Sample records for qualified science teachers

  1. Newly qualified teachers' visions of science learning and teaching

    NASA Astrophysics Data System (ADS)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  2. A private school leadership perspective on highly qualified middle school science teachers

    NASA Astrophysics Data System (ADS)

    Bogaski, Carolyn Siniscalchi

    The purpose of this study was to determine how Florida (FL) private, middle school (MS) leaders define highly qualified (HQ) MS science teachers, and how congruent their definitions are. The study also determines how congruent these leaders' definitions are with FL, national, and National Science Teachers Association (NSTA) definitions. Lastly, the study determines the major challenges these private MS leaders have in hiring MS science teachers who meet the NSTA definition of HQ. A convergent mixed methods survey design (Creswell, 2014) was used, in which qualitative and quantitative data were collected in parallel, analyzed separately, and then merged. Participants in the survey consisted of 119 leaders. A congruency rubric separated responses by religious affiliation and socioeconomic status (SES) level and matched responses with the percentage of congruency with the existing FL, national, and NSTA definitions of HQ. Descriptive statistics, paired samples t-test, and chi-squared test were used to analyze the quantitative and qualitative data. Qualitative data were coded into preliminary and final codes. Final codes were converted into magnitude codes, which allowed the researcher to analyze further the qualitative data statistically. Survey responses received were definitely congruent, except in ranking the importance of a candidate having an out-of-field degree with state certification, and in ranking the importance of a candidate being fully qualified to teach science in their state with a strong knowledge of science content. Segregating the survey responses into registered religious affiliations and SES levels found that the definition of a HQ MS science teacher was mostly congruent among all demographics, with only a couple of exceptions. The study found that these private school leaders' common definition of a HQ MS science teacher is one with adequate science content knowledge, pedagogy including engagement in laboratory activities, ability to relate to

  3. What Did They Take Away?: Examining Newly Qualified U.S. Teachers' Visions of Learning and Teaching Science in K-8 Classrooms

    ERIC Educational Resources Information Center

    Roberts-Harris, Deborah

    2014-01-01

    This study investigated newly qualified K-8 teachers' visions of science learning and teaching after they had completed preparation in a science teaching methods course I taught. What visions of science learning and teaching were these newly qualified teachers taking away from my course? How did these visions compare with those advocated by reform…

  4. A Study of Highly Qualified Science Teachers' Career Trajectory in the Deep, Rural South: Examining a Link between Deprofessionalization and Teacher Dissatisfaction

    ERIC Educational Resources Information Center

    Hodges, Georgia W.; Tippins, Deborah; Oliver, J. Steve

    2013-01-01

    Science teacher retention, attrition, and migration continue to perplex educational scholars, political entities, as well as the general public. This study utilized an interpretive methodological design to generate assertions regarding career choice made by highly qualified science teachers in the deep, rural South through analysis of documents,…

  5. Status on Texas Secondary Science Teachers

    NASA Astrophysics Data System (ADS)

    Mount, Jennifer; Fuller, Ed

    2009-10-01

    One of the most important challenges today facing public schools is the recruitment and retention of highly qualified science teachers. Policy makers in Texas adopted the 4x4 requirements for graduation, which will create an increase in the supply of science teachers. Dr. Fuller analyzed the topics concerning the shortage of secondary math and science teachers. Dr. Fuller's study clearly shows an acute shortage of well-qualified and adequately prepared secondary math and science teachers in Texas schools. The study also explains that schools serving large percentages of poor, minority, and/or low-achieving students have the least qualified teachers and the greatest shortages compared to other non-minority students. Recently, there has been a shift in teacher preparation programs. Most future teachers are being prepared by alternative certification programs and certification by exam. The attrition rates vary depending on teachers' route of certification. There is a shortage of math and science teachers in Texas, but is part of this shortage due to teacher migration? My research will expand on Dr. Fuller's study by looking at the attrition and migration rates on the subgroups of chemistry and physics teachers. Migration is typically overlooked in analytical studies because it does not change the overall supply of teachers. My study will investigate if science teachers are migrating to wealthier districts and/or higher achieving school. This presentation will summarize results found by Dr. Fuller's study as well as look at further research in science teacher attrition and migration rates.

  6. Do We Produce Enough Mathematics and Science Teachers?

    ERIC Educational Resources Information Center

    Ingersoll, Richard M.

    2011-01-01

    Empirical research on the supply and demand of math and science teachers finds some surprising results. The employment of qualified math and science teachers has more than kept pace with the demand, and most schools find qualified teachers for those positions. However, about a third of public schools--particularly high-poverty, high-minority, and…

  7. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  8. Are Teachers Highly Qualified? A National Study of Secondary Public School Teachers Using SASS 1999-2000

    ERIC Educational Resources Information Center

    Lu, Xuejin; Shen, Jianping; Poppink, Sue

    2007-01-01

    In this study we inquired into the qualifications of public secondary school teachers by examining whether or not teachers met the No Child Left Behind Act's ([NCLB] 2002) definition of "highly qualified" immediately prior to the law's enactment. We examined this by core academic subjects (English, social studies, math, and science) and,…

  9. In Every Core Class, a Qualified Teacher...

    ERIC Educational Resources Information Center

    Keller, Bess

    2006-01-01

    This article reports the teacher-quality plans of putting a highly qualified teacher in every core class which were due to the Education Department in July 7. In the plans, states are required to describe which groups of teachers are not yet highly qualified according to the federal standard, how they would help--and prod--districts to use only…

  10. A study of the relationships between "highly qualified" status, instructional practices, and students' science achievement in three high poverty Louisiana school systems

    NASA Astrophysics Data System (ADS)

    Clayton, Michelle

    Using a mixed methods research design, the author examined the relationships between "highly qualified" status, instructional practices, and students' science achievement for six third grade teachers in three high poverty Louisiana school systems. The study analyzed qualitative and quantitative data for three science classes taught by "highly qualified" teachers and three science classes taught by "non-highly qualified" teachers. The qualitative portion of the study was conducted through classroom observations, teacher interviews, and lesson plan reviews. The qualitative data was coded and triangulated to determine whether the instructional practices of each teacher were more "teacher-centered" or "student-centered." The qualitative data analysis indicated various patterns and consistencies in the instructional practices used by the "highly qualified" and "non-highly qualified" teachers selected for this study. The quantitative portion of the study involved analysis of the students' science achievement data for the six third grade science teachers selected for the study. Science achievement was measured by the third grade Integrated Louisiana Education Assessment Program (iLEAP) scores. A two-way ANOVA indicated that there were statistically significant differences in the mean scores of the three high poverty Louisiana school systems as well as the students taught by "highly qualified" and "non-highly qualified" teachers and the interactions between the two: F(2, 123) = 46.99, p < 0.01; F(1, 123) = 4.54, p = 0.035; F(2, 123) = 3.73, p = 0.027. A separate one-way ANOVA indicated that statistically significant differences existed between the six participating teachers in the study: F (5, 123) = 20.386, p < 0.01). Tukey's HSD post-hoc tests and homogeneous subset analyses were conducted in order to determine which teachers' scores significantly differed from each other.

  11. The Relationship between Highly Qualified Teachers and Student Academic Achievement

    ERIC Educational Resources Information Center

    Macken, Sherry Lou

    2013-01-01

    This study examined the relationship between the percentage of highly qualified teachers and standardized measures of student proficiency in the core academic subjects of mathematics, reading, science, social studies, and writing. Signed into law in January of 2002 by President George W. Bush, the No Child Left Behind (NCLB) Act requires teachers…

  12. 34 CFR 300.18 - Highly qualified special education teachers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subjects. For any public elementary or secondary school special education teacher teaching core academic... school or secondary school special education teacher teaching in a State, highly qualified requires that..., except that when used with respect to any teacher teaching in a public charter school, highly qualified...

  13. 34 CFR 300.18 - Highly qualified special education teachers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subjects. For any public elementary or secondary school special education teacher teaching core academic... school or secondary school special education teacher teaching in a State, highly qualified requires that..., except that when used with respect to any teacher teaching in a public charter school, highly qualified...

  14. 34 CFR 300.18 - Highly qualified special education teachers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subjects. For any public elementary or secondary school special education teacher teaching core academic... school or secondary school special education teacher teaching in a State, highly qualified requires that..., except that when used with respect to any teacher teaching in a public charter school, highly qualified...

  15. 34 CFR 300.18 - Highly qualified special education teachers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subjects. For any public elementary or secondary school special education teacher teaching core academic... school or secondary school special education teacher teaching in a State, highly qualified requires that..., except that when used with respect to any teacher teaching in a public charter school, highly qualified...

  16. The Challenges Faced by New Science Teachers in Saudi Arabia

    ERIC Educational Resources Information Center

    Alsharari, Salman

    2016-01-01

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions…

  17. Persisting mathematics and science high school teachers: A Q-methodology study

    NASA Astrophysics Data System (ADS)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  18. Improving Teacher Quality for Colorado Science Teachers in High Need Schools

    ERIC Educational Resources Information Center

    Stevenson, Mark; Stevenson, Cerissa; Cooner, Donna

    2015-01-01

    This article describes the evaluation of an online professional development program funded by the State of Colorado to address the need for highly qualified science teachers in high need and/or rural school districts. Recruitment and the retention of highly qualified educators in high need and/or rural school districts is a critical factor…

  19. CLUSTER: University-Science Center Partnership for Science Teacher Preparation

    ERIC Educational Resources Information Center

    Saxman, Laura J.; Gupta, Preeti; Steinberg, Richard N.

    2010-01-01

    The purpose of this paper is to describe and present results from the fourth year of a five-year collaborative research project between an interactive science center and a local college. The purpose of the project is not only to recruit and train approximately 50 highly qualified science teachers who will teach in New York City public schools, but…

  20. Newly Qualified Teachers' Professional Digital Competence: Implications for Teacher Education

    ERIC Educational Resources Information Center

    Gudmundsdottir, Greta Björk; Hatlevik, Ove Edvard

    2018-01-01

    The professional digital competence (PDC) of teachers is of growing importance in classrooms, now that digital resources and digital media are becoming important parts of teachers' everyday practice. This study explores how newly qualified teachers are prepared to use information and communication technology (ICT) in their initial teacher…

  1. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    NASA Astrophysics Data System (ADS)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  2. Pre-service Science Teacher Preparation in China: Challenges and Promises

    NASA Astrophysics Data System (ADS)

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-02-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for hundreds of thousands of schools at different levels. At the same time, some important reforms should be undertaken, and more candidates with the ability to do educational research should be trained. These qualified science teachers not only face the challenges of the new round of science education reform, but also take opportunities to implement new science curriculum effectively. Therefore, it will facilitate professional development and improve science education in turn.

  3. 34 CFR 300.18 - Highly qualified special education teachers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Highly qualified special education teachers. 300.18... SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE... special education teachers. (a) Requirements for special education teachers teaching core academic...

  4. Rigor Disputed in Standards for Teachers: "Highly Qualified" Bar for Veterans Shifts

    ERIC Educational Resources Information Center

    Keller, Bess

    2004-01-01

    States have fashioned wildly different ways of judging whether teachers already in the classroom meet the federal standard of "highly qualified," raising the possibility that teachers in some states will not face the high hurdle that Congress intended. However, to be deemed highly qualified under the federal law, teachers must hold a…

  5. The Impact of Teacher Quality Grants on Long-Term Professional Development of Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Urquhart, Mary L.; Bober, Kendra M.

    2006-02-01

    The Texas Higher Education Coordinating Board Teacher Quality Grants, supported through No Child Left Behind, are intended to ensure that secondary teachers of specific subjects are "highly qualified". Now in their third year, these grants have done much to shape long-term professional development for teachers in the physical sciences at the University of Texas at Dallas (UTD). The grants have also created a suite of challenges and benefits for the UTD Science Education M.A.T. program. Teacher Quality Grants are based on the No Child Left Behind framework that requires teachers to be "highly qualified" as defined by the state. Recruitment is required to be targeted at teachers who are uncertified or teach one or more classes out of their content area and who work in high needs local school districts. Many of the students brought into our program through these grants have incoming content knowledge in physics similar to that typical of undergraduate non-majors, and a large percentage are uncomfortable with basic mathematics as well. How and what we teach has been dramatically impacted by the Teacher Quality Grants, as have our assessments and evaluations. An ongoing challenge has been to implement a Physics Education Research (PER)-based course design while meeting the specific requirements of the Teacher Quality Grant program. The Teacher Quality Grants have also provided a great deal of opportunity to new and existing teachers in our program. A barrier to our teachers, rising tuition costs, has been removed and as a result a mandate has become a doorway of opportunity for physical science teachers.

  6. Creating Highly Qualified Teachers: Maximizing University Resources to Provide Professional Development in Rural Areas

    ERIC Educational Resources Information Center

    Mollenkopf, Dawn L.

    2009-01-01

    The "highly qualified teacher" requirement of No Child Left Behind has put pressure on rural school districts to recruit and retain highly qualified regular and special education teachers. If necessary, they may utilize uncertified, rural teachers with provisional certification; however, these teachers may find completing the necessary…

  7. Science Teachers' Response to the Digital Education Revolution

    ERIC Educational Resources Information Center

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-01-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the "Digital Education Revolution," Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change,…

  8. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  9. The Career Plans of Newly Qualified South African Teachers

    ERIC Educational Resources Information Center

    Bertram, Carol; Appleton, Simon; Muthukrishna, Nithi; Wedekind, Volker

    2006-01-01

    We report on survey data collected from 776 final-year student teachers from 11 higher education institutions in October 2004. The purpose of the survey was to find out how many newly qualified teachers were planning to teach abroad and how many were planning to teach in South Africa. Two issues formed the backdrop of the study: teacher migration…

  10. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    NASA Astrophysics Data System (ADS)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  11. Evaluating the Efficacy of Mathematics, Science and Technology Teacher Preparation Academies in Texas

    ERIC Educational Resources Information Center

    Brown, Danielle Bairrington; Alford, Beverly L.; Rollins, Kayla Braziel; Stillisano, Jacqueline R.; Waxman, Hersh C.

    2013-01-01

    The purpose of this mixed-methods study was to evaluate the efficacy of 14 Mathematics, Science and Technology Teacher Preparation (MSTTP) academies located across the state of Texas. The aim of the academies was to increase the number of highly qualified mathematics, science and technology teachers, while also improving the quality of certified…

  12. Meeting the Highly Qualified Teachers Challenge: The Secretary's Second Annual Report on Teacher Quality

    ERIC Educational Resources Information Center

    US Department of Education, 2003

    2003-01-01

    One of the most important provisions of the No Child Left Behind Act (NCLB) is the requirement that all teachers of core academic subjects be "highly qualified" by the end of school year 2005-2006. Key principles for recruiting and preparing future teachers have been identified as raising academic standards for teachers and lowering…

  13. Science Teachers' Response to the Digital Education Revolution

    NASA Astrophysics Data System (ADS)

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-08-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the `Digital Education Revolution,' Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change, it is important to consider teachers perspectives and responses to such change and we draw from sociocultural perspectives for our analysis. Through interviews and classroom observations, our interpretive analysis identified four key tensions and contradictions. These include the following: (1) barriers to innovative science teaching; (2) maintaining classroom and school connectivity; (3) teacher versus student expectations; and (4) changes to classroom management. Analysis leads to implications for the future of this and similar programs. The study shows that while these two teachers were committed to developing and delivering technology-rich science lessons, there were many factors that challenge how the implementation progressed. The findings from this study have implications for the continued engagement of teachers in this and other jurisdictions considering the introduction of one-to-one laptop programs.

  14. Building professional identity as computer science teachers: Supporting high school computer science teachers through reflection and community building

    NASA Astrophysics Data System (ADS)

    Ni, Lijun

    Computing education requires qualified computing teachers. The reality is that too few high schools in the U.S. have computing/computer science teachers with formal computer science (CS) training, and many schools do not have CS teacher at all. Moreover, teacher retention rate is often low. Beginning teacher attrition rate is particularly high in secondary education. Therefore, in addition to the need for preparing new CS teachers, we also need to support those teachers we have recruited and trained to become better teachers and continue to teach CS. Teacher education literature, especially teacher identity theory, suggests that a strong sense of teacher identity is a major indicator or feature of committed, qualified teachers. However, under the current educational system in the U.S., it could be challenging to establish teacher identity for high school (HS) CS teachers, e.g., due to a lack of teacher certification for CS. This thesis work centers upon understanding the sense of identity HS CS teachers hold and exploring ways of supporting their identity development through a professional development program: the Disciplinary Commons for Computing Educators (DCCE). DCCE has a major focus on promoting reflection on teaching practice and community building. With scaffolded activities such as course portfolio creation, peer review and peer observation among a group of HS CS teachers, it offers opportunities for CS teachers to explicitly reflect on and narrate their teaching, which is a central process of identity building through their participation within the community. In this thesis research, I explore the development of CS teacher identity through professional development programs. I first conducted an interview study with local HS CS teachers to understand their sense of identity and factors influencing their identity formation. I designed and enacted the professional program (DCCE) and conducted case studies with DCCE participants to understand how their

  15. Explicit and Implicit Perspectives on Research-Based Teacher Education: Newly Qualified Teachers' Experiences in Finland

    ERIC Educational Resources Information Center

    Aspfors, Jessica; Eklund, Gunilla

    2017-01-01

    Much of the international debate and research on teacher education has centred on how the preparation of teachers should be organised. In contrast to many other countries, teacher education in Finland has been university-based for decades and has a strong research-based approach. This inductive study describes newly qualified teachers' (NQTs)…

  16. Robert Noyce Mathematics and Science Teacher Preparation and Retention at Two California State University Campuses

    ERIC Educational Resources Information Center

    Arvizu, Jaime

    2013-01-01

    There is a persistent and growing shortage in the supply of "highly qualified" future science and mathematics teachers in the nation's classrooms. As a consequence, as many as 53% science and 23% math students take classes from teachers who are teaching out-of-field. Currently, there are many established programs that provide incentives…

  17. Pre-service Science Teacher Education in Africa: Prospects and Challenges

    NASA Astrophysics Data System (ADS)

    Ogunniyi, M. B.; Rollnick, Marissa

    2015-02-01

    Since the independence era in the 1950s and 1960s, many African countries have recognised the important role that science plays in the socio-economic development of any country. As a result, various African governments have enacted policies and allocated a large proportion of their gross national product to the science and science education sector of the economy. For instance, many African countries introduced universal primary education and to cater for the bulging student population increased the number of their secondary schools considerably. However, the rapid expansion of educational facilities has to some degree compromised the quality of the science teaching in many African schools. Among the various problems facing science education in Africa since the independence era, however, the most frequently mentioned has been the shortage of qualified science teachers. Science teachers play a critical role in laying the foundation of scientific literacy of a country. Indeed, no education system can outperform the quality of its teachers.

  18. Maryland State Department of Education Reporting of Highly Qualified Teachers. Memorandum

    ERIC Educational Resources Information Center

    Starr, Joshua P.

    2014-01-01

    The federal "No Child Left Behind Act of 2001" (NCLB) legislation required school districts to ensure that all teachers of core academic subjects met the requirements to be designated highly qualified by July 1, 2006. However, because no Maryland counties were able to comply with the 100 percent highly qualified designation by July 1,…

  19. Speaking of Salaries: What It Will Take to Get Qualified, Effective Teachers in All Communities

    ERIC Educational Resources Information Center

    Adamson, Frank; Darling-Hammond, Linda

    2011-01-01

    The fact that well-qualified teachers are inequitably distributed to students in the United States has received growing public attention. By every measure of qualifications--certification, subject matter background, pedagogical training, selectivity of college attended, test scores, or experience--less-qualified teachers tend to be found in…

  20. Bringing Them in: The Experiences of Imported and Overseas-Qualified Teachers

    ERIC Educational Resources Information Center

    Sharplin, Elaine

    2009-01-01

    This qualitative multiple-site case study explores the experiences of imported and overseas-qualified teachers appointed to fill "difficult-to-staff" Western Australian rural schools. In a climate of global teacher shortages, investigation of the strategies adopted to solve this problem requires empirical examination. The study of six…

  1. Science teacher improvement: A study of the change in preparation and qualifications of public middle school science teachers

    NASA Astrophysics Data System (ADS)

    Wickler, Nicole I. Z.

    According to the National Commission on Teaching and America's Future (1996), a teacher's professional preparation, their work conditions and sense of efficacy are fundamental to improving elementary and secondary education. These factors lie at the core of educational reforms that seek to raise standards, reshape curricula, and restructure the way schools operate. The call to reconceptualize the practice of teaching and the interaction between teachers and students ring hollow without a careful examination of actions that have taken place in the workplace of teachers themselves. A national profile that identifies key characteristics of the current status of public middle school science teachers preparation, teaching qualifications, and work environments can provide a context for better understanding the current conditions that confront science teachers. This study seeks to provide critical information in four major areas: (1) preservice learning and teaching assignment; (2) continued learning; (3) supportive work environment, and (4) teachers' sense of efficacy. This study is based on current efforts by the National Center for Education Statistics (LACES) to collect data of key indicators of teacher preparation and qualifications using a large-scale survey administered to a nationally representative sample of full-time public school teachers whose primary teaching assignment is in science. In this effort, the information reported in this study utilizes the NCES's Schools and Staffing Surveys (SASS) from 1987--88 and 1993--94. Significant change between 1987--77 and 1993--94 was determined using a t-test for independent means. In addition, frequency counts were analyzed using a chi-square statistic to determine if more "qualified middle school science teachers" were located in particular schools by urbanicity location or/and percent minority enrollment. In general, the quality of middle school science teachers across the country is declining. Teachers report they

  2. Science teachers in deaf education: A national survey of K-8 teachers

    NASA Astrophysics Data System (ADS)

    Shaw, Cynthia

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique was employed. Utilizing a non-experimental, basic research design and survey methodology, the researcher reviewed both quantitative and qualitative data. The majority of science teachers in this survey at the elementary school level are female and hearing. More than half have deaf education masters degrees. Few have science degrees. The majority of teachers had less than 10 years teaching experience with deaf students. Sixty percent were highly qualified in science; only forty percent were certified in science. They were equally employed at either a state residential school or a public day school. Two-way chi-square analyses were carried out. Hearing teachers preferred to observe other teachers teaching science compared to deaf teachers chi2 (1, N = 67) = 5.39, p < .05, deaf teachers were more familiar than hearing teachers with the ASL/English Bilingual Star School program (chi2 (1, N = 67) = 8.49, p < .01). Deaf teachers participated more in the Star Schools training compared to hearing teachers (chi2 (1, N = 67) = 14.15, p < .001). Deaf teachers compared to hearing teachers were more likely to use the bilingual strategy, translanguaging than hearing teachers (chi2 (1, N = 67) = 4.54, p < .05). Hearing teachers used the computer more often in the classroom than deaf teachers (chi 2 (1, N = 67) = 4.65, p < .01). Hearing teachers had their students use the computer more regularly than deaf teachers (chi2 (1, N = 67) = 11.49, p < .01). Teachers who worked in residential schools compared to working in public schools attended more state department of education science workshops chi2 (1, N = 67) = 6.83, p < .01, attended

  3. Newly Qualified Teachers' Work Engagement and Teacher Efficacy Influences on Job Satisfaction, Burnout, and the Intention to Quit

    ERIC Educational Resources Information Center

    Hoigaard, Rune; Giske, Rune; Sundsli, Kari

    2012-01-01

    Teacher policy is high on national agendas and countries are seeking to improve schools. Demands on schools and teachers are more complex and it is expected that a larger number of teachers will enter the profession. Studies indicate that the period when teachers are newly qualified is a peak time for leaving the profession. The purpose of this…

  4. Teachers: Point System Available to Earn "Qualified" Status

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2005-01-01

    When President Bush signed the No Child Left Behind Act into law with great fanfare in January 2002, plenty of skeptics said states and districts would not be able to meet its demanding expectations. They frequently pointed to the mandate that a "highly qualified" teacher be in every classroom in which a core subject is taught by the end…

  5. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of experimental and historical science topics

    NASA Astrophysics Data System (ADS)

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.

  6. Women, Education and the Law: Defining the "High Qualified" Teacher--No Child Left Behind's Requirements

    ERIC Educational Resources Information Center

    First, Patricia F.

    2003-01-01

    The No Child Left Behind Act (NCLB) provided that by the end of the 2005-06 school year, all teachers in core content areas, teaching in public schools, must be "highly qualified" in each subject they teach. Under the law, "highly qualified" means that a teacher is fully licensed through a traditional or alternative route and…

  7. The Newly Qualified Teacher: A Leader and a Professional? A Norwegian Study

    ERIC Educational Resources Information Center

    Grimsath, Gerd; Nordvik, Grete; Bergsvik, Eli

    2008-01-01

    This article is based on a Norwegian study. The focus is two-fold, including the views of both new teachers and leaders on the issue of leadership and professionalism. First, the focus is on the way newly qualified teachers describe how they function in the school and kindergarten organizations. The discussion explores how new teachers' meetings…

  8. How Prepared Do Newly-Qualified Teachers Feel? Differences between Routes and Settings

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2017-01-01

    Does it matter whether teachers are trained in schools or universities? In England, there is an ongoing change in the balance of routes to becoming a newly qualified teacher (NQT). Given this, and widely-reported problems with teacher supply, it is important to consider whether there are discernible differences between the routes in terms of their…

  9. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  10. Constructing Practical Knowledge of Teaching: Eleven Newly Qualified Language Teachers' Discursive Agency

    ERIC Educational Resources Information Center

    Ruohotie-Lyhty, Maria

    2011-01-01

    This paper explores the professional development of 11 newly qualified foreign language teachers. It draws on a qualitative longitudinal study conducted at the University of Jyvaskyla, Finland between 2002 and 2009. The paper concentrates on the personal side of teacher development by analysing participants' discourses concerning language…

  11. What Makes Things Happen? Teacher's Guide. Unit B. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Dube, Peter

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  12. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  13. Particles in Action. Teacher's Guide. Unit C2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  14. An Exploration of Changes in Thinking in the Transition from Student Teacher to Newly Qualified Teacher

    ERIC Educational Resources Information Center

    Haggarty, Linda; Postlethwaite, Keith

    2012-01-01

    For newly qualified teachers (NQTs), the induction period of support is an important phase which has the potential to deepen learning that has already taken place in initial teacher education (ITE) as well as preparing the NQT for future learning. A particularly crucial time in the induction process is the first term of teaching, when NQTs are…

  15. What Can Students Do with the Words They Know? An ELA Teacher Takes on Science

    ERIC Educational Resources Information Center

    Hayden, H. Emily; Eades-Baird, Michelle

    2016-01-01

    The Common Core State Standard and Next Generation Science Standards emphasize language and literacy across disciplines, requiring shifts in teaching practices and inventive approaches. This case study focuses on the instructional decision-making and activities of one uniquely experienced and qualified seventh-grade science teacher, whose English…

  16. "Qualified"? A Framework for Comparing ELT Teacher Preparation Courses

    ERIC Educational Resources Information Center

    Stanley, Phiona; Murray, Neil

    2013-01-01

    There is no standard via which to measure the "qualified" English language teacher in a way that is meaningful to institutions seeking to employ teaching staff. This is significant given that candidates may differ markedly in their language competence, knowledge about language, methodological skills and ability to explain and justify their praxis…

  17. Observing Some Life Cycles. Teacher's Guide. Unit E3. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Chitepo, Thoko; And Others

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide contains instructional…

  18. A narrative study of novice elementary teachers' perceptions of science instruction

    NASA Astrophysics Data System (ADS)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  19. The Challenges Faced by New Science Teachers in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alsharari, Salman

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions as teachers to educating children in a science classroom. Nevertheless, teachers, over their early years of practice, encounter numerous challenges to provide the most effective science instruction. Therefore, the current study was aimed to identify academic and behavioral classroom challenges faced by science teachers in their first three years of teaching in the Kingdom of Saudi Arabia. In addition, new science teacher gender, school level and years of teaching experience differences in perceptions of the challenges that they encountered at work were analyzed. The present study also investigated various types of support that new science teachers may need to overcome academic and behavioral classroom challenges. In order to gain insights about ways to adequately support novice science teachers, it was important to examine new science teachers' beliefs, ideas and perceptions about effective science teaching. Three survey questionnaires were developed and distributed to teachers of both sexes who have been teaching science subjects, for less than three years, to elementary, middle and high school students in Al Jouf public schools. A total of 49 novice science teachers responded to the survey and 9 of them agreed to participate voluntarily in a face-to-face interview. Different statistical procedures and multiple qualitative methodologies were used to analyze the collected data. Findings suggested that the top three academic challenges faced by new science teachers were: poor quality of teacher preparation programs, absence of appropriate school equipment and facilities and lack of classroom materials and instructional

  20. Increasing Student Access to Qualified Science and Mathematics Teachers through an Urban School-University Partnership

    ERIC Educational Resources Information Center

    Cavallo, Ann M. L.; Ferreira, Maria M.; Roberts, Sally K.

