Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
ERIC Educational Resources Information Center
Yorek, Nurettin; Ugulu, Ilker
2015-01-01
In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…
QML-AiNet: An immune network approach to learning qualitative differential equation models
Pang, Wei; Coghill, George M.
2015-01-01
In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG. PMID:25648212
QML-AiNet: An immune network approach to learning qualitative differential equation models.
Pang, Wei; Coghill, George M
2015-02-01
In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG.
Dunmyre, Justin R
2011-06-01
The pre-Bötzinger complex of the mammalian brainstem is a heterogeneous neuronal network, and individual neurons within the network have varying strengths of the persistent sodium and calcium-activated nonspecific cationic currents. Individually, these currents have been the focus of modeling efforts. Previously, Dunmyre et al. (J Comput Neurosci 1-24, 2011) proposed a model and studied the interactions of these currents within one self-coupled neuron. In this work, I consider two identical, reciprocally coupled model neurons and validate the reduction to the self-coupled case. I find that all of the dynamics of the two model neuron network and the regions of parameter space where these distinct dynamics are found are qualitatively preserved in the reduction to the self-coupled case.
Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.
Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil
2007-02-01
New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
Wilczynski, Bartek; Furlong, Eileen E M
2010-04-15
Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Corroborating qualitative benefits of online ATIS with modeling : Los Angeles case study
DOT National Transportation Integrated Search
2003-03-01
This report documents a modeling study performed as a follow-up to a qualitative online evaluation of the Traveler Advisory News Network (TANN) and SmarTraveler traffic information web sites (7,8) by researchers at the Volpe National Transportation S...
Skipper, Jeremy I; Devlin, Joseph T; Lametti, Daniel R
2017-01-01
Does "the motor system" play "a role" in speech perception? If so, where, how, and when? We conducted a systematic review that addresses these questions using both qualitative and quantitative methods. The qualitative review of behavioural, computational modelling, non-human animal, brain damage/disorder, electrical stimulation/recording, and neuroimaging research suggests that distributed brain regions involved in producing speech play specific, dynamic, and contextually determined roles in speech perception. The quantitative review employed region and network based neuroimaging meta-analyses and a novel text mining method to describe relative contributions of nodes in distributed brain networks. Supporting the qualitative review, results show a specific functional correspondence between regions involved in non-linguistic movement of the articulators, covertly and overtly producing speech, and the perception of both nonword and word sounds. This distributed set of cortical and subcortical speech production regions are ubiquitously active and form multiple networks whose topologies dynamically change with listening context. Results are inconsistent with motor and acoustic only models of speech perception and classical and contemporary dual-stream models of the organization of language and the brain. Instead, results are more consistent with complex network models in which multiple speech production related networks and subnetworks dynamically self-organize to constrain interpretation of indeterminant acoustic patterns as listening context requires. Copyright © 2016. Published by Elsevier Inc.
Alternative community structures in a kelp-urchin community: A qualitative modeling approach
Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.
2007-01-01
Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to reconstruct guidelines that may govern community patterns. ?? 2007 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.
2015-01-01
Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…
A study of the electrical properties of complex resistor network based on NW model
NASA Astrophysics Data System (ADS)
Chang, Yunfeng; Li, Yunting; Yang, Liu; Guo, Lu; Liu, Gaochao
2015-04-01
The power and resistance of two-port complex resistor network based on NW small world network model are studied in this paper. Mainly, we study the dependence of the network power and resistance on the degree of port vertices, the connection probability and the shortest distance. Qualitative analysis and a simplified formula for network resistance are given out. Finally, we define a branching parameter and give out its physical meaning in the analysis of complex resistor network.
Qualitative-Modeling-Based Silicon Neurons and Their Networks
Kohno, Takashi; Sekikawa, Munehisa; Li, Jing; Nanami, Takuya; Aihara, Kazuyuki
2016-01-01
The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance. PMID:27378842
A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton
Coughlin, Mark F.; Stamenović, Dimitrije
2003-01-01
A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at ∼158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response. PMID:12547813
A prestressed cable network model of the adherent cell cytoskeleton.
Coughlin, Mark F; Stamenović, Dimitrije
2003-02-01
A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at approximately 158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response.
Application of Petri net based analysis techniques to signal transduction pathways.
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-11-02
Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.
Application of Petri net based analysis techniques to signal transduction pathways
Sackmann, Andrea; Heiner, Monika; Koch, Ina
2006-01-01
Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284
Modeling Developmental Transitions in Adaptive Resonance Theory
ERIC Educational Resources Information Center
Raijmakers, Maartje E. J.; Molenaar, Peter C. M.
2004-01-01
Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.
Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124
Wittmann, Dominik M; Krumsiek, Jan; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Klamt, Steffen; Theis, Fabian J
2009-01-01
Background The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments. Results In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one. Conclusion The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems. PMID:19785753
Inherently unstable networks collapse to a critical point
NASA Astrophysics Data System (ADS)
Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.
2015-07-01
Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.
A multi-agent intelligent environment for medical knowledge.
Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder
2003-03-01
AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).
A coevolving model based on preferential triadic closure for social media networks
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061
Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E
2017-06-13
Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.
Chaouiya, Claudine; Keating, Sarah M; Berenguier, Duncan; Naldi, Aurélien; Thieffry, Denis; van Iersel, Martijn P; Le Novère, Nicolas; Helikar, Tomáš
2015-09-04
Quantitative methods for modelling biological networks require an in-depth knowledge of the biochemical reactions and their stoichiometric and kinetic parameters. In many practical cases, this knowledge is missing. This has led to the development of several qualitative modelling methods using information such as, for example, gene expression data coming from functional genomic experiments. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding qualitative models, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Qualitative Models package for SBML Level 3 adds features so that qualitative models can be directly and explicitly encoded. The approach taken in this package is essentially based on the definition of regulatory or influence graphs. The SBML Qualitative Models package defines the structure and syntax necessary to describe qualitative models that associate discrete levels of activities with entity pools and the transitions between states that describe the processes involved. This is particularly suited to logical models (Boolean or multi-valued) and some classes of Petri net models can be encoded with the approach.
A growing social network model in geographical space
NASA Astrophysics Data System (ADS)
Antonioni, Alberto; Tomassini, Marco
2017-09-01
In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.
Webber, Martin; Reidy, Hannah; Ansari, David; Stevens, Martin; Morris, David
2015-03-01
People with severe mental health problems such as psychosis have access to less social capital, defined as resources within social networks, than members of the general population. However, a lack of theoretically and empirically informed models hampers the development of social interventions which seek to enhance an individual's social networks. This paper reports the findings of a qualitative study, which used ethnographic field methods in six sites in England to investigate how workers helped people recovering from psychosis to enhance their social networks. This study drew upon practice wisdom and lived experience to provide data for intervention modelling. Data were collected from 73 practitioners and 51 people who used their services in two phases. Data were selected and coded using a grounded theory approach to depict the key themes that appeared to underpin the generation of social capital within networks. Findings are presented in four over-arching themes - worker skills, attitudes and roles; connecting people processes; role of the agency; and barriers to network development. The sub-themes which were identified included worker attitudes; person-centred approach; equality of worker-individual relationship; goal setting; creating new networks and relationships; engagement through activities; practical support; existing relationships; the individual taking responsibility; identifying and overcoming barriers; and moving on. Themes were consistent with recovery models used within mental health services and will provide the basis for the development of an intervention model to enhance individuals' access to social capital within networks. © 2014 John Wiley & Sons Ltd.
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C
2006-06-01
The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.
2006-03-01
Defense, Editor. 2001. 12. Defense, D.o., Department of Defense Architecture Framework Deskbook. 2004, Department of Defense. 13. Denzin , N. and...Y. Lincoln , Handbook of Qualitative Research. 2000, California: Sage. 14. Flick, U., An Introduction to Qualitative research: Theory, method and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derrida, B.; Nadal, J.P.
It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks.
Koch, Ina; Junker, Björn H; Heiner, Monika
2005-04-01
Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.
BioNSi: A Discrete Biological Network Simulator Tool.
Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny
2016-08-05
Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.
The Development of a Qualitative Dynamic Attribute Value Model for Healthcare Institutes
Lee, Wan-I
2010-01-01
Background: Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers’ value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. Methods: A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers’ perspective of values for building a model of partial differential equations. Results: This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. Conclusion: One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share. PMID:23113034
The development of a qualitative dynamic attribute value model for healthcare institutes.
Lee, Wan-I
2010-01-01
Understanding customers has become an urgent topic for increasing competitiveness. The purpopse of the study was to develop a qualitative dynamic attribute value model which provides insight into the customers' value for healthcare institute managers by conducting the initial open-ended questionnaire survey to select participants purposefully. A total number of 427 questionnaires was conducted in two hospitals in Taiwan (one district hospital with 635 beds and one academic hospital with 2495 beds) and 419 questionnaires were received in nine weeks. Then, apply qualitative in-depth interviews to explore customers' perspective of values for building a model of partial differential equations. This study concludes nine categories of value, including cost, equipment, physician background, physicain care, environment, timing arrangement, relationship, brand image and additional value, to construct objective network for customer value and qualitative dynamic attribute value model where the network shows the value process of loyalty development via its effect on customer satisfaction, customer relationship, customer loyalty and healthcare service. One set predicts the customer relationship based on comminent, including service quality, communication and empahty. As the same time, customer loyalty based on trust, involves buzz marketing, brand and image. Customer value of the current instance is useful for traversing original customer attributes and identifing customers on different service share.
2009-01-01
Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks. PMID:20042075
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Bifurcations of large networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-08-01
Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.
A Computer Model of Insect Traps in a Landscape
NASA Astrophysics Data System (ADS)
Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.
2014-11-01
Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.
The New Agent: A Qualitative Study to Strategically Adapt New Agent Professional Development
ERIC Educational Resources Information Center
Baker, Lauri M.; Hadley, Gregg
2014-01-01
The qualitative study reported here assessed the needs of agents related to new agent professional development to improve the current model. Agents who participated in new agent professional development within the last 5 years were selected to participate in focus groups to determine concerns and continued needs. Agents enjoyed networking and…
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network
NASA Astrophysics Data System (ADS)
Zidek, Jan; Milchev, Andrey; Vilgis, Thomas A.
2012-12-01
Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel. Thus, in qualitative agreement with observations, we find a softening of the mechanical response at large deformations, which is enhanced by growing temperature. Several observables as the non-affinity parameter A and the network rearrangement parameter V indicate the existence of a (temperature-dependent) threshold degree of deformation beyond which the quasi-elastic response of the model system turns over into plastic (ductile) one. The critical stretching when the affinity of the deformation is lost can be clearly located in terms of A and V as well as by analysis of the energy density of the system. The observed stress-strain relationship matches that of known experimental systems.
Rethinking the learning of belief network probabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, R.
Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rotemore » learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neutral networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.« less
Determinants of successful clinical networks: the conceptual framework and study protocol.
Haines, Mary; Brown, Bernadette; Craig, Jonathan; D'Este, Catherine; Elliott, Elizabeth; Klineberg, Emily; McInnes, Elizabeth; Middleton, Sandy; Paul, Christine; Redman, Sally; Yano, Elizabeth M
2012-03-13
Clinical networks are increasingly being viewed as an important strategy for increasing evidence-based practice and improving models of care, but success is variable and characteristics of networks with high impact are uncertain. This study takes advantage of the variability in the functioning and outcomes of networks supported by the Australian New South Wales (NSW) Agency for Clinical Innovation's non-mandatory model of clinical networks to investigate the factors that contribute to the success of clinical networks. The objective of this retrospective study is to examine the association between external support, organisational and program factors, and indicators of success among 19 clinical networks over a three-year period (2006-2008). The outcomes (health impact, system impact, programs implemented, engagement, user perception, and financial leverage) and explanatory factors will be collected using a web-based survey, interviews, and record review. An independent expert panel will provide judgements about the impact or extent of each network's initiatives on health and system impacts. The ratings of the expert panel will be the outcome used in multivariable analyses. Following the rating of network success, a qualitative study will be conducted to provide a more in-depth examination of the most successful networks. This is the first study to combine quantitative and qualitative methods to examine the factors that contribute to the success of clinical networks and, more generally, is the largest study of clinical networks undertaken. The adaptation of expert panel methods to rate the impacts of networks is the methodological innovation of this study. The proposed project will identify the conditions that should be established or encouraged by agencies developing clinical networks and will be of immediate use in forming strategies and programs to maximise the effectiveness of such networks.
Complex networks: Effect of subtle changes in nature of randomness
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Biswas, Soham; Sen, Parongama
2011-03-01
In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.
Kerkhofs, Johan; Geris, Liesbet
2015-01-01
Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297
Representing distributed cognition in complex systems: how a submarine returns to periscope depth.
Stanton, Neville A
2014-01-01
This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.
Clustering promotes switching dynamics in networks of noisy neurons
NASA Astrophysics Data System (ADS)
Franović, Igor; Klinshov, Vladimir
2018-02-01
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Aschbrenner, Kelly A; Naslund, John A; Gill, Lydia; Hughes, Terence; O'Malley, Alistair J; Bartels, Stephen J; Brunette, Mary F
2017-07-04
The prevalence of cigarette smoking among adults with serious mental illness (SMI) remains high in the United States despite the availability of effective smoking cessation treatment. Identifying social influences on smoking and smoking cessation may help enhance intervention strategies to help smokers with SMI quit. The objective of this qualitative study was to explore social network influences on efforts to quit smoking among adults with SMI enrolled in a cessation treatment program. Participants were 41 individuals with SMI enrolled in a Medicaid Demonstration Project of smoking cessation at community mental health centers. A convenience sampling strategy was used to recruit participants for social network interviews exploring the influence of family, friends, peers, and significant others on quitting smoking. A team-based analysis of qualitative data involved descriptive coding, grouping coded data into categories, and identifying themes across the data. Social barriers to quitting smoking included pro-smoking social norms, attitudes, and behaviors of social network members, and negative interactions with network members, either specific to smoking or that triggered smoking. Social facilitators to quitting included quitting with network members, having cessation role models, and social support for quitting from network members. Similar to the general population, social factors appear to influence efforts to quit smoking among individuals with SMI enrolled in cessation treatment. Interventions that leverage positive social influences on smoking cessation have the potential to enhance strategies to help individuals with SMI quit smoking.
Qualitative reasoning for biological network inference from systematic perturbation experiments.
Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco
2012-01-01
The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.
NASA Technical Reports Server (NTRS)
Groleau, Nicolas; Frainier, Richard; Colombano, Silvano; Hazelton, Lyman; Szolovits, Peter
1993-01-01
This paper describes portions of a novel system called MARIKA (Model Analysis and Revision of Implicit Key Assumptions) to automatically revise a model of the normal human orientation system. The revision is based on analysis of discrepancies between experimental results and computer simulations. The discrepancies are calculated from qualitative analysis of quantitative simulations. The experimental and simulated time series are first discretized in time segments. Each segment is then approximated by linear combinations of simple shapes. The domain theory and knowledge are represented as a constraint network. Incompatibilities detected during constraint propagation within the network yield both parameter and structural model alterations. Interestingly, MARIKA diagnosed a data set from the Massachusetts Eye and Ear Infirmary Vestibular Laboratory as abnormal though the data was tagged as normal. Published results from other laboratories confirmed the finding. These encouraging results could lead to a useful clinical vestibular tool and to a scientific discovery system for space vestibular adaptation.
A Dynamic Bayesian Network Model for the Production and Inventory Control
NASA Astrophysics Data System (ADS)
Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol
In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.
A mathematical model for adaptive transport network in path finding by true slime mold.
Tero, Atsushi; Kobayashi, Ryo; Nakagaki, Toshiyuki
2007-02-21
We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior of the model on this parameter.
Şahin, Charlotte; Iseringhausen, Olaf; Hower, Kira; Liebe, Constanze; Rethmeier-Hanke, Anja; Wedmann, Bernd
2018-04-01
Regional planning of healthcare requires special consideration for the complex needs of elderly, multimorbid people living in a domestic environment. In the District of Lippe, a hospital (Klinikum Lippe) and network of ambulatory care physicians (Ärztenetz Lippe) developed and tested a geriatric care network based on case management for geriatric patients living in a domestic environment. The establishment of the geriatric care network (e.g. promoting networking acceptance and implementation) was formatively evaluated, e. g. with qualitative methods. Data were acquired by guideline-based interviews with experts and analyzed by qualitative content analysis according to Mayring. Structural effects included forming a cross-sectoral and interdisciplinary network for a functioning care network and a geriatric care pathway. The practical work of case managers (CM) is essential for communication with patients, family members and care providers as well as integrating providers into the network. A critical factor was working together with general practitioners and the close cooperation with the hospital's department of geriatric. The quality of care is improved because of exchange of information between sectors and continuity in the course of care. In the District of Lippe the quality of care was improved and structures of care were integrated by the network according to the needs of the target group. The integrative perspective was achieved in particular by the geriatric care pathway and integration of providers into the communication and care process; however, the scope of this care model could not be extended into routine care due to the rigid and subdivided health care system.
ERIC Educational Resources Information Center
Arnold, Nike; Paulus, Trena
2010-01-01
With social networking sites playing an increasingly important role in today's society, educators are exploring how they can be used as a teaching and learning tool. This article reports the findings of a qualitative case study about the integration of "Ning" into a blended course. The study draws on the perspectives of the students, the…
Properties of four real world collaboration--competition networks
NASA Astrophysics Data System (ADS)
Fu, Chun-Hua; Xu, Xiu-Lian; He, Da-Ren
2009-03-01
Our research group has empirically investigated 9 real world collaboration networks and 25 real world cooperation-competition networks. Among the 34 real world systems, all the 9 real world collaboration networks and 6 real world cooperation-competition networks show the unimodal act-size distribution and the shifted power law distribution of degree and act-degree. We have proposed a collaboration network evolution model for an explanation of the rules [1]. The other 14 real world cooperation-competition networks show that the act-size distributions are not unimodal; instead, they take qualitatively the same shifted power law forms as the degree and act-degree distributions. The properties of four systems (the main land movie film network, Beijing restaurant network, 2004 Olympic network, and Tao-Bao notebook computer sale network) are reported in detail as examples. Via a numerical simulation, we show that the new rule can still be explained by the above-mentioned model. [1] H. Chang, B. B. Su, et al. Phsica A, 2007, 383: 687-702.
Automatic Screening for Perturbations in Boolean Networks.
Schwab, Julian D; Kestler, Hans A
2018-01-01
A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.
Two classes of bipartite networks: nested biological and social systems.
Burgos, Enrique; Ceva, Horacio; Hernández, Laura; Perazzo, R P J; Devoto, Mariano; Medan, Diego
2008-10-01
Bipartite graphs have received some attention in the study of social networks and of biological mutualistic systems. A generalization of a previous model is presented, that evolves the topology of the graph in order to optimally account for a given contact preference rule between the two guilds of the network. As a result, social and biological graphs are classified as belonging to two clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from the original bipartite graph. The corresponding evolution of its statistical properties is also studied. An example of a biological mutualistic network is analyzed in detail, and it is found that the model provides a very good fitting of all the main statistical features. The model also provides a proper qualitative description of the same features observed in social webs, suggesting the possible reasons underlying the difference in the organization of these two kinds of bipartite networks.
Balancing building and maintenance costs in growing transport networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco
2017-09-01
The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
NASA Astrophysics Data System (ADS)
Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai
2013-08-01
With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Aging in complex interdependency networks.
Vural, Dervis C; Morrison, Greg; Mahadevan, L
2014-02-01
Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size distributions of disease and death and see that they have qualitatively different properties. We show that aging patterns are independent of the details of interdependence network structure, which suggests that aging is a many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the details of dependency structure or its formation.
Deployment of e-health services - a business model engineering strategy.
Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R
2010-01-01
We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.
Qualitative modeling of silica plasma etching using neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Kwon, Kwang Ho
2003-01-01
An etching of silica thin film is qualitatively modeled by using a neural network. The process was characterized by a 23 full factorial experiment plus one center point, in which the experimental factors and ranges include 100-800 W radio-frequency source power, 100-400 W bias power and gas flow rate ratio CHF3/CF4. The gas flow rate ratio varied from 0.2 to 5.0. The backpropagation neural network (BPNN) was trained on nine experiments and tested on six experiments, not pertaining to the original training data. The prediction ability of the BPNN was optimized as a function of the training parameters. Prediction errors are 180 Å/min and 1.33, for the etch rate and anisotropy models, respectively. Physical etch mechanisms were estimated from the three-dimensional plots generated from the optimized models. Predicted response surfaces were consistent with experimentally measured etch data. The dc bias was correlated to the etch responses to evaluate its contribution. Both the source power (plasma density) and bias power (ion directionality) strongly affected the etch rate. The source power was the most influential factor for the etch rate. A conflicting effect between the source and bias powers was noticed with respect to the anisotropy. The dc bias played an important role in understanding or separating physical etch mechanisms.
Snoopy--a unifying Petri net framework to investigate biomolecular networks.
Rohr, Christian; Marwan, Wolfgang; Heiner, Monika
2010-04-01
To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other. We get models sharing structure, but specialized by their kinetic information. The analysis and iterative reverse engineering of biomolecular networks is supported by the simultaneous use of several Petri net classes, while the graphical user interface adapts dynamically to the active one. Built-in animation and simulation are complemented by exports to various analysis tools. Snoopy facilitates the addition of new Petri net classes thanks to its generic design. Our tool with Petri net samples is available free of charge for non-commercial use at http://www-dssz.informatik.tu-cottbus.de/snoopy.html; supported operating systems: Mac OS X, Windows and Linux (selected distributions).
Scale-free network provides an optimal pattern for knowledge transfer
NASA Astrophysics Data System (ADS)
Lin, Min; Li, Nan
2010-02-01
We study numerically the knowledge innovation and diffusion process on four representative network models, such as regular networks, small-world networks, random networks and scale-free networks. The average knowledge stock level as a function of time is measured and the corresponding growth diffusion time, τ is defined and computed. On the four types of networks, the growth diffusion times all depend linearly on the network size N as τ∼N, while the slope for scale-free network is minimal indicating the fastest growth and diffusion of knowledge. The calculated variance and spatial distribution of knowledge stock illustrate that optimal knowledge transfer performance is obtained on scale-free networks. We also investigate the transient pattern of knowledge diffusion on the four networks, and a qualitative explanation of this finding is proposed.
A model of cell wall expansion based on thermodynamics of polymer networks
NASA Technical Reports Server (NTRS)
Veytsman, B. A.; Cosgrove, D. J.
1998-01-01
A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-01-01
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008
Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind
2016-05-23
Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.
FALCON: a toolbox for the fast contextualization of logical networks
De Landtsheer, Sébastien; Trairatphisan, Panuwat; Lucarelli, Philippe; Sauter, Thomas
2017-01-01
Abstract Motivation Mathematical modelling of regulatory networks allows for the discovery of knowledge at the system level. However, existing modelling tools are often computation-heavy and do not offer intuitive ways to explore the model, to test hypotheses or to interpret the results biologically. Results We have developed a computational approach to contextualize logical models of regulatory networks with biological measurements based on a probabilistic description of rule-based interactions between the different molecules. Here, we propose a Matlab toolbox, FALCON, to automatically and efficiently build and contextualize networks, which includes a pipeline for conducting parameter analysis, knockouts and easy and fast model investigation. The contextualized models could then provide qualitative and quantitative information about the network and suggest hypotheses about biological processes. Availability and implementation FALCON is freely available for non-commercial users on GitHub under the GPLv3 licence. The toolbox, installation instructions, full documentation and test datasets are available at https://github.com/sysbiolux/FALCON. FALCON runs under Matlab (MathWorks) and requires the Optimization Toolbox. Contact thomas.sauter@uni.lu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28673016
FALCON: a toolbox for the fast contextualization of logical networks.
De Landtsheer, Sébastien; Trairatphisan, Panuwat; Lucarelli, Philippe; Sauter, Thomas
2017-11-01
Mathematical modelling of regulatory networks allows for the discovery of knowledge at the system level. However, existing modelling tools are often computation-heavy and do not offer intuitive ways to explore the model, to test hypotheses or to interpret the results biologically. We have developed a computational approach to contextualize logical models of regulatory networks with biological measurements based on a probabilistic description of rule-based interactions between the different molecules. Here, we propose a Matlab toolbox, FALCON, to automatically and efficiently build and contextualize networks, which includes a pipeline for conducting parameter analysis, knockouts and easy and fast model investigation. The contextualized models could then provide qualitative and quantitative information about the network and suggest hypotheses about biological processes. FALCON is freely available for non-commercial users on GitHub under the GPLv3 licence. The toolbox, installation instructions, full documentation and test datasets are available at https://github.com/sysbiolux/FALCON. FALCON runs under Matlab (MathWorks) and requires the Optimization Toolbox. thomas.sauter@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Mounts, W M; Liebman, M N
1997-07-01
We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.
Bayesian networks improve causal environmental ...
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value
Disease dynamics in a dynamic social network
NASA Astrophysics Data System (ADS)
Christensen, Claire; Albert, István; Grenfell, Bryan; Albert, Réka
2010-07-01
We develop a framework for simulating a realistic, evolving social network (a city) into which a disease is introduced. We compare our results to prevaccine era measles data for England and Wales, and find that they capture the quantitative and qualitative features of epidemics in populations spanning two orders of magnitude. Our results provide unique insight into how and why the social topology of the contact network influences the propagation of the disease through the population. We argue that network simulation is suitable for concurrently probing contact network dynamics and disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study of less well-documented diseases.
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
Network inoculation: Heteroclinics and phase transitions in an epidemic model
NASA Astrophysics Data System (ADS)
Yang, Hui; Rogers, Tim; Gross, Thilo
2016-08-01
In epidemiological modelling, dynamics on networks, and, in particular, adaptive and heterogeneous networks have recently received much interest. Here, we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model, qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description, one of these corresponds to a local bifurcation, whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region, exposure of the system to a pathogen will lead to an outbreak that collapses but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.
Control of cancer-related signal transduction networks
NASA Astrophysics Data System (ADS)
Albert, Reka
2013-03-01
Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.
The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.
Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin
2016-07-01
Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
What are the reasons for clinical network success? A qualitative study.
McInnes, Elizabeth; Haines, Mary; Dominello, Amanda; Kalucy, Deanna; Jammali-Blasi, Asmara; Middleton, Sandy; Klineberg, Emily
2015-11-05
Clinical networks have been established to improve patient outcomes and processes of care by implementing a range of innovations and undertaking projects based on the needs of local health services. Given the significant investment in clinical networks internationally, it is important to assess their effectiveness and sustainability. This qualitative study investigated the views of stakeholders on the factors they thought were influential in terms of overall network success. Ten participants were interviewed using face-to-face, audio-recorded semi-structured interviews about critical factors for networks' successes over the study period 2006-2008. Respondents were purposively selected from two stakeholder groups: i) chairs of networks during the study period of 2006-2008 from high- moderate- and low-impact networks (as previously determined by an independent review panel) and ii) experts in the clinical field of the network who had a connection to the network but who were not network members. Participants were blind to the performance of the network they were interviewed about. Transcribed data were coded and analysed to generate themes relating to the study aims. Themes relating to influential factors critical to network success were: network model principles; leadership; formal organisational structures and processes; nature of network projects; external relationships; profile and credibility of the network. This study provides clinical networks with guidance on essential factors for maximising optimal network outcomes and that may assist networks to move from being a 'low-impact' to 'high-impact' network. Important ingredients for successful clinical networks were visionary and strategic leadership with strong links to external stakeholders; and having formal infrastructure and processes to enable the development and management of work plans aligned with health priorities.
Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli
2017-07-01
As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.
Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media
NASA Astrophysics Data System (ADS)
Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.
2011-10-01
We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.
Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media.
Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I
2011-10-01
We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.
Mental health network governance: comparative analysis across Canadian regions.
Wiktorowicz, Mary E; Fleury, Marie-Josée; Adair, Carol E; Lesage, Alain; Goldner, Elliot; Peters, Suzanne
2010-10-26
Modes of governance were compared in ten local mental health networks in diverse contexts (rural/urban and regionalized/non-regionalized) to clarify the governance processes that foster inter-organizational collaboration and the conditions that support them. Case studies of ten local mental health networks were developed using qualitative methods of document review, semi-structured interviews and focus groups that incorporated provincial policy, network and organizational levels of analysis. Mental health networks adopted either a corporate structure, mutual adjustment or an alliance governance model. A corporate structure supported by regionalization offered the most direct means for local governance to attain inter-organizational collaboration. The likelihood that networks with an alliance model developed coordination processes depended on the presence of the following conditions: a moderate number of organizations, goal consensus and trust among the organizations, and network-level competencies. In the small and mid-sized urban networks where these conditions were met their alliance realized the inter-organizational collaboration sought. In the large urban and rural networks where these conditions were not met, externally brokered forms of network governance were required to support alliance based models. In metropolitan and rural networks with such shared forms of network governance as an alliance or voluntary mutual adjustment, external mediation by a regional or provincial authority was an important lever to foster inter-organizational collaboration.
A mathematical model for mesenchymal and chemosensitive cell dynamics.
Häcker, Anita
2012-01-01
The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared. © Springer-Verlag 2011
Goodman, Lisa A; Banyard, Victoria; Woulfe, Julie; Ash, Sarah; Mattern, Grace
2016-01-01
Despite powerful evidence that informal social support contributes to survivors' safety and well-being, mainstream domestic violence (DV) programs have not developed comprehensive models for helping isolated survivors re-engage with these networks. Although many advocates use network-oriented strategies informally, they often do so without resources, funding, or training. This qualitative focus group study explored advocates' use and perceptions of network-oriented strategies. Advocates working in a range of DV programs across one state described the importance of network-oriented work and articulated its five dimensions, including helping survivors build their capacity to form healthy relationships, identify helpful and harmful network members, re-engage with existing networks, develop new relationships, and respond more effectively to network members. © The Author(s) 2015.
Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad
2017-01-01
In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.
Kell, Douglas B.; Goodacre, Royston
2014-01-01
Metabolism represents the ‘sharp end’ of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule ‘drug’ transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology. PMID:23892182
NASA Astrophysics Data System (ADS)
Barreiro, Andrea K.; Ly, Cheng
2017-08-01
Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.
Modularization of biochemical networks based on classification of Petri net t-invariants.
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-02-08
Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
Modularization of biochemical networks based on classification of Petri net t-invariants
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-01-01
Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938
Disordered configurations of the Glauber model in two-dimensional networks
NASA Astrophysics Data System (ADS)
Bačić, Iva; Franović, Igor; Perc, Matjaž
2017-12-01
We analyze the ordering efficiency and the structure of disordered configurations for the zero-temperature Glauber model on Watts-Strogatz networks obtained by rewiring 2D regular square lattices. In the small-world regime, the dynamics fails to reach the ordered state in the thermodynamic limit. Due to the interplay of the perturbed regular topology and the energy neutral stochastic state transitions, the stationary state consists of two intertwined domains, manifested as multiclustered states on the original lattice. Moreover, for intermediate rewiring probabilities, one finds an additional source of disorder due to the low connectivity degree, which gives rise to small isolated droplets of spins. We also examine the ordering process in paradigmatic two-layer networks with heterogeneous rewiring probabilities. Comparing the cases of a multiplex network and the corresponding network with random inter-layer connectivity, we demonstrate that the character of the final state qualitatively depends on the type of inter-layer connections.
