high vacuum systems has been considerable. Extraction systems have faced similar changes over time. Early furnaces made partially of glass were later replaced by full metal constructs containing a high temperature resistant molybdenum alloy tube and heating mechanism, sometimes contained within an insulating secondary vacuum chamber. Laser extraction techniques further refined the approach allowing very small samples or sample parts to be analyzed. The principal type of mass spectrometer used for 40Ar/36Ar geochronology is the magnetic sector instrument, which has the resolution and sensitivity necessary for measuring argon isotopes and achieving high precision over a large age range. We present 40Ar/39Ar data from basalt samples collected from a number of different locations, all obtained using the Hiden HAL Series 1000 quadrupole mass spectrometer at Vrije University, Amsterdam. We show that quadrupole technology is not only a viable option in K-Ar geochronology (Rouchon et al., 2008) but also in 40Ar/39Ar geochronology. The data was obtained from groundmass hand-picked from 200-500 um size fractions. Sample amounts of 200 to 500 mg were used for incremental heating experiments. The quality of the data is demonstrated by convergence of plateau and isochron ages, replicate analyses and by comparison to results of independent studies. Sample ages range from 40 ka to 400 ka, demonstrating the potential of quadrupole instruments for dating even very young rocks using the 40Ar/39Ar incremental heating technique. Rouchon, V., Lefevre, J.-C., Quidelleur, X., Guerin, G., Gillot, P.-Y. (2008): Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: A potential for K-Ar geochronology. International Journal of

  12. Mass perturbation techniques for tuning and decoupling of a Disk Resonator Gyroscope

    NASA Astrophysics Data System (ADS)

    Schwartz, David

    Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so that the two Coriolis-coupled modes exploited for rate sensing possess equal modal frequencies and so that the central post which attaches the resonator to the sensor case is a nodal point of the these two modes. The former quality maximizes the signal-to-noise ratio of the sensor, while the latter quality eliminates any coupling of linear acceleration to the modes of interest, which, if present, creates spurious rate signals in response to linear vibration of the sensor case. When the gyro resonators are fabricated, however, small mass and stiffness asymmetries cause the frequencies of the two modes to deviate from each other and couple these modes to linear acceleration. In a resonator post-fabrication step, these effects can be reduced by altering the mass distribution of the resonator. In this dissertation, a scale model of the axisymmetric resonator of the Disk Resonator Gyroscope (DRG) is used to develop and test methods that successfully reduce frequency detuning (Part I) and linear acceleration coupling (Part II) through guided mass perturbations.

  13. Determination of suspected allergens in cosmetic products by headspace-programmed temperature vaporization-fast gas chromatography-quadrupole mass spectrometry.

    PubMed

    del Nogal Sánchez, Miguel; Pérez-Pavón, José Luis; Moreno Cordero, Bernardo

    2010-07-01

    In the present work, a strategy for the qualitative and quantitative analysis of 24 volatile compounds listed as suspected allergens in cosmetics by the European Union is reported. The list includes benzyl alcohol, limonene, linalool, methyl 2-octynoate, beta-citronellol, geraniol, citral (two isomers), 7-hydroxycitronellal, anisyl alcohol, cinnamal, cinnamyl alcohol, eugenol, isoeugenol (two isomers), coumarin, alpha-isomethyl ionone, lilial, alpha-amylcinnamal, lyral, alpha-amylcinnamyl alcohol, farnesol (three isomers), alpha-hexyl cinnamal, benzyl cinnamate, benzyl benzoate, and benzyl salicylate. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a quadrupole mass spectrometry (qMS) detector is explored. By using a headspace sampler, sample preparation is reduced to introducing the sample into the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. Two different injection techniques were used: solvent-vent injection and hot-split injection. The first offers a way to improve sensitivity at the same time maintaining the simple headspace instrumentation and it is recommended for compounds at trace levels. The use of a liner packed with Tenax-TA allowed the compounds of interest to be retained during the venting process. The signals obtained when hot-split injection was used allowed quantification of all the compounds according to the thresholds of the European Cosmetics Directive. Monodimensional gas chromatography coupled to a conventional quadrupole mass spectrometry detector was used and the 24 analytes were separated appropriately along a run time of about 12 min. Use of the standard addition procedure as a quantification technique overcame the matrix effect. It should be emphasized that the method showed good precision and accuracy. Furthermore, it is rapid, simple, and--in view of the

  14. A new method for wideband characterization of resonator-based sensing platforms

    NASA Astrophysics Data System (ADS)

    Munir, Farasat; Wathen, Adam; Hunt, William D.

    2011-03-01

    A new approach to the electronic instrumentation for extracting data from resonator-based sensing devices (e.g., microelectromechanical, piezoelectric, electrochemical, and acoustic) is suggested and demonstrated here. Traditionally, oscillator-based circuitry is employed to monitor shift in the resonance frequency of the resonator. These circuits give a single point measurement at the frequency where the oscillation criterion is met. However, the resonator response itself is broadband and contains much more information than a single point measurement. Here, we present a method for the broadband characterization of a resonator using white noise as an excitation signal. The resonator is used in a two-port filter configuration, and the resonator output is subjected to frequency spectrum analysis. The result is a wideband spectral map analogous to the magnitude of the S21 parameters of a conventional filter. Compared to other sources for broadband excitation (e.g., frequency chirp, multisine, or narrow time domain pulse), the white noise source requires no design of the input signal and is readily available for very wide bandwidths (1 MHz-3 GHz). Moreover, it offers simplicity in circuit design as it does not require precise impedance matching; whereas such requirements are very strict for oscillator-based circuit systems, and can be difficult to fulfill. This results in a measurement system that does not require calibration, which is a significant advantage over oscillator circuits. Simulation results are first presented for verification of the proposed system, followed by measurement results with a prototype implementation. A 434 MHz surface acoustic wave (SAW) resonator and a 5 MHz quartz crystal microbalance (QCM) are measured using the proposed method, and the results are compared to measurements taken by a conventional bench-top network analyzer. Maximum relative differences in the measured resonance frequencies of the SAW and QCM resonators are 0.0004% and 0