    2005-01-01

    Urban schools across the United States face a pervasive problem in their science and mathematics programs-a disproportionate number of the teachers in these classrooms are not certified, thus making them underqualified to teach these subject areas. Furthermore, urban schools deal with teacher shortages and attrition in these critical areas. The…

  1. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  2. Sense from Senses. Teacher's Guide. Unit J. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Simango, Sam

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  3. Understanding Electricity. Teacher's Guide. Unit I1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  4. Using Electricity. Teacher's Guide. Unit I2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Chidume, Kwashira

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  5. 34 CFR 685.217 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... eligible secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science to secondary school... borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics, and other areas...

  6. Beyond the Call: Preserving Reflection in the Preparation of "Highly Qualified" Teachers

    ERIC Educational Resources Information Center

    Amobi, Funmi A.

    2006-01-01

    Many teacher education programs are working at a feverish pitch to ensure that their graduates are considered "highly qualified" in light of the No Child Left Behind (NCLB) legislation, which reduces teacher competency to proof of subject matter knowledge as demonstrated by passing a state test and completing requisite number of courses in the…

  7. 34 CFR 682.216 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science... borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics, and other areas...

  8. 34 CFR 682.216 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or for an eligible educational service agency as a highly qualified teacher of mathematics or science... borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics, and other areas...

  9. 34 CFR 682.216 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science... borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics, and other areas...

  10. 34 CFR 682.216 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics or science to secondary school students; or (ii) At... in reading, writing, mathematics, and other areas of the elementary school curriculum, as certified...

  11. The effect of teacher education level, teaching experience, and teaching behaviors on student science achievement

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui

    Previous literature leaves us unanswered questions about whether teaching behaviors mediate the relationship between teacher education level and experience with student science achievement. This study examined this question with 655 students from sixth to eighth grade and their 12 science teachers. Student science achievements were measured at the beginning and end of 2006-2007 school year. Given the cluster sampling of students nested in classrooms, which are nested in teachers, a two-level multilevel model was employed to disentangle the effects from teacher-level and student-level factors. Several findings were discovered in this study. Science teachers possessing of advanced degrees in science or education significantly and positively influenced student science achievement. However, years of teaching experience in science did not directly influence student science achievement. A significant interaction was detected between teachers possessing an advanced degree in science or education and years of teaching science, which was inversely associated to student science achievement. Better teaching behaviors were also positively related to student achievement in science directly, as well as mediated the relationship between student science achievement and both teacher education and experience. Additionally, when examined separately, each teaching behavior variable (teacher engagement, classroom management, and teaching strategies) served as a significant intermediary between both teacher education and experience and student science achievement. The findings of this study are intended to provide insights into the importance of hiring and developing qualified teachers who are better able to help students achieve in science, as well as to direct the emphases of ongoing teacher inservice training.

  12. Energy for Living. Teacher's Guide. Unit G1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  13. Reproducing by Flowers and Seeds. Teacher's Guide. Unit E2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    ERIC Educational Resources Information Center

    Zesaguli, Josie

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  14. Our Planet Earth. Teacher's Guide. Unit F1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities,…

  15. Robert Noyce mathematics and science teacher preparation and retention at two California State University campuses

    NASA Astrophysics Data System (ADS)

    Arvizu, Jaime

    There is a persistent and growing shortage in the supply of "highly qualified" future science and mathematics teachers in the nation's classrooms. As a consequence, as many as 53% science and 23% math students take classes from teachers who are teaching out-of-field. Currently, there are many established programs that provide incentives for science and math students to enter the teaching profession. One program in particular, the Robert Noyce Scholars Program, was the genesis of the Authorization Act of 2002 - P.L. 107-368 and is funded by the National Science Foundation specifically to address the need for highly qualified STEM Teachers. IHEs, which are awarded these grant funds, are provided with significant funding for student scholarships and are expected to provide programmatic support for these students who are planning to become teachers. Programmatic support is intended to enhance the preparation of these future STEM teachers who are expected to teach in high needs classrooms. The purpose of this study was to examine if different views of the teacher education program exist between teachers who have been supported by the Noyce programs and those who have not received Noyce support. Noyce teachers and non-Noyce teachers are two aggregate groups that included teachers from CSU, Fresno and CSU, Long Beach. This study also examined retention percentages and demographic composition of Noyce-supported teachers from both campuses as an aggregate group in comparison to teachers in the nation and in the state. The study found no significant differences between Noyce teachers and non-Noyce teachers on their views about their teacher preparation program. Both groups on average reported their preparation to be adequate. Significant proportional differences by ethnicity were found between Noyce teachers and the general teacher population in the U.S. and California. Significant proportional differences by ethnicity and content area were also found between high school

  16. Atoms and Molecules. 'O' Level. Teacher's Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    ERIC Educational Resources Information Center

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  17. Meeting NCLB Goals for Highly Qualified Teachers: Estimates by State from Survey Data

    ERIC Educational Resources Information Center

    Blank, Rolf K.; Langesen, Doreen; Laird, Elizabeth; Toye, Carla; de Mello, Victor Bandeira

    2004-01-01

    This article presents results of survey data showing teacher qualifications for their assignments that are comparable from state-to-state as well as data trends over time. The analysis is intended to help state leaders, educators, and others obtain a picture of highly qualified teachers in their state, and to be able to compare their state…

  18. The Origins of Molecular Biology: A Pedagogical Tool for the Professional Development of Pre-College Science Teachers

    ERIC Educational Resources Information Center

    Silverman, Philip M.

    2003-01-01

    We examine the science and pedagogy behind a historical approach to the professional development of pre-college science (primarily biology) teachers. Our intention is to reach professional scientists, who, as a group, are uniquely qualified to provide experience and insights essential to this approach. The underlying research for this article has…

  19. Does the Discussion of Socio-Scientific Issues require a Paradigm Shift in Science Teachers' Thinking?

    NASA Astrophysics Data System (ADS)

    Day, Stephen P.; Bryce, Tom G. K.

    2011-08-01

    The purpose of this study was to characterise secondary school science teachers' conceptual models of discussion, against the background that a number of researchers have found that discussion of socio-scientific issues in science classrooms is rare, somewhat discomforting for teachers and its purpose unclear. Recent research indicates that when science teachers do engage in socio-scientific discussion, the quality is poor and is teacher-centred where pupils' views do not figure prominently (far less be clarified and integrated with their scientific learning). This has led to calls for such dialogue to be conducted by humanities teachers. The question arising from such thinking is: Do science teachers hold different conceptual models of discussion from their humanities colleagues? Using semi-structured interviews, three groups each of six teachers (experienced science teachers, experienced humanities teachers, and newly qualified science teachers) were interviewed in-depth in order to characterise their conceptual understanding of discussion as a teaching strategy. Analysis of the interview transcripts utilised the constant comparison approach of grounded theory. Five conceptual models of discussion emerged from an analysis of the data-discussion: (1) as a teacher-mediated discourse; (2) as open-ended inquiry; (3) for the development of reasoning skills; (4) as mediated transfer of knowledge to real-life contexts; and (5) as practice for democratic citizenship. The results confirmed that the science teachers' emphasis tended to stress practice for democratic citizenship whereas the humanities teachers' emphasis was more towards open-ended inquiry and for the development of reasoning skills.

  20. The Chemicals of the Earth. Teacher's Guide. Unit F2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Stocklmayer, Sue

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  1. Living Things and Their Food. Teacher's Guide. Unit G2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 2.

    ERIC Educational Resources Information Center

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  2. Discovering Quality in Teacher Education: Perceptions Concerning What Makes an Effective Cooperating Teacher

    ERIC Educational Resources Information Center

    Stewart, Josh; Lambert, Misty D.; Ulmer, Jonathan D.; Witt, Phillip A.; Carraway, Candis L.

    2017-01-01

    With a continuous shortage of qualified agricultural science teachers (Foster, Lawver, Smith, 2014; Kantrovich, 2010), it is imperative teacher preparation programs identify and utilize effective cooperating teachers, as well as develop training for in-service teachers that will assist in preparing more effective cooperating teachers. The purpose…

  3. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    NASA Astrophysics Data System (ADS)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  4. Conditions for Boundary Crossing: Social Practices of Newly Qualified Swedish Teachers

    ERIC Educational Resources Information Center

    Andersson, Ingrid; Andersson, Sven B.

    2008-01-01

    The purpose of this study is to gain knowledge about conditions for boundary crossing between academic and vocational practices and to identify dimensions of social practice within workplaces. The data consist of 28 questionnaires and 14 in-depth interviews with newly qualified secondary school teachers in their first year of teaching. We use the…

  5. Comparative Linguistic Analysis between Newly Qualified Teachers and Experienced Teachers: A Study of the Notion of Pelvic Retroversion in Physical Education

    ERIC Educational Resources Information Center

    Carnus, Marie-France

    2012-01-01

    Background: My theoretical background draws on physical education (PE) clinical didactics. It questions the specific nature of this academic subject matter, how it is transmitted and how it is internalized considering teachers' individuality. I intend to describe and understand how newly qualified and experienced PE teachers interact with their…

  6. University and Elementary School Perspectives of Ideal Elementary Science Teacher Knowledge, Skills, and Dispositions

    NASA Astrophysics Data System (ADS)

    Sewart, Bethany Bianca

    Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the

  7. 34 CFR 685.217 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... five consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or by an eligible educational service agency as a highly qualified teacher of mathematics... forgiveness if the borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics...

  8. Recruiting Highly Qualified African American Teachers in American Urban Public Schools: A Qualitative Collective Case Study

    ERIC Educational Resources Information Center

    James, LaNora Marcell

    2011-01-01

    The purpose of the qualitative collective case study is to identify the weaknesses in the methods used to recruit highly qualified African American preservice teachers in the Washington, DC metropolitan area. The data collection process consisted of one-on-one, open-ended interview questions with 10 highly qualified African American public school…

  9. Science Coursework and Pedagogical Beliefs of Science Teachers: The Case of Science Teachers in the Philippines

    ERIC Educational Resources Information Center

    Macugay, Eva B.; Bernardo, Allan B. I.

    2013-01-01

    Science coursework is an important element of the pre-service education of science teachers. In this study we test the hypothesis that more science coursework influences pedagogical beliefs of science teachers by studying the pedagogical beliefs of 305 Filipino science teachers. We compared pedagogical beliefs of primary school (less science…

  10. The Importance of School Leaders' Engagement in Socialising Newly Qualified Teachers into the Teaching Profession

    ERIC Educational Resources Information Center

    Engvik, Gunnar; Emstad, Anne Berit

    2017-01-01

    This article focuses on the importance of school leaders' commitment to socialising newly qualified teachers (NQTs) into the teaching profession. Framed by a social constructivist perspective, the article is based on four challenges novice teachers face as described by four school leaders. The aim is to illuminate how school leaders have…

  11. 34 CFR 685.217 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for five consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics... forgiveness if the borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics...

  12. 34 CFR 685.217 - Teacher loan forgiveness program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for five consecutive years— (i) At an eligible secondary school as a highly qualified mathematics or science teacher, or at an eligible educational service agency as a highly qualified teacher of mathematics... forgiveness if the borrower— (A) Demonstrated knowledge and teaching skills in reading, writing, mathematics...

  13. Enhancing Science Teacher Training Using Water Resources and GLOBE

    NASA Technical Reports Server (NTRS)

    Falco, James W.

    2002-01-01

    Heritage College, located on the Yakama Indian Reservation in south central Washington state, serves a multicultural, underserved, rural population and trains teachers to staff the disadvantaged school districts on and surrounding the reservation. In-service teachers and pre-service teachers in the area show strength in biology but have weak backgrounds in chemistry and mathematics. We are addressing this problem by providing a 2-year core of courses for 3 groups of 25 students (15 pre-service and 10 in-service teachers) using GLOBE to teach integrated physical science and mathematics. At the conclusion of the program, the students will qualify for science certification by Washington State. Water resources are the focal point of the curriculum because it is central to life in our desert area. The lack or excess of water, its uses, quality and distribution is being studied by using GIS, remote sensing and historical records. Students are learning the methodology to incorporate scientific protocols and data into all aspects of their future teaching curriculum. In addition, in each of the three years of the project, pre-service teachers attended a seminar series during the fall semester with presentations by collaborators from industry, agriculture, education and government agencies. Students used NASA educational materials in the presentations that they gave at the conclusion of the seminar series. All pre- and in-service teachers continue to have support via a local web site for Heritage College GLOBE participants.

  14. Foreign Language Professional Communicative Competence as a Component of the Academic Science Teacher's Professional Competence

    ERIC Educational Resources Information Center

    Valeeva, Roza A.; Baykova, Olga V.; Kusainov, Askarbek K.

    2016-01-01

    The urgency of the problem raised in the article is explained by the increasing demand for qualified specialists who have a good command of a foreign language. The communicative competence of an academic science teacher under the conditions of international cooperation development is of great importance. The article discusses the problem of…

  15. Context and Learning Factors in the Development of Teacher Identity: A Case Study of Newly Qualified Teachers during Their Induction Year

    ERIC Educational Resources Information Center

    Findlay, Kate

    2006-01-01

    This paper reports on a small-scale case study of five newly qualified teachers in one school. The aim of the study was to identify the context and learning factors that enable and constrain the professional growth of new teachers, and to locate the place of formal induction arrangements within the broader experiences of the first year in…

  16. Underwhelmed and Playing It Safe: Newly Qualified Primary Teachers' Mentoring and Probationary-Related Experiences during Induction

    ERIC Educational Resources Information Center

    O'Sullivan, Dan; Conway, Paul F.

    2016-01-01

    Framed within the burgeoning policy and research literature on teacher induction internationally, this paper focuses on the mentoring and probationary-related experiences of nine newly qualified primary teachers in the Republic of Ireland, during the course of their initial year of workplace practice, post-graduation. Gleaning newly qualified…

  17. Factors Influencing Teachers' Use of Multimedia Enhanced Content in Secondary Schools in Tanzania

    ERIC Educational Resources Information Center

    Mtebe, Joel S.; Mbwilo, Betty; Kissaka, Mussa M.

    2016-01-01

    Tanzania is faced with a severe shortage of qualified in-service school science and mathematics teachers. While science and mathematics account for 46% of the curriculum, only 28% of teachers are qualified to teach these subjects. In order to overcome this challenge, the Ministry of Education and Vocational Training (MoEVT) implemented a project…

  18. Republication of "NCLB and the Demand for Highly Qualified Teachers: Challenges and Solutions for Rural Schools"

    ERIC Educational Resources Information Center

    Brownell, Mary T.; Bishop, Anne M.; Sindelar, Paul T.

    2018-01-01

    Teacher shortages in special education have been a source of long-standing concern for professionals and parents involved in the education of students with disabilities. Because of their geographic location, culture, and lack of resources, rural administrators have always struggled to staff their schools with qualified special education teachers.…

  19. Helping New Science Teachers

    ERIC Educational Resources Information Center

    Frazier, Wendy M.; Sterling, Donna R.

    2009-01-01

    The start of a new school year is a challenging and exciting time for any teacher--and a time when beginning teachers particularly need our support. Working with new science teachers in the New Science Teachers' Support Network (NSTSN) has shown the authors that veteran teachers have the greatest impact on beginning teacher's success. The NSTSN is…

  20. SKyTeach: Addressing the need for Science and Math Teachers in Kentucky

    NASA Astrophysics Data System (ADS)

    Bonham, Scott

    2008-10-01

    The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.

  1. Preparing Highly Qualified Teachers for Students with Emotional or Behavioral Disorders: The Impact of NCLB and IDEA

    ERIC Educational Resources Information Center

    Rosenberg, Michael S.; Sindelar, Paul T.; Hardman, Michael L.

    2004-01-01

    No Child Left Behind (NCLB) and the reauthorization of the Individuals with Disabilities Education Act (IDEA) require that by 2005-2006 all teachers be highly qualified, a designation that for the first time in history is actually specified by federal statute. The authors discuss how the federal definition of highly qualified is influencing the…

  2. Becoming urban science teachers by transforming middle-school classrooms: A study of the Urban Science Education Fellows Program

    NASA Astrophysics Data System (ADS)

    Furman, Melina Gabriela

    The current scenario in American education shows a large achievement and opportunity gap in science between urban children in poverty and more privileged youth. Research has shown that one essential factor that accounts for this gap is the shortage of qualified science teachers in urban schools. Teaching science in a high poverty school presents unique challenges to beginner teachers. Limited resources and support and a significant cultural divide with their students are some of the common problems that cause many novice teachers to quit their jobs or to start enacting what has been described as "the pedagogy of poverty." In this study I looked at the case of the Urban Science Education Fellows Program. This program aimed to prepare preservice teachers (i.e. "fellows") to enact socially just science pedagogies in urban classrooms. I conducted qualitative case studies of three fellows. Fellows worked over one year with science teachers in middle-school classrooms in order to develop transformative action research studies. My analysis focused on how fellows coauthored hybrid spaces within these studies that challenged the typical ways science was taught and learned in their classrooms towards a vision of socially just teaching. By coauthoring these hybrid spaces, fellows developed grounded generativity, i.e. a capacity to create new teaching scenarios rooted in the pragmatic realities of an authentic classroom setting. Grounded generativity included building upon their pedagogical beliefs in order to improvise pedagogies with others, repositioning themselves and their students differently in the classroom and constructing symbols of possibility to guide their practice. I proposed authentic play as the mechanism that enabled fellows to coauthor hybrid spaces. Authentic play involved contexts of moderate risk and of distributed expertise and required fellows to be positioned at the intersection of the margins and the center of the classroom community of practice. In

  3. Science teacher's perception about science learning experiences as a foundation for teacher training program

    NASA Astrophysics Data System (ADS)

    Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh

    2017-05-01

    Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.

  4. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  5. Associations of Newly Qualified Teachers' Beliefs with Classroom Management Practices and Approaches to Instruction over One School Year

    ERIC Educational Resources Information Center

    Aus, Kati; Jõgi, Anna-Liisa; Poom-Valickis, Katrin; Eisenschmidt, Eve; Kikas, Eve

    2017-01-01

    We focus on assessing whether newly qualified teachers' professional outcome expectations and their beliefs about students' intellectual potential are associated with teachers' self-reported classroom management and instructional practices. One hundred and eighteen novice teachers participating in the induction year programme were studied during…

  6. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  7. The Acquaintance Level of Turkish Prospective Teachers with Qualified Works of Children's Literature

    ERIC Educational Resources Information Center

    Çer, Erkan; Sahin, Ertugrul

    2016-01-01

    The aim of this cross-sectional study is investigate to what extent acquainted prospective Turkish teachers are with qualified works of children's literature. A convenience sample of 146 university students studying at the Turkish teaching department at a university in the Central Black Sea Region completed a questionnaire to determine the…

  8. How Can Online Discussion Support and Develop Newly Qualified Teachers? Research Briefing No. 51

    ERIC Educational Resources Information Center

    Unwin, Adam

    2013-01-01

    This research investigated newly qualified teachers (NQTs) experiences of participating in online discussions (ODs) that were part of their Master of Teaching (MTeach) course. [The project was partially funded by the Excellence in Work-Based Learning for Education Professionals (WLE) Centre in 2009.

  9. Challenges Confronting Career-Changing Beginning Teachers: A Qualitative Study of Professional Scientists Becoming Science Teachers

    NASA Astrophysics Data System (ADS)

    Watters, James J.; Diezmann, Carmel M.

    2015-03-01

    Recruitment of highly qualified science and mathematics graduates has become a widespread strategy to enhance the quality of education in the field of STEM. However, attrition rates are very high suggesting preservice education programs are not preparing them well for the career change. We analyse the experiences of professionals who are scientists and have decided to change careers to become teachers. The study followed a group of professionals who undertook a 1-year preservice teacher education course and were employed by secondary schools on graduation. We examined these teachers' experiences through the lens of self-determination theory, which posits autonomy, confidence and relatedness are important in achieving job satisfaction. The findings indicated that the successful teachers were able to achieve a sense of autonomy and confidence and, in particular, had established strong relationships with colleagues. However, the unique challenges facing career-change professionals were often overlooked by administrators and colleagues. Opportunities to build a sense of relatedness in their new profession were often absent. The failure to establish supportive relationships was decisive in some teachers leaving the profession. The findings have implications for both preservice and professional in-service programs and the role that administrators play in supporting career-change teachers.

  10. Newly Qualified Teachers' Needs of Support for Professional Competences in Four European Countries: Finland, the United Kingdom, Portugal, and Belgium

    ERIC Educational Resources Information Center

    Harju, Vilhelmiina; Niemi, Hannele

    2016-01-01

    The first few years in the teaching profession are usually demanding. Although initial teacher education forms an essential foundation for teachers' work, it cannot fully prepare new teachers for the complexities of working life. This study focuses on investigating the need for professional development support among newly qualified teachers to…

  11. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  12. Efforts to Recruit Secondary STEM Teachers at Columbus State University

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.; MaSST Preparation Council

    2006-12-01

    Physics as a discipline is not alone in having difficulty finding qualified teachers. Under-qualified teachers are present in high school Mathematics, Chemistry, Biology, and Earth-science classrooms as well. Columbus State University (CSU) has formed the Mathematics and Science Secondary Teachers (MaSST) Preparation Council to recruit more majors into our existing secondary teaching programs: Mathematics, Biology, Chemistry, and Geology. College of Education and College of Science faculty are working together to create a higher profile for these majors at our institution within the state of Georgia. In addition, we are planning an aggressive campaign to recruit from within by implementing a peer-tutoring program using outstanding students who have completed introductory math and science courses. Our group’s organization and initiatives can serve as a model for other institutions concerned about recruiting more high-school teachers.

  13. Teacher Self-Efficacy According to Turkish Cypriot Science Teachers

    ERIC Educational Resources Information Center

    Olmez, Cemil; Ozbas, Serap

    2017-01-01

    This study examined the self-efficacy of Turkish Cypriot science teachers working at high schools in Northern Cyprus. The study sample was 200 science teachers who participated in the survey. The Teacher Self-Efficacy (TSE) Scale was used as a data source. It was observed that the science teachers' efficacy beliefs about student engagement in…

  14. The development of elementary teacher identities as teachers of science

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Whitehead, Ashley N.; Walkowiak, Temple A.; Luginbuhl, Sarah C.; Thomson, Margareta M.

    2017-09-01

    The purpose of this qualitative study was to investigate the contributions of pre-service teachers' memories of science and science education, combined with their experiences in a STEM-focused teacher preparation programme, to their developing identities as elementary school teachers of science. Data collected over three years include a series of interviews and observations of science teaching during elementary teacher preparation and the first year of teaching. Grounded within a theoretical framework of identity and using a case-study research design, we examined experiences that contributed to the participants' identity development, focusing on key themes from teacher interviews: memories of science and science instruction, STEM-focused teacher preparation programme, field experiences, first year of teaching, and views of effective science instruction. Findings indicate the importance of exposure to reform strategies during teacher preparation and are summarised in main assertions and discussed along with implications for teacher preparation and research.

  15. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  16. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-05-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators' conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students' conceptual ecology of learning NOS.

  17. Inservice Science Supervisors' Assessments of a Novice Science Teacher's Videotaped Lesson.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    The purpose of this paper is to inform novice science teachers and science teacher educators of the pedagogy that science teacher supervisors value. As expert practitioners, supervisors have a perspective quite different from that of both novice teachers and teacher educators. Nine inservice science teacher supervisors assessed a novice teacher's…

  18. Valid and Reliable Science Content Assessments for Science Teachers

    NASA Astrophysics Data System (ADS)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-03-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.

  19. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    ERIC Educational Resources Information Center

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  20. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  1. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    NASA Astrophysics Data System (ADS)

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-04-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead's (Sci Educ 81: 217-238, 1997, Science Educ 85:180-188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313-333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers' attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.