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-01-01
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-07-06
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
Effect of resource constraints on intersimilar coupled networks.
Shai, S; Dobson, S
2012-12-01
Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.
Effect of resource constraints on intersimilar coupled networks
NASA Astrophysics Data System (ADS)
Shai, S.; Dobson, S.
2012-12-01
Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.
Patterns in the English language: phonological networks, percolation and assembly models
NASA Astrophysics Data System (ADS)
Stella, Massimo; Brede, Markus
2015-05-01
In this paper we provide a quantitative framework for the study of phonological networks (PNs) for the English language by carrying out principled comparisons to null models, either based on site percolation, randomization techniques, or network growth models. In contrast to previous work, we mainly focus on null models that reproduce lower order characteristics of the empirical data. We find that artificial networks matching connectivity properties of the English PN are exceedingly rare: this leads to the hypothesis that the word repertoire might have been assembled over time by preferentially introducing new words which are small modifications of old words. Our null models are able to explain the ‘power-law-like’ part of the degree distributions and generally retrieve qualitative features of the PN such as high clustering, high assortativity coefficient and small-world characteristics. However, the detailed comparison to expectations from null models also points out significant differences, suggesting the presence of additional constraints in word assembly. Key constraints we identify are the avoidance of large degrees, the avoidance of triadic closure and the avoidance of large non-percolating clusters.
Amiri, Zohreh; Mohammad, Kazem; Mahmoudi, Mahmood; Parsaeian, Mahbubeh; Zeraati, Hojjat
2013-01-01
There are numerous unanswered questions in the application of artificial neural network models for analysis of survival data. In most studies, independent variables have been studied as qualitative dichotomous variables, and results of using discrete and continuous quantitative, ordinal, or multinomial categorical predictive variables in these models are not well understood in comparison to conventional models. This study was designed and conducted to examine the application of these models in order to determine the survival of gastric cancer patients, in comparison to the Cox proportional hazards model. We studied the postoperative survival of 330 gastric cancer patients who suffered surgery at a surgical unit of the Iran Cancer Institute over a five-year period. Covariates of age, gender, history of substance abuse, cancer site, type of pathology, presence of metastasis, stage, and number of complementary treatments were entered in the models, and survival probabilities were calculated at 6, 12, 18, 24, 36, 48, and 60 months using the Cox proportional hazards and neural network models. We estimated coefficients of the Cox model and the weights in the neural network (with 3, 5, and 7 nodes in the hidden layer) in the training group, and used them to derive predictions in the study group. Predictions with these two methods were compared with those of the Kaplan-Meier product limit estimator as the gold standard. Comparisons were performed with the Friedman and Kruskal-Wallis tests. Survival probabilities at different times were determined using the Cox proportional hazards and a neural network with three nodes in the hidden layer; the ratios of standard errors with these two methods to the Kaplan-Meier method were 1.1593 and 1.0071, respectively, revealed a significant difference between Cox and Kaplan-Meier (P < 0.05) and no significant difference between Cox and the neural network, and the neural network and the standard (Kaplan-Meier), as well as better accuracy for the neural network (with 3 nodes in the hidden layer). Probabilities of survival were calculated using three neural network models with 3, 5, and 7 nodes in the hidden layer, and it has been observed that none of the predictions was significantly different from results with the Kaplan-Meier method and they appeared more comparable towards the last months (fifth year). However, we observed better accuracy using the neural network with 5 nodes in the hidden layer. Using the Cox proportional hazards and a neural network with 3 nodes in the hidden layer, we found enhanced accuracy with the neural network model. Neural networks can provide more accurate predictions for survival probabilities compared to the Cox proportional hazards mode, especially now that advances in computer sciences have eliminated limitations associated with complex computations. It is not recommended in order to adding too many hidden layer nodes because sample size related effects can reduce the accuracy. We recommend increasing the number of nodes to a point that increased accuracy continues (decrease in mean standard error), however increasing nodes should cease when a change in this trend is observed.
CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.
Simon, Andrew; Hupp, Cliff R.
1987-01-01
This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence
2012-08-29
Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates stationary distributions. Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular, transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.
Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf
2012-05-01
Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if-then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLab(TM)-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/
Proximity Networks and Epidemics
NASA Astrophysics Data System (ADS)
Guclu, Hasan; Toroczkai, Zoltán
2007-03-01
We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franović, Igor, E-mail: franovic@ipb.ac.rs; Todorović, Kristina; Burić, Nikola
We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases,more » the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.« less
Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.
Carriger, John F; Barron, Mace G; Newman, Michael C
2016-12-20
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.
Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.
2014-01-01
Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201
Mental health network governance: comparative analysis across Canadian regions
Wiktorowicz, Mary E; Fleury, Marie-Josée; Adair, Carol E; Lesage, Alain; Goldner, Elliot; Peters, Suzanne
2010-01-01
Objective Modes of governance were compared in ten local mental health networks in diverse contexts (rural/urban and regionalized/non-regionalized) to clarify the governance processes that foster inter-organizational collaboration and the conditions that support them. Methods Case studies of ten local mental health networks were developed using qualitative methods of document review, semi-structured interviews and focus groups that incorporated provincial policy, network and organizational levels of analysis. Results Mental health networks adopted either a corporate structure, mutual adjustment or an alliance governance model. A corporate structure supported by regionalization offered the most direct means for local governance to attain inter-organizational collaboration. The likelihood that networks with an alliance model developed coordination processes depended on the presence of the following conditions: a moderate number of organizations, goal consensus and trust among the organizations, and network-level competencies. In the small and mid-sized urban networks where these conditions were met their alliance realized the inter-organizational collaboration sought. In the large urban and rural networks where these conditions were not met, externally brokered forms of network governance were required to support alliance based models. Discussion In metropolitan and rural networks with such shared forms of network governance as an alliance or voluntary mutual adjustment, external mediation by a regional or provincial authority was an important lever to foster inter-organizational collaboration. PMID:21289999
Han, Z Y; Weng, W G
2011-05-15
In this paper, a qualitative and a quantitative risk assessment methods for urban natural gas pipeline network are proposed. The qualitative method is comprised of an index system, which includes a causation index, an inherent risk index, a consequence index and their corresponding weights. The quantitative method consists of a probability assessment, a consequences analysis and a risk evaluation. The outcome of the qualitative method is a qualitative risk value, and for quantitative method the outcomes are individual risk and social risk. In comparison with previous research, the qualitative method proposed in this paper is particularly suitable for urban natural gas pipeline network, and the quantitative method takes different consequences of accidents into consideration, such as toxic gas diffusion, jet flame, fire ball combustion and UVCE. Two sample urban natural gas pipeline networks are used to demonstrate these two methods. It is indicated that both of the two methods can be applied to practical application, and the choice of the methods depends on the actual basic data of the gas pipelines and the precision requirements of risk assessment. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
Martin, Guillaume
2014-05-01
Models relating phenotype space to fitness (phenotype-fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model "from first principles" is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model's assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.
Simulation of the mechanical behavior of random fiber networks with different microstructure.
Hatami-Marbini, H
2018-05-24
Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.
Predicting language diversity with complex networks.
Raducha, Tomasz; Gubiec, Tomasz
2018-01-01
We analyze the model of social interactions with coevolution of the topology and states of the nodes. This model can be interpreted as a model of language change. We propose different rewiring mechanisms and perform numerical simulations for each. Obtained results are compared with the empirical data gathered from two online databases and anthropological study of Solomon Islands. We study the behavior of the number of languages for different system sizes and we find that only local rewiring, i.e. triadic closure, is capable of reproducing results for the empirical data in a qualitative manner. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change.
Open quantum generalisation of Hopfield neural networks
NASA Astrophysics Data System (ADS)
Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.
2018-03-01
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.
Risk prediction model: Statistical and artificial neural network approach
NASA Astrophysics Data System (ADS)
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.
Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan
2018-06-19
Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group's direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
["Hope Dies Last …" - Cross-Sectoral Cooperation in Integrated Care].
Ruppert, Daniel; Stegbauer, Constanze; Bramesfeld, Anke; Bestmann, Beate; Szecsenyi, Joachim; Götz, Katja
2017-04-01
Objective Multiple models of Integrated Care (IC) have been implemented in German mental health services in the last decade in order to improve cross-sectoral, interdisciplinary cooperation. This study investigates an IC network model providing home treatment, case management and a 24/7 hotline. The aim of the study was to explore how health professionals working in this service model perceive both cooperation within their facilities and with external stakeholders. Methods 5 focus groups with 39 health professionals working in an IC mental health network were conducted and analyzed with qualitative content analysis. Results Focus groups participants reported on excellent cooperation within their facilities. The cooperation with external stakeholders, i. e. physicians, psychotherapists and psychiatric clinics, leaves room for improvement. Conclusions Until now little consideration has been given to the perspectives of health professionals. Cooperation within IC mental health networks seems to be effective. Cooperation with stakeholders outside the networks needs to be enhanced. © Georg Thieme Verlag KG Stuttgart · New York.
Paraskevov, A V; Zendrikov, D K
2017-03-23
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Paraskevov, A. V.; Zendrikov, D. K.
2017-04-01
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Qualitative analysis of Cohen-Grossberg neural networks with multiple delays
NASA Astrophysics Data System (ADS)
Ye, Hui; Michel, Anthony N.; Wang, Kaining
1995-03-01
It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.
Progression of Diabetic Capillary Occlusion: A Model
Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.
2016-01-01
An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722
Diffusion processes of fragmentary information on scale-free networks
NASA Astrophysics Data System (ADS)
Li, Xun; Cao, Lang
2016-05-01
Compartmental models of diffusion over contact networks have proven representative of real-life propagation phenomena among interacting individuals. However, there is a broad class of collective spreading mechanisms departing from compartmental representations, including those for diffusive objects capable of fragmentation and transmission unnecessarily as a whole. Here, we consider a continuous-state susceptible-infected-susceptible (SIS) model as an ideal limit-case of diffusion processes of fragmentary information on networks, where individuals possess fractions of the information content and update them by selectively exchanging messages with partners in the vicinity. Specifically, we incorporate local information, such as neighbors' node degrees and carried contents, into the individual partner choice, and examine the roles of a variety of such strategies in the information diffusion process, both qualitatively and quantitatively. Our method provides an effective and flexible route of modulating continuous-state diffusion dynamics on networks and has potential in a wide array of practical applications.
An egalitarian network model for the emergence of simple and complex cells in visual cortex
Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert
2004-01-01
We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891
Hybrid Teacher Leaders and the New Professional Development Ecology
ERIC Educational Resources Information Center
Margolis, Jason
2012-01-01
This two-year study examines an emergent model for promoting classroom change amidst systemic professional development efforts--the hybrid teacher leader (HTL). Utilizing ecological and teacher social network frameworks, the relative strengths and weaknesses of educators who both teach and lead teachers are explored. In-depth qualitative data from…
Handsheet formation and mechanical testing via fiber-level simulations
Leonard H. Switzer; Daniel J. Klingenberg; C. Tim Scott
2004-01-01
A fiber model and simulation method are employed to investigate the mechanical response of planar fiber networks subjected to elongational deformation. The simulated responses agree qualitatively with numerous experimental observations. suggesting that such simulation methods may be useful for probing the relationships between fiber properties and interactions and the...
A Markov Model Analysis of Problem-Solving Progress.
ERIC Educational Resources Information Center
Vendlinski, Terry
This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…
Proving Stabilization of Biological Systems
NASA Astrophysics Data System (ADS)
Cook, Byron; Fisher, Jasmin; Krepska, Elzbieta; Piterman, Nir
We describe an efficient procedure for proving stabilization of biological systems modeled as qualitative networks or genetic regulatory networks. For scalability, our procedure uses modular proof techniques, where state-space exploration is applied only locally to small pieces of the system rather than the entire system as a whole. Our procedure exploits the observation that, in practice, the form of modular proofs can be restricted to a very limited set. For completeness, our technique falls back on a non-compositional counterexample search. Using our new procedure, we have solved a number of challenging published examples, including: a 3-D model of the mammalian epidermis; a model of metabolic networks operating in type-2 diabetes; a model of fate determination of vulval precursor cells in the C. elegans worm; and a model of pair-rule regulation during segmentation in the Drosophila embryo. Our results show many orders of magnitude speedup in cases where previous stabilization proving techniques were known to succeed, and new results in cases where tools had previously failed.
Evolutionary prisoner's dilemma games coevolving on adaptive networks.
Lee, Hsuan-Wei; Malik, Nishant; Mucha, Peter J
2018-02-01
We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Qin, Ting Xin; Huang, Shuai; Wu, Jian Song; Meng, Xin Yan
2018-06-01
Some factors can affect the consequences of oil pipeline accident and their effects should be analyzed to improve emergency preparation and emergency response. Although there are some qualitative analysis models of risk factors' effects, the quantitative analysis model still should be researched. In this study, we introduce a Bayesian network (BN) model of risk factors' effects analysis in an oil pipeline accident case that happened in China. The incident evolution diagram is built to identify the risk factors. And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors' effects can be calculated. The most likely consequences given by this model are consilient with the case. Meanwhile, the quantitative estimations of risk factors' effects may provide a theoretical basis to take optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation and emergency response.
Quantifying Confidence in Model Predictions for Hypersonic Aircraft Structures
2015-03-01
of isolating calibrations of models in the network, segmented and simultaneous calibration are compared using the Kullback - Leibler ...value of θ. While not all test -statistics are as simple as measuring goodness or badness of fit , their directional interpretations tend to remain...data quite well, qualitatively. Quantitative goodness - of - fit tests are problematic because they assume a true empirical CDF is being tested or
Radio Signal Augmentation for Improved Training of a Convolutional Neural Network
2016-09-01
official government endorsement or approval of commercial products or services referenced in this report. Bluetooth ® is a registered...trademark of Bluetooth SIG, Inc.. Nuand™ and blade RF™ are trademarks of Nurand, LLC. Released by E. R. Buckland, Head IO Support to National... Bluetooth ® computer mouse, and Bluetooth ® search from a mobile cellular phone. Qualitatively, model Moffset dramatically outperformed model Mclean in
Resonator memories and optical novelty filters
NASA Astrophysics Data System (ADS)
Anderson, Dana Z.; Erle, Marie C.
Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.
Resonator Memories And Optical Novelty Filters
NASA Astrophysics Data System (ADS)
Anderson, Dana Z.; Erie, Marie C.
1987-05-01
Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content-addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive ma-terials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydream-ing" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.
Roberts, Alison S; Hopp, Trine; Sørensen, Ellen Westh; Benrimoj, Shalom I; Chen, Timothy F; Herborg, Hanne; Williams, Kylie; Aslani, Parisa
2003-10-01
The past decade has seen a notable shift in the practice of pharmacy, with a strong focus on the provision of cognitive pharmaceutical services (CPS) by community pharmacists. The benefits of these services have been well documented, yet their uptake appears to be slow. Various strategies have been developed to overcome barriers to the implementation of CPS, with varying degrees of success, and little is known about the sustainability of the practice changes they produce. Furthermore, the strategies developed are often specific to individual programs or services, and their applicability to other CPS has not been explored. There seems to be a need for a flexible change management model for the implementation and dissemination of a range of CPS, but before it can be developed, a better understanding of the change process is required. This paper describes the development of a qualitative research instrument that may be utilised to investigate practice change in community pharmacy. Specific objectives included gaining knowledge about the circumstances surrounding attempts to implement CPS, and understanding relationships that are important to the change process. Organisational theory provided the conceptual framework for development of the qualitative research instrument, within which two theories were used to give insight into the change process: Borum's theory of organisational change, which categorizes change strategies as rational, natural, political or open; and Social Network Theory, which helps identify and explain the relationships between key people involved in the change process. A semi-structured affecting practice change found in the literature that warranted further investigation with the theoretical perspectives of organisational change and social networks. To address the research objectives, the instrument covered four broad themes: roles, experiences, strategies and networks. The qualitative research instrument developed in this study provides a starting point for future research to lead to a description and understanding of practice change in community pharmacy, and subsequent development of models for the sustainable implementation of CPS.
Lim, Jennifer N W
2011-01-01
Psychosocial and cultural factors influencing cancer health behaviour have not been systematically investigated outside the western culture, and qualitative research is the best approach for this type of social research. The research methods employed to study health problems in Asia predominantly are quantitative techniques. The set up of the first psychosocial cancer research network in Asia marks the beginning of a collaboration to promote and spearhead applied qualitative healthcare research in cancer in the UK, Southeast Asia and the Middle East. This paper sets out the rationale, objectives and mission for the UK-SEA-ME Psychosocial-Cultural Cancer Research Network. The UK-SEA-ME network is made up of collaborators from the University of Leeds (UK), the University of Malaya (Malaysia), the National University of Singapore (Singapore) and the University of United Arab Emirates (UAE). The network promotes applied qualitative research to investigate the psychosocial and cultural factors influencing delayed and late presentation and diagnosis for cancer (breast cancer) in partner countries, as well as advocating the use of the mixed-methods research approach. The network also offers knowledge transfer for capacity building within network universities. The mission of the network is to improve public awareness about the importance of early management and prevention of cancer through research in Asia.
Murfee, Walter L.; Sweat, Richard S.; Tsubota, Ken-ichi; Gabhann, Feilim Mac; Khismatullin, Damir; Peirce, Shayn M.
2015-01-01
Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales. PMID:25844149
Modeling Physarum space exploration using memristors
NASA Astrophysics Data System (ADS)
Ntinas, V.; Vourkas, I.; Sirakoulis, G. Ch; Adamatzky, A. I.
2017-05-01
Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks.
Mechanical response of biopolymer double networks
NASA Astrophysics Data System (ADS)
Carroll, Joshua; Das, Moumita
We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.
The formation and evolution of domain walls
NASA Technical Reports Server (NTRS)
Press, William H.; Ryden, Barbara S.; Spergel, David N.
1991-01-01
Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.
NASA Astrophysics Data System (ADS)
Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft
2018-01-01
We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.
NASA Astrophysics Data System (ADS)
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
NASA Astrophysics Data System (ADS)
Wang, Q. J.; Robertson, D. E.; Haines, C. L.
2009-02-01
Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.
Epidemic thresholds for bipartite networks
NASA Astrophysics Data System (ADS)
Hernández, D. G.; Risau-Gusman, S.
2013-11-01
It is well known that sexually transmitted diseases (STD) spread across a network of human sexual contacts. This network is most often bipartite, as most STD are transmitted between men and women. Even though network models in epidemiology have quite a long history now, there are few general results about bipartite networks. One of them is the simple dependence, predicted using the mean field approximation, between the epidemic threshold and the average and variance of the degree distribution of the network. Here we show that going beyond this approximation can lead to qualitatively different results that are supported by numerical simulations. One of the new features, that can be relevant for applications, is the existence of a critical value for the infectivity of each population, below which no epidemics can arise, regardless of the value of the infectivity of the other population.
Predicting language diversity with complex networks
Gubiec, Tomasz
2018-01-01
We analyze the model of social interactions with coevolution of the topology and states of the nodes. This model can be interpreted as a model of language change. We propose different rewiring mechanisms and perform numerical simulations for each. Obtained results are compared with the empirical data gathered from two online databases and anthropological study of Solomon Islands. We study the behavior of the number of languages for different system sizes and we find that only local rewiring, i.e. triadic closure, is capable of reproducing results for the empirical data in a qualitative manner. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change. PMID:29702699
Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu
2018-06-15
Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.
Node Survival in Networks under Correlated Attacks
Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten
2015-01-01
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field
Jeong, Myeong-Hun; Duckham, Matt
2015-01-01
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes’ coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks. PMID:26343672
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field.
Jeong, Myeong-Hun; Duckham, Matt
2015-08-28
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks.
Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks.
Yao, Kun; Parkhill, John
2016-03-08
We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from an input electron density. The output of the network is used as a nonlocal correction to conventional local and semilocal kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. The density which minimizes the total energy given by the functional is examined in detail. We identify several avenues to improve on this exploratory work, by reducing numerical noise and changing the structure of our functional. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.
Emergence of hysteresis loop in social contagions on complex networks.
Su, Zhen; Wang, Wei; Li, Lixiang; Xiao, Jinghua; Stanley, H Eugene
2017-07-21
Understanding the spreading mechanisms of social contagions in complex network systems has attracted much attention in the physics community. Here we propose a generalized threshold model to describe social contagions. Using extensive numerical simulations and theoretical analyses, we find that a hysteresis loop emerges in the system. Specifically, the steady state of the system is sensitive to the initial conditions of the dynamics of the system. In the steady state, the adoption size increases discontinuously with the transmission probability of information about social contagions, and trial size exhibits a non-monotonic pattern, i.e., it first increases discontinuously then decreases continuously. Finally we study social contagions on heterogeneous networks and find that network topology does not qualitatively affect our results.
NASA Astrophysics Data System (ADS)
Bultreys, Tom; Stappen, Jeroen Van; Kock, Tim De; Boever, Wesley De; Boone, Marijn A.; Hoorebeke, Luc Van; Cnudde, Veerle
2016-11-01
The relative permeability behavior of rocks with wide ranges of pore sizes is in many cases still poorly understood and is difficult to model at the pore scale. In this work, we investigate the capillary pressure and relative permeability behavior of three outcrop carbonates and two tight reservoir sandstones with wide, multimodal pore size distributions. To examine how the drainage and imbibition properties of these complex rock types are influenced by the connectivity of macropores to each other and to zones with unresolved small-scale porosity, we apply a previously presented microcomputed-tomography-based multiscale pore network model to these samples. The sensitivity to the properties of the small-scale porosity is studied by performing simulations with different artificial sphere-packing-based networks as a proxy for these pores. Finally, the mixed-wet water-flooding behavior of the samples is investigated, assuming different wettability distributions for the microporosity and macroporosity. While this work is not an attempt to perform predictive modeling, it seeks to qualitatively explain the behavior of the investigated samples and illustrates some of the most recent developments in multiscale pore network modeling.
Using hybrid method to evaluate the green performance in uncertainty.
Tseng, Ming-Lang; Lan, Lawrence W; Wang, Ray; Chiu, Anthony; Cheng, Hui-Ping
2011-04-01
Green performance measure is vital for enterprises in making continuous improvements to maintain sustainable competitive advantages. Evaluation of green performance, however, is a challenging task due to the dependence complexity of the aspects, criteria, and the linguistic vagueness of some qualitative information and quantitative data together. To deal with this issue, this study proposes a novel approach to evaluate the dependence aspects and criteria of firm's green performance. The rationale of the proposed approach, namely green network balanced scorecard, is using balanced scorecard to combine fuzzy set theory with analytical network process (ANP) and importance-performance analysis (IPA) methods, wherein fuzzy set theory accounts for the linguistic vagueness of qualitative criteria and ANP converts the relations among the dependence aspects and criteria into an intelligible structural modeling used IPA. For the empirical case study, four dependence aspects and 34 green performance criteria for PCB firms in Taiwan were evaluated. The managerial implications are discussed.
The new challenges of multiplex networks: Measures and models
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
Functional connectivity dynamics: modeling the switching behavior of the resting state.
Hansen, Enrique C A; Battaglia, Demian; Spiegler, Andreas; Deco, Gustavo; Jirsa, Viktor K
2015-01-15
Functional connectivity (FC) sheds light on the interactions between different brain regions. Besides basic research, it is clinically relevant for applications in Alzheimer's disease, schizophrenia, presurgical planning, epilepsy, and traumatic brain injury. Simulations of whole-brain mean-field computational models with realistic connectivity determined by tractography studies enable us to reproduce with accuracy aspects of average FC in the resting state. Most computational studies, however, did not address the prominent non-stationarity in resting state FC, which may result in large intra- and inter-subject variability and thus preclude an accurate individual predictability. Here we show that this non-stationarity reveals a rich structure, characterized by rapid transitions switching between a few discrete FC states. We also show that computational models optimized to fit time-averaged FC do not reproduce these spontaneous state transitions and, thus, are not qualitatively superior to simplified linear stochastic models, which account for the effects of structure alone. We then demonstrate that a slight enhancement of the non-linearity of the network nodes is sufficient to broaden the repertoire of possible network behaviors, leading to modes of fluctuations, reminiscent of some of the most frequently observed Resting State Networks. Because of the noise-driven exploration of this repertoire, the dynamics of FC qualitatively change now and display non-stationary switching similar to empirical resting state recordings (Functional Connectivity Dynamics (FCD)). Thus FCD bear promise to serve as a better biomarker of resting state neural activity and of its pathologic alterations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A human factors systems approach to understanding team-based primary care: a qualitative analysis
Mundt, Marlon P.; Swedlund, Matthew P.
2016-01-01
Background. Research shows that high-functioning teams improve patient outcomes in primary care. However, there is no consensus on a conceptual model of team-based primary care that can be used to guide measurement and performance evaluation of teams. Objective. To qualitatively understand whether the Systems Engineering Initiative for Patient Safety (SEIPS) model could serve as a framework for creating and evaluating team-based primary care. Methods. We evaluated qualitative interview data from 19 clinicians and staff members from 6 primary care clinics associated with a large Midwestern university. All health care clinicians and staff in the study clinics completed a survey of their communication connections to team members. Social network analysis identified key informants for interviews by selecting the respondents with the highest frequency of communication ties as reported by their teammates. Semi-structured interviews focused on communication patterns, team climate and teamwork. Results. Themes derived from the interviews lent support to the SEIPS model components, such as the work system (Team, Tools and Technology, Physical Environment, Tasks and Organization), team processes and team outcomes. Conclusions. Our qualitative data support the SEIPS model as a promising conceptual framework for creating and evaluating primary care teams. Future studies of team-based care may benefit from using the SEIPS model to shift clinical practice to high functioning team-based primary care. PMID:27578837
Logic-based models in systems biology: a predictive and parameter-free network analysis method†
Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.
2012-01-01
Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
ERIC Educational Resources Information Center
Oancea, Alis; Florez Petour, Teresa; Atkinson, Jeanette
2017-01-01
This article introduces a methodological approach for articulating and communicating the impact and value of research: qualitative network analysis using collaborative configuration tracing and visualization. The approach was proposed initially in Oancea ("Interpretations and Practices of Research Impact across the Range of Disciplines…
Forecasting the portuguese stock market time series by using artificial neural networks
NASA Astrophysics Data System (ADS)
Isfan, Monica; Menezes, Rui; Mendes, Diana A.
2010-04-01
In this paper, we show that neural networks can be used to uncover the non-linearity that exists in the financial data. First, we follow a traditional approach by analysing the deterministic/stochastic characteristics of the Portuguese stock market data and some typical features are studied, like the Hurst exponents, among others. We also simulate a BDS test to investigate nonlinearities and the results are as expected: the financial time series do not exhibit linear dependence. Secondly, we trained four types of neural networks for the stock markets and used the models to make forecasts. The artificial neural networks were obtained using a three-layer feed-forward topology and the back-propagation learning algorithm. The quite large number of parameters that must be selected to develop a neural network forecasting model involves some trial and as a consequence the error is not small enough. In order to improve this we use a nonlinear optimization algorithm to minimize the error. Finally, the output of the 4 models is quite similar, leading to a qualitative forecast that we compare with the results of the application of k-nearest-neighbor for the same time series.
Hayes, Gillian R; Lee, Charlotte P; Dourish, Paul
2011-08-01
The purpose of this paper is to demonstrate how current visual representations of organizational and technological processes do not fully account for the variability present in everyday practices. We further demonstrate how narrative networks can augment these representations to indicate potential areas for successful or problematic adoption of new technologies and potential needs for additional training. We conducted a qualitative study of the processes and routines at a major academic medical center slated to be supported by the development and installation of a new comprehensive HIT system. We used qualitative data collection techniques including observations of the activities to be supported by the new system and interviews with department heads, researchers, and both clinical and non-clinical staff. We conducted a narrative network analysis of these data by choosing exemplar processes to be modeled, selecting and analyzing narrative fragments, and developing visual representations of the interconnection of these narratives. Narrative networks enable us to view the variety of ways work has been and can be performed in practice, influencing our ability to design for innovation in use. Narrative networks are a means for analyzing and visualizing organizational routines in concert with more traditional requirements engineering, workflow modeling, and quality improvement outcome measurement. This type of analysis can support a deeper and more nuanced understanding of how and why certain routines continue to exist, change, or stop entirely. At the same time, it can illuminate areas in which adoption may be slow, more training or communication may be needed, and routines preferred by the leadership are subverted by routines preferred by the staff. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.
2012-01-01
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor
2013-01-01
Unhealthy behaviors increase individual health risks and are a socioeconomic burden. Harnessing social influence is perceived as fundamental for interventions to influence health-related behaviors. However, the mechanisms through which social influence occurs are poorly understood. Online social networks provide the opportunity to understand these mechanisms as they digitally archive communication between members. In this paper, we present a methodology for content-based social network analysis, combining qualitative coding, automated text analysis, and formal network analysis such that network structure is determined by the content of messages exchanged between members. We apply this approach to characterize the communication between members of QuitNet, an online social network for smoking cessation. Results indicate that the method identifies meaningful theme-based social sub-networks. Modeling social network data using this method can provide us with theme-specific insights such as the identities of opinion leaders and sub-community clusters. Implications for design of targeted social interventions are discussed.
A Network Thermodynamic Approach to Compartmental Analysis
Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387
Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.
Mikulecky, D C; Huf, E G; Thomas, S R
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.
Characterizing and modeling the dynamics of activity and popularity.
Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru
2014-01-01
Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.
Characterizing and Modeling the Dynamics of Activity and Popularity
Zhang, Peng; Li, Menghui; Gao, Liang; Fan, Ying; Di, Zengru
2014-01-01
Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks. PMID:24586586
ERIC Educational Resources Information Center
Ugurlu, Zeynep
2016-01-01
In this research, it has been aimed to determine the opinions of administrators serving in the public education organizations at the central districts of Sinop on inter-organizations collaboration (collaboration levels). The study, in the descriptive survey model, has been carried out by a mixed research approach where qualitative, quantitative…
Measuring and modeling correlations in multiplex networks.
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.
Suppressing disease spreading by using information diffusion on multiplex networks.
Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene
2016-07-06
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
Hypergraph topological quantities for tagged social networks.
Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido
2009-09-01
Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.
Hypergraph topological quantities for tagged social networks
NASA Astrophysics Data System (ADS)
Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido
2009-09-01
Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.
Ferromagnetic transition in a simple variant of the Ising model on multiplex networks
NASA Astrophysics Data System (ADS)
Krawiecki, A.
2018-02-01
Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.
Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick
2016-04-08
The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.
Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick
2016-01-01
The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171
From neurons to epidemics: How trophic coherence affects spreading processes.
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Application of bayesian networks to real-time flood risk estimation
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
Petri Nets - A Mathematical Formalism to Analyze Chemical Reaction Networks.
Koch, Ina
2010-12-17
In this review we introduce and discuss Petri nets - a mathematical formalism to describe and analyze chemical reaction networks. Petri nets were developed to describe concurrency in general systems. We find most applications to technical and financial systems, but since about twenty years also in systems biology to model biochemical systems. This review aims to give a short informal introduction to the basic formalism illustrated by a chemical example, and to discuss possible applications to the analysis of chemical reaction networks, including cheminformatics. We give a short overview about qualitative as well as quantitative modeling Petri net techniques useful in systems biology, summarizing the state-of-the-art in that field and providing the main literature references. Finally, we discuss advantages and limitations of Petri nets and give an outlook to further development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramírez, Carlos; Mendoza, Luis
2018-04-01
Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.