  15. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  16. Nqrs Data for C6H7F4N2OSb (Subst. No. 0879)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H7F4N2OSb (Subst. No. 0879)

  17. NQRS Data for C7H8Cl3Osb (Subst. No. 1005)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C7H8Cl3OSb (Subst. No. 1005)

  18. Nqrs Data for C6H7F7N2OSb2 (Subst. No. 0880)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H7F7N2OSb2 (Subst. No. 0880)

  19. Nqrs Data for C24H36Cu2N6 (Subst. No. 1586)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H36Cu2N6 (Subst. No. 1586)

  20. NQRS Data for CaCu2La2O6(Subst. No. 1756)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CaCu2La2O6 (Subst. No. 1756)

  1. Nqrs Data for C26H34N2O3V (Subst. No. 1601)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C26H34N2O3V (Subst. No. 1601)

  2. Nqrs Data for C26H35Br2CuP2 (Subst. No. 1603)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C26H35Br2CuP2 (Subst. No. 1603)

  3. NQRS Data for CoLa0.5O3Sr0.5(Subst. No. 1964)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.5O3Sr0.5 (Subst. No. 1964)

  4. NQRS Data for CoLa0.75O3Sr0.25(Subst. No. 1967)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.75O3Sr0.25 (Subst. No. 1967)

  5. NQRS Data for CoLa0.8O3Sr0.2(Subst. No. 1968)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.8O3Sr0.2 (Subst. No. 1968)

  6. NQRS Data for CoLa0.7O3Sr0.3(Subst. No. 1966)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.7O3Sr0.3 (Subst. No. 1966)

  7. NQRS Data for CoLa0.6O3Sr0.4(Subst. No. 1965)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.6O3Sr0.4 (Subst. No. 1965)

  8. Nqrs Data for C24H42Li2N4 (Subst. No. 1587)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H42Li2N4 (Subst. No. 1587)

  9. Nqrs Data for C26H38N2O3 (Subst. No. 1607)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C26H38N2O3 (Subst. No. 1607)

  10. Nqrs Data for Ca9Cu24O41Sr5(Subst. No. 1776)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for Ca9Cu24O41Sr5 (Subst. No. 1776)

  11. Nqrs Data for C24H24Cu2N6 (Subst. No. 1584)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H24Cu2N6 (Subst. No. 1584)

  12. Magnetic resonance imaging of the saccular otolithic mass.

    PubMed Central

    Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F

    1992-01-01

    The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875

  13. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  14. In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams.

    PubMed

    Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wu, Wei; Shi, Bin; Jiang, Xiaojie; Zhang, Ni; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2017-08-01

    Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8×10-4λ02 within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ki Deok Park; Guo, K.; Adebodun, F.

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results showmore » an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.« less

  16. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    PubMed

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  17. Up-scalable low-cost fabrication of plasmonic and photonic nanostructures for sensing

    NASA Astrophysics Data System (ADS)

    Gallinet, Benjamin; Davoine, Laurent; Basset, Guillaume; Schnieper, Marc

    2013-09-01

    The fabrication by nanoimprint lithography of large-area plasmonic and photonic sensing platforms is reported. The plasmonic nanostructures have the shape of split-ring resonators and support both electric dipole and quadrupole modes. They carry the spectral signature of Fano resonances. Their near-field and far-field optical properties are investigated with an analytical model together with numerical calculations. Fano-resonant systems combine strong nanoscale light confinement with a narrow spectral line width, which makes them very promising for biochemical sensing and immunoassays. On the other hand, chemical sensors based on resonant gratings are obtained by patterning a sol-gel material, evaporating a high refractive index semiconductor and coating with a chemically sensitive dye layer. By exposition to a liquid or an invisible gas such as ammonium, the change in absorption is detected optically. An analytical model is introduced to explain the enhancement of the signal by the resonant grating, which can be detected with the naked eye from a color change of the reflected light.

  18. Use of suprathreshold stochastic resonance in cochlear implant coding

    NASA Astrophysics Data System (ADS)

    Allingham, David; Stocks, Nigel G.; Morse, Robert P.

    2003-05-01

    In this article we discuss the possible use of a novel form of stochastic resonance, termed suprathreshold stochastic resonance (SSR), to improve signal encoding/transmission in cochlear implants. A model, based on the leaky-integrate-and-fire (LIF) neuron, has been developed from physiological data and use to model information flow in a population of cochlear nerve fibers. It is demonstrated that information flow can, in principle, be enhanced by the SSR effect. Furthermore, SSR was found to enhance information transmission for signal parameters that are commonly encountered in cochlear implants. This, therefore, gives hope that SSR may be implemented in cochlear implants to improve speech comprehension.

  19. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: off-resonant and resonant cases.

    PubMed

    Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  20. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    PubMed

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.