  2. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  3. Preservice elementary teachers' actual and designated identities as teachers of science and teachers of students

    NASA Astrophysics Data System (ADS)

    Canipe, Martha Murray

    Preservice elementary teachers often have concerns about teaching science that may stem from a lack of confidence as teachers or their own negative experiences as learners of science. These concerns may lead preservice teachers to avoid teaching science or to teach it in a way that focuses on facts and vocabulary rather than engaging students in the doing of science. Research on teacher identity has suggested that being able to envision oneself as a teacher of science is an important part of becoming a teacher of science. Elementary teachers are generalists and as such rather than identifying themselves as teachers of particular content areas, they may identify more generally as teachers of students. This study examines three preservice teachers' identities as teachers of science and teachers of students and how these identities are enacted in their student teaching classrooms. Using a narrated identity framework, I explore stories told by preservice teachers, mentor teachers, student teaching supervisors, and science methods course instructors about who preservice teachers are as teachers of science and teachers of students. Identities are the stories that are told about who someone is or will become in relation to a particular context. Identities that are enacted are performances of the stories that are an identity. Stories were collected through interviews with each storyteller and in an unmoderated focus group with the three preservice teachers. In addition to sorting stories as being about teachers of science or students, the stories were categorized as being about preservice teachers in the present (actual identities) or in the future (designated identities). The preservice teachers were also observed teaching science lessons in their student teaching placements. These enactments of identities were analyzed in order to identify which aspects of the identity stories were reflected in the way preservice teachers taught their science lessons. I also analyzed the

  4. Investigation of urban science teachers' pedagogical engagements: Are urban science teachers culturally responsive?

    NASA Astrophysics Data System (ADS)

    Udokwu, Chukwudi John

    This study utilized mixed methodology of quantitative and qualitative research approach to explore the current pedagogical engagements of twenty middle school urban science teachers in the Midwest region of the United States. It qualitatively examined twelve of these teachers' knowledge of culturally responsive pedagogy. The study investigated the following questions: What are the current pedagogical practices of urban middle school science teachers? To what extent are middle school science teachers' pedagogical practices in urban schools culturally responsive? What are urban students' perspectives of their teachers' current pedagogical engagements? The design of the study was qualitative and quantitative methods in order to investigate these teachers' pedagogical practices. Data collections were drawn from multiple sources such as lesson plans, students' sample works, district curriculum, surveys, observational and interview notes. Analysis of collected data was a mixed methodology that involved qualitative and quantitative methods using descriptive, interpretative, pattern codes, and statistical procedures respectively. Purposeful sampling was selected for this study. Thus, demographically there were twenty participants who quantitatively took part in this study. Among them were seven (35%) males and thirteen (65%) females, three (15%) African Americans and seventeen (85%) Caucasians. In determining to what extent urban science teachers' pedagogical practices were culturally responsive, eight questions were analyzed based on four cluster themes: (a) teachers' social disposition, (b) culturally responsive curriculum, (c) classroom interactions, and (d) power pedagogy. Study result revealed that only five (25%) of the participants were engaged in culturally responsive pedagogy while fifteen (75%) were engaged in what Haberman (1991) called the pedagogy of poverty. The goal was to investigate urban science teachers' pedagogical engagements and to examine urban

  5. Teachers' voices: A comparison of two secondary science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers

  6. Making Philosophy of Science Education Practical for Science Teachers

    NASA Astrophysics Data System (ADS)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  7. Mentoring New Science Teachers

    ERIC Educational Resources Information Center

    Shea, Kathleen; Greenwood, Anita

    2007-01-01

    Most experienced high school science teachers are asked at some point to serve as a mentor to a novice teacher. While mentor-training programs have been established in many states, they often only focus on how the mentor can help new science teachers understand and negotiate the school culture, such as how the school runs and where supplies are…

  8. Valid and Reliable Science Content Assessments for Science Teachers

    ERIC Educational Resources Information Center

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-01-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…

  9. The Principle-Practical Discourse Edge: Elementary Preservice and Mentor Teachers Working Together on Colearning Tasks

    ERIC Educational Resources Information Center

    Gunckel, Kristin L.; Wood, Marcy B.

    2016-01-01

    A major challenge in preparing elementary teachers to teach inquiry-based science is finding qualified mentor teachers who use research-based approaches to teach science in their classrooms. This situation means preservice teachers often see few connections between the research-based principles for teaching science they learn in university-based…

  10. Fostering Science Education in an Online Environment: Are We There yet?

    ERIC Educational Resources Information Center

    Davis, Kathleen S.; Snyder, Will

    2012-01-01

    Today, science teachers continue to seek ways to improve their instruction and become credentialed as "highly qualified" in their field. This paper describes how science and science education faculty at the University of Massachusetts and veteran K-12 science teachers, with funding from the National Science Foundation, designed Science…

  11. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Lohwasser, Karin

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice

  12. Science Teacher Education Partnerships with Schools (STEPS): Partnerships in Science Teacher Education

    ERIC Educational Resources Information Center

    Kenny, John Daniel; Hobbs, Linda; Herbert, Sandra; Chittleborough, Gail; Campbell, Coral; Jones, Mellita; Gilbert, Andrew; Redman, Christine

    2014-01-01

    This paper reports on the STEPS project which addressed international concerns about primary teachers' lack of confidence to teach science, and on-going questions about the effectiveness of teacher education. The five universities involved had each independently established a science education program incorporating school-based partnerships…

  13. ``It depends on what science teacher you got'': urban science self-efficacy from teacher and student voices

    NASA Astrophysics Data System (ADS)

    Bolshakova, Virginia L. J.; Johnson, Carla C.; Czerniak, Charlene M.

    2011-12-01

    In the United States today, urban schools serve the majority of high-poverty and high minority populations including large numbers of Hispanic students. While many Hispanic students perform below grade level in middle school science, the science teaching community as a whole is lacking elements of diversity as teachers struggle to meet the needs of all learners. Researchers have recognized that science teacher effectiveness, one consequence of self-efficacy among teachers, is associated with future science achievement and science-related careers of their students. This qualitative study explores how three science teachers' effectiveness in the classroom impacts students' science self-efficacy beliefs at one urban middle school. Hispanic students were the focus of this investigation due to demographics and history of underperformance within this district. Teachers' perspectives, as well as outside observer evaluations of instructional strategies and classroom climates were triangulated to explore dynamics that influence students' interests and motivation to learn science using a framework to link teachers' sense of efficacy (focusing on student outcomes). Findings suggest the impact teacher effectiveness can have on student outcomes, including strengthened student science self-efficacy and increased science achievement. Building awareness and support in teachers' sense of efficacy, as well as developing respectful and supportive relationships between educator/facilitator and pupil during the transition to middle school may construct permanence and accomplishment for all in science.

  14. Preparing "Professional" Science Teachers: Critical Goals.

    ERIC Educational Resources Information Center

    Dass, Pradeep Maxwell

    This paper focuses on pre-service teacher education and elaborates on the critical importance of three attributes to the development of professional science teachers: (1) science teachers must be reflective practitioners of their profession; (2) all instructional practice and decisions of science teachers must be backed by a research-based…

  15. Making Philosophy of Science Education Practical for Science Teachers

    ERIC Educational Resources Information Center

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  16. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  17. Professional development for science teachers.

    PubMed

    Wilson, Suzanne M

    2013-04-19

    The Next Generation Science Standards will require large-scale professional development (PD) for all science teachers. Existing research on effective teacher PD suggests factors that are associated with substantial changes in teacher knowledge and practice, as well as students' science achievement. But the complexity of the U.S. educational system continues to thwart the search for a straightforward answer to the question of how to support teachers. Interventions that take a systemic approach to reform hold promise for improving PD effectiveness.

  18. The Effects of Teacher Efficacy, Teacher Certification Route, Content Hours in the Sciences, Field-Based Experiences and Class Size on Middle School Student Achievement

    NASA Astrophysics Data System (ADS)

    Salgado, Robina

    No Child Left Behind Act (NCLB) was signed into law in 2002 with the idea that all students, no matter the circumstances can learn and that highly qualified teachers should be present in every classrooms (United Stated Department of Education, 2011). The mandates of NCLB also forced states to begin measuring the progress of science proficiency beginning in 2007. The study determined the effects of teacher efficacy, the type of certification route taken by individuals, the number of content hours taken in the sciences, field-based experience and class size on middle school student achievement as measured by the 8th grade STAAR in a region located in South Texas. This data provides knowledge into the effect different teacher training methods have on secondary school science teacher efficacy in Texas and how it impacts student achievement. Additionally, the results of the study determined if traditional and alternative certification programs are equally effective in properly preparing science teachers for the classroom. The study described was a survey design comparing nonequivalent groups. The study utilized the Science Teaching Efficacy Belief Instrument (STEBI). A 25-item efficacy scale made up of two subscales, Personal Science Teaching Efficacy Belief (PSTE) and Science Teaching Outcome Expectancy (STOE) (Bayraktar, 2011). Once the survey was completed a 3-Way ANOVA, MANOVA, and Multiple Linear Regression were performed in SPSS to calculate the results. The results from the study indicated no significant difference between route of certification on student achievement, but a large effect size was reported, 17% of the variances in student achievement can be accounted for by route of certification. A MANOVA was conducted to assess the differences between number of science content hours on a linear combination of personal science teacher efficacy, science teaching outcome expectancy and total science teacher efficacy as measured by the STEBI. No significant

  19. Science Communication in Teacher Personal Pronouns

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.

    2011-09-01

    In this study, I explore how personal pronouns used by elementary teachers during science inquiry discussions communicate science and frame teacher-student-science relations. A semiotic framework is adopted wherein teacher pronominal choices are viewed as symbolically expressing cognitive meanings (scientific thinking, forms of expression, and concepts) and indexically communicating social meanings (hidden messages about social and personal aspects of science-human agency, science membership, and gender). Through the construction of interactional maps and micro-ethnographic analysis of classroom video-recordings, I focus specifically on participant examples (oral descriptions of actual or hypothetical situations wherein the teacher presents herself and/or her students as characters to illustrate topics under discussion). This analysis revealed that the teacher use of the generalised you communicated to the students how to mean scientifically (i.e. to speak like a scientist), while I communicated scientific ways of thinking and reasoning. Furthermore, teacher pronouns communicated the social nature of science (NOS) (e.g. science as a human enterprise) as well as multiple teacher-student-science relational frames that were inclusive of some students (mainly boys) but excluded girls (i.e. positioned them as science outsiders). Exclusive use of he was taken as indicative of a gender bias. It is argued that science teachers should become more aware of the range of personal pronouns available for science instruction, their advantages and constraints for science discussions, their potential as instructional tools for humanising and personalising impersonal science curricula as well as the risk of 'NOS' miscommunication.

  20. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    NASA Astrophysics Data System (ADS)

    Hypolite, Christine Collins

    Biology (American Society of Plant Biologists, 2001) and Botany for the Next Millennium (Botanical Society of America, 1995). As a result of this study, a better understanding of the factors that influence preservice elementary teachers' knowledge of plant science principles may benefit elementary science educator in preparing teachers that are "highly qualified."

  1. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and

  2. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade

  3. Differentiating Science Instruction: Secondary science teachers' practices

    NASA Astrophysics Data System (ADS)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  4. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    NASA Astrophysics Data System (ADS)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  5. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  6. Science Teacher Leaders: Exploring Practices and Potential

    NASA Astrophysics Data System (ADS)

    Stinson, John Kevin

    It has become standard practice for teachers to step into the role of "teacher leaders" and perform a variety of curriculum, instruction and assessment tasks for schools and school districts. The literature regarding these Ohio K-12 teacher leaders, who may perform these tasks in addition to or in lieu of regular teaching assignments, rarely includes a disciplinary focus. In this exploratory, descriptive study the results of a web-based survey containing both closed and open-ended items were used in an inquiry into teacher leaders working with the discipline of science. Data from Ohio teachers responding to the survey were used first to create a standard profile for science teacher leaders. Descriptive statistics and correlations were then performed on quantitative survey data to explore science teacher leader tasks and factors that influence task performance. Analysis of data included descriptions of sense of purpose for their role held by these science teacher leaders. Results indicate that science teacher leaders appear to embrace their role as advocates for science and have great potential for implementing science education reform as well as other science-related school initiatives. Aligning performance, administrative oversight, impact on student achievement and teacher training concerning tasks science teacher leaders are expected to perform would enhance this potential. However, science teacher leaders face challenges to realizing that potential due to ambiguity of their leadership role, the breadth of tasks they tend to perform and lack of alignment between task and outcomes.

  7. The Big Picture: Pre-Service Teachers' Perceptions of "Expert" Science Teachers

    ERIC Educational Resources Information Center

    McKinnon, Merryn; Perara, Sean

    2015-01-01

    This study adapted the Draw-A-Science-Teacher Test to compare 22 pre-service teachers' perceptions of their own strengths as science teachers against their perceived strengths of expert science teachers. The drawings identified a disconnection between theory and practice that we revisit in the literature. Our findings from this pilot study are…

  8. Induction Programs for the Support and Development of Beginning Teachers of Science. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    The National Science Teachers Association (NSTA) recommends that schools and teacher preparation programs provide new teachers of science with comprehensive induction programs. Research suggests these programs should address specifics for teachers of science, involve trained mentors, provide adequate time to support continual learning of new…

  9. Teachers' perceptions on primary science teaching

    NASA Astrophysics Data System (ADS)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  10. Science Teacher Education: An International Perspective.

    ERIC Educational Resources Information Center

    Abell, Sandra K., Ed.

    This book presents reform efforts in science teacher education from an international perspective. Chapters include: (1) "International Perspectives on Science Teacher Education: An Introduction" (Sandra K. Abell); (2) "The Development of Preservice Elementary Science Teacher Education in Australia" (Ken Appleton, Ian S. Ginns,…

  11. Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'

    NASA Astrophysics Data System (ADS)

    Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.

    2017-11-01

    Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.

  12. The DESTIN: Preservice Teachers' Drawings of the Ideal Elementary Science Teacher

    ERIC Educational Resources Information Center

    Mensah, Felicia Moore

    2011-01-01

    The aim of this study is to report findings from the Drawing-Elementary-Science-Teacher-Ideal-Not, or the DESTIN procedure. The study utilizes a simple drawing procedure accompanied by a narrative and discussion for understanding preservice teachers' images of science, science teaching, and the science teacher. Ninety drawings from two sections of…

  13. Indiana Teachers' Perspectives on Testing Accommodations for Limited English Proficient Students Taking the Graduation Qualifying Exam

    ERIC Educational Resources Information Center

    Hetler, Angela Dawn

    2010-01-01

    This qualitative case study examines teachers' perspectives on testing accommodations for Limited English Proficient (LEP) students taking Indiana's Graduation Qualifying Exam (GQE). The Indiana Department of Education (IDOE) states that the purpose of testing accommodations is to "level the playing field" between LEP students and their…

  14. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    ERIC Educational Resources Information Center

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-01-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry…

  15. Science teacher orientations and PCK across science topics in grade 9 earth science

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  16. Towards Building Science Teachers' Understandings of Contemporary Science Practices

    ERIC Educational Resources Information Center

    Lancaster, Greg; Corrigan, Deborah; Fazio, Lisa; Burke, Joanne; Overton, David

    2017-01-01

    Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of…

  17. Supporting Newly Hired Science Teachers

    ERIC Educational Resources Information Center

    Luft, Julie A.; Nixon, Ryan S.; Dubois, Shannon L.; Campbell, Benjamin K.

    2014-01-01

    New teachers are common in the teaching workforce (Ingersoll and Merrill 2012). All new teachers will learn about the school curriculum and school policies in their first years. New science teachers, however, need to attend to the "Next Generation of Science Standards" (NGSS Lead States 2013) as they build their instruction and knowledge…

  18. BHP Billiton Science Teacher Awards

    ERIC Educational Resources Information Center

    Chittleborough, Gail; Campbell, Coral

    2012-01-01

    The prestigious BHP Billiton Science Teacher Awards are awarded annually to one teacher from each state of Australia. The awards recognise and value the time and effort that teachers give to the profession and to students conducting scientific research projects. This paper examines the Science Award scheme to identify the characteristics common to…

  19. Science Teacher Retention: Mentoring and Renewal. Issues in Science Education.

    ERIC Educational Resources Information Center

    Rhoton, Jack, Ed.; Bowers, Patricia, Ed.

    This book discusses science teacher retention and renewal, what kinds of problems beginner teachers face, mentoring programs, and intervention programs that support beginner teachers. Chapters include: (1) "Turnover and Shortages among Science and Mathematics Teachers in the United States" (Richard M. Ingersoll); (2) "Comprehensive Teacher…

  20. Revolutionizing Climate Science: Using Teachers as Communicators

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  1. Preparing Special Educators Highly Qualified in Content: Alternative Route Certification for Unlicensed Teachers in Rural Georgia

    ERIC Educational Resources Information Center

    Childre, Amy L.

    2014-01-01

    The shortage of highly qualified special educators is most pronounced in rural schools serving populations characterized by poverty, low achievement, disability, and cultural diversity. The result is often untrained teachers serving students with the greatest education needs. This article describes efforts by a university in rural middle Georgia…

  2. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    ERIC Educational Resources Information Center

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  3. Pre-service science teachers' perceptions of mathematics courses in a science teacher education programme

    NASA Astrophysics Data System (ADS)

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-08-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers' opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were 'difficult' because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers' lack of knowledge in terms of teaching mathematics.

  4. A Collaborative, Alternative Teacher Certification Program.

    ERIC Educational Resources Information Center

    Securro, Samuel, Jr.; And Others

    In the summer of 1986, three institutions (West Virginia State College, West Virigina College of Graduate Studies, and West Virgina Institute of Technology) consorted to design an alternative teacher certification program to attract and retain a qualified pool of mathematics and science teachers. Known as the Field-Based Training Program (FBTP),…

  5. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    NASA Astrophysics Data System (ADS)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  6. Science Teacher Learning Progressions: A Review of Science Teachers' Pedagogical Content Knowledge Development

    ERIC Educational Resources Information Center

    Schneider, Rebecca M.; Plasman, Kellie

    2011-01-01

    Learning progressions are the successively more sophisticated ways of thinking about an idea that follow one another over a broad span of time. This review examines the research on science teachers' pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. Research published…

  7. Preschool Teachers' Attitudes and Beliefs Toward Science

    NASA Astrophysics Data System (ADS)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  8. The pedagogy of argumentation in science education: science teachers' instructional practices

    NASA Astrophysics Data System (ADS)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  9. "Teaching What I Learned": Exploring Students' Earth and Space Science Learning Experiences in Secondary School with a Particular Focus on Their Comprehension of the Concept of "Geologic Time"

    ERIC Educational Resources Information Center

    Yoon, Sae Yeol; Peate, David W.

    2015-01-01

    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content…

  10. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  11. Role Specific Pupil/Science Teacher Interpersonal Compatibility and Science Attitudes.

    ERIC Educational Resources Information Center

    Vargo, Robert A.; Schafer, Larry E.

    As science teaching becomes more inquiry oriented, science teachers are interacting more frequently with individual students. With increased interaction, pupil/science teacher interpersonal compatibility most likely contributes significantly to the development of students' science attitudes. The purpose of the present study was to examine the…

  12. Teachers' Understanding and Operationalisation of `Science Capital'

    NASA Astrophysics Data System (ADS)

    King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine

    2015-12-01

    Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.

  13. Teacher beliefs and cultural models: A challenge for science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn A.; Atwater, Mary M.

    2002-11-01

    The purpose of this paper is to present an argument for developing science teacher education programs that examine teachers' beliefs about multicultural issues and their impact on science teaching and learning. In the paper, we (a) delineate a rationale for the study of teacher beliefs about issues of culture and its impact on science teaching and learning; (b) assert three major categories of teacher beliefs to examine for designing teacher education programs that aim to meet the challenges of increasingly culturally diverse classrooms; and (c) discuss implications for science teacher education programs and research. Research has shown that knowing teachers' beliefs and designing instruction and experiences to explicitly confront those beliefs facilitate refinement of and/or transformation of beliefs and practices (Bryan & Abell, J Res Sci Teaching, 36, 121-140, 1999; Harrington & Hathaway, J Teacher Education, 46, 275-284, 1995; Hollingsworth, Am Educational Res J, 26(2), 160-189, 1989; Olmedo, J Teaching Teacher Education, 13, 245-258, 1997; Tobin & LaMaster, J Res Sci Teaching, 32, 225-242, 1995). Furthermore, prior to student teaching, preservice teachers need to be at least culturally sensitive teachers (Gillette, In Teacher Thinking in Cultural Contexts, F. A. Rios (Ed.); Albany, NY: State University of New York Press; 1996, pp. 104-128). Science educators need to continue to identify those beliefs and practices that undergird desirable and equitable science instruction.

  14. SUPPORTING TEACHERS IN IMPLEMENTING FORMATIVE ASSESSMENT PRACTICES IN EARTH SYSTEMS SCIENCE

    NASA Astrophysics Data System (ADS)

    Harris, C. J.; Penuel, W. R.; Haydel Debarger, A.; Blank, J. G.

    2009-12-01

    automatic to teachers and students. Routines function as classroom norms, governing how students and teachers interact with subject matter (i.e., the way ideas are elicited, taken up, and revised). We use the qualifier teaching because we view good classroom assessment as seamless with instruction. Each teaching routine defines a sequence of instructional moves, supported by classroom network technology, for creating formative assessment opportunities that address 3 goals: (1) Increase student-teacher and student-student communication;(2) Motivate students to participate and learn from discussion, investigation, and reading; and (3) Provide real-time feedback for the teacher who can then adjust instruction. We report on key features of our support system for helping teachers develop proficiency with using formative assessment to inform instruction and advance learning in Earth Systems science. We also present preliminary findings from the implementation of the support system with a test group of teachers in a large, urban school district. Findings highlight the promise of teaching routines as an important resource for structuring student opportunities to showcase their thinking.

  15. Designing Inductive Instructional Activities in a Teacher Training Program to Enhance Conceptual Understandings in Science for Thai Science and Non-Science Teachers

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Jeeravipoonvarn, Varanya; Pongpisanou, Kanjana; Lamb, Dennis

    2016-01-01

    Teachers are viewed as the most significant factor affecting student learning. However, research in science education showed that teachers often demonstrate misunderstandings of science very similar to students. The purpose of this research was to correct conceptual difficulties in science of Thai primary school science and non-science teachers…

  16. Common Interest, Common Visions? Chinese Science Teacher Educators' Views about the Values of Teaching Nature of Science to Prospective Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Yung, Benny Hin Wai

    2011-01-01

    Teaching nature of science (NOS) is beginning to take root in science education in China. This exploratory study interviewed 24 science teacher educators from economically developed parts of China about their conceptions of teaching NOS to prospective science teachers. Five key dimensions emerged from the data. This paper focuses on the dimension…

  17. "Highly Qualified" to Do What? The Relationship between NCLB Teacher Quality Mandates and the Use of Reform-Oriented Instruction in Middle School Mathematics

    ERIC Educational Resources Information Center

    Smith, Thomas M.; Desimone, Laura M.; Ueno, Koji

    2005-01-01

    The federal No Child Left Behind Act of 2001 (NCLB) calls for a highly qualified teacher in every classroom. According to the legislation, "highly qualified" is defined as full certification, a bachelor's degree, and demonstrated content knowledge in all core subjects taught. States, district, and schools are spending considerable…

  18. Prospective Elemantary Science Teachers' Epistemological Beliefs

    ERIC Educational Resources Information Center

    Macaroglu Akgul, Esra; Oztuna Kaplan, Aysun

    2009-01-01

    This research study examined "prospective elementary science teachers' epistemological beliefs". Forty-nine prospective elementary science teachers participated into research. The research was designed in both quantitative and qualitative manner, within the context of "Special Methods in Science Teaching I" course.…

  19. Ghanaian Junior High School Science Teachers' Knowledge of Contextualised Science Instruction

    ERIC Educational Resources Information Center

    Ngman-Wara, Ernest I. D.

    2015-01-01

    The purpose of the study was to investigate Junior High School science teachers' knowledge about contextualised science instruction. The study employed descriptive survey design to collect data. A test, Test of Science Teacher Knowledge of Contextualised Science Instruction was developed and administered to collect data on teachers' knowledge of…

  20. Examining Teachers' Hurdles to `Science for All'

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry; Gallard, Alejandro; Callihan, Laurie

    2011-11-01

    The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.

  1. Science Teachers' Views about the Science Fair at Primary Education Level

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2013-01-01

    Science fair is an environment where students present their scientific research projects. Opinions of science teachers who participated as a mentor in science fair are important for determining of the science fair quality and its contribution of science education. The aim of study was to determine science teachers' views about the science fair at…

  2. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  3. Standards for Indiana Teachers of Science.

    ERIC Educational Resources Information Center

    Andersen, Hans O.; Kobe, Michael

    1996-01-01

    The Standards for Teachers of Science address the preparation, provisional practice, continued practice, and support that teachers will need to ensure that students are prepared for life and to be lifelong learners. The background of educational reform, vision behind the Standards, goals for science teachers, and suggestions for sustaining…

  4. Collaboration in teacher workshops and citizen science

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.

    2013-12-01

    The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.

  5. Quality Science Teacher Professional Development and Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  6. Differentiating Science Instruction: Success Stories of High School Science Teachers

    ERIC Educational Resources Information Center

    Maeng, Jennifer Lynn Cunningham

    2011-01-01

    This study investigated the characteristics and practices of high school science teachers who differentiate instruction. Specifically teachers' beliefs about science teaching and student learning and how they planned for and implemented differentiated instruction in their classrooms were explored. Understanding how high school science teachers…

  7. The Role of Philosophy of Science in Science Teacher Education.

    ERIC Educational Resources Information Center

    Bentley, Michael L.; Garrison, James W.

    1991-01-01

    Discusses teacher knowledge of nature of science. Asserts this is aspect of science content knowledge frequently neglected in teacher education. Differentiates between positivism and postpositivism. Describes textbook's role in fostering student misconceptions of nature of science. Suggests students be given chance to carry out their own…

  8. Becoming a Content-ESL Teacher: A Dialogic Journey of a Science Teacher and Teacher Educator

    ERIC Educational Resources Information Center

    Welsh, Lori C.; Newman, Karen L.

    2010-01-01

    This dialogical narrative describes the observations and changes in instruction of an 8th-grade science teacher in an English language learner (ELL) sheltered science class before and after receiving instruction in ESL methods, and the backdrop for the teacher's growth, as narrated by the second language teacher educator who directed the teacher's…

  9. Teacher Training and Pre-Service Primary Teachers' Self-Efficacy for Science Teaching

    ERIC Educational Resources Information Center

    Velthuis, Chantal; Fisser, Petra; Pieters, Jules

    2014-01-01

    This study focuses on the improvement of pre-service teachers' self-efficacy for teaching science by including science courses within the teacher training program. Knowing how efficacy beliefs change over time and what factors influence the development by pre-service primary teachers of positive science teaching efficacy beliefs may be useful for…

  10. Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues

    ERIC Educational Resources Information Center

    Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan

    2007-01-01

    The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…

  11. The feasibility of educating trainee science teachers in issues of science and religion

    NASA Astrophysics Data System (ADS)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  12. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  13. Teacher Efficacy of Secondary Special Education Science Teachers

    NASA Astrophysics Data System (ADS)

    Bonton, Celeste

    Students with disabilities are a specific group of the student population that are guaranteed rights that allow them to receive a free and unbiased education in an environment with their non-disabled peers. The importance of this study relates to providing students with disabilities with the opportunity to receive instruction from the most efficient and prepared educators. The purpose of this study is to determine how specific factors influence special education belief systems. In particular, educators who provide science instruction in whole group or small group classrooms in a large metropolitan area in Georgia possess specific beliefs about their ability to provide meaningful instruction. Data was collected through a correlational study completed by educators through an online survey website. The SEBEST quantitative survey instrument was used on a medium sample size (approximately 120 teachers) in a large metropolitan school district. The selected statistical analysis was the Shapiro-Wilk and Mann-Whitney in order to determine if any correlation exists among preservice training and perceived self-efficacy of secondary special education teachers in the content area of science. The results of this study showed that special education teachers in the content area of science have a higher perceived self-efficacy if they have completed an alternative certification program. Other variables tested did not show any statistical significance. Further research can be centered on the analysis of actual teacher efficacy, year end teacher efficacy measurements, teacher stipends, increased recruitment, and special education teachers of multiple content areas.