A human factors systems approach to understanding team-based primary care: a qualitative analysis.
Mundt, Marlon P; Swedlund, Matthew P
2016-12-01
Research shows that high-functioning teams improve patient outcomes in primary care. However, there is no consensus on a conceptual model of team-based primary care that can be used to guide measurement and performance evaluation of teams. To qualitatively understand whether the Systems Engineering Initiative for Patient Safety (SEIPS) model could serve as a framework for creating and evaluating team-based primary care. We evaluated qualitative interview data from 19 clinicians and staff members from 6 primary care clinics associated with a large Midwestern university. All health care clinicians and staff in the study clinics completed a survey of their communication connections to team members. Social network analysis identified key informants for interviews by selecting the respondents with the highest frequency of communication ties as reported by their teammates. Semi-structured interviews focused on communication patterns, team climate and teamwork. Themes derived from the interviews lent support to the SEIPS model components, such as the work system (Team, Tools and Technology, Physical Environment, Tasks and Organization), team processes and team outcomes. Our qualitative data support the SEIPS model as a promising conceptual framework for creating and evaluating primary care teams. Future studies of team-based care may benefit from using the SEIPS model to shift clinical practice to high functioning team-based primary care. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Rigby, Jessica G.
2016-01-01
First-year principals encounter multiple messages about what it means to be instructional leaders; this may matter for how they enact instructional leadership. This cross-case qualitative study uses a qualitative approach of social network analysis to uncover the mechanisms through which first-year principals encountered particular beliefs about…
Quantum statistics in complex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
The Barabasi-Albert (BA) model for a complex network shows a characteristic power law connectivity distribution typical of scale free systems. The Ising model on the BA network shows that the ferromagnetic phase transition temperature depends logarithmically on its size. We have introduced a fitness parameter for the BA network which describes the different abilities of nodes to compete for links. This model predicts the formation of a scale free network where each node increases its connectivity in time as a power-law with an exponent depending on its fitness. This model includes the fact that the node connectivity and growth rate do not depend on the node age alone and it reproduces non trivial correlation properties of the Internet. We have proposed a model of bosonic networks by a generalization of the BA model where the properties of quantum statistics can be applied. We have introduced a fitness eta i = e-bei where the temperature T = 1/ b is determined by the noise in the system and the energy ei accounts for qualitative differences of each node for acquiring links. The results of this work show that a power law network with exponent gamma = 2 can give a Bose condensation where a single node grabs a finite fraction of all the links. In order to address the connection with self-organized processes we have introduced a model for a growing Cayley tree that generalizes the dynamics of invasion percolation. At each node we associate a parameter ei (called energy) such that the probability to grow for each node is given by pii ∝ ebei where T = 1/ b is a statistical parameter of the system determined by the noise called the temperature. This model has been solved analytically with a similar mathematical technique as the bosonic scale-free networks and it shows the self organization of the low energy nodes at the interface. In the thermodynamic limit the Fermi distribution describes the probability of the energy distribution at the interface.
Ho, Joyce; Corden, Marya E.; Caccamo, Lauren; Tomasino, Kathryn Noth; Duffecy, Jenna; Begale, Mark; Mohr, David C.
2016-01-01
Background Depression during adolescence is common but can be prevented. Behavioral intervention technologies (BITs) designed to prevent depression in adolescence, especially standalone web-based interventions, have shown mixed outcomes, likely due to poor intervention adherence. BIT research involving adults has shown that the presence of coaches or peers promotes intervention use. Developmentally, adolescence is a time when peer-based social relationships take precedence. This study examines whether peer-networked support may promote adherence to BITs in this age group. Objective Adopting the framework of the Supportive Accountability model, which defines the types of human support and interactions required to maintain engagement and persistence with BITs, this paper presents a feasibility study of a peer-networked online intervention for depression prevention among adolescents. We described the development of the peer network, the evaluation of participant use of the peer networking features, and qualitative user feedback to inform continued BIT development. Method Two groups of adolescents (N = 13) participated in 10-week programs of the peer networked based online intervention. Adolescents had access to didactic lessons, CBT based mood management tools, and peer networking features. The peer networking features are integrated into the site by making use expectations explicit, allow network members to monitor the activities of others, and to supportively hold each other accountable for meeting use expectations. The study collected qualitative feedback from participants as well as usage of site features and tools. Results Participants logged in an average of 12.8 sessions over an average of 10.4 unique days during the 10-week program. On average, 66% of all use sessions occurred within the first 3 weeks of use. The number of “exchange comments”, that is, comments posted that were part of an exchange between two or more participants, was significantly positively correlated with mean time spent on site (r = 0.62, p = 0.032), use of the Activity Tracker (r = 0.70, p = 0.012) and Didactic Lesson (r = 0.73, p = 0.007). Qualitative interviews revealed that adolescents generally liked and were motivated by the peer networking features during the first weeks of the intervention when general site use by group members was high. However, the decrease of site use by group members during the subsequent weeks negatively affected participants’ desire to log on or engage with group members. Conclusions This pilot study highlights the potential that a BIT designed to harness the connection among a peer network, thereby promoting supportive accountability, may improve adolescent adherence to BITs for depression prevention. PMID:27722095
The effective application of a discrete transition model to explore cell-cycle regulation in yeast
2013-01-01
Background Bench biologists often do not take part in the development of computational models for their systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model that does not depend on the availability of quantitative data, and can be directly used without a need for intensive computational background. Results We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation. The structure of the network was validated by its response to computational perturbations such as mutations, and its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability, demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines commitment of cells to enter and complete the cell-cycle. Conclusion The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be easily integrated as a useful approach for the study of networks, enriching experimental biology with computational insights. PMID:23915717
Coopetitive Supply Chain Relationship Model: Application to the Smartphone Manufacturing Network.
Kwok, Jeremy Jie Ming; Lee, Dong-Yup
2015-01-01
Previous researches for understanding supply chain relationship have mostly focused on its vertical collaboration between buyers and suppliers. However, there have been some instances of volatile and stable collaborative relationships amongst competitors such as Apple-Samsung product manufacturer-component supplier relationship and airline alliances, respectively, which is recognized as coopetition. Even though there have been several qualitative studies and a number of game theory models on coopetition, it is rare to find any attempts on quantitative characterization of such coopetitive dynamic behavior in supply chain relationship. Hence, in this work, we formulated a MINLP model mathematically representing coopetitive relationships in a cost efficient supply chain network. In particular, the coopetition factor was newly introduced to measure the degree of coopetition among supply chain players and determine the optimal level of coopetition to engage in. The utility and practicality of the model were strongly demonstrated using a case study of a hypothetical smartphone supply chain network under different scenarios, thus proposing their strategically viable optimal interactions. Therefore, this exploratory study can herald a new era of global coopetitive business.
Coopetitive Supply Chain Relationship Model: Application to the Smartphone Manufacturing Network
Kwok, Jeremy Jie Ming; Lee, Dong-Yup
2015-01-01
Previous researches for understanding supply chain relationship have mostly focused on its vertical collaboration between buyers and suppliers. However, there have been some instances of volatile and stable collaborative relationships amongst competitors such as Apple-Samsung product manufacturer-component supplier relationship and airline alliances, respectively, which is recognized as coopetition. Even though there have been several qualitative studies and a number of game theory models on coopetition, it is rare to find any attempts on quantitative characterization of such coopetitive dynamic behavior in supply chain relationship. Hence, in this work, we formulated a MINLP model mathematically representing coopetitive relationships in a cost efficient supply chain network. In particular, the coopetition factor was newly introduced to measure the degree of coopetition among supply chain players and determine the optimal level of coopetition to engage in. The utility and practicality of the model were strongly demonstrated using a case study of a hypothetical smartphone supply chain network under different scenarios, thus proposing their strategically viable optimal interactions. Therefore, this exploratory study can herald a new era of global coopetitive business. PMID:26186227
Spatial Dynamics of Multilayer Cellular Neural Networks
NASA Astrophysics Data System (ADS)
Wu, Shi-Liang; Hsu, Cheng-Hsiung
2018-02-01
The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.
Uncovering the Many Sides of Family Child Care: A Study of the Family Child Care Connection.
ERIC Educational Resources Information Center
Musick, Judith S.
This qualitative research study evaluated the impact of the Family Child Care Connection, a model designed to improve the quality of family child care for infants and toddlers. This 5-year project was administered by the YWCA of Metropolitan Chicago and implemented in four satellite networks of family child care providers located in low income…
The flow of power law fluids in elastic networks and porous media.
Sochi, Taha
2016-02-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.
A National Perspective on Women Owning Woodlands (WOW) Networks
ERIC Educational Resources Information Center
Huff, Emily S.
2017-01-01
This article provides a national overview of women owning woodlands (WOW) networks and the barriers and successes they encounter. Qualitative interview data with key network leaders were used for increasing understanding of how these networks operate. Network leaders were all connected professionally, and all successful WOW networks involved…
Leveraging Modeling Approaches: Reaction Networks and Rules
Blinov, Michael L.; Moraru, Ion I.
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Research and knowledge in Ontario tobacco control networks.
Bickford, Julia J; Kothari, Anita R
2008-01-01
This study sought to better understand the role of research knowledge in Ontario tobacco control networks by asking: 1) How is research managed; 2) How is research evaluated; and 3) How is research utilized? This is a secondary analysis of a qualitative study based on individual semistructured interviews with 29 participants between January and May 2006. These participants were purposefully sampled from across four Ministries in the provincial government (n = 7), non-government (n = 15), and public health organizations (n = 7). Interviews were transcribed verbatim and coded and analyzed using QSR N7 qualitative software. This study received ethics approval from The University of Western Ontario Health Research Ethics Board. There exists a dissonance between the preference for peer-reviewed, unbiased, non-partisan knowledge to support claims and the need for fast, "real-time" information on which to base tobacco-related policy decisions. Second, there is a great deal of tacit knowledge held by experts within the Ontario tobacco control community. The networks among government, non-government, and public health organizations are the structures through which tacit knowledge is exchanged. These networks are dynamic, fluid and shifting. There exists a gap in the production and utilization of research knowledge for tobacco control policy. Tacit knowledge held by experts in Ontario tobacco control networks is an integral means of managing and evaluating research knowledge. Finally, this study builds on Weiss's concept of tactical model of evidence use by highlighting the utilization of research to enhance one's credibility.
New patterns in human biogeography revealed by networks of contacts between linguistic groups.
Capitán, José A; Bock Axelsen, Jacob; Manrubia, Susanna
2015-03-07
Human languages differ broadly in abundance and are distributed highly unevenly on the Earth. In many qualitative and quantitative aspects, they strongly resemble biodiversity distributions. An intriguing and previously unexplored issue is the architecture of the neighbouring relationships between human linguistic groups. Here we construct and characterize these networks of contacts and show that they represent a new kind of spatial network with uncommon structural properties. Remarkably, language networks share a meaningful property with food webs: both are quasi-interval graphs. In food webs, intervality is linked to the existence of a niche space of low dimensionality; in language networks, we show that the unique relevant variable is the area occupied by the speakers of a language. By means of a range model analogous to niche models in ecology, we show that a geometric restriction of perimeter covering by neighbouring linguistic domains explains the structural patterns observed. Our findings may be of interest in the development of models for language dynamics or regarding the propagation of cultural innovations. In relation to species distribution, they pose the question of whether the spatial features of species ranges share architecture, and eventually generating mechanism, with the distribution of human linguistic groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa
2016-01-01
Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel’ perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive–interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen the state planning and supervision functions and improve professional working conditions and skills. PMID:26874327
Stochastic opinion formation in scale-free networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Bartolozzi; D. B. Leinweber; A. W. Thomas
2005-10-01
The dynamics of opinion formation in large groups of people is a complex nonlinear phenomenon whose investigation is just beginning. Both collective behavior and personal views play an important role in this mechanism. In the present work we mimic the dynamics of opinion formation of a group of agents, represented by two states 1, as a stochastic response of each agent to the opinion of his/her neighbors in the social network and to feedback from the average opinion of the whole. In the light of recent studies, a scale-free Barabsi-Albert network has been selected to simulate the topology of themore » interactions. A turbulent-like dynamics, characterized by an intermittent behavior, is observed for a certain range of the model parameters. The problem of uncertainty in decision taking is also addressed both from a topological point of view, using random and targeted removal of agents from the network, and by implementing a three-state model, where the third state, zero, is related to the information available to each agent. Finally, the results of the model are tested against the best known network of social interactions: the stock market. A time series of daily closures of the Dow-Jones index has been used as an indicator of the possible applicability of our model in the financial context. Good qualitative agreement is found.« less
ERIC Educational Resources Information Center
Velastegui, Pamela J.
2013-01-01
This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…
Integral equation theory study on the phase separation in star polymer nanocomposite melts.
Zhao, Lei; Li, Yi-Gui; Zhong, Chongli
2007-10-21
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.
The Bass diffusion model on networks with correlations and inhomogeneous advertising
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Brunner, J.; Modanese, G.
2016-09-01
The Bass model, which is an effective forecasting tool for innovation diffusion based on large collections of empirical data, assumes an homogeneous diffusion process. We introduce a network structure into this model and we investigate numerically the dynamics in the case of networks with link density $P(k)=c/k^\\gamma$, where $k=1, \\ldots , N$. The resulting curve of the total adoptions in time is qualitatively similar to the homogeneous Bass curve corresponding to a case with the same average number of connections. The peak of the adoptions, however, tends to occur earlier, particularly when $\\gamma$ and $N$ are large (i.e., when there are few hubs with a large maximum number of connections). Most interestingly, the adoption curve of the hubs anticipates the total adoption curve in a predictable way, with peak times which can be, for instance when $N=100$, between 10% and 60% of the total adoptions peak. This may allow to monitor the hubs for forecasting purposes. We also consider the case of networks with assortative and disassortative correlations and a case of inhomogeneous advertising where the publicity terms are "targeted" on the hubs while maintaining their total cost constant.
Review of Literature on Mentorship Networks in Medicine: Where Are We Now and Where Are We Going?
NASA Astrophysics Data System (ADS)
Mickelson, Jennifer Judith
Mentorship is imperative in medical training and conceptual frameworks for mentoring continue to evolve. This study is an integrated review of the literature on mentoring networks. A systematic review of the literature on mentoring networks identified 943 articles from multiple databases. 24 relevant articles under went qualitative analysis. An iterative approach was taken to formulate themes, subthemes and codes. Three major themes were identified. The first theme was that group or peer networks meet evolving and dynamic or changing needs through training and career development. A prominent subtheme was identified which was the need for mentees to be the architects or directors of their evolving mentorship networks. The second theme identified was that mentorship networks offered a solution to barriers associated with the dyad model of mentorship. The third theme was the importance of the informality or "voluntary marriages", as distinguished from structured formal programs, to create meaningful mentorship networks. Future directions of study include examining how to empower mentees to facilitate and direct their mentorship networks.
Brown, Bernadette Bea; Patel, Cyra; McInnes, Elizabeth; Mays, Nicholas; Young, Jane; Haines, Mary
2016-08-08
Reorganisation of healthcare services into networks of clinical experts is increasing as a strategy to promote the uptake of evidence based practice and to improve patient care. This is reflected in significant financial investment in clinical networks. However, there is still some question as to whether clinical networks are effective vehicles for quality improvement. The aim of this systematic review was to ascertain the effectiveness of clinical networks and identify how successful networks improve quality of care and patient outcomes. A systematic search was undertaken in accordance with the PRISMA approach in Medline, Embase, CINAHL and PubMed for relevant papers between 1 January 1996 and 30 September 2014. Established protocols were used separately to examine and assess the evidence from quantitative and qualitative primary studies and then integrate findings. A total of 22 eligible studies (9 quantitative; 13 qualitative) were included. Of the quantitative studies, seven focused on improving quality of care and two focused on improving patient outcomes. Quantitative studies were limited by a lack of rigorous experimental design. The evidence indicates that clinical networks can be effective vehicles for quality improvement in service delivery and patient outcomes across a range of clinical disciplines. However, there was variability in the networks' ability to make meaningful network- or system-wide change in more complex processes such as those requiring intensive professional education or more comprehensive redesign of care pathways. Findings from qualitative studies indicated networks that had a positive impact on quality of care and patients outcomes were those that had adequate resources, credible leadership and efficient management coupled with effective communication strategies and collaborative trusting relationships. There is evidence that clinical networks can improve the delivery of healthcare though there are few high quality quantitative studies of their effectiveness. Our findings can provide policymakers with some insight into how to successfully plan and implement clinical networks by ensuring strong clinical leadership, an inclusive organisational culture, adequate resourcing and localised decision-making authority.
Contextual Modulation is Related to Efficiency in a Spiking Network Model of Visual Cortex.
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo; Vanni, Simo
2015-01-01
In the visual cortex, stimuli outside the classical receptive field (CRF) modulate the neural firing rate, without driving the neuron by themselves. In the primary visual cortex (V1), such contextual modulation can be parametrized with an area summation function (ASF): increasing stimulus size causes first an increase and then a decrease of firing rate before reaching an asymptote. Earlier work has reported increase of sparseness when CRF stimulation is extended to its surroundings. However, there has been no clear connection between the ASF and network efficiency. Here we aimed to investigate possible link between ASF and network efficiency. In this study, we simulated the responses of a biomimetic spiking neural network model of the visual cortex to a set of natural images. We varied the network parameters, and compared the V1 excitatory neuron spike responses to the corresponding responses predicted from earlier single neuron data from primate visual cortex. The network efficiency was quantified with firing rate (which has direct association to neural energy consumption), entropy per spike and population sparseness. All three measures together provided a clear association between the network efficiency and the ASF. The association was clear when varying the horizontal connectivity within V1, which influenced both the efficiency and the distance to ASF, DAS. Given the limitations of our biophysical model, this association is qualitative, but nevertheless suggests that an ASF-like receptive field structure can cause efficient population response.
Phase transitions in the q -voter model with noise on a duplex clique
NASA Astrophysics Data System (ADS)
Chmiel, Anna; Sznajd-Weron, Katarzyna
2015-11-01
We study a nonlinear q -voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. To study the role of the multilevelness in this model we propose three methods of transferring the model from a mono- to a multiplex network. They take into account two criteria: one related to the status of independence (LOCAL vs GLOBAL) and one related to peer pressure (AND vs OR). In order to examine the influence of the presence of more than one level in the social network, we perform simulations on a particularly simple multiplex: a duplex clique, which consists of two fully overlapped complete graphs (cliques). Solving numerically the rate equation and simultaneously conducting Monte Carlo simulations, we provide evidence that even a simple rearrangement into a duplex topology may lead to significant changes in the observed behavior. However, qualitative changes in the phase transitions can be observed for only one of the considered rules: LOCAL&AND. For this rule the phase transition becomes discontinuous for q =5 , whereas for a monoplex such behavior is observed for q =6 . Interestingly, only this rule admits construction of realistic variants of the model, in line with recent social experiments.
ERIC Educational Resources Information Center
Latif, A.; Windle, R.; Wharrad, H.
2016-01-01
In higher education, undergraduate teaching materials are increasingly becoming available online. There is a need to understand the complex processes that happen during their production and how social networks between different groups impact on their development. This paper draws on qualitative interviews and participant drawings of their social…
Yazdizadeh, Bahareh; Majdzadeh, Reza; Alami, Ali; Amrolalaei, Sima
2014-10-29
Formal knowledge networks are considered among the solutions for strengthening knowledge translation and one of the elements of innovative systems in developing and developed countries. In the year 2000, knowledge networks were established in Iran's health system to organize, lead, empower, and coordinate efforts made by health-related research centers in the country. Since the assessment of a knowledge network is one of the main requirements for its success, the current study was designed in two qualitative and quantitative sections to identify the strengths and weaknesses of the established knowledge networks and to assess their efficiency. In the qualitative section, semi-structured, in-depth interviews were held with network directors and secretaries. The interviews were analyzed through the framework approach. To analyze effectiveness, social network analysis approach was used. That is, by considering the networks' research council members as 'nodes', and the numbers of their joint articles--before and after the network establishments--as 'relations or ties', indices of density, clique, and centrality were calculated for each network. In the qualitative section, non-transparency of management, lack of goals, administrative problems were among the most prevalent issues observed. Currently, the most important challenges are the policies related to them and their management. In the quantitative section, we observed that density and clique indices had risen for some networks; however, the centrality index for the same networks was not as high. Consequently the attribution of density and clique indices to these networks was not possible. Therefore, consolidating and revising policies relevant to the networks and preparing a guide for establishing managing networks could prove helpful. To develop knowledge and technology in a country, networks need to solve the problems they face in management and governance. That is, the first step towards the realization of true knowledge networks in health system.
Applying differential dynamic logic to reconfigurable biological networks.
Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena
2017-09-01
Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Roger, Kerstin Stieber; Halas, Gayle
2012-01-01
As qualitative research methodologies continue to evolve and develop, both students and experienced researchers are showing greater interest in learning about and developing new approaches. To meet this need, faculty at the University of Manitoba created the Qualitative Research Group (QRG), a community of practice that utilizes experiential…
Identifying changes in the support networks of end-of-life carers using social network analysis
Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie
2015-01-01
End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. PMID:24644162
de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano
2015-06-01
Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.
ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative–quantitative modeling
Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf
2012-01-01
Summary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if–then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLabTM-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. Availability: ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/ Contact: stefan.streif@ovgu.de PMID:22451270
Lyons, Antonia C; Goodwin, Ian; McCreanor, Tim; Griffin, Christine
2015-04-01
Understandings of health behaviors can be enriched by using innovative qualitative research designs. We illustrate this with a project that used multiple qualitative methods to explore the confluence of young adults' drinking behaviors and social networking practices in Aotearoa, New Zealand. Participants were 18-25 year old males and females from diverse ethnic, class, and occupational backgrounds. In Stage 1, 34 friendship focus group discussions were video-recorded with 141 young adults who talked about their drinking and social networking practices. In Stage 2, 23 individual interviews were conducted using screen-capture software and video to record participants showing and discussing their Facebook pages. In Stage 3, a database of Web-based material regarding drinking and alcohol was developed and analyzed. In friendship group data, young adults co-constructed accounts of drinking practices and networking about drinking via Facebook as intensely social and pleasurable. However, this pleasure was less prominent in individual interviews, where there was greater explication of unpleasant or problematic experiences and practices. The pleasure derived from drinking and social networking practices was also differentiated by ethnicity, gender, and social class. Juxtaposing the Web-based data with participants' talk about their drinking and social media use showed the deep penetration of online alcohol marketing into young people's social worlds. Multiple qualitative methods, generating multimodal datasets, allowed valuable nuanced insights into young adults' drinking practices and social networking behaviors. This knowledge can usefully inform health policy, health promotion strategies, and targeted health interventions. (c) 2015 APA, all rights reserved).
Recruitment dynamics in adaptive social networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Recruitment dynamics in adaptive social networks.
Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Protease inhibitors: changing the way AIDS case management does business.
Merithew, M A; Davis-Satterla, L
2000-09-01
The purpose of the qualitative evaluation study discussed in this article was to examine the AIDS case management model under which five nonprofit AIDS service organizations (ASOs) in Midcity were operating. The study was organized around 40 qualitative interviews with executive directors, directors, and case managers. The finding was that AIDS case management is evolving to accommodate the changing environmental/contextual conditions that have resulted from combination drug therapies (protease inhibitors) introduced in 1996. The agencies are responding to the changes individually rather than as a network, and responses vary among the agencies. Institutional theory, an examination of the interconnectedness of clients, the ASOs, and their environmental context guided the analysis of the findings.
Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J
2015-02-01
Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298 km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
Barrington, Clare; Gandhi, Anisha; Gill, Adrienne; Villa Torres, Laura; Brietzke, Maria Priscila; Hightow-Weidman, Lisa
2017-12-03
Latinos in the U.S. are disproportionately affected by HIV and are more likely than non-Latinos to present with a late diagnosis, which delays engagement in HIV care and treatment. Social networks may provide normative influence and social support for HIV testing, but a contextualised understanding of networks is needed in order to maximise these social resources. We conducted qualitative interviews with foreign-born Latino men and transgender women (n = 17) in a new immigrant destination to explore their social networks. Most participants described having smaller social networks after migrating. Networks included both local and transnational ties, but most participants had few close ties. Contextual factors including stigma and geographic dispersion limited the re-construction of networks with close ties after migration. HIV testing was not a common topic of discussion with social network ties. Efforts to improve early uptake of HIV testing among Latino immigrants may benefit from engaging with social networks, but such efforts need to address how the context in which networks operate enables access to testing.
Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks
Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M.; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne
2017-01-01
Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system. PMID:28129330
Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.
Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M; Thiele, Sven; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne
2017-01-01
Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system.
Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan
2018-01-01
Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485
NASA Astrophysics Data System (ADS)
García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.
2009-04-01
In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone with an adjustment of 95.1 % for ANN model and 89.4% for LR model. In addition, we make a comparative analysis of both techniques using the Receiver Operating Characteristic (ROC) curve, a graphical plot of the sensitivity vs. (1 - specificity) for a binary classifier system in function of its discrimination threshold, and calculating the Area Under the ROC (AUROC) value for each model. Finally, the previous models are used for the developing a new probabilistic landslide hazard map for future events. They are obtained combining the expected triggering factor (calculated earthquake ground motion) for a return period of 475 years with the susceptibility map.
Testing the Community-Based Learning Collaborative (CBLC) implementation model: a study protocol.
Hanson, Rochelle F; Schoenwald, Sonja; Saunders, Benjamin E; Chapman, Jason; Palinkas, Lawrence A; Moreland, Angela D; Dopp, Alex
2016-01-01
High rates of youth exposure to violence, either through direct victimization or witnessing, result in significant health/mental health consequences and high associated lifetime costs. Evidence-based treatments (EBTs), such as Trauma-Focused Cognitive Behavioral Therapy (TF-CBT), can prevent and/or reduce these negative effects, yet these treatments are not standard practice for therapists working with children identified by child welfare or mental health systems as needing services. While research indicates that collaboration among child welfare and mental health services sectors improves availability and sustainment of EBTs for children, few implementation strategies designed specifically to promote and sustain inter-professional collaboration (IC) and inter-organizational relationships (IOR) have undergone empirical investigation. A potential candidate for evaluation is the Community-Based Learning Collaborative (CBLC) implementation model, an adaptation of the Learning Collaborative which includes strategies designed to develop and strengthen inter-professional relationships between brokers and providers of mental health services to promote IC and IOR and achieve sustained implementation of EBTs for children within a community. This non-experimental, mixed methods study involves two phases: (1) analysis of existing prospective quantitative and qualitative quality improvement and project evaluation data collected pre and post, weekly, and monthly from 998 participants in one of seven CBLCs conducted as part of a statewide initiative; and (2) Phase 2 collection of new quantitative and qualitative (key informant interviews) data during the funded study period to evaluate changes in relations among IC, IOR, social networks and the penetration and sustainment of TF-CBT in targeted communities. Recruitment for Phase 2 is from the pool of 998 CBLC participants to achieve a targeted enrollment of n = 150. Study aims include: (1) Use existing quality improvement (weekly/monthly online surveys; pre-post surveys; interviews) and newly collected quantitative (monthly surveys) and qualitative (key informant interviews) data and social network analysis to test whether CBLC strategies are associated with penetration and sustainment of TF-CBT; and (2) Use existing quantitative quality improvement (weekly/monthly on-line surveys; pre/post surveys) and newly collected qualitative (key informant interviews) data and social network analysis to test whether CBLC strategies are associated with increased IOR and IC intensity. The proposed research leverages an on-going, statewide implementation initiative to generate evidence about implementation strategies needed to make trauma-focused EBTs more accessible to children. This study also provides feasibility data to inform an effectiveness trial that will utilize a time-series design to rigorously evaluate the CBLC model as a mechanism to improve access and sustained use of EBTs for children.
A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases
Chernomoretz, Ariel; Agüero, Fernán
2016-01-01
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. PMID:26735851
A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.
Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Agüero, Fernán
2016-01-01
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.
Hierarchy in directed random networks.
Mones, Enys
2013-02-01
In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.
Vegué, Marina; Perin, Rodrigo; Roxin, Alex
2017-08-30
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in their global properties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when inferred via small sample sizes, many networks may be indistinguishable despite being globally distinct. We develop a connectivity measure that successfully classifies networks even when estimated locally with a few neurons at a time. We show that data from rat cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on nonspatial, asymmetric clustering. Copyright © 2017 the authors 0270-6474/17/378498-13$15.00/0.
Epidemic spreading on preferred degree adaptive networks.
Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P
2012-01-01
We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = <κ>/<κ2> and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
A consensus opinion model based on the evolutionary game
NASA Astrophysics Data System (ADS)
Yang, Han-Xin
2016-08-01
We propose a consensus opinion model based on the evolutionary game. In our model, both of the two connected agents receive a benefit if they have the same opinion, otherwise they both pay a cost. Agents update their opinions by comparing payoffs with neighbors. The opinion of an agent with higher payoff is more likely to be imitated. We apply this model in scale-free networks with tunable degree distribution. Interestingly, we find that there exists an optimal ratio of cost to benefit, leading to the shortest consensus time. Qualitative analysis is obtained by examining the evolution of the opinion clusters. Moreover, we find that the consensus time decreases as the average degree of the network increases, but increases with the noise introduced to permit irrational choices. The dependence of the consensus time on the network size is found to be a power-law form. For small or larger ratio of cost to benefit, the consensus time decreases as the degree exponent increases. However, for moderate ratio of cost to benefit, the consensus time increases with the degree exponent. Our results may provide new insights into opinion dynamics driven by the evolutionary game theory.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
Qualitative Epidemiologic Methods Can Improve Local Prevention Programming among Adolescents
ERIC Educational Resources Information Center
Daniulaityte, Raminta; Siegal, Harvey A.; Carlson, Robert G.; Kenne, Deric R.; Starr, Sanford; DeCamp, Brad
2004-01-01
The Ohio Substance Abuse Monitoring Network (OSAM) is designed to provide accurate, timely, qualitatively-oriented epidemiologic descriptions of substance abuse trends and emerging problems in the state's major urban and rural areas. Use of qualitative methods in identifying and assessing substance abuse practices in local communities is one of…
Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves
NASA Astrophysics Data System (ADS)
Ferer, M. V.; Smith, D. H.; Lace, M. J.
2013-12-01
'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).
Pai, Sucheta; Boutin-Foster, Carla; Mancuso, Carol A; Loganathan, Raghu; Basir, Riyad; Kanna, Balavenkatesh
2014-09-01
The objective of this study was to identify the types of interactions between asthma patients and their social networks such as close family and friends that influence the management of asthma. Participants were Latino adults presenting for a repeat visit to the emergency department for asthma treatment. Qualitative interviews were conducted with 76 participants. They were asked to describe the experiences of their social networks that have asthma and how interactions with these individuals influenced their own asthma management. Responses were transcribed and analyzed using Grounded Theory as a qualitative analytic approach. Responses were assigned codes; similar codes were grouped into concepts and then categorized to form overarching themes. Four themes emerged: (1) Perceptions of severity of asthma may be based on the experiences of social networks; (2) Economic factors may contribute to the sharing and borrowing of asthma medications between patients and their social networks; (3) Economic factors may contribute to using home remedies instead of prescribed medications; (4) Social network members may be unaware of the factors that trigger asthma and therefore, contribute to asthma exacerbations. This study identified important social network interactions that may impact asthma management in Latino adults. These results can be used to broaden the current focus of asthma self-management programs to incorporate discussions on the role of social networks. A focus on social network interactions addresses the social epidemiology of asthma and advances our understanding of root causes that may underlie the high prevalence of asthma in many Latino communities.