  14. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  15. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    NASA Astrophysics Data System (ADS)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  16. Teacher Leaders in Research Based Science Education

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  17. Teacher Leaders in Research Based Science Education

    NASA Astrophysics Data System (ADS)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-05-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  18. Making science accessible through collaborative science teacher action research on feminist pedagogy

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  19. The Pedagogy of Science Teachers from Non-Natural Science Backgrounds

    ERIC Educational Resources Information Center

    Woods, Shaneka

    2017-01-01

    This is a descriptive, exploratory, qualitative, collective case study that explores the pedagogical practices of science teachers who do not hold natural science degrees. The intent of this study is to support the creation of alternative pathways for recruiting and retaining high-quality secondary science teachers in K-12 education. The…

  20. From iTE to NQT: Evaluating Newly Qualified Teachers' Use of Mobile Technology in Their First Two Years of Teaching

    ERIC Educational Resources Information Center

    Mac Mahon, Brendan; Ó'Grádaigh, Seán; Ghuidhir, Sinéad Ni

    2018-01-01

    This article outlines a study to examine if newly qualified teachers (NQTs) who had incorporated iPad within pedagogical practice during initial teacher education, continued to do so in their first two years of teaching, and also to identify the challenges to integration that emerged. Findings show that use of iPad in teaching, learning and…

  1. Professional Parity Between Co-Teachers in Secondary Science and Math As Influenced By Administrative Support

    NASA Astrophysics Data System (ADS)

    Nordh, Camilla S.

    2011-12-01

    School improvement plans, budget constraints, and compliance mandates targeting academic progress for all students indicate a need for maximal professional efficacy at every level in the educational system, including parity between co-teachers in the co-teaching service delivery model. However, research shows that the special education co-teacher frequently assumes an assistive role while the general education co-teacher adopts a leading role in the classroom. When the participants in a co-teaching partnership fail to equitably share the professional responsibilities for which both teachers are qualified to perform, overall efficacy is compromised in that the special education teacher is not exercising his or her qualified expertise. Administrative support can be a primary influencing factor in increasing parity between the co-teachers. A qualitative study using a phenomenological design was conducted to explore the influences of co-teacher attitudes and administrative support on professional parity in co-taught secondary science and math classrooms. Content analysis was used to interpret data from interviews with five special education and 15 general education co-teachers at eight secondary schools in a suburban school district in a mid-Atlantic state. Five themes emerged from the data: content mastery by the special education co-teacher, joint planning time for co-teachers, continuity within co-teaching dyads, compatible personalities between co-teachers, and clear administrative expectations about co-teaching. Results indicate that administrative support to consider the content mastery of the special education co-teacher is the most influential factor to parity, followed by the co-teaching partners having joint planning time and that both can be implemented through scheduling and assignment considerations rather than training initiatives. The results provide an examination of each theme as it pertains to the issue of professional efficacy in co-teaching and

  2. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    NASA Astrophysics Data System (ADS)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  3. An Instrument Development Study for Determining Prospective Science Teachers' Science-Specific Epistemological Beliefs

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Ertekin, Pelin

    2016-01-01

    The study is focusing on development of an instrument to determine science-specific epistemological beliefs of prospective science teachers. The study involved 364 (male = 82, female = 282) prospective science teachers enrolled in a science teacher education program. The confirmatory factor analysis, reliability analysis and correlation analysis…

  4. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  5. Science Perceptions of Prospective Class Teachers

    ERIC Educational Resources Information Center

    Ulucinar Sagir, Safak

    2017-01-01

    The perceptions of class teachers, who will deliver science education at the elementary school, of information and science are significant as these affect the quality of education received by children. The aim of this research is to determine perceptions of prospective class teachers of science. The sample group of the research consists of 120…

  6. Flight Opportunities for Science Teacher EnRichment

    NASA Astrophysics Data System (ADS)

    Koch, D.; Devore, E.; Gillespie, C., Jr.; Hull, G.

    1994-12-01

    The Kuiper Airborne Observatory (KAO) is NASA's unique stratospheric infrared observatory. Science on board the KAO involves many disciplines and technologies. NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program is designed to nation-wide to serve fifty teachers per year on board the KAO. FOSTER is a pilot program for K-12 educational outreach for NASA's future Stratospheric Observatory for Infrared Astronomy (SOFIA) which will directly involve more than one-hundred teachers each year in airborne astronomical research missions. FOSTER aims to enrich precollege teachers' experiences and understanding of science, mathematics and technology. Teachers meet at NASA Ames Research Center for summer workshops on astronomy and contemporary astrophysics, and to prepare for flights. Further, teachers receive Internet training and support to create a FOSTER teacher network across the country, and to sustain communication with the airborne astronomy community. Each research flight of the KAO is a microcosm of the scientific method. Flying teachers obtain first-hand, real-time experiences of the scientific process: its excitement, hardships, challenges, discoveries, teamwork, and educational value. The FOSTER experience gives teachers pride and a sense of special achievement. They bring the excitement and adventure of doing first-class science to their students and communities. Flight Opportunities for Science Teacher EnRichment is funded by a NASA's Astrophysics Division grant, NAGW 3291, and supported by the SETI Institute and NASA Ames Research Center.

  7. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  8. Teachers' Perceptions on How to Improve Teacher Retention

    ERIC Educational Resources Information Center

    Wood, Jennifer L.

    2014-01-01

    The purpose of this qualitative descriptive case study was to research teachers' attrition in a central South Carolina school district by analyzing the experiences of 5 former teachers in the district. Highly qualified teachers are needed to educate students who come from diverse backgrounds. Unfortunately, many qualified teachers leave the…

  9. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    NASA Astrophysics Data System (ADS)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  10. Promoting teacher quality and retention in special education.

    PubMed

    Billingsley, Bonnie S

    2004-01-01

    Qualified special educators are needed to carry out research-based practices in schools. The shortage of special educators, the high numbers of uncertified teachers, and high attrition rates threaten the practice of science in the schoolhouse and, consequently, the education that students with disabilities receive. If teachers are to use research-based practices to benefit students with disabilities, care must be directed toward teachers, what they do, and the complex conditions in which their practice occurs. In this discussion, I focus on four factors that are important to special education teacher retention--responsive induction programs, deliberate role design, positive work conditions and supports, and professional development. These retention-enhancing factors also serve to cultivate qualified special educators by providing the conditions in which they can thrive and grow professionally.

  11. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2016-01-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science…

  12. The Impact of Science Teachers' Beliefs on Teaching Science: The Case of Saudi Science Teachers

    ERIC Educational Resources Information Center

    Alabdulkareem, Saleh Abdullah

    2016-01-01

    The researcher aims to investigate Saudi science teachers' beliefs about learning and teaching issues. The sample consisted of 247 middle school teachers in Riyadh, Saudi Arabia. The study conducted in the academic school year 2014/2015, and utilized a questionnaire and an interview that included 10% of the sample. The questionnaire targeted the…

  13. Creationism as Science: What Every Teacher-Scientist Should Know.

    ERIC Educational Resources Information Center

    Gatzke, Ken W.

    1985-01-01

    Addresses philosophical problems of the evolution/creationism debate (including underlying assumptions of creationism and nature of science), suggesting that creationism cannot be presented as science in science courses because it fails to qualify as a science. Prediction and explanation, absolute creationism, and a fundamental difficulty in…

  14. Teachers as researchers: An experiment to introduce high school science teachers to how science is done

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Fallows, Kathryn J.; King, Marlene; Magno, Ken

    2016-10-01

    Scientists know that the power of science lies in thinking like a scientist, rather than in a list of facts and figures, but few science teachers have any personal experience "doing science". They merely encounter science at the level of rote memorization, then teach it to their students in the same way. To break this vicious cycle, two teachers from local public high schools spent 5 weeks conducting research at Boston University on the ionosphere of Venus. They experienced the joys and frustrations of research, which will enable them to better explain to their students the true nature of the process of science. This presentation will summarize how the research program was created and implemented, what worked well and what did not, and how the teachers have made use of their summer research experiences back in the classroom.

  15. The Black Cultural Ethos and science teachers' practices: A case study exploring how four high school science teachers meet their African American students' needs in science

    NASA Astrophysics Data System (ADS)

    Strachan, Samantha L.

    The underachievement of African American students in science has been a persistent problem in science education. The achievement patterns of African American students indicate that researchers must take a closer look at the types of practices that are being used to meet these students' needs in science classrooms. Determining why science teachers decide to employ certain practices in their classrooms begins with a careful examination of teachers' beliefs as well as their instructional approaches. The purpose of this study was to explore four urban high school science teachers' beliefs about their African American students' learning needs and to investigate how these teachers go about addressing students' needs in science classrooms. This research study also explored the extent to which teachers' practices aligned with the nine dimensions of an established cultural instructional theory, namely the Black Cultural Ethos. Qualitative research methods were employed to gather data from the four teachers. Artifact data were collected from the teachers and they were interviewed and observed. Believing that their students had academic-related needs as well as needs tied to their learning preferences, the four science teachers employed a variety of instructional strategies to meet their students where they were in learning. Overall, the instructional strategies that the teachers employed to meet their students' needs aligned with five of the nine tenets of the Black Cultural Ethos theory.

  16. Theory to practice: A study of science teachers' pedagogical practices as measured by the Science Teacher Analysis Matrix (STAM) and Teacher Pedagogical Philosophy Interview (TPPI)

    NASA Astrophysics Data System (ADS)

    Brown, Sherri Lynne

    This study continued research previously conducted by a nine-university collaborative, the Salish I Research Project, by exploring science teachers' beliefs and actions with regard to inquiry instruction. Science education reform efforts require that students learn science via inquiry. The purpose of this study was to determine and classify espoused teaching beliefs and observable teaching style. Reported are linkages between the teachers' beliefs and styles, influential coursework from College of Education and College of Liberal Arts, and outcomes of increased classroom experience. Eight participants were chosen from three separate preservice science education cohorts. Inquiry efforts require a student-centered environment as opposed to the traditional teacher-centered environment. According to the 1997 Salish I Research Collaborative, beginning teachers displayed a stark contrast between their student centered beliefs to their teacher-centered actions. The limitations of this study were as follows: (1) the participants had completed the authentic research-based inquiry science course, Knowing and Teaching Science: Just Do It; (2) the participants were currently teaching science at the secondary level; (3) the selected instruments were used in the Salish I Research Collaborative Study, and (4) instrument validity and reliability data were not available. Interview data from the Teacher Pedagogical Philosophy Interview (TPPI) instrument and observational data from the Secondary Science Teacher Analysis Matrix (STAM) instrument were statistically compiled via concept maps and matrices. Data were then represented on an ordinal scale. Interview results indicated that 87.5% of the participants professed a teacher-centered style with regard to teacher and student's actions. Observational results indicated that 56% of the participants displayed a teacher-centered style with regard to content, teacher's actions, student's actions, resources, and environment. Additionally

  17. Elementary student teachers' science content representations

    NASA Astrophysics Data System (ADS)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  18. Confidence or Confusion: How Well Are Today's Newly Qualified Teachers in England Prepared to Meet the Additional Needs of Children in Schools?

    ERIC Educational Resources Information Center

    MacBlain, Sean; Purdy, Noel

    2011-01-01

    Faced with growing numbers of pupils with special needs, as well as those whose first language is not English, head teachers are increasingly faced with the challenge of employing Newly Qualified Teachers who require not only a different type of skills and knowledge base but the necessary personal qualities to effectively respond to the…

  19. Supporting new science teachers in pursuing socially just science education

    NASA Astrophysics Data System (ADS)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  20. Preparing Tomorrow's Science Teachers

    ERIC Educational Resources Information Center

    Hammer, Margaret; Polnick, Barbara

    2007-01-01

    Many undergraduates seeking elementary teaching certification are uncomfortable with or uninterested in science; however, these future teachers are charged with the responsibility of teaching science to young students. Hammer and Polnick surveyed science methods students at Sam Houston State University and found that only about half of them rated…

  1. Recruitment of Early STEM Majors into Possible Secondary Science Teaching Careers: The Role of Science Education Summer Internships

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.

    2015-01-01

    A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…

  2. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    NASA Astrophysics Data System (ADS)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  3. Implementing Professional Experiences to Prepare Preservice Science Teachers

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    In the correlation between professional experiences of preservice science teacher and classroom managerial skills, professional experiences were designed to prepare science teacher in the future. The effects of program were described the result of implementing professional experiences of 67 preservice science teachers. Data were collected by using…

  4. Special Education Teachers' Nature of Science Instructional Experiences

    ERIC Educational Resources Information Center

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  5. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  6. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  7. Meanings teachers make of teaching science outdoors as they explore citizen science

    NASA Astrophysics Data System (ADS)

    Benavides, Aerin Benavides

    This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.

  8. Building Future Directions for Teacher Learning in Science Education

    NASA Astrophysics Data System (ADS)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  9. The relationship between school environment, preservice science teachers' science teaching self-efficacy, and their use of instructional strategies at teachers' colleges in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alshalaan, Nasser A.

    Studies indicate that many teachers have negative beliefs about science, which translates into low teacher efficacy, resulting in avoidance of science teaching or in ineffective science teaching behaviors. Highly efficacious teachers have been found to be more likely to use inquiry and student-centered teaching strategies, while teachers with a low sense of science-teaching efficacy are more likely to use teacher-directed strategies, such as didactic lectures and reading from the textbook (Czemiak, 1990). The purpose of this study was to investigate preservice science teachers' science-teaching self-efficacy changes and their correlation to teaching environment factors during the student teaching semester. Moreover, it explains how teaching environment factors and preservice teachers' science-teaching self-efficacy beliefs may relate to their use of teaching strategies in the science classroom during their student teacher training at teachers' colleges in Saudi Arabia. The population of this study is consisted of 184 middle and elementary preservice science teachers who were doing their student teaching at nine teachers' colleges (i.e., teachers' colleges of Riyadh, Dammam, Alrras, Almadinah, Alihsa, Jeddah, Makah, Altaief, and Abha) in Saudi Arabia during the spring semester of 2005. Three instruments were used to collect data for this study: (1) to measure science teaching self-efficacy, the researcher adapted the Science Teaching Efficacy Belief Instrument form B designed specifically for preservice teachers (STEBI-B); (2) to measure the school environment, the researcher adapted the Organizational Health Inventory (OHI), developed by Hoy, Tarter & Kottkamp (1991); and (3) to measure the type and frequency of instructional strategies that preservice science teachers use in the classroom, the researcher adapted the teaching practice subscale from The Local Systemic Change through Teacher Enhancement Science K-8 Teacher Questionnaire (Horizon Research, Inc., 2000

  10. Factors influencing exemplary science teachers' levels of computer use

    NASA Astrophysics Data System (ADS)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  11. Searching the Attic: How States Are Responding to the Nation's Goal of Placing a Highly Qualified Teacher in Every Classroom. NCTQ Reports

    ERIC Educational Resources Information Center

    Walsh, Kate; Snyder, Emma

    2004-01-01

    This report, the second in a series published by the National Council on Teacher Quality, examines states' progress in meeting the new federal requirement that by the end of the 2005-2006 school year there will be a "highly qualified teacher" in every classroom in the nation. This new requirement has led to some discomfort in more than a…

  12. Beginning science teachers' strategies for communicating with families

    NASA Astrophysics Data System (ADS)

    Bloom, Nena E.

    Science learning occurs in both formal and informal spaces. Families are critical for developing student learning and interest in science because they provide important sources of knowledge, support and motivation. Bidirectional communication between teachers and families can be used to build relationships between homes and schools, leverage family knowledge of and support for learners, and create successful environments for science learning that will support both teaching and student learning. To identify the communication strategies of beginning science teachers, who are still developing their teaching practices, a multiple case study was conducted with seven first year secondary science teachers. The methods these teachers used to communicate with families, the information that was communicated and shared, and factors that shaped these teachers' continued development of communication strategies were examined. Demographic data, interview data, observations and documentation of communication through logs and artifacts were collected for this study. Results indicated that the methods teachers had access to and used for communication impacted the frequency and efficacy of their communication. Teachers and families communicated about a number of important topics, but some topics that could improve learning experiences and science futures for their students were rarely discussed, such as advancement in science, student learning in science and family knowledge. Findings showed that these early career teachers were continuing to learn about their communities and to develop their communication strategies with families. Teachers' familiarity with their school community, opportunities to practice strategies during preservice preparation and student teaching, their teaching environment, school policies, and learning from families and students in their school culture continued to shape and influence their views and communication strategies. Findings and implications for

  13. Preservice Teachers' Perception about Nature of Science

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2009-01-01

    Teacher student is an important role improving their own perception what science should be anticipated in classroom. Also, science learning in the current studies try to have relied understanding in the nature of science. This research aimed to study teacher students' perception in the nature of science. One hundred and one of junior teacher…

  14. Science Investigation That Best Supports Student Learning: Teachers' Understanding of Science Investigation

    ERIC Educational Resources Information Center

    Moeed, Azra

    2013-01-01

    Internationally, learning science through investigation is promoted as a preferred pedagogical approach. Research presented takes a view that such learning depends on how teachers understand science investigation. Teachers' understanding of science investigation was an aspect of an interpretive case study of the phenomenon of science investigation…

  15. Beginning to Teach Chemistry: How personal and academic characteristics of pre-service science teachers compare with their understandings of basic chemical ideas

    NASA Astrophysics Data System (ADS)

    Kind, Vanessa; Morten Kind, Per

    2011-10-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.

  16. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  17. Spanish Secondary-School Science Teachers' Beliefs About Science-Technology-Society (STS) Issues

    NASA Astrophysics Data System (ADS)

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2013-05-01

    This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple response model to generate the belief indices used as the bases for subsequent quantitative and qualitative analyses. Other studies have reported a negative profile of teachers' understanding in this area, but the diagnosis emerging from the present work is more complex. There was a mix of appropriate beliefs coexisting with others that are inappropriate on the topics analyzed. The overall assessment, however, is negative since clearly teachers need to have a better understanding of these questions. There were scant differences between the pre- and in-service teachers, and hence no decisive evidence that the practice of teaching contributes to improving the in-service teachers' understanding. These results suggest there is an urgent need to bring the initial and continuing education of science teachers up to date to improve their understanding of these topics of science curricula, and thus improve the teaching of science.

  18. Teachers' Voices on Integrating Metacognition into Science Education

    ERIC Educational Resources Information Center

    Ben-David, Adi; Orion, Nir

    2013-01-01

    This study is an attempt to gain new insight, on behalf of science teachers, into the integration of metacognition (MC) into science education. Participants were 44 elementary school science teachers attending an in-service teacher-training (INST) program. Data collection was carried out by several data sources: recordings of all verbal…

  19. How to Help Teachers Develop Inquiry Teaching: Perspectives from Experienced Science Teachers

    ERIC Educational Resources Information Center

    Tseng, Chung-Hsien; Tuan, Hsiao-Lin; Chin, Chi-Chin

    2013-01-01

    This study has two purposes: the first is to explore experienced science teachers' perspectives on inquiry teaching, and the second is to categorize these perspectives into patterns. Fifteen junior high school science teachers experienced at inquiry teaching were selected, and a semi-structured interview was conducted to collect the teachers'…

  20. Stress Levels of Agricultural Science Cooperating Teachers and Student Teachers: A Repeated Measures Comparative Assessment

    ERIC Educational Resources Information Center

    McKim, Billy R.; Rayfield, John; Harlin, Julie; Adams, Andy

    2013-01-01

    This study compared job stress levels of Texas agricultural science cooperating teachers and Texas agricultural science student teachers across a semester. The research objectives included describing secondary agricultural science cooperating teachers and student teachers perceptions of stressors, by time of semester (beginning, middle, and end),…

  1. Thai In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    Understanding of the Nature of Science (NOS) serves as one of the desirable characteristics of science teachers. The current study attempted to explore 101 Thai in-service science teachers' conceptions of the NOS, particularly scientific knowledge, the scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  2. A Space Science Teacher Professional Development Program

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Pertzborn, Rosalyn A.

    Recent adoption of state/national science education standards by school districts in the US has created a need for effective teacher professional development in space science at elementary middle and high school level. Particularly at the elementary and middle school levels majority of teachers teaching the Astronomy/Space Science content have had little education in the area regardless of when they obtained their certification. To meet this growing need the Office of Space Science Education has developed a program to offer teachers background content knowledge through summer workshops and periodic school year meetings for a small number of teachers from Wisconsin and Illinois. The program has included lectures by experts tours of observatories (professional and amateur) science museums and planetariums and on-line learning. A highlight of the program has been introducing teachers to hands-on observing through remotely accessible telescopes. Another aspect has been to make them aware of the many resources available to them through NASA missions. The most significant benefit for the teachers however has been the creation of a peer group and the support it offers in sharing curriculum and lesson plans. This effort has been supported by a NASA/IDEAS grant

  3. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    ERIC Educational Resources Information Center

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  4. Reading instruction in science: Teachers' practices, beliefs, & self-efficacy

    NASA Astrophysics Data System (ADS)

    Morales, Christina M.

    The Common Core State Standards (CCSS, 2010) and the Next Generation Science Standards (NGSS, 2013) call on science teachers to play a stronger role in helping students learn from informational science texts. Curriculum implementation efforts aimed at addressing these new standards should build on what teachers are already doing to help students with reading in their classrooms and the pedagogical issues that they feel are important to science learning. However, few current studies have gathered these important insights from science teachers. Aiming to fill this gap in the literature, this study attempted to describe middle school science teachers' current practices, beliefs, and self-efficacy regarding reading and reading instruction in their classrooms. A conceptual model hypothesizing that self-efficacy mediates the relationship between teachers' beliefs about how important reading instruction is to science learning and how often they provide reading instruction in their science classes was also tested. Participants (N = 247) reported that students regularly engaged in reading-related tasks in science class. Somer's D correlation analyses highlighted positive associations between the frequency with which teachers reported that students engaged in various reading-related tasks and the frequency with which they reported providing reading instruction for those tasks, suggesting that students tended to receive explicit instruction or coaching for the reading-related tasks they engaged in most often. Middle school science teachers also expressed positive beliefs about the importance of reading-related tasks and explicit instruction or coaching for reading in science and tended to take on responsibility for helping students become better readers of science texts. Last, a path analysis confirmed that the association between teachers' beliefs and practices was mediated through teachers' self-efficacy (beta = .07, p < .001). This suggests that self-efficacy can influence

  5. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  6. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  7. Pre-Service Science Teachers' Perceptions of Mathematics Courses in a Science Teacher Education Programme

    ERIC Educational Resources Information Center

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-01-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and…

  8. An Investigation of Pre-Service Science Teachers' Level of Efficacy in the Undergraduate Science Teacher Education Program and Pedagogical Formation Program

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2017-01-01

    The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…

  9. STEM Career Changers' Transformation into Science Teachers

    NASA Astrophysics Data System (ADS)

    Snyder, Catherine; Oliveira, Alandeom W.; Paska, Lawrence M.

    2013-06-01

    This study examines the transformation (professional growth) of career-changing women scientists who decided to become teachers. Drawing upon Mezirow's Transformative Learning Theory, we tracked their transformation for 3 years. Our findings revealed multiple identities, disorientation, a perceived sense of meaninglessness, loss and eventual regain in confidence, gain in pedagogical knowledge and skill, and changed perceptions of the social roles of science teachers and scientists. Driven by personal choice or need (financial, intellectual), such transformations were achieved through active pursuit of meaning in one's work, critical assessment of assumptions, planning, and trying on the unfamiliar role of a science teacher. It is argued that such transition entails complex changes in thinking about science teaching and identifying oneself as a science teacher.

  10. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    NASA Astrophysics Data System (ADS)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  11. National Science Teachers Association

    Science.gov Websites

    Resources: Calendar, Freebies ... e-Newsletters NSTA Science Store New Releases Bestsellers Award Winners Preservice and New Teachers Resources for Parents Safety in the Science Classroom Students with Disabilities in science teaching and learning for all Resources Lesson plans, activities, books and ideas

  12. Uncle Sam Wants You: Looking for a Few Good Teachers.

    ERIC Educational Resources Information Center

    Della-Piana, Connie Kubo; Blake, Sally; Lopez, Jorge; Hurley, Sandra

    This paper discusses the need for qualified teachers in specific areas, examining factors that motivate students to choose to teach (e.g., desire to work with people, value to society, and family influence). The Partnership for Excellence in Teacher Education promotes reform in science and mathematics teaching and learning in regard to preparing…

  13. Teaching Advanced Life Sciences in an Animal Context: Agricultural Science Teacher Voices

    ERIC Educational Resources Information Center

    Balschweid, Mark; Huerta, Alexandria

    2008-01-01

    The purpose of this qualitative study was to determine agricultural science teacher comfort with a new high school Advanced Life Science: Animal course and determine their perceptions of student impact. The advanced science course is eligible for college credit. The teachers revealed they felt confident of their science background in preparation…

  14. The (Non)Making/Becoming of Inquiry Practicing Science Teachers

    ERIC Educational Resources Information Center

    Sharma, Ajay; Muzaffar, Irfan

    2012-01-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science…

  15. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    NASA Astrophysics Data System (ADS)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  16. Teacher Research Programs Participation Improves Student Achievement in Science

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2009-12-01

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.

  17. Summer Institute for Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  18. Preservice science teachers' experiences with repeated, guided inquiry

    NASA Astrophysics Data System (ADS)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  19. Proposing an Operational Definition of Science Teacher Beliefs

    NASA Astrophysics Data System (ADS)

    Hutner, Todd L.; Markman, Arthur B.

    2016-10-01

    Much research has shown that a science teacher's beliefs are related to their teaching practice. This line of research has often defined "belief" epistemologically. That is, beliefs are often defined relative to other mental constructs, such as knowledge, dispositions, or attitudes. Left unspecified is the role beliefs play in cognition and how they come to influence science teachers' classroom practice. As such, researchers and science teacher educators have relied on an (at times, implicit) assumption that there is a direct causal relationship between teachers' beliefs and classroom practice. In this paper, we propose an operational, as opposed to epistemological, definition of belief. That is, we are explicit about the role a belief plays in science teachers' cognition and how that leads to classroom practice. We define a belief as a mental representation that influences the practice of a teacher if and only if the belief is active in cognition. We then turn our attention to two limitations in the literature on that have arisen via previous definitions and assumptions regarding science teacher beliefs, showing how defining beliefs operationally helps think about these issues in new ways. The two limitations surround: (1) the difficulty in precisely delineating belief from knowledge; and (2) the interconnectedness of beliefs such that they draw meaning from one another. We then show how our definition of beliefs is congruent with other models of teacher cognition reported in the literature. Finally, we provide implications arising from this definition of belief for both science teacher educators and those who conduct research on the beliefs of both preservice and in-service science teachers.

  20. Leadership that promotes teacher empowerment among urban middle school science teachers

    NASA Astrophysics Data System (ADS)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  1. Examining Science Teachers' Argumentation in a Teacher Workshop on Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Cavlazoglu, Baki; Stuessy, Carol

    2018-02-01

    The purpose of this study was to examine changes in the quality of science teachers' argumentation as a result of their engagement in a teacher workshop on earthquake engineering emphasizing distributed learning approaches, which included concept mapping, collaborative game playing, and group lesson planning. The participants were ten high school science teachers from US high schools who elected to attend the workshop. To begin and end the teacher workshop, teachers in small groups engaged in concept mapping exercises with other teachers. Researchers audio-recorded individual teachers' argumentative statements about the inclusion of earthquake engineering concepts in their concept maps, which were then analyzed to reveal the quality of teachers' argumentation. Toulmin's argumentation model formed the framework for designing a classification schema to analyze the quality of participants' argumentative statements. While the analysis of differences in pre- and post-workshop concept mapping exercises revealed that the number of argumentative statements did not change significantly, the quality of participants' argumentation did increase significantly. As these differences occurred concurrently with distributed learning approaches used throughout the workshop, these results provide evidence to support distributed learning approaches in professional development workshop activities to increase the quality of science teachers' argumentation. Additionally, these results support the use of concept mapping as a cognitive scaffold to organize participants' knowledge, facilitate the presentation of argumentation, and as a research tool for providing evidence of teachers' argumentation skills.

  2. Preservice Science Teachers' Attitudes toward Environment

    ERIC Educational Resources Information Center

    Koc, Isil; Kuvac, Meltem

    2016-01-01

    The purpose of this study was to determine preservice science teachers' attitudes toward environment and to investigate whether their environmental attitudes differ in terms of gender and grade level. A total of 197 preservice science teachers participated in the study. Personal Information Form and the Environmental Attitudes Inventory (EAI)…

  3. Preservice Science Teachers' Uses of Inscriptions in Science Teaching

    ERIC Educational Resources Information Center

    Tanis Ozcelik, Arzu; McDonald, Scott P.

    2013-01-01

    This study investigated preservice science teachers' uses of inscriptions in their peer teaching activities and was guided by the following research questions: (1) What kinds of inscriptions and inscriptional practices do preservice science teachers use in their peer teaching activity? and (2) How and for what purposes do preservice science…

  4. Preservice Science Teachers' Views on Science-Technology-Society

    ERIC Educational Resources Information Center

    Dikmentepe, Emel; Yakar, Zeha

    2016-01-01

    The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…

  5. A Festival of Contemporary Science for Science Teachers

    ERIC Educational Resources Information Center

    Harrison, Tim; Berry, Bryan; Shallcross, Dudley

    2010-01-01

    In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…

  6. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  7. Becoming a science teacher: moving toward creolized science and an ethic of cosmopolitanism

    NASA Astrophysics Data System (ADS)

    Seiler, Gale

    2011-03-01

    Although communities and schools in North America are increasingly diverse and positioned in a global web, schools continue to adhere to Western norms and the teacher workforce remains largely White, continuing an ideology of collective sameness and conformity. Hybridization of teacher identity and of science teaching are suggested as ways to advance an ethic of solidarity through difference (cosmopolitanism) with science teaching as its vehicle. In this paper, I explore identity hybridization among non-dominant science teachers as they merge identity narratives, or who they are around science and science teaching, with who they are out-of-school. Our attention is focused on their experiences of dis-identification with science in terms of diaspora, or the sense of being taken away from what one knows and values. By generating a creolized approach to science teaching, teachers create possibilities for greater student identification with science in school, which in turn has potential for changing the face of who does science and of science itself.

  8. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  9. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    The purpose of this study was to discern what differences exist between the science inquiry learning environments created by National Board Certified Teachers (NBCTs) and non-NBCTs. Four research questions organized the data collection and analysis: (a) How do National Board Certified science teachers' knowledge of the nature of science differ from that of their non-NBCT counterparts? (b) How do the frequencies of student science inquiry behaviors supported by in middle/secondary learning environments created by NBCTs differ from those created by their non-NBCT counterparts? (c) What is the relationship between the frequency of students' science inquiry behaviors and their science reasoning and understanding of the nature of science? (d) What is the impact of teacher perceptions factors impacting curriculum and limiting inquiry on the existence of inquiry learning environments? The setting in which this study was conducted was middle and high schools in Kentucky during the period between October 2006 and January 2007. The population sampled for the study was middle and secondary science teachers certified to teach in Kentucky. Of importance among those were the approximately 70 National Board Certified middle and high school science teachers. The teacher sample consisted of 50 teachers, of whom 19 were NBCTs and 31 were non-NBCTs. This study compared the science inquiry teaching environments created by NBCTs and non-NBCTs along with their consequent effect on the science reasoning and nature of science (NOS) understanding of their students. In addition, it examined the relationship with these science inquiry environments of other teacher characteristics along with teacher perception of factors influencing curriculum and factors limiting inquiry. This study used a multi-level mixed methodology study incorporating both quantitative and qualitative measures of both teachers and their students. It was a quasi-experimental design using non-random assignment of

  10. Science teachers' worldviews: A way to understand beliefs and practices

    NASA Astrophysics Data System (ADS)

    Yalaki, Yalcin

    Understanding science teachers' beliefs is important for science teacher educators, because such understanding is a prerequisite for promoting change within the framework of educational reform. The worldview model developed by Graves (1981) and Beck and Cowan (1996) provides a holistic approach to understanding teachers' beliefs and values and it also provides a framework for understanding how people's worldviews change. In this study, worldviews of four science teachers were investigated within the framework of Beck and Cowan's model. Two of these teachers were high school science teachers, while the other two were middle school science teachers. One of the teachers held National Board of Professional Teaching Certification and she had 18 years of teaching experience. Another teacher was a relatively new teacher with three years of teaching experience. The third teacher had nine years of teaching experience, but when this study was conducted, it was her first year of teaching science. The other teacher had 26 years of experience with certification in all science areas. During this study, interpretative qualitative methods of data collection and analysis were used which included interviews, observations, and the use of a survey developed by Beck and Cowan (2000) called the Values Test. The results show that differing values and experiences among science teachers leads to different strategies for making sense of science teaching. The assertion that the worldview perspective provided by Beck and Cowan is a useful tool in understanding teachers' beliefs and values is made in the conclusions. Teacher educators can utilize this tool in research about teacher beliefs, in promoting change for reform, or in developing curriculum for teacher education programs. Teachers can utilize it in self-reflective practices to better understand their own beliefs, their context, and their students and ultimately improve the teaching and learning process they engage in.

  11. Teaching Science/Learning Gender: Preservice Elementary Teachers Write about Science, Gender, and Identity.

    ERIC Educational Resources Information Center

    Letts, William J., IV

    Using data collected from an undergraduate science methods class, this paper interrogates a variety of ways that preservice teachers construct their identities as both students of science and prospective teachers of science. Data sources included writings about an issue of "difference" in science class, a science autobiography, student-generated…

  12. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    ERIC Educational Resources Information Center

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  13. Middle School Science Teachers' Perceptions of Social Justice: A Study of Two Female Teachers

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar

    2010-01-01

    The focus of this qualitative study is to document two middle school science teachers' perceptions of social justice and how these teachers implement various aspects of social justice in their science instruction. The two teachers teach science in an urban school that serves students from low-income, immigrant, and ethnic minority families. The…

  14. Technology-Enhanced Science Partnership Initiative: Impact on Secondary Science Teachers

    NASA Astrophysics Data System (ADS)

    Ng, Wan; Fergusson, Jennifer

    2017-07-01

    The issue of student disengagement in school science continues to pose a threat to lifting the participation rates of students undertaking STEM courses and careers in Australia and other countries globally. In Australia, several science initiatives to reverse the problem have been funded over the last two decades. Many of these initiatives involve partnerships with scientists, science educators and with industries, as is the case in this paper. The research in this paper investigated a recent partnership initiative between secondary science teachers, scientists and an educational technology company to produce science e-modules on adaptive learning platforms, enabling students to engage in personalised, inquiry-based learning and the investigation of real-world problems. One of the objectives of the partnership project was to build theoretical and pedagogical skills in teachers to deliver science by exposing them to new ways of engaging students with new digital tools, for example analytics. Using a mixed methods approach, the research investigated science teachers' pedagogical involvement in the partnership project and their perceptions of the project's impact on their teaching and students' learning. The findings indicate that the teachers believed that new technology could enhance their teaching and students' learning and that while their students were motivated by the online modules, there was still a need for scaffolding for many of the students. The effectiveness of this would depend on the teachers' ability to internalise the new technological and content knowledge resulting from the partnership and realign them with their existing pedagogical framework. The research is significant in identifying elements for successful partnership projects as well as challenges that need to be considered. It is significant in facilitating continuous discourse about new evidence-based pedagogical approaches to science education in engaging students to learn STEM subjects in a

  15. Life histories of female elementary teachers and their science/teacher role construction

    NASA Astrophysics Data System (ADS)

    Ramseur, Aletha Johnson

    The research conducted in this study focuses on life histories of female elementary teachers and their science/teacher role construction. Identity theorists argue that the self consists of a collection of identities founded on occupying a particular role. Who we are depends on the roles we occupy. These roles are often referred to as "role identities". In the case of these participants, many role identities (mother, wife, sibling, and teacher) exist. This study focuses primarily on their (science) teacher role identity. Literature on women's lives, as learners and teachers, suggest that women's experiences, currently and throughout history influenced their teacher role construction. There is however, little knowledge of women's lives as elementary teachers of science and the affect of their experiences, currently and throughout history, on their (science) teacher identity construction. Schools delineated by race, class, and gender relations, are similar to other sectors of society's, social and cultural spheres within which race, class, and gender identities are constructed. Using in-depth-interviews female elementary teachers were encouraged to actively reconstruct their life and work-life experiences focusing on family, school and science interactions. They addressed the intellectual and emotional connections between their life and work experiences by focusing on details of their past and present experiences and examining the meaning of those experiences. It was the scrutiny of these connections between their life and work experiences, the meaning derived from them and historical events, and the constraints imposed on their personal choices by broader power relations, such as those of class, race, and gender that informed why we teach, how we teach, and what we teach.

  16. Implementing Inquiry Gradually with Preservice Science Teachers as Students

    ERIC Educational Resources Information Center

    Keçeci, Gonca

    2017-01-01

    This study is done to have preservice science teachers chance to implement inquiry before expecting them to implement inquiry in their classrooms and to develop the preservice science teachers' inquiry skills and self-efficacy of science. The study group is composed of preservice science teachers who chose the 2nd grade Biology Laboratory course…

  17. What's New in...Science Teacher Preparation.

    ERIC Educational Resources Information Center

    Borowiec, Jonathan B., James, Robert K.

    2000-01-01

    Argues that NASA's 20-year research effort which will culminate with a manned flight to Mars is an opportunity to involve students in the science of that effort. Describes the National Space Biomedical Research Institute (NSBRI) Teacher Academy Program, a program designed to reach science teachers so that they can prepare their students to…

  18. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  19. Reaching the Reluctant Science Teacher.

    ERIC Educational Resources Information Center

    Colburn, Alan; Henriques, Laura

    2000-01-01

    Discusses a college science course designed for juniors and seniors who are going to be elementary teachers. Focuses on hands-on activities, understanding the nature of science, and conducting scientific research. Explores student misconceptions and conceptual changes on elementary science subjects. (YDS)

  20. Research Experiences for Science Teachers: The Impact On Their Students

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  1. The compatibility of reform initiatives in inclusion and science education: Perceptions of science teachers

    NASA Astrophysics Data System (ADS)

    Chung, Su-Hsiang

    The purposes of this investigation were to examine science teachers' instructional adaptations, testing and grading policies, as well as their perceptions toward inclusion. In addition, whether the perceptions and adaptations differ among three disability areas (learning disabilities, emotional handicaps, and mental handicaps), school level (elementary, middle, and high school), course content (life and physical science), instructional approach (textbook-oriented or activity-oriented), and other related variables was examined. Especially, the intention was to determine whether the two educational reform efforts (inclusion and excellence in science education) are compatible. In this study, 900 questionnaires were mailed to teachers in Indiana and 424 (47%) were returned. Due to incomplete or blank data, 38 (4%) responses were excluded. The final results were derived from a total of 386 respondents contributing to this investigation. The descriptive data indicated that teachers adapted their instruction moderately to accommodate students' special needs. In particular, these adaptations were made more frequently for students with mental handicaps (MH) or learning disabilities (LD), but less for students with emotional handicaps (EH). With respect to testing policies, less than half of the teachers (44.5%) used "same testing standards as regular students" for integrated LD students, while a majority of the teachers (57%) used such a policy for EH students. Unfortunately, considerably fewer teachers modified their grading policies for these two groups of students. In contrast, approximately two thirds of the teachers indicated that they used different testing or grading policies for MH students who were in the regular settings. Moreover, the results also showed that changes in classroom procedure did not occur much in the science teachers' classrooms. Perceptions of science teachers toward inclusion practices were somewhat mixed. Overall, teachers had neutral attitudes

  2. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  3. Do Science and Technology Teachers and Pre-Service Primary Teachers Have Different Thoughts about Concept Maps in Science and Technology Lessons?

    ERIC Educational Resources Information Center

    Karakuyu, Yunus

    2011-01-01

    The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…

  4. Design and validation of a standards-based science teacher efficacy instrument

    NASA Astrophysics Data System (ADS)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  5. A Study of Science Teachers' Homework Practices

    ERIC Educational Resources Information Center

    Tas, Yasemin; Sungur-Vural, Semra; Öztekin, Ceren

    2014-01-01

    This study investigates Turkish middle school science teachers' homework practices, the value teachers attach to homework and teachers' communication with parents about homework. One hundred and sixty-eight teachers completed surveys. Teachers reported to assign homework frequently: 93.4 per cent of the teachers reported that they assign homework…

  6. Revising Teacher Candidates' Views of Science and Self: Can Accounts from the History of Science Help?

    ERIC Educational Resources Information Center

    Lewthwaite, Brian; Murray, John; Hechter, Richard

    2012-01-01

    Our inquiry uses accounts from the history of science to develop teacher-candidate (student teacher) understanding of the nature of science (NOS) in a science teacher education methods course. This understanding of the NOS is then used as a foundation for developing teacher candidate appreciation of the attributes of authentic science lessons.…

  7. Teacher learning from girls' informal science experiences

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel J.

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP, 2010). Despite the success, little is known about how teachers can learn from informal science practices to support student engagement in science. In this study, I examine the impact informal science experiences has for the teaching and learning of science in school contexts. This study is focused on eliciting girls' stories of informal science learning experiences and sharing these stories with science teachers to examine what they notice and make meaning of in connection with their classroom practices (van Es & Sherin, 2002). I co-constructed cases of informal science experiences with middle school females who participate in an after school science program in an urban area. These cases consisted of the girls' written stories, their explicit messages to science teachers, examples of actions taken when investigating community based science issues and transcripts of conversations between the girls and researchers. These cases were shared with local science teachers in order to investigate what they "notice" (van Es & Sherin, 2002) regarding girls' participation in informal science learning, how they make meaning of youths' stories and whether the stories influence their classroom practices. I found that the girls' use their cases to share experiences of how, where and why science matters, to express hope for school science and to critique stereotypical views that young, female, students of color from lower SES backgrounds are not interested or capable of making contributions to scientific investigations. Additionally, I found that teachers noticed powerful messages within and across the girls' cases. The messages include; 1

  8. Using Maryland's HOUSSE (High, Objective, Uniform State Standard of Evaluation). Achieving "Highly Qualified" Status Under No Child Left Behind (NCLB). A Guide for Maryland Teachers.

    ERIC Educational Resources Information Center

    Maryland State Department of Education, 2004

    2004-01-01

    To assist teachers in achieving "highly qualified" status, the Maryland State Department of Education (MSDE) has created a single document that will give teachers the information they need to interpret the requirements of HOUSSE; assess their credentials, course work, experience, and professional activities; complete the HOUSSE rubric to achieve…

  9. Providing undergraduate science partners for elementary teachers: benefits and challenges.

    PubMed

    Goebel, Camille A; Umoja, Aminata; DeHaan, Robert L

    2009-01-01

    Undergraduate college "science partners" provided content knowledge and a supportive atmosphere for K-5 teachers in a university-school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed "participatory reform"; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views.

  10. Providing Undergraduate Science Partners for Elementary Teachers: Benefits and Challenges

    PubMed Central

    Goebel, Camille A.; Umoja, Aminata

    2009-01-01

    Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views. PMID:19723818

  11. Science Teacher Competencies in a Knowledged Based Society

    ERIC Educational Resources Information Center

    Naumescu, Adrienne Kozan

    2008-01-01

    Science teachers' competencies are analyzed in this paper. The importance of teachers' competencies is underlined and also the importance of competencies in so called "good practices" obtaining, is studied. The definition of science teachers competencies and their taxonomy are very important in understanding the educational…

  12. Science Curriculum Components Favored by Taiwanese Biology Teachers

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  13. The Factors that Affect Science Teachers' Participation in Professional Development

    NASA Astrophysics Data System (ADS)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities

  14. Discovering the Needs Assessment of Qualified STEM Teachers for the High-Need Schools in South Texas

    ERIC Educational Resources Information Center

    Yang, Jeong; Lee, Young; Park, Sung; Wong-Ratcliff, Monica; Ahangar, Reza; Mundy, Marie-Anne

    2015-01-01

    Concerns are arising in the United States that a majority of secondary school students fail to achieve mathematics and science proficiency due to teachers who lack adequate knowledge of the subjects. The concerns over shortages of mathematics and science teachers have also reached new heights. In Texas high schools, the teaching areas in…

  15. Changes in Attitudes towards Science-Technology-Society of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz; Yager, Robert; Dogan, Alev

    2009-01-01

    This research focuses on use of a triadic teaching approach in a science-technology-society (STS) course designed for future science teachers for middle schools in Turkey. Forty-three pre-service science teachers were enrolled in a semester-long course organized around issues students identified and used throughout the semester. The triadic…

  16. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  17. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  18. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  19. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    NASA Astrophysics Data System (ADS)

    Hong, Ji; Greene, Barbara

    2011-10-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for science teaching and the experiences that help to shape their possible selves. Employed were qualitative methods, which included open-ended surveys and face-to-face interviews. Eleven preservice teachers who enrolled in a secondary science teacher preparation program participated. Findings showed six categories of future selves with the most frequent category being for effective/ineffective science teaching. When their hoped-for and feared selves were not balanced, participants articulated more fears. Regarding the primary influence in shaping their hopes and fears, diverse past experiences related to teaching and learning appeared to be more salient factors than science teacher education program. Given the enriched understanding of the science preservice teachers' perceptions, we provided suggestions for science teacher educators.

  20. College student perceptions of science teachers and the effect on science teaching as a career path

    NASA Astrophysics Data System (ADS)

    Cost, Michael George

    2000-10-01

    Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of

  1. Introducing Future Teachers to Science beyond the Classroom

    ERIC Educational Resources Information Center

    Kisiel, James

    2013-01-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations--they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum…

  2. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    NASA Astrophysics Data System (ADS)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  3. Preservice and Inservice Science Teachers' Responses and Reasoning about the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    An adequate understanding of the nature of science (NOS) is essential for science teachers. The Myths of Science Questionnaire (MOSQ) consisting of 14 items, which comprised both optional and written types of response, was utilized to explore 113 Thai preservice and 101 inservice science teachers' understanding and reasoning about the NOS,…

  4. Science as Experience, Exploration, and Experiments: Elementary Teachers' Notions of "Doing Science"

    ERIC Educational Resources Information Center

    Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.

    2017-01-01

    Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science--both in and out of schools--throughout their lives. Our work uses…

  5. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  6. The Views of Turkish Science Teachers about Gender Equity within Science Education

    ERIC Educational Resources Information Center

    Idin, Sahin; Dönmez, Ismail

    2017-01-01

    The aim of this study was to investigate Turkish Science teachers' views about gender equity in the scope of science education. This study was conducted with the quantitative methodology. Within this scope, a 35-item 5-point Likert scale survey was developed to determine Science teachers' views concerning gender equity issues. 160 Turkish Science…

  7. Investigation of Factors Affecting Students' Science Achievement According to Student Science Teachers

    ERIC Educational Resources Information Center

    Tatar, Erdal; Tüysüz, Cengiz; Tosun, Cemal; Ilhan, Nail

    2016-01-01

    In this study, it was aimed to investigate the factors affecting students' science achievement according to student science teachers. The survey model which is one of the quantitative research methods was used. The sample was consisted of total 606 student science teachers from four state universities in Turkey. The data were obtained by using the…

  8. Development of the promoting teacher attribution model for promoting science teachers' moral and ethical characteristics

    NASA Astrophysics Data System (ADS)

    Chanprathak, Anusorn; Worakham, Paisan; Suikraduang, Arun

    2018-01-01

    The promotion science teacher attribution model to develop the moral and ethical characteristics was to analyze, synthesis, and develop the guidelines of the scoping study into concepts, theories and research related about the moral and ethics of characteristically teachers from the resources, including research papers, research articles related research, and interviews with luminaries of 9 members. Using interviews and document analysis, data analysis, content analysis, and present an essay was built. The promoting attributes a teacher, moral principles, concepts and theories involved and guidance of a qualified were developed. The Multiple-Attribute Consensus Reaching (MACR) from 12 educational experts were checked the suitability and feasibility of the model, the possibility of the manual with the research instruments consisted of the promotion model attributes the moral and ethics teacher's characteristics were evaluated, to guide the promotion attributes' model forms were assessed, the first edition of the manual data analysis, information obtained from the evaluation of the suitability and feasibility analysis model and guide for the average were administered. The results have found that; the promoting moral teacher attribute data to their moral and ethical characteristics was divided into two groups, priests and scholars. In both groups, the promotion attributes, focusing on teacher's groups is moral in nature to modify the idea to a change of attitude within the organism. Students got down to real experience; an analysis and synthesis face learning environments that cause cognitive skills to act as a self-realization possibly. The promotion model, moral principles, including the importance of the activities, objectives and evaluation methods were attributed. These core concepts learning theory and social cognitive theory, and integrated learning experience were comprised in five stages and four processes, namely; the intended, memory storage process, the

  9. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  10. Science Talk: Preservice Teachers Facilitating Science Learning in Diverse Afterschool Environments

    ERIC Educational Resources Information Center

    Cartwright, Tina Johnson

    2012-01-01

    The purpose of this study was to assess the impact a community-based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an…

  11. A Structural Model of Prospective Science Teachers' Nature of Science Views

    ERIC Educational Resources Information Center

    Mugaloglu, Ebru Z.; Bayram, Hale

    2010-01-01

    This study aims to establish a viable structural model of prospective science teachers' nature of science (NOS) views, which could be used as an analytical tool for understanding the complex relationships between prospective teachers' conceptions of NOS and factors possibly affecting their conceptions. In order to construct such a model, likely…

  12. Teacher Transformation: An Exploration of Science Teachers' Changing Professional Identities, Knowledge, and Classroom Practices

    NASA Astrophysics Data System (ADS)

    Whitacre, Michelle Phillips

    This qualitative, multiple case study examines five teachers' experiences with a National Science Foundation-funded professional development (PD) program focused on science literacy. Using a three dimensional conceptual framework combining transformative learning theory, communities of practice, and sociocultural conceptions of identity it explores: the ways the "Science Literacy through Science Journalism" (SciJourn) project built professional community and influenced teacher learning; the influence of the project on participating science teachers' professional identities, knowledge, and classroom practices; and the ways teachers were or were not transformed by participation in the project. To this end, data from surveys and phenomenological interviews were analyzed through qualitative textual analysis and narrative analysis. Four of the teachers experienced a change in their stories to live by, aka, an identity shift. Three predominant themes emerged across these cases. These included a changed conceptualization of science literacy, the importance of student engagement and authenticity, and the value of SciJourn's professional development and community. The changed conceptualization of science literacy was particularly salient as it challenged these teachers' assumptions, led them to rethink how they teach science literacy, and also influenced them to re-evaluate their teaching priorities beyond the PD. Consequently, this study concludes that PD efforts should focus as much, or more, on influencing teachers' ideas regarding what and how they teach and less on teaching strategies. A close comparison between two teachers' diverging experiences with the program showed that student engagement played a significant role in teachers' perceptions of the value of project, suggesting that whether or not teachers sustain a new practice is closely tied to their students' feedback. Additionally, this analysis showed that a teacher's individualized needs and sense of efficacy

  13. Teachers' Voices on Integrating Metacognition into Science Education

    NASA Astrophysics Data System (ADS)

    Ben-David, Adi; Orion, Nir

    2013-12-01

    This study is an attempt to gain new insight, on behalf of science teachers, into the integration of metacognition (MC) into science education. Participants were 44 elementary school science teachers attending an in-service teacher-training (INST) program. Data collection was carried out by several data sources: recordings of all verbal discussions that took place during the program, teachers' written reflections, and semi-structured individual interviews. Our study provides a qualitative analysis of the 44 teachers' voices as a group, as well as a detailed case-study narrative analysis of three teachers' stories The findings show that the teachers' intuitive (pre-instructional) thinking was incomplete and unsatisfactory and their voices were skeptical and against the integration of MC. After teachers had mastered the notion of MC in the INST program, the following outcomes have been identified: (a) teachers expressed amazement at how such an important and relevant issue had been almost invisible to them; (b) teachers identified the affective character of metacognitive experiences as the most significant facet of MC, which acts as a mediator between teaching and learning; (c) the complete lack of learning materials addressing MC and the absence of supportive in-classroom guidance were identified as the major obstacles for its implementation; (d) teachers expressed a willingness to continue their professional development toward expanding their abilities to integrate MC as an inseparable component of the science curriculum. The implications of the findings for professional development courses in the field of MC are discussed.

  14. Novice High School Science Teachers: Lesson Plan Adaptations

    ERIC Educational Resources Information Center

    Scharon, Aracelis Janelle

    2013-01-01

    The Next Generation Science Standards (NRC, 2013) positions teachers as responsible for necessary decision making about how their intended science lesson plan content supports continuous student science learning. Teachers interact with their instructional lesson plans in dynamic and constructive ways. Adapting lesson plans is complex. This process…

  15. As an Infused or a Separated Theme? Chinese Science Teacher Educators' Conceptions of Incorporating Nature of Science Instruction in the Courses of Training Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling

    2013-01-01

    Teaching nature of science (NOS) is beginning to find its place in science education in China. This exploratory study interviewed twenty-four Chinese science teacher educators about their conceptions of teaching NOS to pre-service science teachers. Although five dimensions emerged, this paper mainly focuses on reporting the findings relevant to…

  16. Preservice Elementary Teachers' Beliefs about Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz-Tuzun, Ozgul

    2008-01-01

    In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers' self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US…

  17. TEACHER TRAINING: How to Produce Better Math and Science Teachers.

    PubMed

    Mervis, J

    2000-09-01

    Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.