Sodankylä ionospheric tomography data set 2003-2014
NASA Astrophysics Data System (ADS)
Norberg, Johannes; Roininen, Lassi; Kero, Antti; Raita, Tero; Ulich, Thomas; Markkanen, Markku; Juusola, Liisa; Kauristie, Kirsti
2016-07-01
Sodankylä Geophysical Observatory has been operating a receiver network for ionospheric tomography and collecting the produced data since 2003. The collected data set consists of phase difference curves measured from COSMOS navigation satellites from the Russian Parus network (Wood and Perry, 1980) and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three to five operational stations at the Fennoscandia sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this data set, one solar cycle of ionospheric VTEC estimates is constructed. The measurements are compared against the International Reference Ionosphere (IRI)-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model results are on average 40 % higher than that of the tomographic results.
Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J
2011-06-01
In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.
The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.
Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto
2013-01-01
After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.
Exploring Educational and Cultural Adaptation through Social Networking Sites
ERIC Educational Resources Information Center
Ryan, Sherry D.; Magro, Michael J.; Sharp, Jason H.
2011-01-01
Social networking sites have seen tremendous growth and are widely used around the world. Nevertheless, the use of social networking sites in educational contexts is an under explored area. This paper uses a qualitative methodology, autoethnography, to investigate how social networking sites, specifically Facebook[TM], can help first semester…
Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam
NASA Astrophysics Data System (ADS)
Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit
2016-04-01
Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.
BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes.
Gao, Junhui; Li, Li; Wu, Xiaolin; Wei, Dong-Qing
2012-03-01
BioNetSim, a Petri net-based software for modeling and simulating biochemistry processes, is developed, whose design and implement are presented in this paper, including logic construction, real-time access to KEGG (Kyoto Encyclopedia of Genes and Genomes), and BioModel database. Furthermore, glycolysis is simulated as an example of its application. BioNetSim is a helpful tool for researchers to download data, model biological network, and simulate complicated biochemistry processes. Gene regulatory networks, metabolic pathways, signaling pathways, and kinetics of cell interaction are all available in BioNetSim, which makes modeling more efficient and effective. Similar to other Petri net-based softwares, BioNetSim does well in graphic application and mathematic construction. Moreover, it shows several powerful predominances. (1) It creates models in database. (2) It realizes the real-time access to KEGG and BioModel and transfers data to Petri net. (3) It provides qualitative analysis, such as computation of constants. (4) It generates graphs for tracing the concentration of every molecule during the simulation processes.
NASA Astrophysics Data System (ADS)
Sahoo, Ramendra; Jain, Vikrant
2017-04-01
Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.
Heinrich, S; Laporte Uribe, F; Roes, M; Hoffmann, W; Thyrian, J R; Wolf-Ostermann, K; Holle, B
2016-02-01
Stakeholders involved in community dementia support services often work on their own and without coordination with other services. These circumstances can result in a lack of information and support for people with dementia and their family caregivers at home. To increase the coordination between existing support services, so-called 'Dementia Care Networks' (DCNs) have been established. Most of the tasks that are performed in DCNs are based on communication strategies. Therefore, knowledge management (KM) is a key process in these networks. However, few studies have focused on this topic. This study attempted to evaluate KM strategies in DCNs across Germany as part of the DemNet-D study. A qualitative interview study design was used. Qualitative data were collected during single and group interviews with key persons associated with thirteen DCNs. Interviews were audiotaped and transcribed, and a structured content analysis was conducted. The framework for the analysis was derived from a KM model. Information dissemination strategies for people with dementia and their informal caregivers based on actively established contacts appear to be more successful than passive strategies. General practitioners often play a key role as external gatekeepers in initiating contact between a network and a person affected by dementia. In this context, case managers can help integrate external stakeholders, such as general practitioners or pharmacists, into DCNs using different KM strategies. The systematic development of common objectives under an agency-neutral leadership seems to be an important aspect of successful KM within DCNs. The findings reported here can help DCNs optimize their KM strategies for generating tailored information and support services for people with dementia living at home and their family caregivers. In particular, the identified potential knowledge distribution barriers and facilitators will be of practical use to DCN stakeholders. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J
2010-08-01
National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.
Interdisciplinary Practice Models for Older Adults With Back Pain: A Qualitative Evaluation.
Salsbury, Stacie A; Goertz, Christine M; Vining, Robert D; Hondras, Maria A; Andresen, Andrew A; Long, Cynthia R; Lyons, Kevin J; Killinger, Lisa Z; Wallace, Robert B
2018-03-19
Older adults seek health care for low back pain from multiple providers who may not coordinate their treatments. This study evaluated the perceived feasibility of a patient-centered practice model for back pain, including facilitators for interprofessional collaboration between family medicine physicians and doctors of chiropractic. This qualitative evaluation was a component of a randomized controlled trial of 3 interdisciplinary models for back pain management: usual medical care; concurrent medical and chiropractic care; and collaborative medical and chiropractic care with interprofessional education, clinical record exchange, and team-based case management. Data collection included clinician interviews, chart abstractions, and fieldnotes analyzed with qualitative content analysis. An organizational-level framework for dissemination of health care interventions identified norms/attitudes, organizational structures and processes, resources, networks-linkages, and change agents that supported model implementation. Clinicians interviewed included 13 family medicine residents and 6 chiropractors. Clinicians were receptive to interprofessional education, noting the experience introduced them to new colleagues and the treatment approaches of the cooperating profession. Clinicians exchanged high volumes of clinical records, but found the logistics cumbersome. Team-based case management enhanced information flow, social support, and interaction between individual patients and the collaborating providers. Older patients were viewed positively as change agents for interprofessional collaboration between these provider groups. Family medicine residents and doctors of chiropractic viewed collaborative care as a useful practice model for older adults with back pain. Health care organizations adopting medical and chiropractic collaboration can tailor this general model to their specific setting to support implementation.
Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa
2016-07-01
Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel' perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive-interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen the state planning and supervision functions and improve professional working conditions and skills. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Bayesian Networks for enterprise risk assessment
NASA Astrophysics Data System (ADS)
Bonafede, C. E.; Giudici, P.
2007-08-01
According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. Risk, in general, is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover, qualitative data must be converted in numerical values or bounds to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Networks (BNs) are a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a BN in the particular case in which only prior probabilities of node states and marginal correlations between nodes are available, and when the variables have only two states.
Ratmann, Oliver; Andrieu, Christophe; Wiuf, Carsten; Richardson, Sylvia
2009-06-30
Mathematical models are an important tool to explain and comprehend complex phenomena, and unparalleled computational advances enable us to easily explore them without any or little understanding of their global properties. In fact, the likelihood of the data under complex stochastic models is often analytically or numerically intractable in many areas of sciences. This makes it even more important to simultaneously investigate the adequacy of these models-in absolute terms, against the data, rather than relative to the performance of other models-but no such procedure has been formally discussed when the likelihood is intractable. We provide a statistical interpretation to current developments in likelihood-free Bayesian inference that explicitly accounts for discrepancies between the model and the data, termed Approximate Bayesian Computation under model uncertainty (ABCmicro). We augment the likelihood of the data with unknown error terms that correspond to freely chosen checking functions, and provide Monte Carlo strategies for sampling from the associated joint posterior distribution without the need of evaluating the likelihood. We discuss the benefit of incorporating model diagnostics within an ABC framework, and demonstrate how this method diagnoses model mismatch and guides model refinement by contrasting three qualitative models of protein network evolution to the protein interaction datasets of Helicobacter pylori and Treponema pallidum. Our results make a number of model deficiencies explicit, and suggest that the T. pallidum network topology is inconsistent with evolution dominated by link turnover or lateral gene transfer alone.
Organizational Application of Social Networking Information Technologies
ERIC Educational Resources Information Center
Reppert, Jeffrey R.
2012-01-01
The focus of this qualitative research study using the Delphi method is to provide a framework for leaders to develop their own social networks. By exploring concerns in four areas, leaders may be able to better plan, implement, and manage social networking systems in organizations. The areas addressed are: (a) social networking using…
A collaborative molecular modeling environment using a virtual tunneling service.
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.
Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L
2016-01-01
This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.
Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.
2016-01-01
This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007
NASA Astrophysics Data System (ADS)
Sindermann, Andrew; Bartell, Lena; Bonassar, Lawrence; Cohen, Itai; Das, Moumita
Articular cartilage (AC) is a soft tissue that covers the ends of bones to distribute mechanical load in joints. It is primarily composed of water, type II collagen, and large aggregating proteoglycans called aggrecan. Its fracture toughness is extremely high compared to synthetic materials, but the underlying physical mechanism is not well understood. Here we investigate how the toughness of AC depends on its microscale composition and structure by modeling it as a double network made of collagen and aggrecan embedded in a background gel, and by using rigidity percolation theory to characterize its mechanical response to shear and compressive (or tensile) strains. Our calculations of the mechanical moduli, as well as network-wide heat maps of local strains and energy show shear-stiffening and compression-softening with increasing applied strain, in good qualitative agreement with known experimental results. Notches are then introduced in the network to study crack propagation under shear and tensile strains for various applied loads. Preliminary results indicate a loading threshold above which the network will undergo catastrophic failure by fracturing. Our results may help to formulate a Griffith-like criterion for crack propagation and fracture in soft tissues. This work was partially supported by a Cottrell College Science Award from the Research Corporation for Science Advancement.
Stamova, Ivanka; Stamov, Gani
2017-12-01
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust sequential working memory recall in heterogeneous cognitive networks
Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert
2014-01-01
Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717
Adaptive-network models of collective dynamics
NASA Astrophysics Data System (ADS)
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.
NASA Astrophysics Data System (ADS)
Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz
2016-06-01
Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.
Generalized in vitro-in vivo relationship (IVIVR) model based on artificial neural networks
Mendyk, Aleksander; Tuszyński, Paweł K; Polak, Sebastian; Jachowicz, Renata
2013-01-01
Background The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR) model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC)/IVIVR. Methods Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients) and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. PMID:23569360
From neurons to epidemics: How trophic coherence affects spreading processes
NASA Astrophysics Data System (ADS)
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Morris, Katherine Ann; Deterding, Nicole M
2016-09-01
Social networks offer important emotional and instrumental support following natural disasters. However, displacement may geographically disperse network members, making it difficult to provide and receive support necessary for psychological recovery after trauma. We examine the association between distance to network members and post-traumatic stress using survey data, and identify potential mechanisms underlying this association using in-depth qualitative interviews. We use longitudinal, mixed-methods data from the Resilience in Survivors of Katrina (RISK) Project to capture the long-term effects of Hurricane Katrina on low-income mothers from New Orleans. Baseline surveys occurred approximately one year before the storm and follow-up surveys and in-depth interviews were conducted five years later. We use a sequential explanatory analytic design. With logistic regression, we estimate the association of geographic network dispersion with the likelihood of post-traumatic stress. With linear regressions, we estimate the association of network dispersion with the three post-traumatic stress sub-scales. Using maximal variation sampling, we use qualitative interview data to elaborate identified statistical associations. We find network dispersion is positively associated with the likelihood of post-traumatic stress, controlling for individual-level socio-demographic characteristics, exposure to hurricane-related trauma, perceived social support, and New Orleans residency. We identify two social-psychological mechanisms present in qualitative data: respondents with distant network members report a lack of deep belonging and a lack of mattering as they are unable to fulfill obligations to important distant ties. Results indicate the importance of physical proximity to emotionally-intimate network ties for long-term psychological recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of opinions on social networks in the presence of competing committed groups.
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238
The stationary flow in a heterogeneous compliant vessel network
NASA Astrophysics Data System (ADS)
Filoche, Marcel; Florens, Magali
2011-09-01
We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.
Rapid spread of complex change: a case study in inpatient palliative care.
Della Penna, Richard; Martel, Helene; Neuwirth, Esther B; Rice, Jennifer; Filipski, Marta I; Green, Jennifer; Bellows, Jim
2009-12-29
Based on positive findings from a randomized controlled trial, Kaiser Permanente's national executive leadership group set an expectation that all Kaiser Permanente and partner hospitals would implement a consultative model of interdisciplinary, inpatient-based palliative care (IPC). Within one year, the number of IPC consultations program-wide increased almost tenfold from baseline, and the number of teams nearly doubled. We report here results from a qualitative evaluation of the IPC initiative after a year of implementation; our purpose was to understand factors supporting or impeding the rapid and consistent spread of a complex program. Quality improvement study using a case study design and qualitative analysis of in-depth semi-structured interviews with 36 national, regional, and local leaders. Compelling evidence of impacts on patient satisfaction and quality of care generated 'pull' among adopters, expressed as a remarkably high degree of conviction about the value of the model. Broad leadership agreement gave rise to sponsorship and support that permeated the organization. A robust social network promoted knowledge exchange and built on an existing network with a strong interest in palliative care. Resource constraints, pre-existing programs of a different model, and ambiguous accountability for implementation impeded spread. A complex, hospital-based, interdisciplinary intervention in a large health care organization spread rapidly due to a synergy between organizational 'push' strategies and grassroots-level pull. The combination of push and pull may be especially important when the organizational context or the practice to be spread is complex.
Agent-based computational models to explore diffusion of medical innovations among cardiologists.
Borracci, Raul A; Giorgi, Mariano A
2018-04-01
Diffusion of medical innovations among physicians rests on a set of theoretical assumptions, including learning and decision-making under uncertainty, social-normative pressures, medical expert knowledge, competitive concerns, network performance effects, professional autonomy or individualism and scientific evidence. The aim of this study was to develop and test four real data-based, agent-based computational models (ABM) to qualitatively and quantitatively explore the factors associated with diffusion and application of innovations among cardiologists. Four ABM were developed to study diffusion and application of medical innovations among cardiologists, considering physicians' network connections, leaders' opinions, "adopters' categories", physicians' autonomy, scientific evidence, patients' pressure, affordability for the end-user population, and promotion from companies. Simulations demonstrated that social imitation among local cardiologists was sufficient for innovation diffusion, as long as opinion leaders did not act as detractors of the innovation. Even in the absence of full scientific evidence to support innovation, up to one-fifth of cardiologists could accept it when local leaders acted as promoters. Patients' pressure showed a large effect size (Cohen's d > 1.2) on the proportion of cardiologists applying an innovation. Two qualitative patterns (speckled and granular) appeared associated to traditional Gompertz and sigmoid cumulative distributions. These computational models provided a semiquantitative insight on the emergent collective behavior of a physician population facing the acceptance or refusal of medical innovations. Inclusion in the models of factors related to patients' pressure and accesibility to medical coverage revealed the contrast between accepting and effectively adopting a new product or technology for population health care. Copyright © 2018 Elsevier B.V. All rights reserved.
Sieverding, Maia; Briegleb, Christina; Montagu, Dominic
2015-02-01
Clinical social franchising is a rapidly growing delivery model in private healthcare markets in low- and middle-income countries. Despite this growth, little is known about providers' perceptions of the benefits and challenges of social franchising or clients' reasons for choosing franchised facilities over other healthcare options. We examine these questions in the context of three social franchise networks in Ghana and Kenya. We conducted in-depth interviews with a purposive sample of providers from the BlueStar Ghana, and Amua and Tunza networks in Kenya. We also conducted qualitative exit interviews with female clients who were leaving franchised facilities after a visit for a reproductive or child health reason. The total sample consists of 47 providers and 47 clients across the three networks. Providers perceived the main benefits of participation in a social franchise network to be training opportunities and access to a consistent supply of low-cost family planning commodities; few providers mentioned branding as a benefit of participation. Although most providers said that client flows for franchised services increased after joining the network, they did not associate this with improved finances for their facility. Clients overwhelmingly cited the quality of the client-provider relationship as their main motivation for attending the franchise facility. Recognition of the franchise brand was low among clients who were exiting a franchised facility. The most important benefit of social franchise programs to both providers and their clients may have more to do with training on business practices, patient counseling and customer service, than with subsidies, technical input, branding or clinical support. This finding may lead to a reconsideration of how franchise programs interact with both their member clinics and the larger health-seeking communities they serve.
Best, Paul; Badham, Jennifer; Corepal, Rekesh; O'Neill, Roisin F; Tully, Mark A; Kee, Frank; Hunter, Ruth F
2017-11-23
While Patient and Public Involvement (PPI) is encouraged throughout the research process, engagement is typically limited to intervention design and post-analysis stages. There are few approaches to participatory data analyses within complex health interventions. Using qualitative data from a feasibility randomised controlled trial (RCT), this proof-of-concept study tests the value of a new approach to participatory data analysis called Participatory Theme Elicitation (PTE). Forty excerpts were given to eight members of a youth advisory PPI panel to sort into piles based on their perception of related thematic content. Using algorithms to detect communities in networks, excerpts were then assigned to a thematic cluster that combined the panel members' perspectives. Network analysis techniques were also used to identify key excerpts in each grouping that were then further explored qualitatively. While PTE analysis was, for the most part, consistent with the researcher-led analysis, young people also identified new emerging thematic content. PTE appears promising for encouraging user led identification of themes arising from qualitative data collected during complex interventions. Further work is required to validate and extend this method. ClinicalTrials.gov, ID: NCT02455986 . Retrospectively Registered on 21 May 2015.
The Value of Open Source Software Tools in Qualitative Research
ERIC Educational Resources Information Center
Greenberg, Gary
2011-01-01
In an era of global networks, researchers using qualitative methods must consider the impact of any software they use on the sharing of data and findings. In this essay, I identify researchers' main areas of concern regarding the use of qualitative software packages for research. I then examine how open source software tools, wherein the publisher…
Accelerating consensus on coevolving networks: The effect of committed individuals
NASA Astrophysics Data System (ADS)
Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G.
2012-04-01
Social networks are not static but, rather, constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily—the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophily-driven rewiring rule imposed. First, we find that the presence of rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size N. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size N. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of consensus time, Tc. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
Leveraging Social Networks To Enhance Innovation
This thesis explores the Department of the Navy’s innovation initiatives to determine how to leverage social networks to enhance innovation inside...the Navy. Using the results of a social network analysis that mapped and measured the informal Navy Innovation Network, and examining how other military...branches and industry pursue innovation , this qualitative research seeks to identify gaps and redundancies in the current Navy Innovation Network
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.
2013-01-01
This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…
Veinot, Tiffany Christine; Meadowbrooke, Chrysta Cathleen; Loveluck, Jimena; Hickok, Andrew; Bauermeister, Jose Artruro
2013-02-21
We lack a systematic portrait of the relationship between community involvement and how people interact with information. Young men who have sex with men (YMSM) are a population for which these relationships are especially salient: their gay community involvement varies and their information technology use is high. YMSM under age 24 are also one of the US populations with the highest risk of HIV/AIDS. To develop, test, and refine a model of gay community involvement (GCI) factors in human-information interaction (HII) as applied to HIV/AIDS information among YMSM, specifically examining the role of Internet use in GCI and HII. Mixed methods included: 1) online questionnaire with 194 YMSM; and 2) qualitative interviews with 19 YMSM with high GCI levels. Recruitment utilized social media, dating websites, health clinics, bars/clubs, and public postings. The survey included questions regarding HIV/AIDS-related information acquisition and use patterns, gay community involvement, risk behaviors, and technology use. For survey data, we tested multiple linear regression models using a series of community- and information-related variables as dependent variables. Independent variables included community- and information-related variables and demographic covariates. We then conducted a recursive path analysis in order to estimate a final model, which we refined through a grounded theory analysis of qualitative interview data. Four community-related variables significantly predicted how people interact with information (HII variables): 1) gay community involvement (GCI), 2) social costs of information seeking, 3) network expertise accessibility, and 4) community relevance. GCI was associated with significantly lower perceived social costs of HIV/AIDS information seeking (R(2)=0.07). GCI and social costs significantly predicted network expertise accessibility (R(2)=0.14). GCI predicted 14% of the variance in community relevance and 9% of the variance in information seeking frequency. Incidental HIV/AIDS information acquisition (IIA) was also significantly predicted by GCI (R(2)=0.16). 28% of the variance in HIV/AIDS information use was explained by community relevance, network expertise access, and both IIA and information seeking. The final path model showed good fit: the RSMEA was 0.054 (90% CI: .000-.101); the Chi-square was non-significant (χ(2)(11)=17.105; P=.105); and the CFI was 0.967. Qualitative findings suggest that the model may be enhanced by including information sharing: organizing events, disseminating messages, encouraging safety, and referring and recommending. Information sharing emerged under conditions of pro-social community value enactment and may have consequences for further HII. YMSM with greater GCI generally used the Internet more, although they chatted online less. HIV/AIDS-related HII and associated technology uses are community-embedded processes. The model provides theoretical mediators that may serve as a focus for intervention: 1) valuing HIV/AIDS information, through believing it is relevant to one's group, and 2) supportive and knowledgeable network members with whom to talk about HIV/AIDS. Pro-social community value endorsement and information sharing may also be important theoretical mediators. Our model could open possibilities for considering how informatics interventions can also be designed as community-level interventions and vice versa.
Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape
Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo
2008-01-01
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development. PMID:18978941
Elementary signaling modes predict the essentiality of signal transduction network components
2011-01-01
Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566
Managing integrated oncology treatment in virtual networks.
Stanicki, Verena; Becker, Matthias; Böckmann, Britta
2015-01-01
Interdisciplinary and intersectoral coordinated healthcare management based on Clinical Practice Guidelines is essential to achieve high quality in oncological networks. The objective of our research project is to create a cookbook, which can be used by oncological networks as a template. The cookbook is based on guideline-compliant care processes. To develop these care processes, the three S3-guidelines breast, colon and prostate carcinoma have been formalized. The thus-obtained platform-independent process fragments were transformed into an underlying metamodel, which is based on HL7 and can be used for modeling clinical pathways. Additional, qualitative guided interviews were chosen to capitalize on the experts' (e.g. chief residents, resident specialists) wide knowledge and experience in oncological health care management. One of these use cases (tumor board scheduling) is developed for a healthcare management platform which is linked to a national electronic case record. The projected result of our approach is a cookbook which shows, how the treatment can be controlled by interdisciplinary and intersectoral care processes in an oncological network.
Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels
NASA Astrophysics Data System (ADS)
Petkov, T.; Mustafa, Z.; Sotirov, S.; Milina, R.; Moskovkina, M.
2016-03-01
A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC) and Gas Chromatography - mass spectrometry (GC-MS) were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters) profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, "unknown" were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3) and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety "unknown" samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.
Network and social support in family care of children with diabetes.
Pennafort, Viviane Peixoto Dos Santos; Queiroz, Maria Veraci Oliveira; Nascimento, Lucila Castanheira; Guedes, Maria Vilani Cavalcante
2016-01-01
to understand the influence of network and social support in the care of a child with type 1 diabetes. qualitative study, with assumptions of ethnonursing, conducted in a reference service specialized in the treatment of diabetes, in 2014, in the city of Fortaleza, state of Ceará, Brazil. Twenty-six members of the family and their respective school children participated in the study. The process of collection and analysis followed the observation-participation-reflection model. the analytical categories showed that the social network in the care of children with diabetes helped sharing of information and experiences, moments of relaxation and aid in the acquisition of supplies for treatment, with positive repercussions in the family context, generating well-being and confidence in the care of children with diabetes. the cultural care provided by nurses strengthens the network and social support because it encourages autonomy in the promotion of the quality of life of children with type 1 diabetes and their families.
Social network analysis: Presenting an underused method for nursing research.
Parnell, James Michael; Robinson, Jennifer C
2018-06-01
This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.
Prades, Joan; Morando, Verdiana; Tozzi, Valeria D; Verhoeven, Didier; Germà, Jose R; Borras, Josep M
2017-01-01
Background The study examines two meso-strategic cancer networks, exploring to what extent collaboration can strengthen or hamper network effectiveness. Unlike macro-strategic networks, meso-strategic networks have no hierarchical governance structures nor are they institutionalised within healthcare services' delivery systems. This study aims to analyse the models of professional cooperation and the tools developed for managing clinical practice within two meso-strategic, European cancer networks. Methods Multiple case study design based on the comparative analysis of two cancer networks: Iridium, in Antwerp, Belgium and the Institut Català d'Oncologia in Catalonia, Spain. The case studies applied mixed methods, with qualitative research based on semi-structured interviews ( n = 35) together with case-site observation and material collection. Results The analysis identified four levels of collaborative intensity within medical specialties as well as in multidisciplinary settings, which became both platforms for crosscutting clinical work between hubs' experts and local care teams and the levers for network-based tools development. The organisation of clinical practice relied on professional-based cooperative processes and tiers, lacking vertical integration mechanisms. Conclusions The intensity of professional linkages largely shaped the potential of meso-strategic cancer networks to influence clinical practice organisation. Conversely, the introduction of managerial techniques or network governance structures, without introducing vertical hierarchies, was found to be critical solutions.
3D simulations of early blood vessel formation
NASA Astrophysics Data System (ADS)
Cavalli, F.; Gamba, A.; Naldi, G.; Semplice, M.; Valdembri, D.; Serini, G.
2007-08-01
Blood vessel networks form by spontaneous aggregation of individual cells migrating toward vascularization sites (vasculogenesis). A successful theoretical model of two-dimensional experimental vasculogenesis has been recently proposed, showing the relevance of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of this self-aggregation process. Here we study the natural 3D extension of the computational model proposed earlier, which is relevant for the investigation of the genuinely three-dimensional process of vasculogenesis in vertebrate embryos. The computational model is based on a multidimensional Burgers equation coupled with a reaction diffusion equation for a chemotactic factor and a mass conservation law. The numerical approximation of the computational model is obtained by high order relaxed schemes. Space and time discretization are performed by using TVD schemes and, respectively, IMEX schemes. Due to the computational costs of realistic simulations, we have implemented the numerical algorithm on a cluster for parallel computation. Starting from initial conditions mimicking the experimentally observed ones, numerical simulations produce network-like structures qualitatively similar to those observed in the early stages of in vivo vasculogenesis. We develop the computation of critical percolative indices as a robust measure of the network geometry as a first step towards the comparison of computational and experimental data.
Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B
2010-02-01
The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.
Noise-sustained synchronization between electrically coupled FitzHugh-Nagumo networks
NASA Astrophysics Data System (ADS)
Cascallares, Guadalupe; Sánchez, Alejandro D.; dell'Erba, Matías G.; Izús, Gonzalo G.
2015-09-01
We investigate the capability of electrical synapses to transmit the noise-sustained network activity from one network to another. The particular setup we consider is two identical rings with excitable FitzHugh-Nagumo cell dynamics and nearest-neighbor antiphase intra-ring coupling, electrically coupled between corresponding nodes. The whole system is submitted to independent local additive Gaussian white noises with common intensity η, but only one ring is externally forced by a global adiabatic subthreshold harmonic signal. We then seek conditions for a particular noise level to promote synchronized stable firing patterns. By running numerical integrations with increasing η, we observe the excitation activity to become spatiotemporally self-organized, until η is so strong that spoils sync between networks for a given value of the electric coupling strength. By means of a four-cell model and calculating the stationary probability distribution, we obtain a (signal-dependent) non-equilibrium potential landscape which explains qualitatively the observed regimes, and whose barrier heights give a good estimate of the optimal noise intensity for the sync between networks.
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Janssens, Hilde; Alcaine-Colet, Anna; Lemke, Steffen; Schmidt-Ott, Urs; Jaeger, Johannes
2015-01-01
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 PMID:25560971
Social Network Analysis Applied to a Historical Ethnographic Study Surrounding Home Birth.
Andina-Diaz, Elena; Ovalle-Perandones, Mª Antonia; Ramos-Vidal, Ignacio; Camacho-Morell, Francisca; Siles-Gonzalez, Jose; Marques-Sanchez, Pilar
2018-04-24
Safety during birth has improved since hospital delivery became standard practice, but the process has also become increasingly medicalised. Hence, recent years have witnessed a growing interest in home births due to the advantages it offers to mothers and their newborn infants. The aims of the present study were to confirm the transition from a home birth model of care to a scenario in which deliveries began to occur almost exclusively in a hospital setting; to define the social networks surrounding home births; and to determine whether geography exerted any influence on the social networks surrounding home births. Adopting a qualitative approach, we recruited 19 women who had given birth at home in the mid 20th century in a rural area in Spain. We employed a social network analysis method. Our results revealed three essential aspects that remain relevant today: the importance of health professionals in home delivery care, the importance of the mother’s primary network, and the influence of the geographical location of the actors involved in childbirth. All of these factors must be taken into consideration when developing strategies for maternal health.
Nested effects models for learning signaling networks from perturbation data.
Fröhlich, Holger; Tresch, Achim; Beissbarth, Tim
2009-04-01
Targeted gene perturbations have become a major tool to gain insight into complex cellular processes. In combination with the measurement of downstream effects via DNA microarrays, this approach can be used to gain insight into signaling pathways. Nested Effects Models were first introduced by Markowetz et al. as a probabilistic method to reverse engineer signaling cascades based on the nested structure of downstream perturbation effects. The basic framework was substantially extended later on by Fröhlich et al., Markowetz et al., and Tresch and Markowetz. In this paper, we present a review of the complete methodology with a detailed comparison of so far proposed algorithms on a qualitative and quantitative level. As an application, we present results on estimating the signaling network between 13 genes in the ER-alpha pathway of human MCF-7 breast cancer cells. Comparison with the literature shows a substantial overlap.
Robustness and flexibility in nematode vulva development.
Félix, Marie-Anne; Barkoulas, Michalis
2012-04-01
The Caenorhabditis elegans vulva has served as a paradigm for how conserved developmental pathways, such as EGF-Ras-MAPK, Notch and Wnt signaling, participate in networks driving animal organogenesis. Here, we discuss an emerging direction in the field, which places vulva research in a quantitative and microevolutionary framework. The final vulval cell fate pattern is known to be robust to change, but only recently has the variation of vulval traits been measured under stochastic, environmental or genetic variation. Whereas the resulting cell fate pattern is invariant among rhabditid nematodes, recent studies indicate that the developmental system has accumulated cryptic variation, even among wild C. elegans isolates. Quantitative differences in the signaling network have emerged through experiments and modeling as the driving force behind cryptic variation in Caenorhabditis species. On a wider evolutionary scale, the establishment of new model species has informed about the presence of qualitative variation in vulval signaling pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Bayesian network model for predicting type 2 diabetes risk based on electronic health records
NASA Astrophysics Data System (ADS)
Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen
2017-07-01
An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.
DNN-state identification of 2D distributed parameter systems
NASA Astrophysics Data System (ADS)
Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.
2012-02-01
There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.