  18. Enlist micros: Training science teachers to use microcomputers

    NASA Astrophysics Data System (ADS)

    Baird, William E.; Ellis, James D.; Kuerbis, Paul J.

    A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to

  19. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  20. Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons

    NASA Astrophysics Data System (ADS)

    DeMuth, N. H.; Kasabian, J.; Hacking, P. B.

    2005-12-01

    Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.

  1. Zambian pre-service junior high school science teachers' chemical reasoning and ability

    NASA Astrophysics Data System (ADS)

    Banda, Asiana

    The purpose of this study was two-fold: examine junior high school pre-service science teachers' chemical reasoning; and establish the extent to which the pre-service science teachers' chemical abilities explain their chemical reasoning. A sample comprised 165 junior high school pre-service science teachers at Mufulira College of Education in Zambia. There were 82 males and 83 females. Data were collected using a Chemical Concept Reasoning Test (CCRT). Pre-service science teachers' chemical reasoning was established through qualitative analysis of their responses to test items. The Rasch Model was used to determine the pre-service teachers' chemical abilities and item difficulty. Results show that most pre-service science teachers had incorrect chemical reasoning on chemical concepts assessed in this study. There was no significant difference in chemical understanding between the Full-Time and Distance Education pre-service science teachers, and between second and third year pre-service science teachers. However, there was a significant difference in chemical understanding between male and female pre-service science teachers. Male pre-service science teachers showed better chemical understanding than female pre-service science teachers. The Rasch model revealed that the pre-service science teachers had low chemical abilities, and the CCRT was very difficult for this group of pre-service science teachers. As such, their incorrect chemical reasoning was attributed to their low chemical abilities. These results have implications on science teacher education, chemistry teaching and learning, and chemical education research.

  2. Crossing borders: High school science teachers learning to teach the specialized language of science

    NASA Astrophysics Data System (ADS)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  3. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  4. Engaging in science inquiry: Prospective elementary teachers' learning in an innovative life science course

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Boardman

    2001-10-01

    This study examined prospective elementary teachers' learning about science inquiry in the context of an innovative life science course that engaged them in an original science investigation. Eleven elementary education majors participated in the study. A multiple case study approach that was descriptive, interpretive, and framed by grounded theory was employed. Primary data sources included transcripts of semi-structured interviews, text associated with online threaded discussions, and course project documents, such as lesson plans and written reflections. Secondary data sources included videotaped class sessions and field notes. Data were analyzed using analytical induction techniques, and trustworthiness was developed through the use of multiple data sources, triangulation of data, and the use of counterexamples to the assertions. Three major findings emerged from the cross-case analysis. First, engaging in an original science investigation assisted prospective teachers in becoming more attentive to the processes of science and developing more elaborated and data-driven explanations of how science is practiced. Second, when prospective teachers struggled with particular aspects of their investigations, those aspects became foci of change in their thinking about science and doing science. Third, as prospective teachers came to place a greater emphasis on questions, observations, and experimentation as fundamental aspects of doing science, they became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include the need to re-conceptualize teacher preparation programs to include multiple opportunities to engage prospective teachers in learning science as inquiry, and attend to connections among subject matter knowledge, subject-specific pedagogy and experiences with children.

  5. Secondary science teachers' use of the affective domain in science education

    NASA Astrophysics Data System (ADS)

    Grauer, Bette L.

    The purpose of this qualitative case study was to explore (a) the types of student affective responses that secondary science teachers reported emerged in science classes, (b) how those teachers worked with student affective responses, and (c) what interactions were present in the classroom when they worked with student affective responses. The study was motivated by research indicating that student interest and motivation for learning science is low. Eight secondary science teachers participated in the case study. The participants were selected from a pool of teachers who graduated from the same teacher education program at a large Midwest university. The primary sources of data were individual semi-structured interviews with the participants. Krathwohl's Taxonomy of the Affective Domain served as the research framework for the study. Student affective behavior reported by participants was classified within the five levels of Krathwohl's Affective Taxonomy: receiving, responding, valuing, organization, and characterization. Participants in the study reported student behavior representing all levels of the Affective Taxonomy. The types of behavior most frequently reported by participants were identified with the receiving and responding levels of the Affective Taxonomy. Organization behavior emerged during the study of perceived controversial science topics such as evolution. Participants in the study used student affective behavior to provide feedback on their lesson activities and instructional practices. Classroom interactions identified as collaboration and conversation contributed to the development of responding behavior. The researcher identified a process of affective progression in which teachers encouraged and developed student affective behavior changes from receiving to responding levels of the Affective Taxonomy.

  6. Jordanian twelfth-grade science teachers' self-reported usage of science and engineering practices in the next generation science standards

    NASA Astrophysics Data System (ADS)

    Malkawi, Amal Reda; Rababah, Ebtesam Qassim

    2018-06-01

    This study investigated the degree that Science and Engineering Practices (SEPs) criteria from the Next Generation Science Standards (NGSS) were included in self-reported teaching practices of twelfth-grade science teachers in Jordan. This study sampled (n = 315) science teachers recruited from eight different public school directorates. The sample was surveyed using an instrument adapted from Kawasaki (2015). Results found that Jordanian science teachers incorporate (SEPs) in their classroom teaching at only a moderate level. SEPs applied most frequently included 'using the diagram, table or graphic through instructions to clarify the subject of a new science,' and to 'discuss with the students how to interpret the quantitative data from the experiment or investigation'. The practice with the lowest frequency was 'teach a lesson on interpreting statistics or quantitative data,' which was moderately applied. No statistically significant differences at (α = 0.05) were found among these Jordanian science teachers' self-estimations of (SEP) application into their own teaching according to the study's demographic variables (specialisation, educational qualification, teaching experience). However, a statistically significant difference at (α = 0.05) was found among Jordanian high school science teachers' practice means based on gender, with female teachers using SEPs at a higher rate than male teachers.

  7. Teacher research experiences, epistemology, and student attitudes toward science

    NASA Astrophysics Data System (ADS)

    Payne, Diana L.

    This concurrent mixed methods research study examined the impact of a Teacher Research Experience (TRE) on science teacher beliefs about science, scientific research, science teaching, and student attitudes toward science. Surveys, interviews, reflective journals, and classroom observations of six teachers involved in a TRE were utilized to examine changes in beliefs as a result of participation in the TRE. Student attitudes were measured with a pre and post survey. An analysis of qualitative data from the teachers' interviews, journals, and pre and post TRE surveys indicated that some change occurred in their beliefs about science and scientists for all six teachers, and that teachers' beliefs about science teaching were affected in a variety of ways after participating in the TRE. The quantitative results of the study using Science Teachers' Beliefs About Science (STBAS) instrument suggest that the change from the beginning to the end of the school year, if any, was minimal. However, interviews with and observations of teachers identified valuable components of the TRE, such as the advanced resources (e.g., DVD, samples), a feeling of rejuvenation in teaching, a new perspective on science and scientific research, and first hand experiences in science. Results from the classroom observations using the Science Classroom Practice Record (SCPR) were mixed. Some differences may be explained, however, as relating to content taught in the pre and post classes observed or simply to inherent differences in student dynamics and behavior from class to class. There were no significant differences from pre to post TRE regarding student attitudes toward science as measured by paired samples t-tests on the modified Attitudes Toward Science (mATSI) instrument. Attitudes and beliefs are not easily changed, and change is more likely to result from direct experience and education rather than an indirect experience. Although the results are generalizable only to the participants in

  8. Project science inquiry: An exploration of elementary teachers' beliefs and perceptions about science teaching and learning

    NASA Astrophysics Data System (ADS)

    Wilcox, Dawn Renee

    This dissertation examined elementary teachers' beliefs and perceptions of effective science instruction and documents how these teachers interpret and implement a model for Inquiry-Based (I-B) science in their classrooms. The study chronicles a group of teachers working in a large public school division and documents how these teachers interpret and implement reform-based science methods after participating in a professional development course on I-B science methods administered by the researcher. I-B science teaching and its implementation is discussed as an example of one potential method to address the current call for national education reform to meet the increasing needs of all students to achieve scientific literacy and the role of teachers in that effort. The conviction in science reform efforts is that all students are able to learn science and consequently must be given the crucial opportunities in the right environment that permits optimal science learning in our nation's schools. Following this group of teachers as they attempted to deliver I-B science teaching revealed challenges elementary science teachers face and the professional supports necessary for them to effectively meet science standards. This dissertation serves as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education at George Mason University.

  9. Introducing Future Teachers to Science Beyond the Classroom

    NASA Astrophysics Data System (ADS)

    Kisiel, James

    2013-02-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations—they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum interactions within the context of the school field trip, there is limited research that examines other ways that such institutions might support classroom teachers. A growing number of studies, however, examine how incorporating such ideas of connections of ISEIs to pre-service teacher education might improve teacher perceptions and awareness. Pre-service elementary teachers enrolled in a science methods class participated in a semester-long assignment which required participation in their choice of activities and events (workshops, field trips, family day activities) conducted at local ISEIs. Students generally saw this embedded assignment as beneficial, despite the additional out-of-class time required for completion. Comparison of pre-/post-class responses suggested that teachers shifted their perceptions of ISEIs as first and foremost as places for field trips or hands-on experiences, to institutions that can help teachers with classroom science instruction. Although basic awareness of the existence of such opportunities was frequently cited, teachers also recognized these sites as places that could enhance their teaching, either by providing materials/resources for the classroom or by helping them learn (content and pedagogy) as teachers. Implications for practice, including the role of ISEIs in teacher preparation and indication, are also discussed.

  10. Investigation of preservice elementary teachers' thinking about science

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Loving, Cathleen C.

    2002-12-01

    It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.

  11. Instructional decision making of high school science teachers

    NASA Astrophysics Data System (ADS)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step

  12. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    NASA Astrophysics Data System (ADS)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  13. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    PubMed

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  14. Preservice Science Teachers' Beliefs about Astronomy Concepts

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  15. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  16. The relationship of science teachers' beliefs and practices

    NASA Astrophysics Data System (ADS)

    Varrella, Gary Frank

    1997-10-01

    The relationships between constructivist and Science-Technology-Society (STS) teaching practices and teachers beliefs are the focus of this dissertation. This study is founded on the premise that individual teacher's beliefs are strong indicators of their instructional choices and teaching habits. The basic research premise is: the more complete and complex the individuals' belief structure about constructivist and STS teaching, the more expert and consistent the teacher is in the complementary constructivist teaching practices. This triangulation study used quantitative and qualitative methods. Three instruments were used: the Science Classroom Observation Rubric and Teaching Practices Assessment Inventory, from the Expert Science Teacher Educational Evaluation Model (ESTEEM), and the Science Teacher Beliefs About the Learning Environment Rubric (developed by the author). The results yielded significant multiple regression analysis regarding the relationships between beliefs and practices in constructivist/STS science teaching not documented elsewhere. Statistically significant factors contributing to expertise included the value teachers placed on their students as individuals whose ideas and contributions to the class are important, teachers' commitment to work as partners with students in the learning environment, and the importance of context, i.e., instruction which is personally relevant and meaningful. No differences were found related to gender or total years of teaching experience. A cross-case methodology was used to explore data from open-ended interviews and for examination of teachers' written comments regarding their interactions with students in the learning environment. Expertise was also shown to be linked to teachers with a commitment to life-long learning and to years of participation/leadership by teachers in state and national reform movements. Qualitative data corroborated these findings, providing a rich and authentic background to the

  17. Administrative support of novice science teachers: A multiple case study

    NASA Astrophysics Data System (ADS)

    Iacuone, Leann

    Novice science teachers leave the confines of colleges and universities to embark on a new adventure in education where they aim to influence young minds, make a difference in the world, and share their love for their content. They have learned their pedagogical skills with the support and assistance of fellow classmates, a supporting professor, and a cooperating teacher. These teachers enter their new place of employment and are met with many unexpected challenges, such as a lack of resources, no one to ask questions of, and a busy staff with already established relationships, causing them to feel an overall lack of support and resulting in many new teachers rethinking their career choice and leaving the field of education within 5 years of entering. This multiple-case study investigated the administrative support 4 novice science teachers received during an academic year and the novice teachers' perceptions of the support they received to answer the following research question: How do novice science teachers who have consistent interactions with administrators develop during their first year? To answer this question, semistructured interviews, reflection journals, observations, resumes, long-range plans, and student discipline referrals were collected. The findings from this study show novice science teachers who had incidents occur in the classroom requiring administrative assistance and guidance felt more confident in enforcing their classroom management policies and procedures as the year progressed to change student behavior. The novice science teachers perceived administrators who provided resources including technology, office supplies, science supplies, and the guidance of a mentor as supportive. Novice science teachers who engaged in dialogue after administrative observations, were provided the opportunity to attend professional development outside the district, and had a mentor who taught the same discipline made more changes to their instructional

  18. Science teachers' interpretations of Islamic culture related to science education versus the Islamic epistemology and ontology of science

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2010-03-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and science comes next. I will argue that teachers' personal religious beliefs are among the major constructs that drive teachers' ways of thinking and interpretation of scientific issues related with religion. Then, I discuss how teachers' personal religious beliefs have been formed and influenced their pedagogical beliefs related to science and religion issues. Finally, I will argue, how we use the personal religious beliefs model as a framework of teaching/learning scientific issues related with religion within sociocultural (Islamic) context. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.

  19. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    NASA Astrophysics Data System (ADS)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  20. Socioscience and ethics in science classrooms: Teacher perspectives and strategies

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Amirshokoohi, Aidin; Kazempour, Mahsa; Allspaw, Kathleen M.

    2006-04-01

    This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty-two middle and high school science teachers from three US states participated in semi-structured interviews, and researchers employed inductive analyses to explore emergent patterns relative to the following two questions. (1) How do science teachers conceptualize the place of ethics in science and science education? (2) How do science teachers handle topics with ethical implications and expression of their own values in their classrooms? Profiles were developed to capture the views and reported practices, relative to the place of ethics in science and science classrooms, of participants. Profile A comprising teachers who embraced the notion of infusing science curricula with SSI and cited examples of using controversial topics in their classes. Profile B participants supported SSI curricula in theory but reported significant constraints which prohibited them from actualizing these goals. Profile C described teachers who were non-committal with respect to focusing instruction on SSI and ethics. Profile D was based on the position that science and science education should be value-free. Profile E transcended the question of ethics in science education; these teachers felt very strongly that all education should contribute to their students' ethical development. Participants also expressed a wide range of perspectives regarding the expression of their own values in the classroom. Implications of this research for science education are discussed.

  1. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    NASA Astrophysics Data System (ADS)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  2. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    NASA Astrophysics Data System (ADS)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  3. Identity Discourse in Preservice Teachers' Science Learning Autobiographies and Science Teaching Philosophies

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling; Reis, Giuliano; Monarrez, Angelica

    2017-01-01

    Research in science education has shown that one's identities as science learner and teacher can mediate their pedagogical practices. Grounded in the perspective that language is a resource for identity (re)construction (Gee, 2000), the present study sought to understand how preservice science teachers' identities were manifested in their…

  4. RX for science literacy: The what, where, how, and why of health science research (A teacher`s manual about biomedical research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, K.S.

    1994-12-31

    When the North Carolina Association for Biomedical Research (NCABR) surveyed the state`s science teachers in March 1993, 92% of those responding requested information related to biomedical research. Most of the teachers requested lesson plans and activities designed to help them give students an accurate and balanced perspective on research. In response to that need, NCABR has recently completed production of a 300-page teacher`s manual that provides an overview of the biomedical research process and describes the role and care of animals in that process. Rx for Science Literacy incorporates background information, lesson plans, handouts and activities to assist teachers inmore » K-12 classrooms. Developed by a science teacher with assistance from science and education experts, the manual captures the complex biomedical research process in an easy-to-follow, easy-to-use format. In North Carolina, NCABR plans to begin these workshops in fall 1994. The workshops will include a tour of a biomedical research laboratory and on-site presentations by bench scientists. Teacher evaluation of the manual will be structured into the workshop program. The manual is available at cost to all interested individuals and organizations.« less

  5. The Wow-Effect in Science Teacher Education

    ERIC Educational Resources Information Center

    Kamstrupp, Anne Katrine

    2016-01-01

    This article explores the "wow-effect" as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that "wows" the students. The students are in the process of becoming natural science/technology and…

  6. Rethinking Recruitment: The Comprehensive and Strategic Recruitment of Secondary Science Teachers

    ERIC Educational Resources Information Center

    Luft, Julie A.; Wong, Sissy S.; Semken, Steve

    2011-01-01

    The shortage of science teachers has spurred a discussion about their retention and recruitment. While discussion about retaining science teachers has increased dramatically in just the last few years, science teacher educators have not attended to the recruitment of science teachers with the same tenacity. This paper is our effort to initiate…

  7. Factors affecting student achievement in science: A study of teacher beliefs

    NASA Astrophysics Data System (ADS)

    Hayes, Jonathan

    This study employed a mixed methods and mixed model research design to explore secondary science teachers' beliefs. Specifically, this study focused on factors that secondary science teachers believe affect student achievement in science, and the extent to which teacher beliefs transfer to teacher practice. This study is significant because the outcomes may inform professional development and policy decisions at the school, district, and provincial level. Results from self-reporting data of 82 secondary science teachers indicate that teacher beliefs in each of the fourteen topics surveyed (Classroom Management, Learning Styles, Inclusion, Equity, Science-Technology-Society (STS), Formative Assessment, Summative Assessment, Constructivism, Thematic Approach, Hands-On/Minds-On Activities, The Nature of Science, Science Subject Matter, Electronic Learning and Cooperative Learning) are positive for most Prince Edward Island (P.E.I.) secondary science teachers. Furthermore, secondary science teachers reported having strong beliefs in their ability to affect student learning (self-efficacy beliefs). However, it is apparent from the survey and interview data that teachers believe there are other influential factors that are preventing some students from learning despite the teachers' best efforts and ability. Regarding implementation, this study indicates that beliefs and the enactment of beliefs in classroom practice are positively correlated. The data also shows that at least seventy percent of teachers reported that they implement practices consistent with all but two topics -- The Nature of Science and Electronic Learning -- at least once a week. The findings of this study are discussed in the context of the P.E.I. secondary science setting. Limitations and implications of this study are also addressed.

  8. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  9. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    ERIC Educational Resources Information Center

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  10. Focusing on the Classical or Contemporary? Chinese Science Teacher Educators' Conceptions of Nature of Science Content to Be Taught to Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Wei, Bing; Zhan, Ying

    2013-01-01

    Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators' conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content to be taught to pre-service…

  11. Florida and Puerto Rico Secondary Science Teachers' Knowledge and Teaching of Climate Change Science

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Feldman, Allan; Vernaza-Hernandez, Vanessa

    2017-01-01

    Misconceptions about climate change science are pervasive among the US public. This study investigated the possibility that these misconceptions may be reflective of science teachers' knowledge and teaching of climate change science. Florida and Puerto Rico secondary science teachers who claim to teach extensively about climate change were…

  12. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    NASA Astrophysics Data System (ADS)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  13. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  14. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  15. Enhancing Science and Mathematics Teacher Education: Evaluating an Enhancement Module for Science Pre-Service Teachers

    ERIC Educational Resources Information Center

    Woolcott, Geoff; Whannell, Robert; Pfeiffer, Linda; Yeigh, Tony; Donnelly, James; Scott, Amanda

    2017-01-01

    Motivated and well-trained science and mathematics teachers are a requirement for sustaining an industrialised economy. The Australian government has funded several projects to satisfy this requirement designed to improve pre-service teacher (PST) education in regional and rural Australia. One such project uses a collaboration nexus model with…

  16. Malaysian Teacher Trainees' Practices on Science and the Relevance of Science Education for Sustainability

    ERIC Educational Resources Information Center

    Nair, Subadrah Madhawa; Mohamed, Abdul Rashid; Marimuthu, Nagamah

    2013-01-01

    Purpose: The purpose of this paper is to investigate the practice of teacher trainees on science and the relevance of science education. The study focuses on teacher trainees' practice on science teaching and its relevance to understanding science education. Design/methodology/approach: The study employed a survey method using questionnaires. The…

  17. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    ERIC Educational Resources Information Center

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-01-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…

  18. Between School Factors and Teacher Factors: What Inhibits Malaysian Science Teachers from Using ICT?

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku

    2014-01-01

    Despite the Malaysian government's efforts to increase the use of ICT in school, teachers' uptake of the technology remains slow and dismal. In this study, teachers' perceptions of the barriers that inhibited their use of ICT in the science classroom were explored. One hundred and fifty-one (N = 151) science teachers from selected secondary…

  19. Professional development model for science teachers based on scientific literacy

    NASA Astrophysics Data System (ADS)

    Rubini, B.; Ardianto, D.; Pursitasari, I. D.; Permana, I.

    2017-01-01

    Scientific literacy is considered as a benchmark of high and low quality of science education in a country. Teachers as a major component of learning at the forefront of building science literacy skills of students in the class. The primary purpose this study is development science teacher coaching model based on scientific literacy. In this article we describe about teacher science literacy and profile coaching model for science’ teachers based on scientific literacy which a part of study conducted in first year. The instrument used in this study consisted of tests, observation sheet, interview guides. The finding showed that problem of low scientific literacy is not only happen the students, but science’ teachers which is a major component in the learning process is still not satisfactory. Understanding science teacher is strongly associated with the background disciplinary. Science teacher was still weak when explaining scientific phenomena, mainly related to the material that relates to the concept of environmental. Coaching model generated from this study consisted of 8 stages by assuming the teacher is an independent learner, so the coaching is done with methods on and off, with time off for activities designed more.

  20. Students as 'catalysts' in the classroom: the impact of co-teaching between science student teachers and primary classroom teachers on children's enjoyment and learning of science

    NASA Astrophysics Data System (ADS)

    Murphy, Colette; Beggs, Jim; Carlisle, Karen; Greenwood, Julian

    2004-08-01

    This study is an investigation of the impact of collaborative teaching by student-teachers and classroom teachers on children's enjoyment and learning of science. The paper describes findings from a project in which undergraduate science specialist student-teachers were placed in primary schools where they 'co-taught' investigative science and technology with primary teachers. Almost six months after the student placement, a survey of children's attitudes to school science revealed that these children enjoyed science lessons more and showed fewer gender or age differences in their attitudes to science than children who had not been involved in the project. The authors discuss how this model of collaborative planning, teaching and evaluation can both enhance teacher education and improve children's experience of science.

  1. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  2. Science for All: Empowering Elementary School Teachers

    ERIC Educational Resources Information Center

    Plonczak, Irene

    2008-01-01

    This article addresses issues that are related to the empowerment of elementary teachers through teaching and learning science in socially and culturally meaningful contexts. It is based on the analysis of the attitudes and relationship to science of 10 elementary school teachers from inner city schools in Caracas, Venezuela. In the context of a…

  3. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  4. Effective Teacher Qualities from International Mathematics, Science, and Computer Teachers' Perspectives

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Adiguzel, Tufan

    2014-01-01

    The purpose of this study is to investigate how international teachers, who were from overseas but taught in the United States, rate effective teacher qualities in three domains; personal, professional, and classroom management skills. The study includes 130 international mathematics, science, and computer teachers who taught in a multi-school…

  5. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  6. Pre-Service Science Teachers' Epistemological Beliefs and Teaching Reforms in Tanzania

    ERIC Educational Resources Information Center

    Tarmo, Albert

    2016-01-01

    In an effort to understand why recent initiatives to promote learner-centred pedagogy in science teaching made a little change in the actual teaching practices of science teachers, this study explored pre-service science teachers' beliefs about science knowledge and their teaching practices. Six pre-service science teachers were interviewed to…

  7. Supporting pre-service science teachers in developing culturally relevant pedagogy

    NASA Astrophysics Data System (ADS)

    Krajeski, Stephen

    This study employed a case study methodology to investigate a near-authentic intervention program designed to support the development of culturally relevant pedagogy and its impact on pre-service science teachers' notions of culturally relevant pedagogy. The unit of analysis for this study was the discourse of pre-service science teachers enrolled in a second semester science methods course, which was the site of the intervention program. Data for this study was collected from videos of classroom observations, audio recordings of personal interviews, and artifacts created by the pre-service science teachers during the class. To determine how effective science teacher certification programs are at supporting the development of culturally relevant pedagogy without an immersion aspect, two research questions were investigated: 1) How do pre-service science teachers view and design pedagogy while participating in an intervention designed to support the development of culturally relevant pedagogy? 2) How do pre-service science teachers view the importance of culturally relevant pedagogy for supporting student learning? How do their practices in the field change these initial views?

  8. Science teachers' worldviews and values regarding nature and the environment

    NASA Astrophysics Data System (ADS)

    Roberts, Wendy P.

    According to the National Science Education Standards (1996), science educators are challenged with the goal of educating future citizens and policy makers to make informed decisions concerning socio-scientific issues. Previous science education research has not explored the influence of science teachers' personal worldviews and values in achieving this educational goal. The purpose of this study was to investigate secondary science teachers' worldviews and values as they relate to nature and environmental education in their science classrooms. The participants' descriptions of their environmental personae and their perception of its influence in their classrooms were also examined. The participants represented a purposeful sample of twelve certified secondary school science teachers who teach in a suburban Atlanta, Georgia school. The study employed an interpretive, qualitative methodology using a constant comparative, inductive analysis design to develop grounded theory. Each participant's worldview, values, and environmental personae regarding the natural world and the environment were explored using William Cobern's (2000) Nature Card Sort instrument, responses to five environmental scenarios and individual interviews that addressed each participant's interpretation of the effect that personal worldviews and values have in their science classrooms. The participants' worldviews and values were disproportionately reflective of both science and society with far more weight given to the contextual values of society rather than the constitutive values of science. Most of these teachers had strong spiritual worldviews of nature; however, these views were of a Puritanical nature rather than Aboriginal. The participants felt conflicted about the appropriate course of action in many environmental issues. Contrary to other studies conducted in this field, there were few philosophical differences between teachers in the different disciplines of science, with the exception

  9. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  10. Science Teachers' Conceptual Growth within Vygotsky's Zone of Proximal Development.

    ERIC Educational Resources Information Center

    Jones, M. Gail; Rua, Melissa J.; Carter, Glenda

    1998-01-01

    Examines how science teachers' (n=14) knowledge of science and science pedagogy changed after participation in a constructivist-based methods course. More-experienced teachers were paired with less-experienced teachers, and pre- and post-instructional concept maps, journals, portfolios, and transcripts revealed that, within the zone of proximal…

  11. Pre-Service Science Teacher Preparation in China: Challenges and Promises

    ERIC Educational Resources Information Center

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-01-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for…

  12. Science Teachers' Interpretations of Islamic Culture Related to Science Education versus the Islamic Epistemology and Ontology of Science

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2010-01-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first…

  13. Turkish Primary Science Teachers' Perceptions of an Ideal Teacher Education System

    ERIC Educational Resources Information Center

    Korkmaz, Hunkar; Altindag, Ahmet

    2017-01-01

    The goals of this descriptive study were to determine Turkish pre-service science teachers' perceptions of an ideal teacher education system. The sample consisted of 137 pre-service teachers, including 74 females and 63 males. The questionnaire was based on open-ended questions and was developed to investigate ideal teacher education system…

  14. Engaging Science Faculty in Teacher Professional Development: Renewable Energy

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Czerniak, C.; Struble, J.; Mentzer, G.; Brooks, L.; Hedley, M.