Inrig, Stephen J; Higashi, Robin T; Tiro, Jasmin A; Argenbright, Keith E; Lee, Simon J Craddock
2017-04-01
Despite federal funding for breast cancer screening, fragmented infrastructure and limited organizational capacity hinder access to the full continuum of breast cancer screening and clinical follow-up procedures among rural-residing women. We proposed a regional hub-and-spoke model, partnering with local providers to expand access across North Texas. We describe development and application of an iterative, mixed-method tool to assess county capacity to conduct community outreach and/or patient navigation in a partnership model. Our tool combined publicly-available quantitative data with qualitative assessments during site visits and semi-structured interviews. Application of our tool resulted in shifts in capacity designation in 10 of 17 county partners: 8 implemented local outreach with hub navigation; 9 relied on the hub for both outreach and navigation. Key factors influencing capacity: (1) formal linkages between partner organizations; (2) inter-organizational relationships; (3) existing clinical service protocols; (4) underserved populations. Qualitative data elucidate how our tool captured these capacity changes. Our capacity assessment tool enabled the hub to establish partnerships with county organizations by tailoring support to local capacity and needs. Absent a vertically integrated provider network for preventive services in these rural counties, our tool facilitated a virtually integrated regional network to extend access to breast cancer screening to underserved women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Problem Solving Interactions on Electronic Networks.
ERIC Educational Resources Information Center
Waugh, Michael; And Others
Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…
NASA Astrophysics Data System (ADS)
Kurmyshev, Evguenii; Juárez, Héctor A.; González-Silva, Ricardo A.
2011-08-01
Bounded confidence models of opinion dynamics in social networks have been actively studied in recent years, in particular, opinion formation and extremism propagation along with other aspects of social dynamics. In this work, after an analysis of limitations of the Deffuant-Weisbuch (DW) bounded confidence, relative agreement model, we propose the mixed model that takes into account two psychological types of individuals. Concord agents (C-agents) are friendly people; they interact in a way that their opinions always get closer. Agents of the other psychological type show partial antagonism in their interaction (PA-agents). Opinion dynamics in heterogeneous social groups, consisting of agents of the two types, was studied on different social networks: Erdös-Rényi random graphs, small-world networks and complete graphs. Limit cases of the mixed model, pure C- and PA-societies, were also studied. We found that group opinion formation is, qualitatively, almost independent of the topology of networks used in this work. Opinion fragmentation, polarization and consensus are observed in the mixed model at different proportions of PA- and C-agents, depending on the value of initial opinion tolerance of agents. As for the opinion formation and arising of “dissidents”, the opinion dynamics of the C-agents society was found to be similar to that of the DW model, except for the rate of opinion convergence. Nevertheless, mixed societies showed dynamics and bifurcation patterns notably different to those of the DW model. The influence of biased initial conditions over opinion formation in heterogeneous social groups was also studied versus the initial value of opinion uncertainty, varying the proportion of the PA- to C-agents. Bifurcation diagrams showed an impressive evolution of collective opinion, in particular, radical changes of left to right consensus or vice versa at an opinion uncertainty value equal to 0.7 in the model with the PA/C mixture of population near 50/50.
Reducing Hospital Readmissions Through Preferred Networks Of Skilled Nursing Facilities.
McHugh, John P; Foster, Andrew; Mor, Vincent; Shield, Renée R; Trivedi, Amal N; Wetle, Terrie; Zinn, Jacqueline S; Tyler, Denise A
2017-09-01
Establishing preferred provider networks of skilled nursing facilities (SNFs) is one approach hospital administrators are using to reduce excess thirty-day readmissions and avoid Medicare penalties or to reduce beneficiaries' costs as part of value-based payment models. However, hospitals are also required to provide patients at discharge with a list of Medicare-eligible providers and cannot explicitly restrict patient choice. This requirement complicates the development of a SNF network. Furthermore, there is little evidence about the effectiveness of network development in reducing readmission rates. We used a concurrent mixed-methods approach, combining Medicare claims data for the period 2009-13 with qualitative data gathered from interviews during site visits to hospitals in eight US markets in March-October 2015, to examine changes in rehospitalization rates and differences in practices between hospitals that did and did not develop formal SNF networks. Four hospitals had developed formal SNF networks as part of their care management efforts. These hospitals saw a relative reduction from 2009 to 2013 in readmission rates for patients discharged to SNFs that was 4.5 percentage points greater than the reduction for hospitals without formal networks. Interviews revealed that those with networks expanded existing relationships with SNFs, effectively managed patient data, and exercised a looser interpretation of patient choice. Project HOPE—The People-to-People Health Foundation, Inc.
Reducing Hospital Readmissions Through Preferred Networks Of Skilled Nursing Facilities
Foster, Andrew; Mor, Vincent; Shield, Renée R.; Trivedi, Amal N.; Wetle, Terrie; Zinn, Jacqueline S.; Tyler, Denise A.
2017-01-01
Establishing preferred provider networks of skilled nursing facilities (SNFs) is one approach hospital administrators are using to reduce excess thirty-day readmissions and avoid Medicare penalties or to reduce beneficiaries’ costs as part of value-based payment models. However, hospitals are also required to provide patients at discharge with a list of Medicare-eligible providers and cannot explicitly restrict patient choice. This requirement complicates the development of a SNF network. Furthermore, there is little evidence about the effectiveness of network development in reducing readmission rates. We used a concurrent mixed-methods approach, combining Medicare claims data for the period 2009–13 with qualitative data gathered from interviews during site visits to hospitals in eight US markets in March–October 2015, to examine changes in rehospitalization rates and differences in practices between hospitals that did and did not develop formal SNF networks. Four hospitals had developed formal SNF networks as part of their care management efforts. These hospitals saw a relative reduction from 2009 to 2013 in readmission rates for patients discharged to SNFs that was 4.5 percentage points greater than the reduction for hospitals without formal networks. Interviews revealed that those with networks expanded existing relationships with SNFs, effectively managed patient data, and exercised a looser interpretation of patient choice. PMID:28874486
Xie, Zhengwei; Zhang, Tianyu; Ouyang, Qi
2018-02-01
One of the long-expected goals of genome-scale metabolic modelling is to evaluate the influence of the perturbed enzymes on flux distribution. Both ordinary differential equation (ODE) models and constraint-based models, like Flux balance analysis (FBA), lack the capacity to perform metabolic control analysis (MCA) for large-scale networks. In this study, we developed a hyper-cube shrink algorithm (HCSA) to incorporate the enzymatic properties into the FBA model by introducing a pseudo reaction V constrained by enzymatic parameters. Our algorithm uses the enzymatic information quantitatively rather than qualitatively. We first demonstrate the concept by applying HCSA to a simple three-node network, whereby we obtained a good correlation between flux and enzyme abundance. We then validate its prediction by comparison with ODE and with a synthetic network producing voilacein and analogues in Saccharomyces cerevisiae. We show that HCSA can mimic the state-state results of ODE. Finally, we show its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast. We show the ability of HCSA to operate without biomass flux and perform MCA to determine rate-limiting reactions. Algorithm was implemented by Matlab and C ++. The code is available at https://github.com/kekegg/HCSA. xiezhengwei@hsc.pku.edu.cn or qi@pku.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Impact of indoor environment on path loss in body area networks.
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-10-20
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment-room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest-back and chest-arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation.
Impact of Indoor Environment on Path Loss in Body Area Networks
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-01-01
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment—room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest–back and chest–arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation. PMID:25333289
Role of social environment and social clustering in spread of opinions in coevolving networks.
Malik, Nishant; Mucha, Peter J
2013-12-01
Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the coevolving network voter model of opinion formation studied by Holme and Newman [Phys. Rev. E 74, 056108 (2006)]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for heterogeneity and asymmetric influences in relationships between individuals. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus, allowing for the existence of diverse opinions, and the other having a single dominant connected component with each node within that dominant component having the same opinion. Furthermore, more importantly, we found that the initial clustering in the network can also induce similar transitions. Our investigation also indicates that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes.
Caffarra, Paolo; Gardini, Simona; Dieci, Francesca; Copelli, Sandra; Maset, Laura; Concari, Letizia; Farina, Elisabetta; Grossi, Enzo
2013-01-01
The differential diagnosis across different variants of degenerative diseases is sometimes controversial. This study aimed to validate a qualitative scoring method for the pentagons copy test (QSPT) of Mini-Mental State Examination (MMSE) based on the assessment of different parameters of the pentagons drawing, such as number of angles, distance/intersection, closure/opening, rotation, closing-in, and to verify its efficacy to differentiate dementia with Lewy Body (DLB) from Alzheimer's disease (AD). We established the reliability of the qualitative scoring method through the inter-raters and intra-subjects analysis. QSPT was then applied to forty-six AD and forty-six DLB patients, using two phases statistical approach, standard and artificial neural network respectively. DLB patients had significant lower total score in the copy of pentagons and number of angles, distance/intersection, closure/opening, rotation compared to AD. However the logistic regression did not allow to establish any suitable modeling, whereas using Auto-Contractive Map (Auto-CM) the DLB was more strongly associated with low scores in some qualitative parameters of pentagon copying, i.e. number of angles and opening/closure and, for the remaining subitems of the MMSE, in naming, repetition and written comprehension, and for demographic variables of gender (male) and education (6-13 years). Twist system modeling showed that the QSPT had a good sensitivity (70.29%) and specificity (78.67%) (ROC-AUC 0.74). The proposed qualitative method of assessment of pentagons copying used in combination with non-linear analysis, showed to be consistent and effective in the differential diagnosis between Lewy Body and Alzheimer's dementia.
ERIC Educational Resources Information Center
Turcato, Carolina; Barin-Cruz, Luciano; Pedrozo, Eugenio Avila
2012-01-01
Purpose: This study aims to investigate how an organic cotton production network learns to maintain its hybrid network and its sustainability in the face of internal and external pressures. Design/methodology/approach: A qualitative case study was conducted in Justa Trama, a Brazilian-based organic cotton production network formed by six members…
ERIC Educational Resources Information Center
Sartory, Katharina; Jungermann, Anja-Kristin; Järvinen, Hanna
2017-01-01
External support by a local coordinating agency facilitates the work of school-to-school networks. This study provides an innovative theoretical framework to analyse how support provided by local education offices for school-to-school networks is perceived by the participating teachers. Based on a quantitative survey and qualitative interview data…
Golembiewski, Elizabeth; Watson, Dennis P.; Robison, Lisa; Coberg, John W.
2017-01-01
The positive relationship between social support and mental health has been well documented, but individuals experiencing chronic homelessness face serious disruptions to their social networks. Housing First (HF) programming has been shown to improve health and stability of formerly chronically homeless individuals. However, researchers are only just starting to understand the impact HF has on residents’ individual social integration. The purpose of the current study was to describe and understand changes in social networks of residents living in a HF program. Researchers employed a longitudinal, convergent parallel mixed method design, collecting quantitative social network data through structured interviews (n = 13) and qualitative data through semi-structured interviews (n = 20). Quantitative results demonstrated a reduction in network size over the course of one year. However, increases in both network density and frequency of contact with network members increased. Qualitative interviews demonstrated a strengthening in the quality of relationships with family and housing providers and a shedding of burdensome and abusive relationships. These results suggest network decay is a possible indicator of participants’ recovery process as they discontinued negative relationships and strengthened positive ones. PMID:28890807
Fulop, Naomi J; Ramsay, Angus I G; Perry, Catherine; Boaden, Ruth J; McKevitt, Christopher; Rudd, Anthony G; Turner, Simon J; Tyrrell, Pippa J; Wolfe, Charles D A; Morris, Stephen
2016-06-03
Implementing major system change in healthcare is not well understood. This gap may be addressed by analysing change in terms of interrelated components identified in the implementation literature, including decision to change, intervention selection, implementation approaches, implementation outcomes, and intervention outcomes. We conducted a qualitative study of two cases of major system change: the centralisation of acute stroke services in Manchester and London, which were associated with significantly different implementation outcomes (fidelity to referral pathway) and intervention outcomes (provision of evidence-based care, patient mortality). We interviewed stakeholders at national, pan-regional, and service-levels (n = 125) and analysed 653 documents. Using a framework developed for this study from the implementation science literature, we examined factors influencing implementation approaches; how these approaches interacted with the models selected to influence implementation outcomes; and their relationship to intervention outcomes. London and Manchester's differing implementation outcomes were influenced by the different service models selected and implementation approaches used. Fidelity to the referral pathway was higher in London, where a 'simpler', more inclusive model was used, implemented with a 'big bang' launch and 'hands-on' facilitation by stroke clinical networks. In contrast, a phased approach of a more complex pathway was used in Manchester, and the network acted more as a platform to share learning. Service development occurred more uniformly in London, where service specifications were linked to financial incentives, and achieving standards was a condition of service launch, in contrast to Manchester. 'Hands-on' network facilitation, in the form of dedicated project management support, contributed to achievement of these standards in London; such facilitation processes were less evident in Manchester. Using acute stroke service centralisation in London and Manchester as an example, interaction between model selected and implementation approaches significantly influenced fidelity to the model. The contrasting implementation outcomes may have affected differences in provision of evidence-based care and patient mortality. The framework used in this analysis may support planning and evaluating major system changes, but would benefit from application in different healthcare contexts.
A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721
Lewis, Joanne M; DiGiacomo, Michelle; Currow, David C; Davidson, Patricia M
2014-01-01
Lower socioeconomic populations live and die in contexts that render them vulnerable to poorer health and wellbeing. Contexts of care at the end of life are overwhelmingly determined by the capacity and nature of formal and informal networks and relations to support care. To date, studies exploring the nature of networks and relations of support in lower socioeconomic populations at the end of life are absent. This qualitative study sought to identify the nature of individual, community and civic networks and relations that defined the contexts of care for this group. Semi-structured qualitative interviews were conducted with 16 patients and 6 informal carers who identified that they had social and economic needs and were from a lower socioeconomic area. A social capital questionnaire identifying individual, community and civic networks and relations formed the interview guide. Interviews were audio-taped, transcribed and analysed using framework analysis. Participants identified that individual and community networks and relations of support were mainly inadequate to meet care needs. Specifically, data revealed: (1) individual (informal caregivers) networks and relations were small and fragile due to the nature of conflict and crisis; (2) community trust and engagement was limited and shifted by illness and caregiving; (3) and formal care services were inconsistent and provided limited practical support. Some transitions in community relations for support were noted. Levels of civic and government engagement and support were overall positive and enabled access to welfare resources. Networks and relations of support are essential for ensuring quality end of life care is achieved. Lower socioeconomic groups are at a distinct disadvantage where these networks and relations are limited, as they lack the resources necessary to augment these gaps. Understanding of the nature of assets and limitations, in networks and relations of support, is necessary to inform interventions to improve end of life care for lower socioeconomic populations.
2014-01-01
Background Lower socioeconomic populations live and die in contexts that render them vulnerable to poorer health and wellbeing. Contexts of care at the end of life are overwhelmingly determined by the capacity and nature of formal and informal networks and relations to support care. To date, studies exploring the nature of networks and relations of support in lower socioeconomic populations at the end of life are absent. This qualitative study sought to identify the nature of individual, community and civic networks and relations that defined the contexts of care for this group. Methods Semi-structured qualitative interviews were conducted with 16 patients and 6 informal carers who identified that they had social and economic needs and were from a lower socioeconomic area. A social capital questionnaire identifying individual, community and civic networks and relations formed the interview guide. Interviews were audio-taped, transcribed and analysed using framework analysis. Results Participants identified that individual and community networks and relations of support were mainly inadequate to meet care needs. Specifically, data revealed: (1) individual (informal caregivers) networks and relations were small and fragile due to the nature of conflict and crisis; (2) community trust and engagement was limited and shifted by illness and caregiving; (3) and formal care services were inconsistent and provided limited practical support. Some transitions in community relations for support were noted. Levels of civic and government engagement and support were overall positive and enabled access to welfare resources. Conclusion Networks and relations of support are essential for ensuring quality end of life care is achieved. Lower socioeconomic groups are at a distinct disadvantage where these networks and relations are limited, as they lack the resources necessary to augment these gaps. Understanding of the nature of assets and limitations, in networks and relations of support, is necessary to inform interventions to improve end of life care for lower socioeconomic populations. PMID:24959101
Sears, Clinton; Andersson, Zach; Cann, Meredith
2016-01-01
ABSTRACT Background: Supporting the diverse needs of people living with HIV (PLHIV) can help reduce the individual and structural barriers they face in adhering to antiretroviral treatment (ART). The Livelihoods and Food Security Technical Assistance II (LIFT) project sought to improve adherence in Malawi by establishing 2 referral systems linking community-based economic strengthening and livelihoods services to clinical health facilities. One referral system in Balaka district, started in October 2013, connected clients to more than 20 types of services while the other simplified approach in Kasungu and Lilongwe districts, started in July 2014, connected PLHIV attending HIV and nutrition support facilities directly to community savings groups. Methods: From June to July 2015, LIFT visited referral sites in Balaka, Kasungu, and Lilongwe districts to collect qualitative data on referral utility, the perceived association of referrals with client and household health and vulnerability, and the added value of the referral system as perceived by network member providers. We interviewed a random sample of 152 adult clients (60 from Balaka, 57 from Kasungu, and 35 from Lilongwe) who had completed their referral. We also conducted 2 focus group discussions per district with network providers. Findings: Clients in all 3 districts indicated their ability to save money had improved after receiving a referral, although the percentage was higher among clients in the simplified Kasungu and Lilongwe model than the more complex Balaka model (85.6% vs. 56.0%, respectively). Nearly 70% of all clients interviewed had HIV infection; 72.7% of PLHIV in Balaka and 95.7% of PLHIV in Kasungu and Lilongwe credited referrals for helping them stay on their ART. After the referral, 76.0% of clients in Balaka and 92.3% of clients in Kasungu and Lilongwe indicated they would be willing to spend their savings on health costs. The more diverse referral network and use of an mHealth app to manage data in Balaka hindered provider uptake of the system, while the simpler system in Kasungu and Lilongwe, which included only 2 referral options and use of a paper-based referral tool, seemed simpler for the providers to manage. Conclusions: Participation in the referral systems was perceived positively by clients and providers in both models, but more so in Kasungu and Lilongwe where the referral process was simpler. Future referral networks should consider limiting the number of service options included in the network and simplify referral tools to the extent possible to facilitate uptake among network providers. PMID:28031300
Phase transitions in semisupervised clustering of sparse networks
NASA Astrophysics Data System (ADS)
Zhang, Pan; Moore, Cristopher; Zdeborová, Lenka
2014-11-01
Predicting labels of nodes in a network, such as community memberships or demographic variables, is an important problem with applications in social and biological networks. A recently discovered phase transition puts fundamental limits on the accuracy of these predictions if we have access only to the network topology. However, if we know the correct labels of some fraction α of the nodes, we can do better. We study the phase diagram of this semisupervised learning problem for networks generated by the stochastic block model. We use the cavity method and the associated belief propagation algorithm to study what accuracy can be achieved as a function of α . For k =2 groups, we find that the detectability transition disappears for any α >0 , in agreement with previous work. For larger k where a hard but detectable regime exists, we find that the easy/hard transition (the point at which efficient algorithms can do better than chance) becomes a line of transitions where the accuracy jumps discontinuously at a critical value of α . This line ends in a critical point with a second-order transition, beyond which the accuracy is a continuous function of α . We demonstrate qualitatively similar transitions in two real-world networks.
A qualitative numerical study of high dimensional dynamical systems
NASA Astrophysics Data System (ADS)
Albers, David James
Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high-dimensional chaotic region of parameter space is interpreted and related to the closing lemma of Pugh, the windows conjecture of Barreto, the stable ergodicity theorem of Pugh and Shub, and structural stability theorem of Robbin, Robinson, and Mane.
Alternative Dual Mode Network Control Strategies
DOT National Transportation Integrated Search
1972-03-01
From a literature survey a qualitative evaluation was made of four network control strategies for the fundamental control philosophy of the moving synchronous slot. In the literature concerning automated transportation systems, such as dual mode, a g...
Modeling of cell signaling pathways in macrophages by semantic networks
Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem
2004-01-01
Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071
Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.
Hosoya, Haruo
2012-08-01
We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.
Effects of individual popularity on information spreading in complex networks
NASA Astrophysics Data System (ADS)
Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin
2018-01-01
In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.
Aller, Marta-Beatriz; Vargas, Ingrid; Coderch, Jordi; Calero, Sebastià; Cots, Francesc; Abizanda, Mercè; Colomés, Lluís; Farré, Joan; Vázquez-Navarrete, María-Luisa
2017-08-26
To analyse doctors' opinions on clinical coordination between primary and secondary care in different healthcare networks and on the factors influencing it. A qualitative descriptive-interpretative study was conducted, based on semi-structured interviews. A two-stage theoretical sample was designed: 1) healthcare networks with different management models; 2) primary care and secondary care doctors in each network. Final sample size (n = 50) was reached by saturation. A thematic content analysis was conducted. In all networks doctors perceived that primary and secondary care given to patients was coordinated in terms of information transfer, consistency and accessibility to SC following a referral. However, some problems emerged, related to difficulties in acceding non-urgent secondary care changes in prescriptions and the inadequacy of some referrals across care levels. Doctors identified the following factors: 1) organizational influencing factors: coordination is facilitated by mechanisms that facilitate information transfer, communication, rapid access and physical proximity that fosters positive attitudes towards collaboration; coordination is hindered by the insufficient time to use mechanisms, unshared incentives in prescription and, in two networks, the change in the organizational model; 2) professional factors: clinical skills and attitudes towards coordination. Although doctors perceive that primary and secondary care is coordinated, they also highlighted problems. Identified factors offer valuable insights on where to direct organizational efforts to improve coordination. Copyright © 2017. Publicado por Elsevier España, S.L.U.
Ponzi, Adam; Wickens, Jeff
2010-04-28
The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.
2015-01-01
A scientist’s choice of research problem affects his or her personal career trajectory. Scientists’ combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity’s importance corresponds to its degree centrality, and a problem’s difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies. PMID:26554009
[Results of Simulation Studies
NASA Technical Reports Server (NTRS)
2003-01-01
Lattice Monte Carlo and off-lattice molecular dynamics simulations of h(sub 1)t(sub 4) and h(sub 4)t(sub l) (head/tail) amphiphile solutions have been performed as a function of surfactant concentration and temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at equivalent thermodynamic conditions. We found that in the weakly aggregating regime (no preferred-size micelles), all models yield similar micelle size distributions at the same average aggregation number, albeit at different thermodynamic conditions (temperatures). In the strongly aggregating regime, this mapping between models (through temperature adjustment) fails, and the models exhibit qualitatively different micellization behavior. Incipient micellization in a model self-associating telechelic polymer solution results in a network with a transient elastic response that decays by a two-step relaxation: the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the solution manifests characteristics of a glass transition and entangled polymer network.
NASA Astrophysics Data System (ADS)
Köhler, Reinhard
2014-12-01
We have long been used to the domination of qualitative methods in modern linguistics. Indeed, qualitative methods have advantages such as ease of use and wide applicability to many types of linguistic phenomena. However, this shall not overshadow the fact that a great part of human language is amenable to quantification. Moreover, qualitative methods may lead to over-simplification by employing the rigid yes/no scale. When variability and vagueness of human language must be taken into account, qualitative methods will prove inadequate and give way to quantitative methods [1, p. 11]. In addition to such advantages as exactness and precision, quantitative concepts and methods make it possible to find laws of human language which are just like those in natural sciences. These laws are fundamental elements of linguistic theories in the spirit of the philosophy of science [2,3]. Theorization effort of this type is what quantitative linguistics [1,4,5] is devoted to. The review of Cong and Liu [6] has provided an informative and insightful survey of linguistic complex networks as a young field of quantitative linguistics, including the basic concepts and measures, the major lines of research with linguistic motivation, and suggestions for future research.
Evaluation of an implementation model: a national investigation of VA residential programs.
Cook, Joan M; Dinnen, Stephanie; Coyne, James C; Thompson, Richard; Simiola, Vanessa; Ruzek, Josef; Schnurr, Paula P
2015-03-01
This national investigation utilizes qualitative data to evaluate an implementation model regarding factors influencing provider use of two evidence-based treatments for posttraumatic stress disorder (PTSD). Semi-structured qualitative interviews with 198 mental health providers from 38 Department of Veterans Affairs' (VA) residential treatment programs were used to explore these issues regarding prolonged exposure (PE) and cognitive processing therapy (CPT) in VA residential PTSD programs. Several unique and some overlapping predictors emerged. Leadership was viewed as an influence on implementation for both CPT and PE, while a lack of dedicated time and resources was viewed as a deterrent for both. Compatibility of CPT with providers' existing practices and beliefs, the ability to observe noticeable patient improvement, a perceived relative advantage of CPT over alternative treatments, and the presence of a supportive peer network emerged as influential on CPT implementation. Leadership was associated with PE implementation. Implications for the design and improvement of training and implementation efforts are discussed.
Lenters, Lindsey M; Cole, Donald C; Godoy-Ruiz, Paula
2014-01-25
Networks are increasingly regarded as essential in health research aimed at influencing practice and policies. Less research has focused on the role networking can play in researchers' careers and its broader impacts on capacity strengthening in health research. We used the Canadian Coalition for Global Health Research (CCGHR) annual Summer Institute for New Global Health Researchers (SIs) as an opportunity to explore networking among new global health researchers. A mixed-methods exploratory study was conducted among SI alumni and facilitators who had participated in at least one SI between 2004 and 2010. Alumni and facilitators completed an online short questionnaire, and a subset participated in an in-depth interview. Thematic analysis of the qualitative data was triangulated with quantitative results and CCGHR reports on SIs. Synthesis occurred through the development of a process model relevant to networking through the SIs. Through networking at the SIs, participants experienced decreased isolation and strengthened working relationships. Participants accessed new knowledge, opportunities, and resources through networking during the SI. Post-SI, participants reported ongoing contact and collaboration, although most participants desired more opportunities for interaction. They made suggestions for structural supports to networking among new global health researchers. Networking at the SI contributed positively to opportunities for individuals, and contributed to the formation of a network of global health researchers. Intentional inclusion of networking in health research capacity strengthening initiatives, with supportive resources and infrastructure could create dynamic, sustainable networks accessible to global health researchers around the world.
Gendron, Fidji; Hancherow, Anna; Norton, Ashley
2017-10-01
The project discussed in this paper was designed to expand research and instigate revitalization of Indigenous food networks in Saskatchewan, Canada, by exploring the current state of local Indigenous food networks, creating a Facebook page, organizing volunteer opportunities and surveying workshop participants regarding their knowledge and interest in Indigenous foods. The survey included Likert scale questions and qualitative questions. Project activities and survey results are discussed using statistical and qualitative analysis of the themes. Results indicate that participants are very interested in learning more about, and having greater access to, traditional foods and suggest that supporting Indigenous food networks may be an appropriate response to food insecurity in communities. Elders and community members are vital players in Indigenous foods exploration and revitalization in Saskatchewan by passing on traditional education. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Influence of the social network on consumption in drug addicts exhibiting psychiatric comorbidity].
Acier, D; Nadeau, L; Landry, M
2011-09-01
This research used a qualitative methodology and was conducted on a sample of 22 participants with concomitant substance-related and mental health disorders. Today, dual diagnosis patients represent the standard rather than the exception. Our objectives were to consider the elements and processes of the social network to explain variations in consumption of alcohol and drugs. The social network refers to all bonds established by patients, mainly family, couple, friends and therapist relationships. The 22 patients have used a specialized addiction treatment in Montreal (Canada). A focused qualitative interview was conducted with each participant using an audionumeric recording. The analysis follows the method of the mixed approach of Miles and Huberman, which combines the objectives of the grounded theory and the ethnography. All the interviews were transcribed then coded and analyzed with QSR N' Vivo 2.0. The method uses an iterative process making a constant return between verbatim and codes. The qualitative analyses present patients' perceptions on the increases and reductions in alcohol and drug consumption. Family network refers to participants where the family is named as supporting a decrease in drug consumption: couple network refers to intimate relations supporting a decrease in consumption. Mutual help network refers to alcoholics anonymous (AA) or other self-help groups. Several verbatim have been included. We propose strategies for the substance abuse treatment centers based on: (1) the paradox influence of the social network and the importance of clinical evaluation of patients of social networks; (2) emotions management, especially negative feelings, which include training of feeling, recognizing and naming, ability to the express and communicate to others; (3) importance of groups of mutual aid providing periods of sharing, validating individual experiences and pushing away loneliness; (4) function of social support of the clinical professionals as substitute of an overdrawn network. Copyright © 2011. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Sherrington, David; Davison, Lexie; Buhot, Arnaud; Garrahan, Juan P.
2002-02-01
We report a study of a series of simple model systems with only non-interacting Hamiltonians, and hence simple equilibrium thermodynamics, but with constrained dynamics of a type initially suggested by foams and idealized covalent glasses. We demonstrate that macroscopic dynamical features characteristic of real and more complex model glasses, such as two-time decays in energy and auto-correlation functions, arise from the dynamics and we explain them qualitatively and quantitatively in terms of annihilation-diffusion concepts and theory. The comparison is with strong glasses. We also consider fluctuation-dissipation relations and demonstrate subtleties of interpretation. We find no FDT breakdown when the correct normalization is chosen.
Representing Learning With Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.
Concurrent enterprise: a conceptual framework for enterprise supply-chain network activities
NASA Astrophysics Data System (ADS)
Addo-Tenkorang, Richard; Helo, Petri T.; Kantola, Jussi
2017-04-01
Supply-chain management (SCM) in manufacturing industries has evolved significantly over the years. Recently, a lot more relevant research has picked up on the development of integrated solutions. Thus, seeking a collaborative optimisation of geographical, just-in-time (JIT), quality (customer demand/satisfaction) and return-on-investment (profits), aspects of organisational management and planning through 'best practice' business-process management - concepts and application; employing system tools such as certain applications/aspects of enterprise resource planning (ERP) - SCM systems information technology (IT) enablers to enhance enterprise integrated product development/concurrent engineering principles. This article assumed three main organisation theory applications in positioning its assumptions. Thus, proposing a feasible industry-specific framework not currently included within the SCOR model's level four (4) implementation level, as well as other existing SCM integration reference models such as in the MIT process handbook's - Process Interchange Format (PIF), the TOVE project, etc. which could also be replicated in other SCs. However, the wider focus of this paper's contribution will be concentrated on a complimentary proposed framework to the SCC's SCOR reference model. Quantitative empirical closed-ended questionnaires in addition to the main data collected from a qualitative empirical real-life industrial-based pilot case study were used: To propose a conceptual concurrent enterprise framework for SCM network activities. This research adopts a design structure matrix simulation approach analysis to propose an optimal enterprise SCM-networked value-adding, customised master data-management platform/portal for efficient SCM network information exchange and an effective supply-chain (SC) network systems-design teams' structure. Furthermore, social network theory analysis will be employed in a triangulation approach with statistical correlation analysis to assess the scale/level of frequency, importance, level of collaborative-ness, mutual trust as well as roles and responsibility among the enterprise SCM network for systems product development (PD) design teams' technical communication network as well as extensive literature reviews.
Innovation Network Development Model in Telemedicine: A Change in Participation.
Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara
2015-10-01
This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.
Innovation Network Development Model in Telemedicine: A Change in Participation
Goodarzi, Maryam; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara
2015-01-01
Objectives This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. Methods The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. Results In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Conclusions Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models. PMID:26618033
Political opinion formation: Initial opinion distribution and individual heterogeneity of tolerance
NASA Astrophysics Data System (ADS)
Jin, Cheng; Li, Yifu; Jin, Xiaogang
2017-02-01
Opinion dynamics on networks have received serious attention for its profound prospects in social behaviours and self-organized systems. However, political opinion formation, as one typical and significant case, remains lacking in discussion. Previous agent-based simulations propose various models that are based on different mechanisms like the coevolution between network topology and status transition. Nonetheless, even under the same network topology and with the same simple mechanism, forming opinions can still be uncertain. In this work, we propose two features, the initial distribution of opinions and the individual heterogeneity of tolerances on opinion changing, in political opinion formation. These two features are imbedded in the network construction phase of a classical model. By comparing multi simple-party systems, along with a detailed analysis on the two-party system, we capture the critical phenomenon of fragmentation, polarization and consensus both in the persistent stable stage and in-process. We further introduce the average ratio of nearest neighbours to characterize the stage of opinion formation. The results show that the initial distribution of opinions leads to different evolution results on similar random networks. In addition, the existence of stubborn nodes plays a special role: only nodes that are extremely stubborn can cause the change of final opinion distribution while in other cases they only delay the time to reach stability. If stubborn nodes are small in number, their effects are confined within a small range. This theoretical work goes deeper on an existing model, it is an early exploration on qualitative and quantitative simulation of party competition.
Solar photospheric network properties and their cycle variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thibault, K.; Charbonneau, P.; Béland, M., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: michel.beland@calculquebec.ca-c
We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux,more » causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.« less
Dynamic social networks promote cooperation in experiments with humans
Rand, David G.; Arbesman, Samuel; Christakis, Nicholas A.
2011-01-01
Human populations are both highly cooperative and highly organized. Human interactions are not random but rather are structured in social networks. Importantly, ties in these networks often are dynamic, changing in response to the behavior of one's social partners. This dynamic structure permits an important form of conditional action that has been explored theoretically but has received little empirical attention: People can respond to the cooperation and defection of those around them by making or breaking network links. Here, we present experimental evidence of the power of using strategic link formation and dissolution, and the network modification it entails, to stabilize cooperation in sizable groups. Our experiments explore large-scale cooperation, where subjects’ cooperative actions are equally beneficial to all those with whom they interact. Consistent with previous research, we find that cooperation decays over time when social networks are shuffled randomly every round or are fixed across all rounds. We also find that, when networks are dynamic but are updated only infrequently, cooperation again fails. However, when subjects can update their network connections frequently, we see a qualitatively different outcome: Cooperation is maintained at a high level through network rewiring. Subjects preferentially break links with defectors and form new links with cooperators, creating an incentive to cooperate and leading to substantial changes in network structure. Our experiments confirm the predictions of a set of evolutionary game theoretic models and demonstrate the important role that dynamic social networks can play in supporting large-scale human cooperation. PMID:22084103
Best Practices Handbook: Traffic Engineering in Range Networks
2016-03-01
units of measurement. Measurement Methodology - A repeatable measurement technique used to derive one or more metrics of interest . Network...Performance measures - Metrics that provide quantitative or qualitative measures of the performance of systems or subsystems of interest . Performance Metric
NASA Astrophysics Data System (ADS)
Temme, A.; Langston, A. L.
2017-12-01
Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.
Hao, Chun; Guida, Jennifer; Morisky, Donald E.; Liu, Hongjie
2014-01-01
The objective of this study was to qualitatively explore the components of social networks and their influence on condom use among older female sex workers (FSWs) aged 35 years and older in China. In-depth interviews with 63 older FSWs and 6 focus groups interviews with pimps and owners of roadside salons and hotels were conducted in three Chinese cities. The mean age of participants was 42.6 years old (SD = 6.9 years) and the mean age of starting sex work was 38.6 years old (SD = 6.6 years). Two types of networks that influenced condom use were identified: family networks (relationship with children and husbands) and workplace networks (relationship with peers, clients, pimps and owners). Relationships between older FSWs and their children negatively influenced condom use. Low levels of network support and norms regarding condom use were observed in the relationship between older FSWs and their clients, whereas positive social support and norms were prevalent among older FSWs who had frequent contact with peers. Norms for condom use existed among pimps and owners, but were counterbalanced by monetary gains. Future HIV interventions for older FSWs should take the different features of social network components into consideration. PMID:25411685
Hao, Chun; Guida, Jennifer; Morisky, Donald E; Liu, Hongjie
2015-01-01
The objective of this study was to qualitatively explore the components of social networks and their influence on condom use among female sex workers (FSWs) aged 35 years and older in China. In-depth interviews with 63 older FSWs and 6 focus group interviews with pimps and owners of roadside salons and hotels were conducted in 3 Chinese cities. The mean age of participants was 42.6 years old (SD = 6.9 years) and the mean age of starting sex work was 38.6 years old (SD = 6.6 years). Two types of networks that influenced condom use were identified: family networks (relationship with children and husbands) and workplace networks (relationship with peers, clients, pimps, and owners). Relationships between older FSWs and their children negatively influenced condom use. Low levels of network support and norms regarding condom use were observed in the relationship between older FSWs and their clients, whereas positive social support and norms were prevalent among older FSWs who had frequent contact with peers. Norms for condom use existed among pimps and owners but were counterbalanced by monetary gains. Future human immunodeficiency virus (HIV) interventions for older FSWs should take the different features of social network components into consideration.
Meadowbrooke, Chrysta Cathleen; Loveluck, Jimena; Hickok, Andrew; Bauermeister, Jose Artruro
2013-01-01
Background We lack a systematic portrait of the relationship between community involvement and how people interact with information. Young men who have sex with men (YMSM) are a population for which these relationships are especially salient: their gay community involvement varies and their information technology use is high. YMSM under age 24 are also one of the US populations with the highest risk of HIV/AIDS. Objective To develop, test, and refine a model of gay community involvement (GCI) factors in human-information interaction (HII) as applied to HIV/AIDS information among YMSM, specifically examining the role of Internet use in GCI and HII. Methods Mixed methods included: 1) online questionnaire with 194 YMSM; and 2) qualitative interviews with 19 YMSM with high GCI levels. Recruitment utilized social media, dating websites, health clinics, bars/clubs, and public postings. The survey included questions regarding HIV/AIDS–related information acquisition and use patterns, gay community involvement, risk behaviors, and technology use. For survey data, we tested multiple linear regression models using a series of community- and information-related variables as dependent variables. Independent variables included community- and information-related variables and demographic covariates. We then conducted a recursive path analysis in order to estimate a final model, which we refined through a grounded theory analysis of qualitative interview data. Results Four community-related variables significantly predicted how people interact with information (HII variables): 1) gay community involvement (GCI), 2) social costs of information seeking, 3) network expertise accessibility, and 4) community relevance. GCI was associated with significantly lower perceived social costs of HIV/AIDS information seeking (R 2=0.07). GCI and social costs significantly predicted network expertise accessibility (R 2=0.14). GCI predicted 14% of the variance in community relevance and 9% of the variance in information seeking frequency. Incidental HIV/AIDS information acquisition (IIA) was also significantly predicted by GCI (R 2=0.16). 28% of the variance in HIV/AIDS information use was explained by community relevance, network expertise access, and both IIA and information seeking. The final path model showed good fit: the RSMEA was 0.054 (90% CI: .000-.101); the Chi-square was non-significant (χ2(11)=17.105; P=.105); and the CFI was 0.967. Qualitative findings suggest that the model may be enhanced by including information sharing: organizing events, disseminating messages, encouraging safety, and referring and recommending. Information sharing emerged under conditions of pro-social community value enactment and may have consequences for further HII. YMSM with greater GCI generally used the Internet more, although they chatted online less. Conclusions HIV/AIDS–related HII and associated technology uses are community-embedded processes. The model provides theoretical mediators that may serve as a focus for intervention: 1) valuing HIV/AIDS information, through believing it is relevant to one’s group, and 2) supportive and knowledgeable network members with whom to talk about HIV/AIDS. Pro-social community value endorsement and information sharing may also be important theoretical mediators. Our model could open possibilities for considering how informatics interventions can also be designed as community-level interventions and vice versa. PMID:23428825
ERIC Educational Resources Information Center
Kirk, Richard; Watt, Karen M.
2018-01-01
This qualitative study examines how Mexican American students participating in an AVID for Higher Education course perceived their preparation for the workforce and efficacy of completing a college credential. A focus group approach was used to explore how social and cultural networks (networks for success) contribute to college completion. The…
ERIC Educational Resources Information Center
Feys, Ellen; Devos, Geert
2015-01-01
Incentivized collaboration, schools that receive incentives such as public funding or additional resources if they join a network, has become quite popular in Europe and North America (e.g. England, Flanders, United States). We used a comparative case study design to explore why schools would enter such an incentivized network and what role…
ERIC Educational Resources Information Center
Cornelissen, Frank; Daly, Alan J.; Liou, Yi-Hwa; Van Swet, Jacqueline; Beijaard, Douwe; Bergen, Theo C. M.
2015-01-01
This study investigated the way developing, sharing and using of research-based knowledge occurred in the school-university research network of a master's programme for in-service teachers in the Netherlands. Over a 10-month period, a combination of quantitative and qualitative network data was collected. Data were analysed at three network…
78 FR 48681 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
.... Qualitative and quantitative data will be collected through progress reports, surveys, the health impact tracking tool, and interviews. Quantitative data will be analyzed using descriptive statistics. Qualitative... States (SOTS) online surveys, (3) Interviews, and (4) Online surveys related to the Regional Network...
Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
NASA Astrophysics Data System (ADS)
Chaves, M.; Preto, M.
2013-06-01
A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.
Kennedy, Anne; Rogers, Anne; Vassilev, Ivaylo; Todorova, Elka; Roukova, Poli; Foss, Christina; Knutsen, Ingrid; Portillo, Mari Carmen; Mujika, Agurtzane; Serrano-Gil, Manuel; Lionis, Christos; Angelaki, Agapi; Ratsika, Nikoleta; Koetsenruijter, Jan; Wensing, Michel
2015-12-01
Living with and self-managing a long-term condition implicates a diversity of networked relationships. This qualitative study examines the personal communities of support of people with type 2 diabetes. We conducted 170 biographical interviews in six European countries (Bulgaria, Greece, the Netherlands, Norway, Spain and UK) to explore social support and networks. Analysis was framed with reference to three predetermined social support mechanisms: the negotiation of support enabling engagement with healthy practices, navigation to sources of support and collective efficacy. Each interview was summarized to describe navigation and negotiation of participants' networks and the degree of collective efficacy. Analysis highlighted the similarities and differences between countries and provided insights into capacities of networks to support self-management. The network support mechanisms were identified in all interviews, and losses and gains in networks impacted on diabetes management. There were contextual differences between countries, most notably the impact of financial austerity on network dynamics. Four types of network are suggested: generative, diverse and beneficial to individuals; proxy, network members undertook diabetes management work; avoidant, support not engaged with; and struggling, diabetes management a struggle or not prioritized. It is possible to differentiate types of network input to living with and managing diabetes. Recognizing the nature of active, generative aspects of networks support is likely to have relevance for self-management support interventions either through encouraging continuing development and maintenance of these contacts or intervening to address struggling networks through introducing the means to connect people to additional sources of support. © 2014 John Wiley & Sons Ltd.
Valdez, Rupa Sheth; Brennan, Patricia Flatley
2015-05-01
There is a need to ensure that the growing number of consumer health information technologies designed to support patient engagement account for the larger social context in which health is managed. Basic research on how patients engage this larger social context is needed as a precursor to the development of patient-centered consumer health information technology (IT) solutions. The purpose of this study was to inform the broader design of consumer health IT by characterizing patients' existing health information communication practices with their social network members. This qualitative study took place between 2010 and 2012 in a Midwestern city. Eighteen patients with chronic conditions participated in a semi-structured interview that was analyzed using qualitative content analysis and descriptive statistics. Emphasis was placed on recruiting a sample representing diverse cultural groups and including participants of low socioeconomic status. Participants' social networks included a wide range of individuals, spanning biological relatives, divinities, and second-degree relationships. Participants' rationales for health information communication reflected seven themes: (1) characteristics and circumstances of the person, (2) characteristics and circumstances of the relationship, (3) structure and composition of the social network, (4) content of the message, (5) orientation of the goal, (6) dimensions of the context, and (7) adaptive practices. This study demonstrates that patients' health information communication practices are multidimensional, engaging individuals beyond formal and informal caregivers and driven by characteristics of their personal lives and larger social contexts in addition to their health problem. New models of consumer health IT must be created to better align with the realities of patients' communication routines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahault, Benoit Alexandre; Saxena, Avadh Behari; Nisoli, Cristiano
We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, onlymore » minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.« less
Social Network Analysis Applied to a Historical Ethnographic Study Surrounding Home Birth
2018-01-01
Safety during birth has improved since hospital delivery became standard practice, but the process has also become increasingly medicalised. Hence, recent years have witnessed a growing interest in home births due to the advantages it offers to mothers and their newborn infants. The aims of the present study were to confirm the transition from a home birth model of care to a scenario in which deliveries began to occur almost exclusively in a hospital setting; to define the social networks surrounding home births; and to determine whether geography exerted any influence on the social networks surrounding home births. Adopting a qualitative approach, we recruited 19 women who had given birth at home in the mid 20th century in a rural area in Spain. We employed a social network analysis method. Our results revealed three essential aspects that remain relevant today: the importance of health professionals in home delivery care, the importance of the mother’s primary network, and the influence of the geographical location of the actors involved in childbirth. All of these factors must be taken into consideration when developing strategies for maternal health. PMID:29695089
Casanova, Angela Oliveira; Cruz, Marly Marques; Giovanella, Ligia; Alves, Glaydes Dos Reis; Cardoso, Gisela Cordeiro Pereira
2017-04-01
This paper aims to analyze the potential, limits and challenges of regional governance in the implementation process of health care networks in three Brazilian regions: Alto Solimões (Amazonas), Belém (Pará) and an interstate region comprising Tocantins, Pará and Maranhão states (Topama). The study is based on the evaluation study on the implementation of the Quality Health Care Network Development and Improvement Project (QualiSUS-Rede). This is a qualitative multiple case study with the analysis of official documents and use of semi-structured interviews with key stakeholders conducted from July to December 2014. Governance review encompassed three components: stakeholders involved, especially local steering groups and their regional coordination capacity; strategies used for strengthening regional governance, anchored on the intervention's modeling; and implementation of local health care networks. Results point that the regional managing commissions were the main governance strategy and that the QualiSUS-Rede Project strengthened regional governance and integration differently in every case, depending on stakeholders' administration and consensus capacity on regional and political priorities.
Nordqvist, R.; Voss, C.I.
1996-01-01
An approach to model discrimination and network design for evaluation of groundwater contamination risk is proposed and demonstrated by application to a site in a glaciofluvial aquifer in Sweden. The approach consists of first hypothesizing alternative conceptual models of hydrogeology at the site on the basis of both quantitative data and qualitative information. The conceptual models are then expressed as two-dimensional numerical models of groundwater flow and solute transport, and model attributes controlling risk to the water supply are determined by simulation. Model predictions of response to a specific field test are made with each model that affects risk. Regions for effective measurement networks are then identified. Effective networks are those that capture sufficient information to determine which of the hypothesized models best describes the system with a minimum of measurement points. For the example site in Sweden, the network is designed such that important system parameters may be accurately estimated at the same time as model discrimination is carried out. The site in Vansbro, Sweden, consists of a water-supply well in an esker separated (by 300m) from a wood preservation and treatment area on the esker flank by only a narrow inlet of a bordering stream. Application of the above-described risk analysis shows that, of all the hydrologic controls and parameters in the groundwater system, the only factor that controls the potential migration of wood-treatment contaminants to the well is whether the inlet's bed is pervious, creating a hydraulic barrier to lateral contaminant transport. Furthermore, the analysis localizes an area near the end of the inlet wherein the most effective measurements of drawdown would be made to discriminate between a permeable and impermeable bed. The location of this optimal area is not obvious prior to application of the above methodology.
ERIC Educational Resources Information Center
Rios-Aguilar, Cecilia; Deil-Amen, Regina
2012-01-01
Social network analyses, combined with qualitative analyses, are examined to understand key components of the college trajectories of 261 Latina/o students. Their social network ties reveal variation in extensity and the relevance. Most ties facilitate social capital relevant to getting into college, fewer engage social capital relevant to…
ERIC Educational Resources Information Center
Miller, Mark S.
2010-01-01
This qualitative multiple-case study was conducted to explore and understand how the implementation of required relationship-specific supply chain management system (SCMS) dictated by the network leader within a supplier network affects a supplier organization. The study, on a very broad sense, attempted to research the current validity of how the…
Probabilistic prediction of barrier-island response to hurricanes
Plant, Nathaniel G.; Stockdon, Hilary F.
2012-01-01
Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.
2014-01-01
Background Networks are increasingly regarded as essential in health research aimed at influencing practice and policies. Less research has focused on the role networking can play in researchers’ careers and its broader impacts on capacity strengthening in health research. We used the Canadian Coalition for Global Health Research (CCGHR) annual Summer Institute for New Global Health Researchers (SIs) as an opportunity to explore networking among new global health researchers. Methods A mixed-methods exploratory study was conducted among SI alumni and facilitators who had participated in at least one SI between 2004 and 2010. Alumni and facilitators completed an online short questionnaire, and a subset participated in an in-depth interview. Thematic analysis of the qualitative data was triangulated with quantitative results and CCGHR reports on SIs. Synthesis occurred through the development of a process model relevant to networking through the SIs. Results Through networking at the SIs, participants experienced decreased isolation and strengthened working relationships. Participants accessed new knowledge, opportunities, and resources through networking during the SI. Post-SI, participants reported ongoing contact and collaboration, although most participants desired more opportunities for interaction. They made suggestions for structural supports to networking among new global health researchers. Conclusions Networking at the SI contributed positively to opportunities for individuals, and contributed to the formation of a network of global health researchers. Intentional inclusion of networking in health research capacity strengthening initiatives, with supportive resources and infrastructure could create dynamic, sustainable networks accessible to global health researchers around the world. PMID:24460819
Gloaguen, Pauline; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves
2017-01-01
Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. PMID:28442501
A latent class analysis of friendship network types and their predictors in the second half of life.
Miche, Martina; Huxhold, Oliver; Stevens, Nan L
2013-07-01
Friendships contribute uniquely to well-being in (late) adulthood. However, studies on friendship often ignore interindividual differences in friendship patterns. The aim of this study was to investigate such differences including their predictors. The study builds on Matthews's qualitative model of friendship styles. Matthews distinguished 3 approaches to friendship differing by number of friends, duration of friendships, and emotional closeness. We used latent class analysis to identify friendship network types in a sample of middle-aged and older adults aged 40-85 years (N = 1,876). Data came from the German Aging Survey (DEAS). Our analysis revealed 4 distinct friendship network types that were in high congruence with Matthews's typology. We identified these as a discerning style, which focuses on few close relationships, an independent style, which refrains from close engagements, and 2 acquisitive styles that both acquire new friends across their whole life course but differ regarding the emotional closeness of their friendships. Socioeconomic status, gender, health, and network-disturbing and network-sustaining variables predicted affiliations with network types. We argue that future studies should consider a holistic view of friendships in order to better understand the association between friendships and well-being in the second half of life.
A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation
NASA Astrophysics Data System (ADS)
Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah
2016-06-01
Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.
Boydell, Katherine M; Volpe, Tiziana; Gladstone, Brenda M; Stasiulis, Elaine; Addington, Jean
2013-05-01
This paper aims to identify the ways in which youth at ultra high risk for psychosis access mental health services and the factors that advance or delay help seeking, using the Revised Network Episode Model (REV NEM) of mental health care. A case study approach documents help-seeking pathways, encompassing two qualitative interviews with 10 young people and 29 significant others. Theoretical propositions derived from the REV NEM are explored, consisting of the content, structure and function of the: (i) family; (ii) community and school; and (iii) treatment system. Although the aspects of the REV NEM are supported and shape pathways to care, we consider rethinking the model for help seeking with youth at ultra high risk for psychosis. The pathway concept is important to our understanding of how services and supports are received and experienced over time. Understanding this process and the strategies that support positive early intervention on the part of youth and significant others is critical. © 2012 Wiley Publishing Asia Pty Ltd.
Northcott, Sarah; Moss, Becky; Harrison, Kirsty; Hilari, Katerina
2016-08-01
Identify what factors are associated with functional social support and social network post stroke; explore stroke survivors' perspectives on what changes occur and how they are perceived. The following electronic databases were systematically searched up to May 2015: Academic Search Complete; CINAHL Plus; E-journals; Health Policy Reference Centre; MEDLINE; PsycARTICLES; PsycINFO; and SocINDEX. PRISMA guidelines were followed in the conduct and reporting of this review. All included studies were critically appraised using the Critical Appraisal Skills Program tools. Meta-ethnographic techniques were used to integrate findings from the qualitative studies. Given the heterogeneous nature of the quantitative studies, data synthesis was narrative. Seventy research reports met the eligibility criteria: 22 qualitative and 48 quantitative reporting on 4,816 stroke survivors. The qualitative studies described a contraction of the social network, with non-kin contact being vulnerable. Although family were more robust network members, significant strain was observed within the family unit. In the quantitative studies, poor functional social support was associated with depression (13/14 studies), reduced quality of life (6/6 studies) and worse physical recovery (2/2 studies). Reduced social network was associated with depression (7/8 studies), severity of disability (2/2 studies) and aphasia (2/2 studies). Although most indicators of social network reduced post stroke (for example, contact with friends, 5/5 studies), the perception of feeling supported remained relatively stable (4/4 studies). Following a stroke non-kin contact is vulnerable, strain is observed within the family unit, and poor social support is associated with depressive symptoms. © The Author(s) 2015.
Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas
NASA Astrophysics Data System (ADS)
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-09-01
In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.
Watson, Christopher G; Stopp, Christian; Newburger, Jane W; Rivkin, Michael J
2018-02-01
Adolescents with d-transposition of the great arteries (d-TGA) who had the arterial switch operation in infancy have been found to have structural brain differences compared to healthy controls. We used cortical thickness measurements obtained from structural brain MRI to determine group differences in global brain organization using a graph theoretical approach. Ninety-two d-TGA subjects and 49 controls were scanned using one of two identical 1.5-Tesla MRI systems. Mean cortical thickness was obtained from 34 regions per hemisphere using Freesurfer. A linear model was used for each brain region to adjust for subject age, sex, and scanning location. Structural connectivity for each group was inferred based on the presence of high inter-regional correlations of the linear model residuals, and binary connectivity matrices were created by thresholding over a range of correlation values for each group. Graph theory analysis was performed using packages in R. Permutation tests were performed to determine significance of between-group differences in global network measures. Within-group connectivity patterns were qualitatively different between groups. At lower network densities, controls had significantly more long-range connections. The location and number of hub regions differed between groups: controls had a greater number of hubs at most network densities. The control network had a significant rightward asymmetry compared to the d-TGA group at all network densities. Using graph theory analysis of cortical thickness correlations, we found differences in brain structural network organization among d-TGA adolescents compared to controls. These may be related to the white matter and gray matter differences previously found in this cohort, and in turn may be related to the cognitive deficits this cohort presents.
Schoenmakers, Daphne; Lamkaddem, Majda; Suurmond, Jeanine
2017-01-01
Background: Despite high prevalence of mental problems among elderly migrants in The Netherlands, the use of psychosocial care services by this group is low. Scientific evidence points at the crucial role of social support for mental health and the use of psychosocial services. We therefore explored the role of social networks in the access to psychosocial care among elderly migrants in The Netherlands. Methods: A qualitative study was conducted using semi-structured group interviews and individual interviews. The eight group and eleven individual interviews (respectively n = 58 and n = 11) were conducted in The Netherlands with Turkish, Moroccan, Surinamese, and Dutch elderly. The data were analysed through coding and comparing fragments and recognizing patterns. Results: Support of the social network is important to navigate to psychosocial care and is most frequently provided by children. However, the social network of elderly migrants is generally not able to meet the needs of the elderly. This is mostly due to poor mental health literacy of the social network, taboo, and stigma around mental illness and the busy lives of the social network members. Conclusions: Strategies to address help-seeking barriers should consider mental health literacy in elderly migrants as well as their social networks, and counteract taboos and stigma of mental health problems. PMID:29019961
Schoenmakers, Daphne; Lamkaddem, Majda; Suurmond, Jeanine
2017-10-11
Abstract : Background: Despite high prevalence of mental problems among elderly migrants in The Netherlands, the use of psychosocial care services by this group is low. Scientific evidence points at the crucial role of social support for mental health and the use of psychosocial services. We therefore explored the role of social networks in the access to psychosocial care among elderly migrants in The Netherlands. Methods: A qualitative study was conducted using semi-structured group interviews and individual interviews. The eight group and eleven individual interviews (respectively n = 58 and n = 11) were conducted in The Netherlands with Turkish, Moroccan, Surinamese, and Dutch elderly. The data were analysed through coding and comparing fragments and recognizing patterns. Results: Support of the social network is important to navigate to psychosocial care and is most frequently provided by children. However, the social network of elderly migrants is generally not able to meet the needs of the elderly. This is mostly due to poor mental health literacy of the social network, taboo, and stigma around mental illness and the busy lives of the social network members. Conclusion s : Strategies to address help-seeking barriers should consider mental health literacy in elderly migrants as well as their social networks, and counteract taboos and stigma of mental health problems.
NASA Astrophysics Data System (ADS)
Protalinsky, O. M.; Shcherbatov, I. A.; Stepanov, P. V.
2017-11-01
A growing number of severe accidents in RF call for the need to develop a system that could prevent emergency situations. In a number of cases accident rate is stipulated by careless inspections and neglects in developing repair programs. Across the country rates of accidents are growing because of a so-called “human factor”. In this regard, there has become urgent the problem of identification of the actual state of technological facilities in power engineering using data on engineering processes running and applying artificial intelligence methods. The present work comprises four model states of manufacturing equipment of engineering companies: defect, failure, preliminary situation, accident. Defect evaluation is carried out using both data from SCADA and ASEPCR and qualitative information (verbal assessments of experts in subject matter, photo- and video materials of surveys processed using pattern recognition methods in order to satisfy the requirements). Early identification of defects makes possible to predict the failure of manufacturing equipment using mathematical techniques of artificial neural network. In its turn, this helps to calculate predicted characteristics of reliability of engineering facilities using methods of reliability theory. Calculation of the given parameters provides the real-time estimation of remaining service life of manufacturing equipment for the whole operation period. The neural networks model allows evaluating possibility of failure of a piece of equipment consistent with types of actual defects and their previous reasons. The article presents the grounds for a choice of training and testing samples for the developed neural network, evaluates the adequacy of the neural networks model, and shows how the model can be used to forecast equipment failure. There have been carried out simulating experiments using a computer and retrospective samples of actual values for power engineering companies. The efficiency of the developed model for different types of manufacturing equipment has been proved. There have been offered other research areas in terms of the presented subject matter.
Sayles, Jesse S; Baggio, Jacopo A
2017-01-15
Governance silos are settings in which different organizations work in isolation and avoid sharing information and strategies. Siloes are a fundamental challenge for environmental planning and problem solving, which generally requires collaboration. Siloes can be overcome by creating governance networks. Studying the structure and function of these networks is important for understanding how to create institutional arrangements that can respond to the biophysical dynamics of a specific natural resource system (i.e., social-ecological, or institutional fit). Using the case of salmon restoration in a sub-basin of Puget Sound, USA, we assess network integration, considering three different reasons for network collaborations (i.e., mandated, funded, and shared interest relationships) and analyze how these different collaboration types relate to productivity based on practitioner's assessments. We also illustrate how specific and targeted network interventions might enhance the network. To do so, we use a mixed methods approach that combines quantitative social network analysis (SNA) and qualitative interview analysis. Overall, the sub-basin's governance network is fairly well integrated, but several concerning gaps exist. Funded, mandated, and shared interest relationships lead to different network patterns. Mandated relationships are associated with lower productivity than shared interest relationships, highlighting the benefit of genuine collaboration in collaborative watershed governance. Lastly, quantitative and qualitative data comparisons strengthen recent calls to incorporate geographic space and the role of individual actors versus organizational culture into natural resource governance research using SNA. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
NASA Astrophysics Data System (ADS)
Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki
2017-04-01
The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.
Memory decay and loss of criticality in quorum percolation
NASA Astrophysics Data System (ADS)
Renault, Renaud; Monceau, Pascal; Bottani, Samuel
2013-12-01
In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes. Using different numerical approaches, we show evidence for this qualitative change even for very small decay values. In experiments where the steepest slopes can not be resolved and still appear as discontinuities, decay produces nonetheless a quantitative difference on the location of the apparent critical point. We discuss how this shift impacts network connectivity previously estimated without considering decay. In addition to this particular example, we believe that other percolation models are worth reinvestigating, taking into account similar sorts of memory decay.
A Typology to Explain Changing Social Networks Post Stroke.
Northcott, Sarah; Hirani, Shashivadan P; Hilari, Katerina
2018-05-08
Social network typologies have been used to classify the general population but have not previously been applied to the stroke population. This study investigated whether social network types remain stable following a stroke, and if not, why some people shift network type. We used a mixed methods design. Participants were recruited from two acute stroke units. They completed the Stroke Social Network Scale (SSNS) two weeks and six months post stroke and in-depth interviews 8-15 months following the stroke. Qualitative data was analysed using Framework Analysis; k-means cluster analysis was applied to the six-month data set. Eighty-seven participants were recruited, 71 were followed up at six months, and 29 completed in-depth interviews. It was possible to classify all 29 participants into one of the following network types both prestroke and post stroke: diverse; friends-based; family-based; restricted-supported; restricted-unsupported. The main shift that took place post stroke was participants moving out of a diverse network into a family-based one. The friends-based network type was relatively stable. Two network types became more populated post stroke: restricted-unsupported and family-based. Triangulatory evidence was provided by k-means cluster analysis, which produced a cluster solution (for n = 71) with comparable characteristics to the network types derived from qualitative analysis. Following a stroke, a person's social network is vulnerable to change. Explanatory factors for shifting network type included the physical and also psychological impact of having a stroke, as well as the tendency to lose contact with friends rather than family.
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Heng; Ye, Hao; Ng, Hui Wen
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao
2016-01-01
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
Luo, Heng; Ye, Hao; Ng, Hui Wen; ...
2016-08-25
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less
NASA Astrophysics Data System (ADS)
Waldmann, I. P.
2016-04-01
Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.
Browne, Jennifer; de Leeuw, Evelyne; Gleeson, Deborah; Adams, Karen; Atkinson, Petah; Hayes, Rick
2017-01-01
Aboriginal health policy in Australia represents a unique policy subsystem comprising a diverse network of Aboriginal-specific and "mainstream" organisations, often with competing interests. This paper describes the network structure of organisations attempting to influence national Aboriginal health policy and examines how the different subgroups within the network approached the policy discourse. Public submissions made as part of a policy development process for the National Aboriginal and Torres Strait Islander Health Plan were analysed using a novel combination of network analysis and qualitative framing analysis. Other organisational actors in the network in each submission were identified, and relationships between them determined; these were used to generate a network map depicting the ties between actors. A qualitative framing analysis was undertaken, using inductive coding of the policy discourses in the submissions. The frames were overlaid with the network map to identify the relationship between the structure of the network and the way in which organisations framed Aboriginal health problems. Aboriginal organisations were central to the network and strongly connected with each other. The network consisted of several densely connected subgroups, whose central nodes were closely connected to one another. Each subgroup deployed a particular policy frame, with a frame of "system dysfunction" also adopted by all but one subgroup. Analysis of submissions revealed that many of the stakeholders in Aboriginal health policy actors are connected to one another. These connections help to drive the policy discourse. The combination of network and framing analysis illuminates competing interests within a network, and can assist advocacy organisations to identify which network members are most influential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakagawa, Masaki; Togashi, Yuichi
2016-01-01
Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed. PMID:27047384
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-04-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-10-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Hsun
2015-02-01
The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.