    2011-12-01

    The LEADERS Program (Leadership for Educators: Academy for Driving Economic Revitalization in Science) is an NSF funded Math and Science Partnership program that aims to link economic revitalization in the Great Lakes region with K-12 education through renewable energy technology using a project-based learning approach. The LEADERS Program brings teacher leaders together with science and education faculty from the University of Toledo. Teacher leaders, from Toledo Public and Catholic Schools, attended a six week long institute in the summers of 2010 and 2011 and offered professional development for their colleagues during the school year. The teacher leaders took two science courses during the summer of 2010 in Physics and Chemistry of Renewable Energy as well as classes in Project-Based Science and Leadership and three courses in the summer of 2011, Earth Technologies, Climate Change and Biofuels. In addition, teachers were introduced to industry leaders in renewable energies as well as conservation. This presentation will discuss the implementation of the program and focus on the involvement of science faculty. We will discuss the challenges and successes in bringing together science faculty with teachers including how the experience has changed the teaching style of the scientists.

  15. A Course in Earth System Science: Developed for Teachers by Teachers

    NASA Astrophysics Data System (ADS)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  16. Review of Research: Teacher Questioning Behavior in Science Classrooms.

    ERIC Educational Resources Information Center

    Blosser, Patricia E.

    Selected for this review are dissertations and other research reports related to science teacher questioning behavior, with particular emphasis on those studies designed to help teachers change their questioning behavior. Summarizing the section on observational studies (N=11), the author concludes that science teachers appear to function…

  17. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  18. ScienceFEST: Preservice Teachers link Math and Science in Astronomy Lessons

    NASA Astrophysics Data System (ADS)

    DeMuth, N. H.; Kasabian, J.

    2005-05-01

    Funded by the National Science Foundation, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and middle school teachers design a comprehensive module in astronomy that is inquiry-based and reflects the national and state science standards. Project participants then teach their modules in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The session presenters will share some of the instructional materials developed by the college students and how their experiences in Science FEST have enhanced their pre-professional development. The project's website can be found at www.science-fest.org.

  19. Teacher Scripts in Science Teaching

    ERIC Educational Resources Information Center

    Monteiro, Rute; Carrillo, Jose; Aguaded, Santiago

    2010-01-01

    Awareness of teacher scripts is of crucial importance to reflection on practice, and represents one means of widening the scope of classroom performance. The first part of this work provides a full description of three scripts employed by a novice science teacher within the topic of The "Structure of Flowers", and offers a detailed illustration…

  20. Elementary Teachers' Perception of Language Issues in Science Classrooms

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    Although the importance of language in science learning has been widely recognized by researchers, there is limited research on how science teachers perceive the roles that language plays in science classrooms. As part of an intervention design project that aimed to enhance teachers' capacity to address the language demands of science, interview…

  1. Flight opportunities for science teacher enrichment

    NASA Technical Reports Server (NTRS)

    Devore, Edna; Gillespie, Carlton, Jr.; Hull, Garth; Koch, David

    1995-01-01

    NASA Astrophysics Division supports a pre-college teacher program to provide Flight Opportunities for Science Teacher EnRichment (FOSTER). To date, forty-five teachers are participating, and the program will expand nation-wide to serve fifty teachers per year on board the Kuiper Airborne Observatory. In the future, the Stratospheric Observatory for Infrared Astronomy (SOFIA) will bring more than one-hundred teachers per year on board for astronomical research mission. FOSTER is supported by a grant to the SETI Institute from the NASA Astrophysics Division, NAGW-3291.

  2. High School Biology Teachers' Views on Teaching Evolution: Implications for Science Teacher Educators

    NASA Astrophysics Data System (ADS)

    Hermann, Ronald S.

    2013-06-01

    In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.

  3. Mentor preparation: A qualitative study of STEM master teacher professional development

    NASA Astrophysics Data System (ADS)

    Click-Cuellar, Heather Lynn

    The No Child Left Behind Act of 2001 has required districts to staff all classrooms with highly qualified teachers. Yet, retaining certified teachers in the profession has been a national concern, especially among new teachers who leave at alarming rates within their first three years. This comes at a heavy cost to districts financially and in trying to maintain highly qualified status, but also to the continuity and effective education of students. Mentoring has been identified by many researchers as a plausible solution to reducing attrition rates for beginning teachers. In this dissertation, I conducted qualitative research to explore and understand the perceptions of STEM (science, technology, engineering, and mathematics) Master Teachers' mentoring professional development in the context of the Master Teacher Academies program situated at Desert State University (pseudonym), a large institution located on the Texas-Mexico border. Additionally, I examined the reported teaching self-efficacy of STEM Master Teachers (mentors), as well as that of their novice teachers (mentees). Another purpose of the study was to investigate the forms and elements of interactions between these mentors and their mentees. Participants of this study were Texas certified Master Mathematics or Master Science Teachers, and their novice mathematics or science teacher mentees; all of whom teach in a high need U.S. Mexico border city school district serving a student population that is over 93% Hispanic. A grounded theory approach was used in examining and analyzing mentor and mentee perceptions and experiences through case studies. A constructivist framework was utilized to derive findings from interviews and the review of documents and contribute a diverse context and population to the literature. The study reveals conclusions and recommendations that will benefit educators, universities, school districts, and policy makers in regard to teacher mentor preparation.

  4. An Examination of Understandings of Prospective Teachers about Science and Science History

    ERIC Educational Resources Information Center

    Yildiz, Cemalettin

    2018-01-01

    The purpose of this study was to reveal beliefs of prospective teachers about "science" and "science history." The qualitative research approach was employed in the study. The study group consisted of 150 prospective teachers. A form developed by the researcher was used for data collection. The form consisted of open-ended…

  5. Caring Enough to Teach Science. Helping Pre-service Teachers View Science Instruction as an Ethical Responsibility

    NASA Astrophysics Data System (ADS)

    Grinell, Smith; Rabin, Colette

    2017-11-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service teachers in science methods courses explored connections between science and ethics, specifically around issues of ecological sustainability, and grappled with their ethical responsibilities as teachers to provide science instruction. Survey responses, student "quick-writes," interview transcripts, and field notes were analyzed. Findings suggest that helping pre-service teachers see these connections may shape their beliefs and dispositions in ways that may motivate them to embark on the long road toward improving their science pedagogical content knowledge and ultimately to teach science to their students more often and better than they otherwise might. The approach may also offer a way for teachers to attend to the moral work of teaching.

  6. Science Credit for Agriculture: Perceived Support, Preferred Implementation Methods and Teacher Science Course Work.

    ERIC Educational Resources Information Center

    Johnson, Donald M.

    1996-01-01

    Arkansas agriculture teachers (213 of 259 surveyed) expressed support for granting science credit for agriculture (88.8%); 65.6% supported science credit for a limited number of agriculture courses. Blanket endorsement for all certified agriculture teachers was favored by 71.5%; 56.6% preferred endorsement only for certified teachers completing an…

  7. Technology Integration in a Science Classroom: Preservice Teachers' Perceptions

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera P.; Bailey, Janelle M.

    2014-12-01

    The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers' conceptions of technology integration, this research study explored 15 elementary science methods students' definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students' technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.

  8. The Nature of Science as Viewed by Science Teachers in Najran District, Saudi Arabia

    ERIC Educational Resources Information Center

    Saif, Abdulsalam Dale Amer

    2016-01-01

    This study aims to investigate the views of Saudi Science Teachers in Najran district about the nature of science (NOS). A questionnaire of fourteen items was developed and administered to a sample of 83 science teachers. The questionnaire covers five aspects of the nature of science which are: scientific theories and models; role of scientists;…

  9. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  10. Contents Exploring the Preservice Science Teachers' Written Argumentation Skills: The Global Climate Change Issue

    ERIC Educational Resources Information Center

    Karisan, Dilek; Topcu, Mustafa S.

    2016-01-01

    The pedagogical methods and techniques used in teacher training programs are important tools to graduate qualified teachers. Argumentation, which is known as evidence based scientific discussions, is one of the most widely used tools in national and international literature. The aim of the present study is to explore the quality of Preservice…

  11. NEWS: Teachers' Awards 2001

    NASA Astrophysics Data System (ADS)

    2000-09-01

    Every year, as the result of an Education Group initiative, the UK Institute of Physics honours a small number of practising teachers in both the primary and secondary sectors. Nominations come from a variety of sources: students, pupils, head teachers, colleagues, governors, advisers, Institute branches and parents. Selection is by a panel of teachers and former teachers, people fully aware of the real work and rewards of being a teacher. To qualify for a Teacher's Award there is one basic criterion: is this person an exceptional teacher? It is not a competition, merely a wish to spotlight and celebrate the work of physics teachers in the classroom. This year nine awards were made, one for primary science and the rest for teaching physics in secondary schools and colleges. This was a higher number than in previous years and reflects the increased number of nominations received. If you know of a teacher who deserves recognition then please tell us. We are looking for teachers who inspire in their students a love of science (at the primary level) or physics (at the secondary level). We would particularly welcome more nominations from the primary sector. If you, or any of your children or relatives, can think of such a teacher then please contact Steven Chapman (Steven.Chapman@iop.org) for more details or a nomination form.

  12. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    ERIC Educational Resources Information Center

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  13. A Scale to Assess Science Activity Videos (SASAV): The Study of Validity and Reliability

    ERIC Educational Resources Information Center

    Kara, Yilmaz; Bakirci, Hasan

    2018-01-01

    The purpose of the study was to develop an assessment scale for science activity videos that can be used to determine qualified science activity videos that can fulfill the objectives of activity based science education, help teachers to evaluate any science activity videos and decide whether to include into science learning process. The subjects…

  14. Writing in elementary school science: Factors that influence teacher beliefs and practices

    NASA Astrophysics Data System (ADS)

    Glen, Nicole J.

    Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum

  15. Teachers' Nature of Science Implementation Practices 2-5 Years after Having Completed an Intensive Science Education Program

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2013-01-01

    Few, if any, studies have examined the impact of nature of science (NOS) instruction on science teachers' practices 2 or more years after completing a science teacher education program. Extant studies on preservice and first-year teachers' NOS teaching practices have had disappointing results, with few teachers valuing NOS as a cognitive objective…

  16. Science Teachers' Perceptions of the Effectiveness of Technology in the Laboratories: Implications for Science Education Leadership

    ERIC Educational Resources Information Center

    Yaseen, Niveen K.

    2011-01-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The…

  17. The Relation between Teachers' Personal Teaching Efficacy and Students' Academic Efficacy for Science and Inquiry Science

    ERIC Educational Resources Information Center

    Kurien, Sarah Anjali

    2011-01-01

    The purpose of this study was to examine the relation between middle school teachers' personal teaching efficacy and their students' academic efficacy for science and inquiry science. Teachers can create classroom environments that promote the development of students' science self-efficacy (Britner & Pajares, 2006). Teachers who are efficacious…

  18. Integrating art into science education: a survey of science teachers' practices

    NASA Astrophysics Data System (ADS)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  19. Teaching Media Studies as High School Social Science.

    ERIC Educational Resources Information Center

    Tuggle, C. A.; Sneed, Don; Wulfemeyer, K. Tim

    2000-01-01

    Finds that a large majority of high school social science teachers in two of the nation's largest school districts believe that: students should be taught how to be informed media consumers; the social science curriculum is the appropriate place for that instruction; and while they feel qualified to teach about the media, they have received little…

  20. Teachers' Understanding of the Particulate Nature of Matter: The Case of Zambian Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Banda, Asiana; Mumba, Frackson; Chabalengula, Vivien M.; Mbewe, Simeon

    2011-01-01

    This study assessed Zambian Junior High School pre-service science teachers' understanding of the particulate nature of matter. A sample comprised 30 pre-service science teachers at a teacher training college. Data was collected through a questionnaire adopted from Ozmen and Kenan (2007). Results show that most teachers had correct views on the…

  1. Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science

    NASA Astrophysics Data System (ADS)

    Shelton, Mythianne

    This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity

  2. Constraints and Contributors to Becoming a Science Teacher-Leader

    ERIC Educational Resources Information Center

    Lewthwaite, Brian

    2006-01-01

    This inquiry examines the personal attribute and environmental factors that contribute to and impede science teacher-leader development. Using a narrative approach, the inquiry focuses on the experiences of three teachers in three different New Zealand primary schools (years 1-6) as they develop in their capabilities as science teacher-leaders…

  3. Science Teachers' Drawings of What Is inside the Human Body

    ERIC Educational Resources Information Center

    Patrick, Patricia G.; Tunnicliffe, Sue Dale

    2010-01-01

    The purpose of this study was to report United States of America (USA) science teachers' understandings of the internal structures of the human body. The 71 science teachers who participated in this study attended a frog/pig, two-hour dissection workshop at the 2004 National Science Teachers Association (NSTA) conference in Atlanta, Georgia. The…

  4. Science Teachers in Deaf Education: A National Survey of K-8 Teachers

    ERIC Educational Resources Information Center

    Shaw, Cynthia

    2009-01-01

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique…

  5. Inquiry identity and science teacher professional development

    NASA Astrophysics Data System (ADS)

    Bryce, Nadine; Wilmes, Sara E. D.; Bellino, Marissa

    2016-06-01

    An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff's argument that "professional development could be designed to facilitate reflexive transformation of identity within professional learning environments" (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers' conversations related to personal and professional efficacy in the service of improved science teaching and learning.

  6. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    NASA Astrophysics Data System (ADS)

    Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-04-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.

  7. Science as a Learner and as a Teacher: Measuring Science Self-Efficacy of Elementary Preservice Teachers

    ERIC Educational Resources Information Center

    Knaggs, Christine M.; Sondergeld, Toni A.

    2015-01-01

    Academic science achievement of U.S. students has raised concerns regarding our ability as a nation to compete in a global economy. Additionally, research has shown that many elementary teachers have weak science content backgrounds and had poor/negative experiences as students of science, resulting in a lack of confidence regarding teaching…

  8. Science teachers' perceptions of expertise in practice : An exploratory study

    NASA Astrophysics Data System (ADS)

    Bevins, Stuart Carl

    This thesis reports on an exploration of the nature and characteristics of science teaching expertise as exhibited by six identified expert science teachers. An action research methodology was adopted with data gathered through: semi-structured interviews; classroom observations, and reflective discussions. A culture of collaboration between the researcher and teachers was encouraged by the researcher in an attempt to create a 'bottom-up' approach to the study. The teachers acted as research collaborators by continuously reflecting on, and analysing their knowledge and practice within the context of the study.The reported study emphasises a need for identifying characteristics of science teacher expertise from the insights of teachers themselves. The study considers the reflections and perceptions of the science teachers involved to be an important part of their continuing professional development, which leads to a greater self-awareness and understanding of their teaching expertise. Findings show that these six science teachers demonstrate: subject master; deep pedagogical understanding; considerable pedagogical content knowledge, and a desire to continue learning for an entire professional life, in an attempt to keep abreast of changes and developments in science and education. Within these characteristics, the teachers exhibit, for example, organisational skills, empathy, flexibility, intuition, enthusiasm and professionalism. Most of all, they demonstrate an ability to operate and communicate at the level of their pupils. They study contributes to the debate about effective teaching and better ways for teachers to learn from their experienced by offering a detailed account of science teacher expertise from the perceptions of six expert teachers. The study also highlights a wide ranging existing literature base in a attempt to offer a way of thinking about teaching expertise. Findings from the study indicate strong similarities with those of the existing

  9. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    NASA Astrophysics Data System (ADS)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  10. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    ERIC Educational Resources Information Center

    Hong, Ji; Greene, Barbara

    2011-01-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for…

  11. Case-based Long-term Professional Development of Science Teachers

    NASA Astrophysics Data System (ADS)

    Dori, Yehudit J.; Herscovitz, Orit

    2005-10-01

    Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research objective was to identify, follow and document the processes that science teachers went through as they assimilated the interdisciplinary, case-based science teaching approach. The research accompanied the PD program throughout its 3-year period. About 50 teachers, who took part in the PD program, were exposed to an interdisciplinary case-based teaching method. The research instruments included teacher portfolios, which contained projects and reflection questionnaires, classroom observations, teacher interviews, and student feedback questionnaires. The portfolios contained the projects that the teachers had carried out during the PD program, which included case studies and accompanying student activities. We found that the teachers gradually moved from exposure to new teaching methods and subject matter, through active learning and preparing case-based team projects, to interdisciplinary, active classroom teaching using the case studies they developed.

  12. Honors Workshop for Middle School Science Teachers. Final Report.

    ERIC Educational Resources Information Center

    Meisner, Gerald W.; Lee, Ernest W.

    The Honors Workshop for Middle School Science Teachers was designed to address teachers' conceptual understanding of basic scientific principles, student misconceptions and how to deal with them, and observation and measurement techniques. For 4 weeks in summer and on 6 Saturdays during 2 academic years, 30 leaders among science teachers from the…

  13. Science Teacher Education in Japan: Past, Present, and Future

    ERIC Educational Resources Information Center

    Isozaki, Tetsuo

    2018-01-01

    The purpose of this paper is to describe the historical development of science teacher education in pre-service and in-service education in Japan with a focus on the systemic changes and teachers' professional learning culture. The characteristics of science teacher education generally are elucidated through an analysis of the system and…

  14. NITARP: Changing Perceptions of Science Among Secondary Students and Teachers

    NASA Astrophysics Data System (ADS)

    Kohrs, Russell; Kilts, Kelly; Urbanowski, Vincent; Rutherford, Thomas; Gorjian, Varoujan

    2017-01-01

    The NASA/IPAC Teacher Archival Research Program (NITARP) provides secondary teachers and their students with an authentic, high-level research experience. NITARP participants work alongside one another as colleagues, allowing both teachers and students to experience the challenges of actual research. Teachers and students learn that science doesn’t always follow the prescriptive methodology taught in most high schools. Current NITARP students and teachers were interviewed on how their perceptions of the methods by which science is really conducted changed over the course of the program. Following participation in the NITARP program, both teacher and student perceptions of how science operates were found to have changed in many ways.

  15. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    NASA Astrophysics Data System (ADS)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  16. Looking at the Mirror: A Self-Study of Science Teacher Educators' PCK for Teaching Teachers

    ERIC Educational Resources Information Center

    Demirdögen, Betül; Aydin, Sevgi; Tarkin, Aysegül

    2015-01-01

    In this self-study, we aimed to delve into how re-designing and teaching re-designed practicum course offered to pre-service teachers (PTs) enriched our, as science teacher educators, development of pedagogical content knowledge (PCK) for teaching science teachers. This self-study was conducted during a compulsory practicum course in which we…

  17. Effectiveness of Lesson Study Approach on Preservice Science Teachers' Beliefs

    ERIC Educational Resources Information Center

    Yakar, Zeha; Turgut, Duygu

    2017-01-01

    Beliefs influence teacher decision in the classroom. Because of this reason, understanding teachers' beliefs is important. It is also critical to study teachers' beliefs who integrate science in the classroom. In this study, the effects of microteaching with lesson study approach on preservice science teachers' beliefs about learning and teaching…

  18. Who Is Qualified to Teach American Sign Language?

    ERIC Educational Resources Information Center

    Kanda, Jan; Fleischer, Larry

    1988-01-01

    Teachers of American Sign Language (ASL) can no longer qualify just by being able to sign well or by being deaf. ASL teachers must respect the language and its history, feel comfortable interacting with the deaf community, have completed formal study of language and pedagogy, be familiar with second-language teaching, and engage in personal and…

  19. Cognitive dissonance of science and religion in pre-service elementary school teachers

    NASA Astrophysics Data System (ADS)

    Malloy, Robert Earl, Sr.

    Throughout history science and religion have been in conflict. Many of the theories of science do not agree with the religious beliefs of pre-service teachers. Those teachers who will be teaching in the science classroom, must be able to present science without prejudice of personal religious beliefs. Are pre-service teachers prepared for science/religion conflicts? How much conflict do pre-service teachers have between science and religion? This study suggests that pre-service teachers may have a high degree of conflict between science and religion, and that they have received no educational experience on how to deal with this conflict. Such conflict poses a potential problem when presenting science in the classroom, in that non-science information may not be separated from the science presented.

  20. High School Science Teachers' Views on Science Process Skills

    ERIC Educational Resources Information Center

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  1. The science knowledge, conceptions of the nature of science, attitudes about teaching science, and science instructional strategies of bilingual and English-only elementary teachers

    NASA Astrophysics Data System (ADS)

    Alegria, Adelina Victoria

    The goal of this study was to explore bilingual and English-only elementary teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and their self-reported science instructional skills. In this study, a bilingual teacher was defined as a teacher who provides instruction in Spanish and English in core academic subjects and has completed and/or is completing a bilingual certification program. An English-only teacher was defined as a monolingual teacher that only speaks and instructs in English. The principal questions guiding this dissertation investigation were the following: How do bilingual elementary teachers differ from English-only elementary teachers in (a) their science knowledge, (b) their conceptions of the nature of science, (c) their attitude about teaching science, and (d) their self-reported science instructional skills? This dissertation study is a component of a three-year long Eisenhower Project granted to Hueneme School District and the University of California, Santa Barbara Southcoast Science Project. While the Project will last three years (1997--2000), this dissertation study was developed to answer only a subset of questions of the entire project and data was collected in 1998. The research design for this study consisted of a self-administered questionnaire that was given to Hueneme School District elementary teachers that teach science and was developed by reviewing the relevant literature about teachers' science knowledge, their conceptions of the nature of science, their attitudes about teaching science, and the instructional strategies that support science learning. The findings showed that both the bilingual and the English-only respondents demonstrated a similar science knowledge base, which is suggested, by this researcher, to be limited. That both bilingual and English-only teacher respondents demonstrated similar positive attitudes about teaching science and both reported making

  2. Student and Teacher Perceptions of Teacher Immediacy Behaviors and the Influence of Teacher Immediacy Behaviors on Student Motivation to Learn Science

    NASA Astrophysics Data System (ADS)

    Littlejohn, Vania

    The National Assessment on Educational Progress signals that American students are not being adequately prepared to compete globally in an ever changing scientific society. As a result, legislation mandated that all students be assessed and show proficiency in scientific literacy beginning in Grade 4 with the reauthorization of the Elementary and Secondary Education Act of 2002 also known as No Child Left Behind. Research indicates a disturbing decline in the number of U.S. students pursuing more rigorous science courses in high school, majoring in scientific areas in college, and choosing future careers in science. With a need to improve science instruction and enhance science literacy for all students, this study focuses on immediate communication behaviors of the classroom teacher as a deciding factor in the opinions of high school students towards science. The purpose of this study was to reveal high school science student perceptions of teacher communication patterns, both verbal and nonverbal, and how they influence their motivation to learn science. The researcher utilized a nonexperimental, quantitative research design to guide this study. Teacher and student data were collected using the Teacher Communication Behavior Questionnaire (TCBQ). The Student Motivation to Learn Instrument (SMLI) across gender, ethnicity, and socioeconomic status survey was used to evaluate student motivation in science. Participants were encouraged to be honest in reporting and sharing information concerning teacher communication behaviors. The data revealed that teacher immediacy behaviors, both verbal and nonverbal, were perceived differently in terms of student gender, ethnicity, and socioeconomic class. The results showed that teachers who display positive communication behaviors and use challenging questioning followed with positive responses create pathways to potentially powerful relationships. These relationships between teachers and students can lead to increased student

  3. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  4. Science Teachers' Thinking about the Nature of Science: A New Methodological Approach to Its Assessment

    ERIC Educational Resources Information Center

    Vazquez-Alonso, Angel; Garcia-Carmona, Antonio; Manassero-Mas, Maria Antonia; Bennassar-Roig, Antoni

    2013-01-01

    This paper describes Spanish science teachers' thinking about issues concerning the nature of science (NOS) and the relationships connecting science, technology, and society (STS). The sample consisted of 774 in-service and pre-service teachers. The participants responded to a selection of items from the Questionnaire of Opinions on Science,…

  5. Science Teachers' Pedagogical Discontentment: Its Sources and Potential for Change

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry A.; Sowell, Scott; Enderle, Patrick

    2011-08-01

    This research explored science teachers' pedagogical discontentment and described its role in teachers' consideration of new teaching practices. Pedagogical discontentment is an expression of the degree to which one is discontented because one's teaching practices do not achieve one's teaching goals. Through a series of structured interviews conducted with 18 practicing science teachers of various grade levels, content areas, routes of preparation, and amount of experience, areas of commonality in the teachers' pedagogical discontentment were identified. The common areas of pedagogical discontentment include the ability to teach all students science, science content knowledge, balancing depth versus breath of instruction, implementing inquiry instruction, and assessing science learning. We draw implications for using this construct to craft more effective professional development.

  6. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  7. The science teacher as the organic link

    NASA Astrophysics Data System (ADS)

    Alexakos, Konstantinos

    2007-10-01

    This study began as an exploration of the following questions: What do individual science teachers bring into their teaching that frames and mediates their teaching philosophy and of what, if any, value is it in science education? Drawing from a life history case study of Anna, an in-service science teacher, I show that her moral beliefs, perceptions, experiences, and interests dialectically frame and mediate her views of science teaching. Anna brings into her classroom her personal philosophy of teaching and learning. This is in contrast to studies concluding that different aspects of teachers' personal philosophies, such as their understanding of the nature of science and their behavior and pedagogical decisions are not connected and may be neatly segregated from one another. In the "transmission" [Transmission is presented in quotes because in this manuscript it is used dialectically, as opposed to a one-directional and "objective" process. The science teacher is not just a "lens" for the transmission of cultural capital; the cultural capital "transmitted" though Anna is seen as existing in a state of creation/recreation.] of cultural capital, Anna embodies dialectical relationships and processes, not just as a mediator of culture, but also as an organic entity that contributes to how culture is created, recreated and exchanged in a science classroom, and as such, is referred to here as an organic link. Science teacher identity and science teaching philosophy are thus seen as much closer to the human experience—merging the intellectual, the personal, the cultural, the political, and the environmental with the relationships and the processes that connect each to the others and to the whole. They are viewed as, at once, being mediated by as well as mediating one another. I argue that the total of what science teaching is exceeds the sum of its commonly "measurable" parts, like content and pedagogical knowledge. Although the designing and framing of this study

  8. Your Science Classroom: Becoming an Elementary/Middle School Science Teacher

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Downey, Laura

    2012-01-01

    Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…

  9. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  10. Life Skills from the Perspectives of Classroom and Science Teachers

    ERIC Educational Resources Information Center

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  11. Data and graph interpretation practices among preservice science teachers

    NASA Astrophysics Data System (ADS)

    Bowen, G. Michael; Roth, Wolff-Michael

    2005-12-01

    The interpretation of data and construction and interpretation of graphs are central practices in science, which, according to recent reform documents, science and mathematics teachers are expected to foster in their classrooms. However, are (preservice) science teachers prepared to teach inquiry with the purpose of transforming and analyzing data, and interpreting graphical representations? That is, are preservice science teachers prepared to teach data analysis and graph interpretation practices that scientists use by default in their everyday work? The present study was designed to answer these and related questions. We investigated the responses of preservice elementary and secondary science teachers to data and graph interpretation tasks. Our investigation shows that, despite considerable preparation, and for many, despite bachelor of science degrees, preservice teachers do not enact the (authentic) practices that scientists routinely do when asked to interpret data or graphs. Detailed analyses are provided of what data and graph interpretation practices actually were enacted. We conclude that traditional schooling emphasizes particular beliefs in the mathematical nature of the universe that make it difficult for many individuals to deal with data possessing the random variation found in measurements of natural phenomena. The results suggest that preservice teachers need more experience in engaging in data and graph interpretation practices originating in activities that provide the degree of variation in and complexity of data present in realistic investigations.