ERIC Educational Resources Information Center
Laeger-Hagemeister, Mary A.
2011-01-01
Combining social capital theory and immigration history and theory a qualitative study was conducted using a variation of Critical Incident Technique to identify the motivations of individuals in rural communities who championed community responses to the influx of large immigrant populations. Twenty-eight individuals identified as key champions…
Possible Origin of Stagnation and Variability of Earth's Biodiversity
NASA Astrophysics Data System (ADS)
Stollmeier, Frank; Geisel, Theo; Nagler, Jan
2014-06-01
The magnitude and variability of Earth's biodiversity have puzzled scientists ever since paleontologic fossil databases became available. We identify and study a model of interdependent species where both endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework provides an explanation for the qualitative difference of marine and continental biodiversity growth. In particular, the stagnation of marine biodiversity may result from a global transition from an imbalanced to a balanced state of the species dependency network. The predictions of our framework are in agreement with paleontologic databases.
Screening of the aerodynamic and biophysical properties of barley malt
NASA Astrophysics Data System (ADS)
Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.
2016-10-01
An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.
Estimating interevent time distributions from finite observation periods in communication networks
NASA Astrophysics Data System (ADS)
Kivelä, Mikko; Porter, Mason A.
2015-11-01
A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.
Peters, D T J M; Verweij, S; Grêaux, K; Stronks, K; Harting, J
2017-12-01
Improving health requires changes in the social, physical, economic and political determinants of health behavior. For the realization of policies that address these environmental determinants, intersectoral policy networks are considered necessary for the pooling of resources to implement different policy instruments. However, such network diversity may increase network complexity and therefore hamper network performance. Network complexity may be reduced by network management and the provision of financial resources. This study examined whether network diversity - amidst the other conditions - is indeed needed to address environmental determinants of health behavior. We included 25 intersectoral policy networks in Dutch municipalities aimed at reducing overweight, smoking, and alcohol/drugs abuse. For our fuzzy set Qualitative Comparative Analysis we used data from three web-based surveys among (a) project leaders regarding network diversity and size (n = 38); (b) project leaders and project partners regarding management (n = 278); and (c) implementation professionals regarding types of environmental determinants addressed (n = 137). Data on budgets were retrieved from project application forms. Contrary to their intentions, most policy networks typically addressed personal determinants. If the environment was addressed too, it was mostly the social environment. To address environmental determinants of health behavior, network diversity (>50% of the actors are non-public health) was necessary in networks that were either small (<16 actors) or had small budgets (<€183,172), when both were intensively managed. Irrespective of network diversity, environmental determinants also were addressed by small networks with large budgets, and by large networks with small budgets, when both provided network management. We conclude that network diversity is important - although not necessary - for resource pooling to address environmental determinants of health behavior, but only effective in the presence of network management. Our findings may support intersectoral policy networks in improving health behaviors by addressing a variety of environmental determinants. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Kisang, Benjamin
2010-01-01
This study is a qualitative investigation of the role that social networks play in the adjustment and academic success of international students. With large numbers of international students enrolled on US campuses, it is important for practitioners to prepare, understand and address their dynamic needs. Based on social network, social capital and…
ERIC Educational Resources Information Center
Ferguson, Christopher Paul
2010-01-01
With increased competition among higher education institutions for best- fit students, the profession of college admissions is compelled to implement innovative recruiting strategies (e.g. online social networking sites), that may impact college access and persistence in the United States. This qualitative study examined the reasons why two…
A qualitative study of determinants of PTSD treatment initiation in veterans.
Sayer, Nina A; Friedemann-Sanchez, Greta; Spoont, Michele; Murdoch, Maureen; Parker, Louise E; Chiros, Christine; Rosenheck, Robert
2009-01-01
Although there are effective treatments for Posttraumatic Stress Disorder (PTSD), many PTSD sufferers wait years to decades before seeking professional help, if they seek it at all. An understanding of factors affecting treatment initiation for PTSD can inform strategies to promote help-seeking. We conducted a qualitative study to identify determinants of PTSD treatment initiation among 44 U.S. military veterans from the Vietnam and Afghanistan/Iraq wars; half were and half were not receiving treatment. Participants described barriers to and facilitators of treatment initiation within themselves, the post-trauma socio-cultural environment, the health care and disability systems, and their social networks. Lack of knowledge about PTSD was a barrier that occurred at both the societal and individual levels. Another important barrier theme was the enduring effect of experiencing an invalidating socio-cultural environment following trauma exposure. In some cases, system and social network facilitation led to treatment initiation despite individual-level barriers, such as beliefs and values that conflicted with help-seeking. Our findings expand the dominant model of service utilization by explicit incorporation of factors outside the individual into a conceptual framework of PTSD treatment initiation. Finally, we offer suggestions regarding the direction of future research and the development of interventions to promote timely help-seeking for PTSD.
ERIC Educational Resources Information Center
Akgün, Ergün; Akkoyunlu, Buket
2013-01-01
Along with the integration of network and communication innovations into education, those technology enriched learning environments gained importance both qualitatively and operationally. Using network and communication innovations in the education field, provides diffusion of information and global accessibility, and also allows physically…
System monitoring and diagnosis with qualitative models
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin
1991-01-01
A substantial foundation of tools for model-based reasoning with incomplete knowledge was developed: QSIM (a qualitative simulation program) and its extensions for qualitative simulation; Q2, Q3 and their successors for quantitative reasoning on a qualitative framework; and the CC (component-connection) and QPC (Qualitative Process Theory) model compilers for building QSIM QDE (qualitative differential equation) models starting from different ontological assumptions. Other model-compilers for QDE's, e.g., using bond graphs or compartmental models, have been developed elsewhere. These model-building tools will support automatic construction of qualitative models from physical specifications, and further research into selection of appropriate modeling viewpoints. For monitoring and diagnosis, plausible hypotheses are unified against observations to strengthen or refute the predicted behaviors. In MIMIC (Model Integration via Mesh Interpolation Coefficients), multiple hypothesized models of the system are tracked in parallel in order to reduce the 'missing model' problem. Each model begins as a qualitative model, and is unified with a priori quantitative knowledge and with the stream of incoming observational data. When the model/data unification yields a contradiction, the model is refuted. When there is no contradiction, the predictions of the model are progressively strengthened, for use in procedure planning and differential diagnosis. Only under a qualitative level of description can a finite set of models guarantee the complete coverage necessary for this performance. The results of this research are presented in several publications. Abstracts of these published papers are presented along with abtracts of papers representing work that was synergistic with the NASA grant but funded otherwise. These 28 papers include but are not limited to: 'Combined qualitative and numerical simulation with Q3'; 'Comparative analysis and qualitative integral representations'; 'Model-based monitoring of dynamic systems'; 'Numerical behavior envelopes for qualitative models'; 'Higher-order derivative constraints in qualitative simulation'; and 'Non-intersection of trajectories in qualitative phase space: a global constraint for qualitative simulation.'
An approach to computing direction relations between separated object groups
NASA Astrophysics Data System (ADS)
Yan, H.; Wang, Z.; Li, J.
2013-06-01
Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on Gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups; and then it constructs the Voronoi Diagram between the two groups using the triangular network; after this, the normal of each Vornoi edge is calculated, and the quantitative expression of the direction relations is constructed; finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
An approach to computing direction relations between separated object groups
NASA Astrophysics Data System (ADS)
Yan, H.; Wang, Z.; Li, J.
2013-09-01
Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups, and then it constructs the Voronoi diagram between the two groups using the triangular network. After this, the normal of each Voronoi edge is calculated, and the quantitative expression of the direction relations is constructed. Finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
Qualitative modeling of the decision-making process using electrooculography.
Zargari Marandi, Ramtin; Sabzpoushan, S H
2015-12-01
A novel method based on electrooculography (EOG) has been introduced in this work to study the decision-making process. An experiment was designed and implemented wherein subjects were asked to choose between two items from the same category that were presented within a limited time. The EOG and voice signals of the subjects were recorded during the experiment. A calibration task was performed to map the EOG signals to their corresponding gaze positions on the screen by using an artificial neural network. To analyze the data, 16 parameters were extracted from the response time and EOG signals of the subjects. Evaluation and comparison of the parameters, together with subjects' choices, revealed functional information. On the basis of this information, subjects switched their eye gazes between items about three times on average. We also found, according to statistical hypothesis testing-that is, a t test, t(10) = 71.62, SE = 1.25, p < .0001-that the correspondence rate of a subjects' gaze at the moment of selection with the selected item was significant. Ultimately, on the basis of these results, we propose a qualitative choice model for the decision-making task.
Statistically Validated Networks in Bipartite Complex Systems
Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.
2011-01-01
Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858
The Complexity of Dynamics in Small Neural Circuits
Panzeri, Stefano
2016-01-01
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing. PMID:27494737
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
Connections between the Sznajd model with general confidence rules and graph theory
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei
2017-12-21
In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grudka, Andrzej; National Quantum Information Centre of Gdansk, PL-81-824 Sopot; Horodecki, Pawel
2010-06-15
We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.
Voting procedures from the perspective of theory of neural networks
NASA Astrophysics Data System (ADS)
Suleimenov, Ibragim; Panchenko, Sergey; Gabrielyan, Oleg; Pak, Ivan
2016-11-01
It is shown that voting procedure in any authority can be treated as Hopfield neural network analogue. It was revealed that weight coefficients of neural network which has discrete outputs -1 and 1 can be replaced by coefficients of a discrete set (-1, 0, 1). This gives us the opportunity to qualitatively analyze the voting procedure on the basis of limited data about mutual influence of members. It also proves that result of voting procedure is actually taken by network formed by voting members.
Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine.
Stites, Edward C
2013-04-01
Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients.
A process of rumour scotching on finite populations.
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A; Rodríguez, Pablo Martín
2015-09-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible-infected-recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation.
A process of rumour scotching on finite populations
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A.; Rodríguez, Pablo Martín
2015-01-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible–infected–recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation. PMID:26473048
Assimilation of Web-Based Urgent Stroke Evaluation: A Qualitative Study of Two Networks
Mathiassen, Lars; Switzer, Jeffrey A; Adams, Robert J
2014-01-01
Background Stroke is a leading cause of death and serious, long-term disability across the world. Urgent stroke care treatment is time-sensitive and requires a stroke-trained neurologist for clinical diagnosis. Rural areas, where neurologists and stroke specialists are lacking, have a high incidence of stroke-related death and disability. By virtually connecting emergency department physicians in rural hospitals to regional medical centers for consultations, specialized Web-based stroke evaluation systems (telestroke) have helped address the challenge of urgent stroke care in underserved communities. However, many rural hospitals that have deployed telestroke have not fully assimilated this technology. Objective The objective of this study was to explore potential sources of variations in the utilization of a Web-based telestroke system for urgent stroke evaluation and propose a telestroke assimilation model to improve stroke care performance. Methods An exploratory, qualitative case study of two telestroke networks, each comprising an academic stroke center (hub) and connected rural hospitals (spokes), was conducted. Data were collected from 50 semistructured interviews with 40 stakeholders, telestroke usage logs from 32 spokes, site visits, published papers, and reports. Results The two networks used identical technology (called Remote Evaluation of Acute isCHemic stroke, REACH) and were of similar size and complexity, but showed large variations in telestroke assimilation across spokes. Several observed hub- and spoke-related characteristics can explain these variations. The hub-related characteristics included telestroke institutionalization into stroke care, resources for the telestroke program, ongoing support for stroke readiness of spokes, telestroke performance monitoring, and continuous telestroke process improvement. The spoke-related characteristics included managerial telestroke championship, stroke center certification, dedicated telestroke coordinator, stroke committee of key stakeholders, local neurological expertise, and continuous telestroke process improvement. Conclusions Rural hospitals can improve their stroke readiness with use of telestroke systems. However, they need to integrate the technology into their stroke delivery processes. A telestroke assimilation model may improve stroke care performance. PMID:25601232
Dulin, Michael F; Tapp, Hazel; Smith, Heather A; de Hernandez, Brisa Urquieta; Coffman, Maren J; Ludden, Tom; Sorensen, Janni; Furuseth, Owen J
2012-09-11
Individual and community health are adversely impacted by disparities in health outcomes among disadvantaged and vulnerable populations. Understanding the underlying causes for variations in health outcomes is an essential step towards developing effective interventions to ameliorate inequalities and subsequently improve overall community health. Working at the neighborhood scale, this study examines multiple social determinates that can cause health disparities including low neighborhood wealth, weak social networks, inadequate public infrastructure, the presence of hazardous materials in or near a neighborhood, and the lack of access to primary care services. The goal of this research is to develop innovative and replicable strategies to improve community health in disadvantaged communities such as newly arrived Hispanic immigrants. This project is taking place within a primary care practice-based research network (PBRN) using key principles of community-based participatory research (CBPR). Associations between social determinants and rates of hospitalizations, emergency department (ED) use, and ED use for primary care treatable or preventable conditions are being examined. Geospatial models are in development using both hospital and community level data to identify local areas where interventions to improve disparities would have the greatest impact. The developed associations between social determinants and health outcomes as well as the geospatial models will be validated using community surveys and qualitative methods. A rapidly growing and underserved Hispanic immigrant population will be the target of an intervention informed by the research process to impact utilization of primary care services and designed, deployed, and evaluated using the geospatial tools and qualitative research findings. The purpose of this intervention will be to reduce health disparities by improving access to, and utilization of, primary care and preventative services. The results of this study will demonstrate the importance of several novel approaches to ameliorating health disparities, including the use of CBPR, the effectiveness of community-based interventions to influence health outcomes by leveraging social networks, and the importance of primary care access in ameliorating health disparities.
ERIC Educational Resources Information Center
Cutajar, Maria
2017-01-01
This article reports on phenomenographic research which explored the qualitative differences in post-secondary students' accounts of their networked learning experiences. Data was generated using semi-structured interviews with a purposive sample of participants. Phenomenographic analysis led to a configuration of variation in students' accounts…
Social and Virtual Networks: Evaluating Synchronous Online Interviewing Using Instant Messenger
ERIC Educational Resources Information Center
Hinchcliffe, Vanessa; Gavin, Helen
2009-01-01
This paper describes an evaluation of the quality and utility of synchronous online interviewing for data collection in social network research. Synchronous online interviews facilitated by Instant Messenger as the communication medium, were undertaken with ten final year university students. Quantitative and qualitative content analysis of…
Doctoral Students' Identity Positioning in Networked Learning Environments
ERIC Educational Resources Information Center
Koole, Marguerite; Stack, Sara
2016-01-01
In this study, the authors explored identity positioning as perceived by doctoral learners in online, networked-learning environments. The study examined two distance doctoral programs at a Canadian university. It was a qualitative study based on methodologies involving open coding and discourse analysis. The social positioning cycle, based on…
"Lost in Space": The Role of Social Networking in University-Based Entrepreneurial Learning
ERIC Educational Resources Information Center
Lockett, Nigel; Quesada-Pallarès, Carla; Williams-Middleton, Karen; Padilla-Meléndez, Antonio; Jack, Sarah
2017-01-01
While entrepreneurship education increasingly uses various means to connect students to the "real world", the impact of social networking on learning remains underexplored. This qualitative study of student entrepreneurs in the United Kingdom and Sweden shows that their entrepreneurial journey becomes increasingly complex, requiring…
Teacher Professionalization in the Age of Social Networking Sites
ERIC Educational Resources Information Center
Kimmons, Royce; Veletsianos, George
2015-01-01
As teacher education students become professionals, they face a number of tensions related to identity, social participation, and work-life balance, which may be further complicated by social networking sites (SNS). This qualitative study sought to articulate tensions that arose between professionalization influences and teacher education student…
Late Departures from Paper-Based to Supported Networked Learning in South Africa: Lessons Learned
ERIC Educational Resources Information Center
Kok, Illasha; Beter, Petra; Esterhuizen, Hennie
2018-01-01
Fragmented connectivity in South Africa is the dominant barrier for digitising initiatives. New insights surfaced when a university-based nursing programme introduced tablets within a supportive network learning environment. A qualitative, explorative design investigated adult nurses' experiences of the realities when moving from paper-based…
The Influence of the Social Network: A Phenomenological Study of Early Adopter Consumers
ERIC Educational Resources Information Center
DeFrange Coston, Rita Louise
2009-01-01
This qualitative phenomenological study explored the lived experiences of 20 early adopter consumers, who used social networks in their decision-making process to purchase a component or complete high-technology home entertainment system. Four core themes of communication, convenience, cost, and technology emerged. Subthemes encompassed…
Measuring the Quality of Schools = Mesurer la Qualite des Establissements Scolaires.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.
As part of the Organisation for Economic Cooperation and Development project on international educational indicators, four networks were formed to represent different domains. This collection contains background papers that were prepared to deal with some of the fundamental questions about process indicators examined by Network "C," the…
Geometric analysis of pathways dynamics: Application to versatility of TGF-β receptors.
Samal, Satya Swarup; Naldi, Aurélien; Grigoriev, Dima; Weber, Andreas; Théret, Nathalie; Radulescu, Ovidiu
2016-11-01
We propose a new geometric approach to describe the qualitative dynamics of chemical reactions networks. By this method we identify metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. These metastable regimes depend on the network topology and on the orders of magnitude of the kinetic parameters. Benchmarking of the method on a computational biology model repository suggests that the number of metastable regimes is sub-exponential in the number of variables and equations. The dynamics of the network can be described as a sequence of jumps from one metastable regime to another. We show that a geometrically computed connectivity graph restricts the set of possible jumps. We also provide finite state machine (Markov chain) models for such dynamic changes. Applied to signal transduction models, our approach unravels dynamical and functional capacities of signalling pathways, as well as parameters responsible for specificity of the pathway response. In particular, for a model of TGFβ signalling, we find that the ratio of TGFBR2 to TGFBR1 receptors concentrations can be used to discriminate between metastable regimes. Using expression data from the NCI60 panel of human tumor cell lines, we show that aggressive and non-aggressive tumour cell lines function in different metastable regimes and can be distinguished by measuring the relative concentrations of receptors of the two types. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, Niels; Verhoest, Niko E. C.; Gobeyn, Sacha; De Baets, Bernard; Verwaeren, Jan; Pauwels, Valentijn R. N.
2015-04-01
The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological modeling. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the smaller temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typically small integration volume of in situ measurements, and the often large spacing between monitoring locations. This causes only a small part of the modeling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically non-dynamic in time. Generally, e.g. when applying data assimilation, maximizing the observed information under given circumstances will lead to a better qualitative and quantitative insight of the hydrological system. It is therefore advisable to perform a prior analysis in order to select those monitoring locations which are most predictive for the unobserved modeling domain. This research focuses on optimizing the configuration of a soil moisture monitoring network in the catchment of the Bellebeek, situated in Belgium. A recursive algorithm, strongly linked to the equations of the Ensemble Kalman Filter, has been developed to select the most predictive locations in the catchment. The basic idea behind the algorithm is twofold. On the one hand a minimization of the modeled soil moisture ensemble error covariance between the different monitoring locations is intended. This causes the monitoring locations to be as independent as possible regarding the modeled soil moisture dynamics. On the other hand, the modeled soil moisture ensemble error covariance between the monitoring locations and the unobserved modeling domain is maximized. The latter causes a selection of monitoring locations which are more predictive towards unobserved locations. The main factors that will influence the outcome of the algorithm are the following: the choice of the hydrological model, the uncertainty model applied for ensemble generation, the general wetness of the catchment during which the error covariance is computed, etc. In this research the influence of the latter two is examined more in-depth. Furthermore, the optimal network configuration resulting from the newly developed algorithm is compared to network configurations obtained by two other algorithms. The first algorithm is based on a temporal stability analysis of the modeled soil moisture in order to identify catchment representative monitoring locations with regard to average conditions. The second algorithm involves the clustering of available spatially distributed data (e.g. land cover and soil maps) that is not obtained by hydrological modeling.
Pawa, Jasmine; Robson, John; Hull, Sally
2017-11-01
Primary care practices are increasingly working in larger groups. In 2009, all 36 primary care practices in the London borough of Tower Hamlets were grouped geographically into eight managed practice networks to improve the quality of care they delivered. Quantitative evaluation has shown improved clinical outcomes. To provide insight into the process of network implementation, including the aims, facilitating factors, and barriers, from both the clinical and managerial perspectives. A qualitative study of network implementation in the London borough of Tower Hamlets, which serves a socially disadvantaged and ethnically diverse population. Nineteen semi-structured interviews were carried out with doctors, nurses, and managers, and were informed by existing literature on integrated care and GP networks. Interviews were recorded and transcribed, and thematic analysis used to analyse emerging themes. Interviewees agreed that networks improved clinical care and reduced variation in practice performance. Network implementation was facilitated by the balance struck between 'a given structure' and network autonomy to adopt local solutions. Improved use of data, including patient recall and peer performance indicators, were viewed as critical key factors. Targeted investment provided the necessary resources to achieve this. Barriers to implementing networks included differences in practice culture, a reluctance to share data, and increased workload. Commissioners and providers were positive about the implementation of GP networks as a way to improve the quality of clinical care in Tower Hamlets. The issues that arose may be of relevance to other areas implementing similar quality improvement programmes at scale. © British Journal of General Practice 2017.
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Using Web-Based Knowledge Extraction Techniques to Support Cultural Modeling
NASA Astrophysics Data System (ADS)
Smart, Paul R.; Sieck, Winston R.; Shadbolt, Nigel R.
The World Wide Web is a potentially valuable source of information about the cognitive characteristics of cultural groups. However, attempts to use the Web in the context of cultural modeling activities are hampered by the large-scale nature of the Web and the current dominance of natural language formats. In this paper, we outline an approach to support the exploitation of the Web for cultural modeling activities. The approach begins with the development of qualitative cultural models (which describe the beliefs, concepts and values of cultural groups), and these models are subsequently used to develop an ontology-based information extraction capability. Our approach represents an attempt to combine conventional approaches to information extraction with epidemiological perspectives of culture and network-based approaches to cultural analysis. The approach can be used, we suggest, to support the development of models providing a better understanding of the cognitive characteristics of particular cultural groups.
Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang
2017-12-01
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Bissell, Paul; Peacock, Marian; Holdsworth, Michelle; Powell, Katie; Wilcox, John; Clonan, Angie
2018-06-19
This study explores the ways in which social networks might shape accounts about food practices. Drawing on insights from the work of Christakis and Fowler () whose claims about the linkages between obesity and social networks have been the subject of vigorous debate in the sociological literature, we present qualitative data from a study of women's' accounts of social networks and food practices, conducted in Nottingham, England. We tentatively suggest that whilst social networks in their broadest sense, might shape what was perceived to be normal and acceptable in relation to food practices (and provide everyday discursive resources which normalise practice), the relationship between the two is more complex than the linear relationship proposed by Christakis and Fowler. Here, we introduce the idea of assumed shared food narratives (ASFNs), which, we propose, sheds light on motive talk about food practices, and which also provide practical and discursive resources to actors seeking to protect and defend against 'untoward' behaviour, in the context of public health messages around food and eating. We suggest that understanding ASFNs and the ways in which they are embedded in social networks represents a novel way of understanding food and eating practices from a sociological perspective. © 2018 Foundation for the Sociology of Health & Illness.
Colored petri net modeling of small interfering RNA-mediated messenger RNA degradation.
Nickaeen, Niloofar; Moein, Shiva; Heidary, Zarifeh; Ghaisari, Jafar
2016-01-01
Mathematical modeling of biological systems is an attractive way for studying complex biological systems and their behaviors. Petri Nets, due to their ability to model systems with various levels of qualitative information, have been wildly used in modeling biological systems in which enough qualitative data may not be at disposal. These nets have been used to answer questions regarding the dynamics of different cell behaviors including the translation process. In one stage of the translation process, the RNA sequence may be degraded. In the process of degradation of RNA sequence, small-noncoding RNA molecules known as small interfering RNA (siRNA) match the target RNA sequence. As a result of this matching, the target RNA sequence is destroyed. In this context, the process of matching and destruction is modeled using Colored Petri Nets (CPNs). The model is constructed using CPNs which allow tokens to have a value or type on them. Thus, CPN is a suitable tool to model string structures in which each element of the string has a different type. Using CPNs, long RNA, and siRNA strings are modeled with a finite set of colors. The model is simulated via CPN Tools. A CPN model of the matching between RNA and siRNA strings is constructed in CPN Tools environment. In previous studies, a network of stoichiometric equations was modeled. However, in this particular study, we modeled the mechanism behind the silencing process. Modeling this kind of mechanisms provides us with a tool to examine the effects of different factors such as mutation or drugs on the process.
Eddens, Katherine S; Fagan, Jesse M; Collins, Tom
2017-06-22
Personal social networks have a profound impact on our health, yet collecting personal network data for use in health communication, behavior change, or translation and dissemination interventions has proved challenging. Recent advances in social network data collection software have reduced the burden of network studies on researchers and respondents alike, yet little testing has occurred to discover whether these methods are: (1) acceptable to a variety of target populations, including those who may have limited experience with technology or limited literacy; and (2) practical in the field, specifically in areas that are geographically and technologically disconnected, such as rural Appalachian Kentucky. We explored the early-stage feasibility (Acceptability, Demand, Implementation, and Practicality) of using innovative, interactive, tablet-based network data collection and visualization software (OpenEddi) in field collection of personal network data in Appalachian Kentucky. A total of 168 rural Appalachian women who had previously participated in a study on the use of a self-collected vaginal swab (SCVS) for human papillomavirus testing were recruited by community-based nurse interviewers between September 2013 and August 2014. Participants completed egocentric network surveys via OpenEddi, which captured social and communication network influences on participation in, and recruitment to, the SCVS study. After study completion, we conducted a qualitative group interview with four nurse interviewers and two participants in the network study. Using this qualitative data, and quantitative data from the network study, we applied guidelines from Bowen et al to assess feasibility in four areas of early-stage development of OpenEddi: Acceptability, Demand, Implementation, and Practicality. Basic descriptive network statistics (size, edges, density) were analyzed using RStudio. OpenEddi was perceived as fun, novel, and superior to other data collection methods or tools. Respondents enjoyed the social network survey component, and visualizing social networks produced thoughtful responses from participants about leveraging or changing network content and structure for specific health-promoting purposes. Areas for improved literacy and functionality of the tool were identified. However, technical issues led to substantial (50%) data loss, limiting the success of its implementation from a researcher's perspective, and hindering practicality in the field. OpenEddi is a promising data collection tool for use in geographically isolated and socioeconomically disadvantaged populations. Future development will mitigate technical problems, improve usability and literacy, and test new methods of data collection. These changes will support goals for use of this tool in the delivery of network-based health communication and social support interventions to socioeconomically disadvantaged populations. ©Katherine S Eddens, Jesse M Fagan, Tom Collins. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 22.06.2017.
Fagan, Jesse M; Collins, Tom
2017-01-01
Background Personal social networks have a profound impact on our health, yet collecting personal network data for use in health communication, behavior change, or translation and dissemination interventions has proved challenging. Recent advances in social network data collection software have reduced the burden of network studies on researchers and respondents alike, yet little testing has occurred to discover whether these methods are: (1) acceptable to a variety of target populations, including those who may have limited experience with technology or limited literacy; and (2) practical in the field, specifically in areas that are geographically and technologically disconnected, such as rural Appalachian Kentucky. Objective We explored the early-stage feasibility (Acceptability, Demand, Implementation, and Practicality) of using innovative, interactive, tablet-based network data collection and visualization software (OpenEddi) in field collection of personal network data in Appalachian Kentucky. Methods A total of 168 rural Appalachian women who had previously participated in a study on the use of a self-collected vaginal swab (SCVS) for human papillomavirus testing were recruited by community-based nurse interviewers between September 2013 and August 2014. Participants completed egocentric network surveys via OpenEddi, which captured social and communication network influences on participation in, and recruitment to, the SCVS study. After study completion, we conducted a qualitative group interview with four nurse interviewers and two participants in the network study. Using this qualitative data, and quantitative data from the network study, we applied guidelines from Bowen et al to assess feasibility in four areas of early-stage development of OpenEddi: Acceptability, Demand, Implementation, and Practicality. Basic descriptive network statistics (size, edges, density) were analyzed using RStudio. Results OpenEddi was perceived as fun, novel, and superior to other data collection methods or tools. Respondents enjoyed the social network survey component, and visualizing social networks produced thoughtful responses from participants about leveraging or changing network content and structure for specific health-promoting purposes. Areas for improved literacy and functionality of the tool were identified. However, technical issues led to substantial (50%) data loss, limiting the success of its implementation from a researcher’s perspective, and hindering practicality in the field. Conclusions OpenEddi is a promising data collection tool for use in geographically isolated and socioeconomically disadvantaged populations. Future development will mitigate technical problems, improve usability and literacy, and test new methods of data collection. These changes will support goals for use of this tool in the delivery of network-based health communication and social support interventions to socioeconomically disadvantaged populations. PMID:28642217
NASA Astrophysics Data System (ADS)
Mota, Carmen; López, Miguel A.; Martínez-Rodrigo, Arturo
2017-04-01
In the last twenty years, the implementation of High-Speed Rail (HSR) has been one of the major strategies for territorial structuring used by various countries. This model has enhanced the development of countries such as France, Spain, Germany and Japan. At present, the United States and China are also starting to implement this model. Nevertheless, the lack of social and economic profitability of several networks is being increasingly analysed. Many networks located in particular regions serve populations that are not large enough to recover the initial investment. For this reason, it is necessary to evaluate the population served by this transport mode, beyond the number of users. In this sense, it is essential to identify the deficiencies and potentials of implementing a network linked to other secondary networks in a specific territory which can compensate for the so-called tunnel effect. This article proposes to apply a mathematical approach based on graph theory to measure the Degree Accessibility Node (DAN) in a constrained Geographic Information System (GIS) model. Hence, it would be possible to compare regions, especially medium-sized cities, where the implementation of HSR could represent a qualitative leap due to incorporation into large transport networks. The DAN function uses static and dynamic studies to evaluate the level of connection of stations to secondary transport networks—local public transport in this case. Thus, the impact of high-speed trains could be spread to greater territorial and population ranges. Four cases have been studied, two in Germany (one of them, Fulda, is analysed in depth throughout this article) and two in Spain. These two countries were selected since HSR was implemented in the same relative period of time, in comparison with other European countries. Results show relevant differences, suggesting a review of inappropriate policies of transport integration in a city that could weaken the expansion of the positive effects of HSR integration.
Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas
2010-10-01
Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.
Autobiographical Planning and the Brain: Activation and Its Modulation by Qualitative Features.