  12. Science teachers' attempts at integrating feminist pedagogy through collaborative action research

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.

    2007-01-01

    The purpose of this study was to examine the experiences of three science teachers attempting to transform their practice by conducting action research on feminist science teaching. The teachers engaged in systematic, self-critical inquiry of their own practice and joined 8 other science teachers to engage in collaborative conversations about the nature of science, science teaching, and science education as a way of coming to a better understanding of how science can be taught for a more diverse group of students. Data were gathered via semistructured interviews, whole-group discussions, classroom observations, and review of supporting documents. Data analysis was based on narrative inquiry, where particular attention was given to the construction and reconstruction of the teachers' stories of their practical inquiries. Results indicated that the teachers as researchers of their own practice gained new knowledge about feminist science teaching and, furthermore, generated a cluster of pedagogical possibilities for inclusive, dynamic science teaching.

  13. RITES: Online (Reaching In-service Teachers with Earth Sciences Online)

    NASA Astrophysics Data System (ADS)

    Baptiste, H.

    2003-12-01

    The RITES: Online project team (Drs. H. Prentice Baptiste, Susan Brown, Jennifer Villa) believed that the power of technology could not be effectively utilized unless it was grounded in new models of teaching and learning based on a student centered and project based curriculum, that increased opportunities for active, hands-on learning and respect for multiculturalism. We subscribe to an inquiry approach to learning. Specifically, science teaching should actively engage the learners in activities that draw on multiple abilities and learning styles. Recent brain-based research has shown that human beings construct knowledge through actions and interactions within their environment. Learning occurs in communities, and new ideas are linked to previous knowledge and constructed by the learner. Knowledge is acquired by making connections. We believed the aforementioned ideas and points to be equally true for the teacher candidates and inservice teachers participating in the RITES: Online project as well as for their students. The ESSEA science courses were delivered by distance learning via the university WebCt distance education system to teacher candidates (preservice teachers) and inservice teachers. Teacher candidates and inservice teachers were encouraged to use technology when involving their students in science inquiry activities and to record their students' involvement in science activities with digital cameras. Teacher candidates and inservice teachers involve in the ESSEA courses are engaged in earth science inquiry activities relevant to the four spheres (atmosphere, lithosphere, biosphere, hydrosphere) with the students in their classes. This presentation will highlight teacher candidates and inservice teachers in the roles of designer, researcher, and collaborator. Examples of student works will also be a part of the Power point presentation. As a result of our courses our teachers have attained the following positive outcomes: 1) Teacher candidates and

  14. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    ERIC Educational Resources Information Center

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  15. Avenues of access to future science teachers: An interview study

    NASA Astrophysics Data System (ADS)

    Weiss, Richard

    2007-12-01

    This research study explored the experiences of individuals who chose careers in secondary science education by examining two cohorts of science education students in a teacher credential program and a group of current secondary science teachers in their first five years of teaching. Issues of how these individuals became interested in science education and the characteristics common among them were examined. This study explored the educational experiences that appeared to contribute to people becoming science teachers. This study also explored the participants' motivation and key turning point moments that appeared to contribute to their choice to pursue a career in science education. The research design used in this study was a two-year, semi-structured interview protocol. Research was conducted at one main university site and within one local unified school district. During the 2004-2005 and 2005-2006 academic years, twenty-five secondary science pre-service teacher candidates at a University of California were interviewed, and during the 2005-2006 academic year, twenty-five current practicing science teachers within a Southern California unified school district were also interviewed. Data collection consisted of interviews with the fifty participants typically between 30-45 minutes in length. The EZ-Text software program was employed to aid in the analysis of the transcribed interview data. This study found that much of the previous research on the characteristics of entrants to teaching in general was supported, but that some specific differences exist among science teachers and the general population of teachers. The majority of the participants had exposure to internships or tutoring experiences and indicated that this made them more willing to pursue science teaching as a profession. This study found that high achieving female students constituted the entire female portion of the sample and cited teaching as a friendly avenue for females in science. Teacher

  16. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    ERIC Educational Resources Information Center

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-01-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on…

  17. Cultivation of Science Teachers' Information Literacy in China

    ERIC Educational Resources Information Center

    Sun, Haibin; Liu, Tingting

    2009-01-01

    In the paper, we focus on the information literacy of science teachers in China. Information literacy encompasses knowledge of one's information concerns and needs, and the ability to identify, locate, evaluate, organize and effectively create, use and communicate information. Science teachers should have information literacy which is a basic…

  18. The Workshop Program on Authentic Assessment for Science Teachers

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  19. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  20. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  1. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    NASA Astrophysics Data System (ADS)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  2. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  3. Primary Teachers' Attitudes toward Science: A New Theoretical Framework

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.

    2012-01-01

    Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…

  4. Pre-Service Physics Teachers' Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  5. Comparing Children's and Student Teachers' Ideas about Science Concepts

    ERIC Educational Resources Information Center

    Kerr, Karen; Beggs, Jim; Murphy, Colette

    2006-01-01

    Children and teachers may not think in the same way about particular science concepts. Such parallel lines of thought can compound children's confusion and misunderstanding as they learn science at primary school. The situation could be more acute when student teachers are teaching science, because of their limited experience of considering…

  6. Preparing perservice teachers to teach elementary school science

    NASA Astrophysics Data System (ADS)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  7. Integration of Geospatial Science in Teacher Education

    ERIC Educational Resources Information Center

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  8. Experience of the Neophyte Science Teachers: Through Their Eyes

    ERIC Educational Resources Information Center

    Thornton, David

    2017-01-01

    A variety of lenses were used to examine the world of the novice science teacher. A degree of agency was provided by looking through the eyes of the beginning teacher. Previous studies focused on researcher or program's orientation, the successes of various educator preparation programs, or were limited in scope to elementary teachers of science.…

  9. Mothers as informal science class teachers

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science

  10. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  11. The Investigation of Science Process Skills of Science Teachers in Terms of Some Variables

    ERIC Educational Resources Information Center

    Aydogdu, Bülent

    2015-01-01

    This study aimed to investigate basic process skills, integrated process skills and overall science process skills of science teachers in terms of some variables. This study had a survey design. The study population consisted of 170 science teachers from a province located in the Central Anatolia Region of Turkey. The study data were obtained from…

  12. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    NASA Astrophysics Data System (ADS)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in

  13. Using a Science/Technology/Society Approach to Prepare Reform-Oriented Science Teachers: The Case of a Secondary Science Methods Course

    ERIC Educational Resources Information Center

    Dass, Pradeep M.

    2005-01-01

    Reformed preparation of science teachers is indeed vital for the vision of science teaching reform to be accomplished. Typically, a critical component of a preservice science teacher preparation program is the science teaching methods course. The usual intent of this course is to help preservice science students develop an understanding of various…

  14. Conducting Science Fair Activities: Reflections of the Prospective Science Teachers on Their Expectations, Opinions, and Suggestions Regarding Science Fairs

    ERIC Educational Resources Information Center

    Durmaz, Hüsnüye; Oguzhan Dinçer, Emrah; Osmanoglu, Ashhan

    2017-01-01

    The aim of this study is to examine the reflections of the prospective science teachers on their expectations, opinions, and suggestions towards science fairs. The study was conducted with 34 prospective science teachers. All participants had education in junior class of Science Teaching Program of a university located in western part of Turkey in…

  15. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    NASA Astrophysics Data System (ADS)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  16. Early childhood teachers' self-efficacy toward teaching science: Outcomes of professional development

    NASA Astrophysics Data System (ADS)

    Clark, Sarah

    The teaching of science in the early childhood classrooms has slowly been decreasing. As the years have passed, the subject of science has been put on the backburner while mathematics and language arts have taken center stage in the educational system. Early childhood teachers need to find ways to integrate science with other subjects in order to ensure children are receiving a well-rounded and full education. The purpose of this study was to determine the effectiveness of professional development on teachers' efficacy in teaching science. Volunteer teachers completed the Weisgram and Bigler scale (TWBS) pre and post training, in order to determine their self-efficacy toward teaching science, they also completed pre- and post- concept maps about their knowledge of teaching science, and a demographic questionnaire. Findings indicate the training provided was effective in increasing teachers' knowledge of teaching science. Teachers who had an increase in science teaching knowledge were also found to feel more efficacious about teaching science after completing the training and an academic year of implementing science lessons in their classrooms. There was not a relationship between teacher demographics and their science-teaching efficacy. This means that the demographics of participants in this study were not influential on teachers' efficacy, but professional development workshops enabled teachers to gain more knowledge about teaching as well as increase their efficacy about teaching science.

  17. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-01-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…

  18. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    NASA Astrophysics Data System (ADS)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  19. What Teachers Want: Supporting Primary School Teachers in Teaching Science

    ERIC Educational Resources Information Center

    Fitzgerald, Angela; Schneider, Katrin

    2013-01-01

    Impending change can provide us with the opportunity to rethink and renew the things that we do. The first phase of the Australian Curriculum implementation offers primary school teachers the chance to examine their approaches to science learning and teaching. This paper focuses on the perceptions of three primary school teachers regarding what…

  20. Texas Agricultural Science Teachers' Attitudes toward Information Technology

    ERIC Educational Resources Information Center

    Anderson, Ryan; Williams, Robert

    2012-01-01

    The researchers sought to find the Agricultural Science teachers' attitude toward five innovations (Computer-Aided Design, Record Books, E-Mail Career Development Event Registration, and World Wide Web) of information technology. The population for this study consisted of all 333 secondary Agricultural science teachers from Texas FFA Areas V and…

  1. Stemming the Tide: Retaining and Supporting Science Teachers

    ERIC Educational Resources Information Center

    Pirkle, Sheila F.

    2011-01-01

    Chronically high rates of new and experienced science teacher attrition and the findings of new large-scale mentoring programs indicate that administrators should adopt new approaches. A science teacher's role encompasses demanding responsibilities, such as observing laboratory safety and OSHA mandates, as well as management of a business-like,…

  2. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    ERIC Educational Resources Information Center

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  3. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    ERIC Educational Resources Information Center

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  4. Fostering Structurally Transformative Teacher Agency through Science Professional Development

    ERIC Educational Resources Information Center

    Rivera Maulucci, Maria S.; Brotman, Jennie S.; Fain, Shoshana Sprague

    2015-01-01

    This study draws on data from a 10-month critical narrative inquiry of science teaching and learning in a third grade, dual language, integrated co-teaching classroom. The teachers were participants in a 14-week science professional development seminar that enrolled inservice and preservice teachers and focused on enhancing science teaching and…

  5. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    ERIC Educational Resources Information Center

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  6. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  7. A quantitative analysis of whether elementary teachers' science kit usage and beliefs can predict state science assessment scores

    NASA Astrophysics Data System (ADS)

    Rice, Tony E.

    The purpose of this survey was to describe and analyze the perceptions of elementary school teachers' in a Midwestern state concerning their use of a science kit program, including to what extent a school's state science assessment scores can be predicated from the level of science kit usage. Prior research indicates that elementary school teachers lack the confidence in teaching science primarily because of their weak undergraduate training in inquiry-based instruction and the lack of a strong science background. Authors such as Dickerson et al. (2006) and Riggs and Enochs (2006) argued that science kits and the materials included in them are valuable in increasing teacher confidence. The teacher perceptions I collected matched the literature quite closely as far as what the teachers found to be of the most value and use. Teachers perceptions of the science kits were positive including: (a) student engagement in using the science kits, (b) use of most of the instructional items included in the kits, (c) the amount of teacher confidence in using them, (d) the support from the math and science center for using them, (e) and the professional development provided. Teachers liked using many components of the kits, especially the experiments. Their main complaint concerned time: time to teach science and time to complete the kit lessons. I used multiple regression to understand the components of the kit program that had a significant correlation to the state test scores. The following variables could explain a high proportion of the variance (.796): (a) teacher confidence, (b) student science learning success, (c) teacher beliefs about science education and (d) the percentage of students eligible for the National School Lunch Program. These findings might lead to school principals and teachers increasing their 5th grade state science exam scores by using the findings to identify which components of the kit program are most important in this endeavor.

  8. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  9. Science teachers teaching socioscientific issues (SSI): Four case studies

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju

    Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they

  10. Beginning Secondary Science Teacher Induction: A Two-Year Mixed Methods Study

    ERIC Educational Resources Information Center

    Luft, Julie A.; Firestone, Jonah B.; Wong, Sissy S.; Ortega, Ira; Adams, Krista; Bang, EunJin

    2011-01-01

    Those who study secondary science teachers are often concerned with preservice or in-service teacher development. Science teacher educators have acknowledged that this focus is limited, as the induction years of beginning teachers are an important component of teacher development. This mixed methods study focuses on the induction years of…

  11. What "Ideas-about-Science" Should Be Taught in School Science? A Chemistry Teachers' Perspective

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2008-01-01

    The objective of this study is to facilitate in-service chemistry teachers' understanding of nature of science and what "ideas-about-science" can be included in the classroom. The study is based on 17 in-service teachers who had registered for a 11-week course on "Epistemology of Science Teaching" as part of their Master's degree program. The…

  12. Exploring the Conceptions of a Science Teacher from Karachi about the Nature of Science

    ERIC Educational Resources Information Center

    Shah, Mir Zaman

    2009-01-01

    The main purpose of this study is to investigate a science teacher's beliefs and understanding of the nature of science (NOS) in order to be able to relate these beliefs about the NOS to classroom practice and therefore student experience. Teachers' beliefs about the NOS are embedded in their experiences of learning and teaching science and hence,…

  13. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  14. Critical reflection and teacher capacity: The secondary science pre-service teacher population

    NASA Astrophysics Data System (ADS)

    Krim, Jessica Sarah

    This qualitative study seeks to understand the development of secondary science pre-service teachers. A case study is developed about each of the five participants, in effort to answer the research questions, which are: How did critical reflection inform teacher capacity within the secondary science pre-service teacher population? What knowledge, skills, and dispositions facilitated secondary science pre-service teachers in developing a critically reflective practice? It is the author's expectation that by teaching these pre-service educators to develop their skills of critical reflection by using external methods of assessment such as videotaping, peer feedback, and student work, the participants in this study will increase and expand their capacity as teachers, or their "innate potential for growth, development, and accomplishment" (McDiarmid & Clevenger-Bright, 2008), and be better prepared to accomplish the goals that are expected of a master teacher. Data is collected from interviews, participant work samples, and observations from the researcher and other key individuals who worked with each participant, such as: the methods instructor, university supervisors, and cooperating teachers. Over the course of two semesters, the researcher developed a detailed description of each of the participants through analyzing passages selected from interview transcripts and student work samples for reflection type, factor of teacher capacity, and commonplace interaction group. The first outcome of this study includes an understanding of the relationship between critical reflection and teacher capacity and the knowledge, skills and dispositions that facilitate the development of a critically reflective practice. The second outcome of this study was the development of a new adaptation of a teacher interaction model (commonplace interaction groups) based on Schwab's Commonplaces of Educating. Lastly, three conclusions were drawn about the five participants in this study: There

  15. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    NASA Astrophysics Data System (ADS)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  16. Exemplary Science Teachers' Use of Technology

    ERIC Educational Resources Information Center

    Hakverdi-Can, Meral; Dana, Thomas M.

    2012-01-01

    The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…

  17. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    ERIC Educational Resources Information Center

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  18. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  19. Discover science: Hands-on science workshops for elementary teachers and summer science camps for elementary students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotlib, L.; Bibby, E.; Cullen, B.

    1994-12-31

    Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less

  20. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    ERIC Educational Resources Information Center

    Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-01-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…

  1. The study of middle school mathematics and science teachers' practices, perceptions, and attitudes related to mathematics and science integration

    NASA Astrophysics Data System (ADS)

    Leszczynski, Eliza

    The purpose of this qualitative study was to investigate the nature of mathematics and science connections made by sixth and seventh grade mathematics and science teachers in their classrooms. This study also examined the extent to which these connections represented mathematics and science integration and described the teachers' perceptions of and attitudes about mathematics and science integration. The primary data sources included classroom observations and teacher interviews. Findings suggested that teacher practices in making mathematics and science connections in the classroom incorporated many of the characteristics of integrated instruction presented in the literature. Teacher attitudes toward integration were found to be generally positive and supportive of integrated instruction. Mathematics teachers shared a common perception of integration being two separate lessons taught together in one lesson. In contrast, science teachers perceived integration to be a seamless blend of the two disciplines. The researcher related these perceptions and attitudes to the teachers' past experiences with mathematics and science connections and integration, and also to their practices of mathematics and science connections in the study.

  2. Developing pre-service science teachers' pedagogical content knowledge by using training program

    NASA Astrophysics Data System (ADS)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  3. From teachers' perspective: Implementation of literacy materials in middle school science

    NASA Astrophysics Data System (ADS)

    Weingartner, Judith A.

    Documentation of adolescents' difficulty in comprehending textbooks spans a century. For just as long, researchers have advocated that explicit instruction of reading strategies can help students' comprehension of text; many have recommended that the best place to teach these strategies is within the content classroom (science, math, etc.), and taught by the content teacher. Despite this research, reading strategy instruction in content classrooms is not a common occurrence. In a large district with 300 middle school science teachers, some science teachers expressed concern about their students' reading difficulties with the district's science text. In response to those concerns, the middle school science coordinator organized a small committee to develop the Reading Strategies Handbook for Middle School Science for Teachers (the Handbook), believing that this tool would guide teachers' in implementing the Handbook's reading strategies and improve students' comprehension of the text. This was a qualitative study that explored 11 middle school science teachers' responses to implementing the Handbook. Data for this study were gathered through an e-mailed questionnaire, a classroom visitation, and one interview with each teacher participant. The study found that teachers' varied backgrounds influenced their beliefs about teaching and learning, and impacted their classroom practices. Teachers faced their district's expectations to implement reading strategies in the Handbook with minimal support and cited influences beyond their control that created tension with their decision whether to implement the Handbook. Teachers commented that a "one size fits all" curriculum and textbook-specific issues influenced their degree of using the Handbook's reading strategies. In addition, teachers identified time and pressure to cover curriculum as obstacles to implementing the Handbook. Implications of these findings include: (a) Professional development studies related to content

  4. Prospective Science Teachers' Subject-Matter Knowledge about Overflow Container

    ERIC Educational Resources Information Center

    Ültay, Eser

    2016-01-01

    The purpose of this study was to determine prospective science teachers' subject-matter knowledge (SMK) about overflow container. This study was carried out in the form of a case study in spring term of the academic year of 2013-2014 with seven sophomore prospective science teachers who were studying at Elementary Science Teaching Department in…

  5. Digital Science Notebooks: Perspectives from an Elementary Classroom Teacher

    ERIC Educational Resources Information Center

    Paek, Seungoh; Fulton, Lori A.

    2017-01-01

    This study investigates how tablet-based note-taking applications can be integrated into elementary science classes as digital science notebooks. A teacher with 20 students in Grades 4-5 from a public charter school in Hawaii participated in the study. The participating science teacher introduced a tablet-based note taking application (TNA) to her…

  6. Science Teacher Preparation in a North American Context

    ERIC Educational Resources Information Center

    Olson, Joanne K.; Tippett, Christine D.; Milford, Todd M.; Ohana, Chris; Clough, Michael P.

    2015-01-01

    This article provides a description of science teacher education policy in Canada and the USA. We focus on qualifications and procedures to obtain an initial teaching license, requirements for license renewal, and trends in our respective countries. In both countries, science teacher education is the responsibility of the province or state, rather…

  7. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    ERIC Educational Resources Information Center

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  8. "What" and "how" does a mentor teacher learn during a secondary science teacher candidate's internship?

    NASA Astrophysics Data System (ADS)

    Ashmann, Scott A.

    Teaching science for understanding is hard work. Not many teachers leave a teacher education program sufficiently prepared to engage in this practice. In fact, many veteran teachers struggle with this complicated task, so effective professional development is needed. One approach that may hold some promise is being a mentor teacher to an intern. To investigate this possibility, the following central question guided this study: "What" and "how" does a secondary science teacher learn about the practices of teaching from the experience of being a mentor teacher for a science intern? A conceptual framework based on three planes of focus was utilized in this study. These planes are (a) a focus on the larger learning community and context, (b) a focus on the local learning community and activities, and (c) a focus on learners and purposes. Data were collected on two focus mentor teachers. These data included observations of interactions between the mentor and intern, responses to clarifying questions, interviews with other science teachers, and observations of both the mentor and the intern teaching lessons. Relationships among the characteristics of the context of the school and science department with the mentor teacher's theory of learning and teaching practices and the patterns of practice the mentor used in responding to specific occasions for learning were explored. It was found that these characteristics are related to five elements of mentor teacher learning: the social environment, resource use, defining tasks, the learning process, and the nature of a satisfactory conclusion. Two conclusions were made. The first was that remarkably detailed parallels exist among key elements in the context in which a mentor teacher works, the mentor teacher's approaches to teaching and learning, and the mentor's response to occasions for learning during the internship. The second was that differences among mentors in these key elements could account for differences in "what

  9. Teaching science to English Language Learners: Instructional approaches of high school teachers

    NASA Astrophysics Data System (ADS)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  10. BOOK REVIEW: The Expertise and Deployment of Science Teachers at Key Stage 4

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    2000-03-01

    On my bookshelves I have a large collection of the issues of a prestigious research journal dealing with science education. From time to time I dip into the articles in search of enlightenment, applicable ideas or sheer entertainment. It is rare to find success in any of the categories, but I do learn a lot of new words. Or at least how to spell them. It makes me wonder who it is that reads educational research, except other educational researchers. It would be an interesting research project to find out what, if any, practical changes in teaching, learning or the organization of educational establishments resulted from the regular annual supply of research. I would guess that very few practising teachers have access to such learned journals, let alone the time to read them. Another possible readership, Science Advisers, are, as a species, verging on extinction. Of course, `knowledge for its own sake' is not to be despised, but I would rate usable, effective, practicable and knowledge rather higher. Having thus sufficiently annoyed a significant minority of the readership of Physics Education to make them take an interest, I shall go on to review the booklet produced by Donnelly and Jenkins. These two have had the temerity to `explore, in a preliminary way' the topic given in the title. Further, they have dared to expose their work to the common gaze in a short, readable and easily accessible booklet. You might be led to believe from this that they have a strong desire that what they say should have an effect on what really happens in the (south) British educational system. They deal with a topic that anyone with an interest in, and especially with responsibility for, curriculum and its development, in-service education and training and the supply of science teachers should be strongly concerned (i.e. worried) about. Who teaches science? How are they qualified to do so? Are the teachers happy with the match between their qualifications and their teaching roles? And

  11. Applied aerodynamics experience for secondary science teachers and students

    NASA Technical Reports Server (NTRS)

    Abbitt, John D., III; Carroll, Bruce F.

    1992-01-01

    The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.

  12. A study of International Baccalaureate science teachers' choices in curriculum and instruction

    NASA Astrophysics Data System (ADS)

    Jauss, Lanett S.

    This study was designed to investigate the choices International Baccalaureate (IB) science teachers make in curriculum and instruction. Data was gathered via a survey completed by IB science teachers who had attended either an April, 2007 workshop in Reston, Virginia or a January, 2008 IB roundtable discussion in Kansas City, Missouri. Surveys solicited the different choices IB science teachers make for options, Internal Assessment (IA) activities, Theory of Knowledge (TOK) emphasis, and demographics. Teachers' reasons for their option choices were also analyzed. Statistical analysis was performed using SPSS descriptive statistics, Pearson's product-moment correlations, and linear regression. It was found that IB science teachers' most frequent reasons for their option choices were related to ease, interest, background, and available resources. IB science teachers used a variety of IA activities, with hands-on activities and worksheets being most frequent. IB science teachers did not emphasize inquiry, although they did include some aspects of it among their choices. IB science teachers preferred to use activities they design or those designed by other teachers. Years of teaching experience, both total and IB, were correlated to the level of use of some TOK tenets.

  13. Science Teachers' Professional Development and Changes in Science Practical Assessment Practices: What Are the Issues?

    ERIC Educational Resources Information Center

    Towndrow, Phillip A.; Tan, Aik-Ling; Yung, Benny H. W.; Cohen, Libby

    2010-01-01

    This paper considers the circumstances under which science teachers can respond positively and productively to educational policy reforms in the area of science practical assessment. To understand what might be involved in linking science teachers' assessment capacities and their professional development, we present illustrative data from recent…

  14. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  15. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  16. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    NASA Astrophysics Data System (ADS)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  17. Elementary teachers' acquisition of science knowledge: Case-studies and implications for teaching preparation

    NASA Astrophysics Data System (ADS)

    Stein, Morton

    Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some

  18. Teacher content knowledge in the context of science education reform

    NASA Astrophysics Data System (ADS)

    Doby, Janice Kay

    1997-12-01

    The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in

  19. Inquiry-Based Instruction in Secondary Science Classrooms: A Survey of Teacher Practice

    ERIC Educational Resources Information Center

    Gejda, Linda M.; LaRocco, Diana J.

    2006-01-01

    Background: For ten years, the National Science Education Standards (National Research Council, 1996) have served as the foundation for Connecticut's teacher certification in science and the expectations of teacher practice secondary science classrooms. Furthermore, beginning science teachers must demonstrate the ability to teach in an…

  20. Scientific Literacy: What Is the Role of the Science Teacher?

    ERIC Educational Resources Information Center

    Pearson, Esther

    1990-01-01

    To be effective in promoting scientific literacy, science teachers must be well prepared in their subject areas, have a firm understanding of the nature of science, and stay abreast of current technological advances affecting society. Science teachers must engage students in the science revolution by relating it to their lives. (AF)