Spreng, R Nathan; Gerlach, Kathy D; Turner, Gary R; Schacter, Daniel L
2015-11-01
To engage in purposeful behavior, it is important to make plans, which organize subsequent actions. Most studies of planning involve "look-ahead" puzzle tasks that are unrelated to personal goals. We developed a task to assess autobiographical planning, which involves the formulation of personal plans in response to real-world goals, and examined autobiographical planning in 63 adults during fMRI scanning. Autobiographical planning was found to engage the default network, including medial-temporal lobe and midline structures, and executive control regions in lateral pFC and parietal cortex and caudate. To examine how specific qualitative features of autobiographical plans modulate neural activity, we performed parametric modulation analyses. Ratings of plan detail, novelty, temporal distance, ease of plan formulation, difficulty in goal completion, and confidence in goal accomplishment were used as covariates in six hierarchical linear regression models. This modeling procedure removed shared variance among the ratings, allowing us to determine the independent relationship between ratings of interest and trial-wise BOLD signal. We found that specific autobiographical planning, describing a detailed, achievable, and actionable planning process for attaining a clearly envisioned future, recruited both default and frontoparietal brain regions. In contrast, abstract autobiographical planning, plans that were constructed from more generalized semantic or affective representations of a less tangible and distant future, involved interactions among default, sensory perceptual, and limbic brain structures. Specific qualities of autobiographical plans are important predictors of default and frontoparietal control network engagement during plan formation and reflect the contribution of mnemonic and executive control processes to autobiographical planning.
Gloaguen, Pauline; Bournais, Sylvain; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Tardif, Marianne; Kuntz, Marcel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves; Curien, Gilles
2017-06-01
Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis ( Arabidopsis thaliana ) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. © 2017 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min
2018-03-01
In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.
The role of the interaction network in the emergence of diversity of behavior
Tabacof, Pedro; Von Zuben, Fernando J.
2017-01-01
How can systems in which individuals’ inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells’ behaviors in the best cellular automata found—most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior. PMID:28234962
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto
2017-11-01
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures
Leon, Kalet; Mulet, Roberto
2017-01-01
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. PMID:29131817
Kapadia, Dharmi; Brooks, Helen Louise; Nazroo, James; Tranmer, Mark
2017-07-01
Pakistani women in the UK are an at-risk group with high levels of mental health problems, but low levels of mental health service use. However, the rates of service use for Pakistani women are unclear, partly because research with South Asian women has been incorrectly generalised to Pakistani women. Further, this research has been largely undertaken within an individualistic paradigm, with little consideration of patients' social networks, and how these may drive decisions to seek help. This systematic review aimed to clarify usage rates, and describe the nature of Pakistani women's social networks and how they may influence mental health service use. Ten journal databases (ASSIA, CINAHL Plus, EMBASE, HMIC, IBSS, MEDLINE, PsycINFO, Social Sciences Abstracts, Social Science Citation Index and Sociological Abstracts) and six sources of grey literature were searched for studies published between 1960 and the end of March 2014. Twenty-one studies met inclusion criteria. Ten studies (quantitative) reported on inpatient or outpatient service use between ethnic groups. Seven studies (four quantitative, three qualitative) investigated the nature of social networks, and four studies (qualitative) commented on how social networks were involved in accessing mental health services. Pakistani women were less likely than white (British) women to use most specialist mental health services. No difference was found between Pakistani and white women for the consultation of general practitioners for mental health problems. Pakistani women's networks displayed high levels of stigmatising attitudes towards mental health problems and mental health services, which acted as a deterrent to seeking help. No studies were found which compared stigma in networks between Pakistani women and women of other ethnic groups. Pakistani women are at a considerable disadvantage in gaining access to and using statutory mental health services, compared with white women; this, in part, is due to negative attitudes to mental health problems evident in social support networks. © 2015 The Authors. Health and Social Care in the Community Published by John Wiley & Sons Ltd.
Preferential selection based on degree difference in the spatial prisoner's dilemma games
NASA Astrophysics Data System (ADS)
Huang, Changwei; Dai, Qionglin; Cheng, Hongyan; Li, Haihong
2017-10-01
Strategy evolution in spatial evolutionary games is generally implemented through imitation processes between individuals. In most previous studies, it is assumed that individuals pick up one of their neighbors randomly to learn from. However, by considering the heterogeneity of individuals' influence in the real society, preferential selection is more realistic. Here, we introduce a preferential selection mechanism based on degree difference into spatial prisoner's dilemma games on Erdös-Rényi networks and Barabási-Albert scale-free networks and investigate the effects of the preferential selection on cooperation. The results show that, when the individuals prefer to choose the neighbors who have small degree difference with themselves to imitate, cooperation is hurt by the preferential selection. In contrast, when the individuals prefer to choose those large degree difference neighbors to learn from, there exists optimal preference strength resulting in the maximal cooperation level no matter what the network structure is. In addition, we investigate the robustness of the results against variations of the noise, the average degree and the size of network in the model, and find that the qualitative features of the results are unchanged.
Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt
2018-02-01
This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.
Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures
de la Fuente, Ildefonso Martínez
2010-01-01
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111
Colleges and Universities Want to Be Your Friend: Communicating via Online Social Networking
ERIC Educational Resources Information Center
Wandel, Tamara L.
2008-01-01
This article presents a compilation of data regarding the role of online social networks within campus communities, specifically for nonacademic purposes. Both qualitative and quantitative data methodologies are used to provide a unique perspective on a constantly evolving topic. Interviews of students and administrators allow for candid…
Teacher Training through Social Networking Platforms: A Case Study on Facebook
ERIC Educational Resources Information Center
Çevik, Yasemin Demiraslan; Çelik, Serkan; Haslaman, Tülin
2014-01-01
Numerous studies have attempted to explain the role of social networking platforms within educational environments, though none of them has reported on their potential for enhancing professional development in education. The purpose of this qualitative research was to explore the reflections of prospective teachers who were assigned to design and…
Collaboration Levels in Asynchronous Discussion Forums: A Social Network Analysis Approach
ERIC Educational Resources Information Center
Luhrs, Cecilia; McAnally-Salas, Lewis
2016-01-01
Computer Supported Collaborative Learning literature relates high levels of collaboration to enhanced learning outcomes. However, an agreement on what is considered a high level of collaboration is unclear, especially if a qualitative approach is taken. This study describes how methods of Social Network Analysis were used to design a collaboration…
Using Mobile Phones in Support of Student Learning in Secondary Science Inquiry Classrooms
ERIC Educational Resources Information Center
Khoo, Elaine; Otrel-Cass, Kathrin
2017-01-01
This paper reports on findings from a research project concerned with how electronic networking tools (e-networked tools), such as the Internet, online forums, and mobile technologies, can support authentic science inquiry in junior secondary classrooms. It focuses on three qualitative case studies involving science teachers from two high schools…
ERIC Educational Resources Information Center
Heydon, Rachel; O'Neill, Susan
2014-01-01
This qualitative case study examines the affordances and constraints of an intergenerational multimodal arts curriculum that was designed to expand communication and identity options for children and elder participants. The authors drew on actor-network theory to conceptualize curriculum as a network effect and refer to literature on multimodal…
Race, Class, and Religious Differences in the Social Networks of Children and Their Parents
ERIC Educational Resources Information Center
Hunter, Andrea G.; Friend, Christian A.; Williams-Wheeler, Meeshay; Fletcher, Anne C.
2012-01-01
The study is a qualitative investigation of mothers' perspectives about and their role in negotiating and developing intergenerational closure across race, class, and religious differences and their management of children's diverse friendships. Black and White mothers (n = 25) of third graders were interviewed about social networks, children's…
ERIC Educational Resources Information Center
Zhang, Yan
2012-01-01
Introduction: This study explores college students' use of social networking sites for health and wellness information and their perceptions of this use. Method: Thirty-eight college students were interviewed. Analysis: The interview transcripts were analysed using the qualitative content analysis method. Results: Those who had experience using…
ERIC Educational Resources Information Center
Karalar, Halit; Dogan, Ugur
2017-01-01
FATIH Project carried out by the Turkish government is one of the comprehensive technology integration project in the World. With this project, interactive boards, tablets and multifunctional printers have been distributed to schools and Internet infrastructure of schools improved. EIN (Educational Informatics Network) platform, known as EBA…
Rachel F. Brummel; Kristen C. Nelson; Pamela J. Jakes
2012-01-01
Collaboration can enhance cooperation across geographic and organizational scales, effectively "burning through" those boundaries. Using structured social network analysis (SNA) and qualitative in-depth interviews, this study examined three collaborative bushfire planning groups in New South Wales, Australia and asked: How does participation in policy-...
Formal and Informal Networks of Successful Female Superintendents in California
ERIC Educational Resources Information Center
Moore, April
2012-01-01
This study examined the networking and mentoring practices of female superintendents in California. Through a mixed-methods approach, quantitative data was collected from a survey using electronic questionnaires, and qualitative data was collected from open-ended questions on the survey and interviews. The survey response rate was 50%. Of the…
Salehi, Asiyeh; Ehrlich, Carolyn; Kendall, Elizabeth; Sav, Adem
2018-05-11
Social networks are known to have a major influence on the recovery journey of people with severe mental illness (SMI). To understand the role of bonding and bridging social capital in the recovery process following SMI and to identify the barriers that prevent social networks from being mobilized. A review of major electronic databases for qualitative studies from 2006 to 2015 (41 papers) was undertaken for thematic synthesis. The main themes for bonding social capital included: a buffer for isolation and loneliness, variations depending on illness stages, balance in relationships and connections as a source of self-management. Main themes for bridging social capital comprised: feeling powerless and excluded from community/health care, social care beyond the illness, social care barriers and social inclusion through community groups. All those involved in the management of SMI must be aware of how social support networks hinder or contribute to recovery. People with SMI need opportunities to form reciprocal relationships and sustain supportive networks that can assist them to endure the challenges presented by SMI.
The role of non-governmental organizations in the mental health area: differences in understanding.
Zupančič, Vesna; Pahor, Majda
2016-12-01
The contribution's aim is highlighting the differences in understanding non-governmental organizations' (NGOs) role in the mental health area within the public support network for patients with mental health problems from various viewpoints, in order to achieve progress in supporting patients with mental health problems in local communities. Qualitative data gathered as a part of a cross-sectional study of NGOs in the support network for patients with mental health problems in two Slovenian health regions (56 local communities), carried out in 2013 and 2014, were used. Qualitative analysis of interviews, focus groups and answers to an open survey question was performed. There are differences in understanding NGOs' role in the support network for patients with mental health problems, which stem from the roles of stakeholders (local community officials, experts, care providers, and patients) within this system and their experience. The actual differences need to be addressed and overcome in order to provide integrated community care. The importance of knowing the current state of NGOs in their life cycle and the socio-chronological context of the local community support network is evident.
Social judgment theory based model on opinion formation, polarization and evolution
NASA Astrophysics Data System (ADS)
Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred
2014-12-01
The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.
Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U
2017-11-01
Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.
A Qualitative Study on Learning and Teaching with Learning Paths in a Learning Management System
ERIC Educational Resources Information Center
De Smet, Cindy; Valcke, Martin; Schellens, Tammy; De Wever, Bram; Vanderlinde, Ruben
2016-01-01
This article presents the findings of a qualitative study (carried out between 2011 and 2013) about the adoption and implementation of learning paths within a Learning Management System (LMS). Sixteen secondary school biology teachers of the GO! Network in Flanders (an urbanized region in Belgium) were involved in the study and questioned via…
A Qualitative Study of the Formation and Composition of Social Networks Among Homeless Youth
Tyler, Kimberly A.; Melander, Lisa A.
2011-01-01
Although social networks are essential for explaining protective and risk factors among homeless youth, little is known about the formation and composition of these groups. In this study, we utilized 19 in-depth interviews with homeless youth to investigate their social network formation, role relationships, housing status, and network member functions. Our findings reveal that the formation of these networks occurred in different ways including meeting network members through others or in specific social situations. The majority of social network members were currently housed and provided various functions including instrumental and social support and protection. Responses from participants provide valuable insight into the formation of social networks and potentially explain their subsequent involvement in risky behaviors. PMID:22121330
Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats.
Ash, Jessica A; Lu, Hanbing; Taxier, Lisa R; Long, Jeffrey M; Yang, Yihong; Stein, Elliot A; Rapp, Peter R
2016-10-25
Changes in the functional connectivity (FC) of large-scale brain networks are a prominent feature of brain aging, but defining their relationship to variability along the continuum of normal and pathological cognitive outcomes has proved challenging. Here we took advantage of a well-characterized rat model that displays substantial individual differences in hippocampal memory during aging, uncontaminated by slowly progressive, spontaneous neurodegenerative disease. By this approach, we aimed to interrogate the underlying neural network substrates that mediate aging as a uniquely permissive condition and the primary risk for neurodegeneration. Using resting state (rs) blood oxygenation level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated a large-scale network that had a spatial distribution similar to the default mode network (DMN) in humans, consistent with earlier findings in younger animals. Between-group whole brain contrasts revealed that aged subjects with documented deficits in memory (aged impaired) displayed widespread reductions in cortical FC, prominently including many areas outside the DMN, relative to both young adults (Y) and aged rats with preserved memory (aged unimpaired, AU). Whereas functional connectivity was relatively preserved in AU rats, they exhibited a qualitatively distinct network signature, comprising the loss of an anticorrelated network observed in Y adults. Together the findings demonstrate that changes in rs-FC are specifically coupled to variability in the cognitive outcome of aging, and that successful neurocognitive aging is associated with adaptive remodeling, not simply the persistence of youthful network dynamics.
2012-01-01
Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical network effectiveness at community, network, and member levels during the network’s timeline, and on the role of networks and their contribution. Overall, stakeholders reported positive momentum and useful progress in network growth and development, and saw their networks as providing valuable mechanisms for meeting instrumental goals and pursuing collaborative interests. Network forms can prove their utility in addressing ‘wicked problems,’ and these Australian clinical networks present a practical approach to the difficult issue of clinician engagement in state-level implementation of best practice for improving patient care and outcomes. PMID:23122000
In silico reconstitution of Listeria propulsion exhibits nano-saltation.
Alberts, Jonathan B; Odell, Garrett M
2004-12-01
To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein-protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our "in silico reconstitution" produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes,in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis.
Wood, Scott T; Dean, Brian C; Dean, Delphine
2013-04-01
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Waldmann, Ingo
2016-10-01
Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.
ERIC Educational Resources Information Center
Clancey, William J.
The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…
Leonard, Rosemary; Horsfall, Debbie; Rosenberg, John; Noonan, Kerrie
2015-04-01
Although there is ample evidence of the risk to carers from the burden of caring, there is also evidence that a caring network can relieve the burden on the principal carer, strengthen community relationships, and increase 'Death Literacy' in the community. There is often an assumption that, in caring networks, family and service providers are central and friends and community are marginal. We examined whether this is the case in practice using SNA. To identify the relative positioning of family, friends, community, and service providers in caring networks. In interviews with carers (N = 23) and focus groups with caring networks (N = 13) participants were asked to list the people in the caring network and rate the strength of their relationships to them (0 no relationship to 3 strong relationship). SNA in UCInet was used to map the networks, examine density (number and strength of relationships) across time (when caring began to the present) and across relationship types (family, friends, community, and service providers) supplemented by qualitative data. The analysis revealed significant increases in the density of the networks over time. The density of relationships with friends was similar to that other family. Community and service providers had significantly lower density. Qualitative analysis revealed that often service providers were not seen as part of the networks. To avoid carer burnout, it is important not to make assumptions about where carers obtain support but work with each carer to mobilise any support that is available. © 2015, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Takahashi, Yoshimitsu; Uchida, Chiyoko; Miyaki, Koichi; Sakai, Michi; Shimbo, Takuro; Nakayama, Takeo
2009-07-23
Internet peer support groups for depression are becoming popular and could be affected by an increasing number of social network services (SNSs). However, little is known about participant characteristics, social relationships in SNSs, and the reasons for usage. In addition, the effects of SNS participation on people with depression are rather unknown. The aim was to explore the potential benefits and harms of an SNS for depression based on a concurrent triangulation design of mixed methods strategy, including qualitative content analysis and social network analysis. A cross-sectional Internet survey of participants, which involved the collection of SNS log files and a questionnaire, was conducted in an SNS for people with self-reported depressive tendencies in Japan in 2007. Quantitative data, which included user demographics, depressive state, and assessment of the SNS (positive vs not positive), were statistically analyzed. Descriptive contents of responses to open-ended questions concerning advantages and disadvantages of SNS participation were analyzed using the inductive approach of qualitative content analysis. Contents were organized into codes, concepts, categories, and a storyline based on the grounded theory approach. Social relationships, derived from data of "friends," were analyzed using social network analysis, in which network measures and the extent of interpersonal association were calculated based on the social network theory. Each analysis and integration of results were performed through a concurrent triangulation design of mixed methods strategy. There were 105 participants. Median age was 36 years, and 51% (36/71) were male. There were 37 valid respondents; their number of friends and frequency of accessing the SNS were significantly higher than for invalid/nonrespondents (P = .008 and P = .003). Among respondents, 90% (28/31) were mildly, moderately, or severely depressed. Assessment of the SNS was performed by determining the access frequency of the SNS and the number of friends. Qualitative content analysis indicated that user-selectable peer support could be passive, active, and/or interactive based on anonymity or ease of use, and there was the potential harm of a downward depressive spiral triggered by aggravated psychological burden. Social network analysis revealed that users communicated one-on-one with each other or in small groups (five people or less). A downward depressive spiral was related to friends who were moderately or severely depressed and friends with negative assessment of the SNS. An SNS for people with depressive tendencies provides various opportunities to obtain support that meets users' needs. To avoid a downward depressive spiral, we recommend that participants do not use SNSs when they feel that the SNS is not user-selectable, when they get egocentric comments, when friends have a negative assessment of the SNS, or when they have additional psychological burden.
Localization of Epileptogenic Zone With the Correction of Pathological Networks.
Yang, Chuanzuo; Luan, Guoming; Wang, Qian; Liu, Zhao; Zhai, Feng; Wang, Qingyun
2018-01-01
Patients with focal drug-resistant epilepsy are potential candidates for surgery. Stereo-electroencephalograph (SEEG) is often considered as the "gold standard" to identify the epileptogenic zone (EZ) that accounts for the onset and propagation of epileptiform discharges. However, visual analysis of SEEG still prevails in clinical practice. In addition, epilepsy is increasingly understood to be the result of network disorder, but the specific organization of the epileptic network is still unclear. Therefore, it is necessary to quantitatively localize the EZ and investigate the nature of epileptogenic networks. In this study, intracranial recordings from 10 patients were analyzed through adaptive directed transfer function, and the out-degree of effective network was selected as the principal indicator to localize the epileptogenic area. Furthermore, a coupled neuronal population model was used to qualitatively simulate electrical activity in the brain. By removing individual populations, virtual surgery adjusting the network organization could be performed. Results suggested that the accuracy and detection rate of the EZ localization were 82.86 and 85.29%, respectively. In addition, the same stage shared a relatively stable connectivity pattern, while the patterns changed with transition to different processes. Meanwhile, eight cases of simulations indicated that networks in the ictal stage were more likely to generate rhythmic spikes. This indicated the existence of epileptogenic networks, which could enhance local excitability and facilitate synchronization. The removal of the EZ could correct these pathological networks and reduce the amount of spikes by at least 75%. This might be one reason why accurate resection could reduce or even suppress seizures. This study provides novel insights into epilepsy and surgical treatments from the network perspective.
Hierarchy Measure for Complex Networks
Mones, Enys; Vicsek, Lilla; Vicsek, Tamás
2012-01-01
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477
Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.
Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron
2013-11-07
Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...
2015-04-06
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.
Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y
2016-04-01
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.
Rooting Theories of Plant Community Ecology in Microbial Interactions
Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin
2010-01-01
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974
Scaling laws describe memories of host-pathogen riposte in the HIV population.
Barton, John P; Kardar, Mehran; Chakraborty, Arup K
2015-02-17
The enormous genetic diversity and mutability of HIV has prevented effective control of this virus by natural immune responses or vaccination. Evolution of the circulating HIV population has thus occurred in response to diverse, ultimately ineffective, immune selection pressures that randomly change from host to host. We show that the interplay between the diversity of human immune responses and the ways that HIV mutates to evade them results in distinct sets of sequences defined by similar collectively coupled mutations. Scaling laws that relate these sets of sequences resemble those observed in linguistics and other branches of inquiry, and dynamics reminiscent of neural networks are observed. Like neural networks that store memories of past stimulation, the circulating HIV population stores memories of host-pathogen combat won by the virus. We describe an exactly solvable model that captures the main qualitative features of the sets of sequences and a simple mechanistic model for the origin of the observed scaling laws. Our results define collective mutational pathways used by HIV to evade human immune responses, which could guide vaccine design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yong S.; Singh, Rahul; Zhang, Jing
2016-01-01
Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five ..beta..-O-4 and two ..alpha..-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for ..beta..-O-4 compounds and ..alpha..-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation.more » The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the ..beta..-ether linked and ..alpha..-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both ..beta..-O-4 and ..alpha..-O-4 linkages.« less
A qualitative natural history study of ME/CFS in the community.
Anderson, Valerie R; Jason, Leonard A; Hlavaty, Laura E
2014-01-01
In previous qualitative research on Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS), researchers have focused on the experiences of patients with ME/CFS in tertiary care samples. This qualitative study examined the natural history of people with ME/CFS (n = 19) from a community-based sample. Findings highlighted multilayered themes involving the illness experience and the physical construction of ME/CFS. In addition, this study further illuminated unique subthemes regarding community response and treatment, which have implications for understanding the progression of ME/CFS as well as experiences of those within patient networks. There is a need for more longitudinal qualitative research on epidemiological samples of patients with ME/CFS.
NASA Astrophysics Data System (ADS)
Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi
2012-02-01
Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk
Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less
The Impact of the Physical Activity Policy Research Network.
Manteiga, Alicia M; Eyler, Amy A; Valko, Cheryl; Brownson, Ross C; Evenson, Kelly R; Schmid, Thomas
2017-03-01
Lack of physical activity is one of the greatest challenges of the 21st century. The Physical Activity Policy Research Network (PAPRN) is a thematic network established in 2004 to identify determinants, implementation, and outcomes of policies that are effective in increasing physical activity. The purpose of this study is to describe the products of PAPRN and make recommendations for future research and best practices. A mixed methods approach was used to obtain both quantitative and qualitative data on the network. First, in 2014, PAPRN's dissemination products from 2004 to 2014 were extracted and reviewed, including 57 publications and 56 presentations. Next, semi-structured qualitative interviews were conducted with 25 key network participants from 17 locations around the U.S. The transcripts were transcribed and coded. The results of the interviews indicated that the research network addressed several components of its mission, including the identification of physical activity policies, determinants of these policies, and the process of policy implementation. However, research focusing on physical activity policy outcomes was limited. Best practices included collaboration between researchers and practitioners and involvement of practitioners in research design, data collection, and dissemination of results. PAPRN is an example of a productive research network and has contributed to both the process and content of physical activity policy research over the past decade. Future research should emphasize physical activity policy outcomes. Additionally, increased partnerships with practitioners for collaborative, cross-sectoral physical activity policy research should be developed. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.
Classification of dried vegetables using computer image analysis and artificial neural networks
NASA Astrophysics Data System (ADS)
Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.
2017-07-01
In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.
Psychosocial experiences of the internet in a group of adolescents: A qualitative content analysis
Mahdizadeh, Mehrsadat; Solhi, Mahnaz; Ebadifard Azar, Farbod; Taghipour, Ali; Asgharnejad Farid, Aliasghar
2017-01-01
Background: Social networking has a dramatically increasing trend among adolescents. By creating novel models of content production, distribution, and reception, this space has introduced opportunities and threats for adolescents, which must be understood in relation with their health status. This study was conducted with the aim of describing the psychosocial experiences of Iranian adolescents in the Internet's virtual space. Methods: The present qualitative formal content analysis was conducted in Mashhad a city Iran. The participants included 32 adolescents of 13-18 years of age. Data were collected through 32 semi-structured individual and group interviews with maximum variation. The data were recorded, transcribed, and then analyzed via MAXQ 10 software. Results: In this study, 2 main themes of "moving towards constructiveness" and "perceiving social and psychological tensions" were formed. Accordingly, 9 subcategories were formulated including: increasing the social capital, a good feeling in life, escaping loneliness, being seen in the social network, intelligent selection of content, perceived threats, temptation, decline of behavioral values and principles, and emotional and social helplessness. Conclusion: Adolescents’ positive and negative experiences in the Internet form based on personal and environmental factors. These experiences affect the mental and social dimensions of their health. These factors call for the attention of scholars and policymakers for developing enabling strategies for adolescents, and their families and for experts for promoting adolescents’ health. PMID:29445675
Kim, Wonsun; Kreps, Gary L; Shin, Cha-Nam
2015-04-28
This study used social network theory to explore the role of social support and social networks in health information-seeking behavior among Korean American (KA) adults. A descriptive qualitative study using a web-based online survey was conducted from January 2013 to April 2013 in the U.S. The survey included open-ended questions about health information-seeking experiences in personal social networks and their importance in KA adults. Themes emerging from a constant comparative analysis of the narrative comments by 129 of the 202 respondents were analyzed. The sample consisted of 129 KA adults, 64.7% female, with a mean age of 33.2 (SD = 7.7). Friends, church members, and family members were the important network connections for KAs to obtain health information. KAs looked for a broad range of health information from social network members, from recommendations and reviews of hospitals/doctors to specific diseases or health conditions. These social networks were regarded as important for KAs because there were no language barriers, social network members had experiences similar to those of other KAs, they felt a sense of belonging with those in their networks, the network connections promoted increased understanding of different health care systems of the U.S. system, and communication with these network connections helped enhance feelings of being physically and mentally healthy. This study demonstrates the important role that social support and personal social networks perform in the dissemination of health information for a large ethnic population, KAs, who confront distinct cultural challenges when seeking health information in the U.S. Data from this study also illustrate the cultural factors that influence health information acquisition and access to social support for ethnic minorities. This study provides practical insights for professionals in health information services, namely, that social networks can be employed as a channel for disseminating health information to immigrants.
Network dynamics and systems biology
NASA Astrophysics Data System (ADS)
Norrell, Johannes A.
The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.
Learners' Views Regarding the Use of Social Networking Sites in Distance Learning
ERIC Educational Resources Information Center
Özmen, Büsra; Atici, Bünyamin
2014-01-01
In this study, it was aimed to examine the use of learning management systems supported by social networking sites in distance education and to determine the views of learners regarding these platforms. The study group of this study, which uses a qualitative research approach, consists of 15 undergraduate students who resumed their education in…
ERIC Educational Resources Information Center
Perkins, Paul W.
2012-01-01
Applying theoretical studies of social capital, social presence, cognitive presence, and community helps researchers understand more fully the phenomenon of online social networks. The debate has moved from the positive and negative effects of online social networks to understanding how they fit into daily life. However, do biblical community…
Leveraging the Potential of Personal Learning Networks for Teacher Professional Development
ERIC Educational Resources Information Center
Maloney, Katherine J.
2016-01-01
In times of exponential change, high quality, cost-effective teacher professional development is an urgent need that personal learning networks (PLNs) promise to address. The purpose of the qualitative case study was to (a) explore, understand, and describe how PreK-12 educators, who are members of The Educator's PLN and Classroom 2.0 communities,…
ERIC Educational Resources Information Center
Peat, Mary; Dalziel, James; Grant, Anthony M.
2000-01-01
Describes a one-day workshop developed at the University of Sydney (Australia) to facilitate social and study-related peer networks. Qualitative and quantitative analyses found that the workshops enhanced study, self-motivation, and general enjoyment of university life and were helpful in easing the transition of undergraduate students.…
ERIC Educational Resources Information Center
Moss, Michael D.
2013-01-01
This study investigated factors that influence the extent and type of information job seekers reveal about themselves when using social networking to search for employment opportunities and advance their careers. It examined how user concerns regarding privacy influence the level of content they provide and their interactions with fellow community…
ERIC Educational Resources Information Center
Rodrigo, Russell; Nguyen, Tam
2013-01-01
This paper presents a qualitative case study of socialised blended learning, using a social network platform to investigate the level of literacies and interactions of students in a blended learning environment of traditional face-to-face design studio and online participatory teaching. Using student and staff feedback, the paper examines the use…
ERIC Educational Resources Information Center
Heffel, Carly J.; Riggs, Shelley A.; Ruiz, John M.; Ruggles, Mark
2015-01-01
Although suicide clusters have been identified in many populations, research exploring the role of online communication in the aftermath of a suicide cluster is extremely limited. This study used the Consensual Qualitative Research method to analyze interviews with ten high school students 1 year after a suicide cluster in a small suburban school…
ERIC Educational Resources Information Center
Simmons, Steven F.
2013-01-01
The purpose of this qualitative study was to gain insight into the career patterns of early career professionals living in Aiken County, South Carolina. Two theoretical frameworks were selected for this study; Patton and McMahon's (1999) Career Development Systems Theory and Higgins and Kram's (2001) Developmental Network Theory. The researcher…
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
Forchuk, Cheryl; Reiss, Jeffrey P; O'Regan, Tony; Ethridge, Paige; Donelle, Lorie; Rudnick, Abraham
2015-10-14
Information technologies such as websites, mobile phone applications, and virtual reality programs have been shown to deliver innovative and effective treatments for mental illness. Much of the research studying electronic mental health interventions focuses on symptom reduction; however, to facilitate the implementation of electronic interventions in usual mental health care, it is also important to investigate the perceptions of clients who will be using the technologies. To this end, a qualitative analysis of focus group discussions regarding the Mental Health Engagement Network, a web-based personal health record and smartphone intervention, is presented here. Individuals living in the community with a mood or psychotic disorder (n = 394) were provided with a smartphone and access to an electronic personal health record, the Lawson SMART Record, for 12 to 18 months to manage their mental health. This study employed a delayed-implementation design and obtained both quantitative and qualitative data through individual interviews and focus group sessions. Participants had the opportunity to participate in voluntary focus group sessions at three points throughout the study to discuss their perceptions of the technologies. Qualitative data from 95 focus group participants were analysed using a thematic analysis. Four overarching themes emerged from focus group discussions: 1) Versatile functionality of the Lawson SMART Record and smartphone facilitated use; 2) Aspects of the technologies as barriers to use; 3) Use of the Mental health Engagement Network technologies resulted in perceived positive outcomes; 4) Future enhancement of the Lawson SMART Record and intervention is recommended. These qualitative data provide a valuable contribution to the understanding of how smarttechnologies can be integrated into usual mental health care. Smartphones are extremely portable andcommonplace in society. Therefore, clients can use these devices to manage and track mental health issuesin any place at almost any time without feeling stigmatized. Assessing clients' perspectives regarding the use of smart technologies in mental health care provides an invaluable addition to the current literature. Qualitative findings support the feasibility of implementing a smartphone and electronic personal health record intervention with individuals who are living in the community and experiencing a mental illness, and provide considerations for future development and implementation.
Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions
NASA Astrophysics Data System (ADS)
McKinley, Gareth
2008-03-01
Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.
Borchert, Nadine; Krug, Karsten; Gnad, Florian; Sinha, Amit; Sommer, Ralf J; Macek, Boris
2012-12-01
Pristionchus pacificus is a nematode that is increasingly used as a model organism in evolutionary biology. The genome of P. pacificus differs markedly from that of C. elegans, with a high number of orphan genes that are restricted to P. pacificus and have no homologs in other species. To gain insight into the architecture of signal transduction networks in model nematodes, we performed a large-scale qualitative phosphoproteome analysis of P. pacificus. Using two-stage enrichment of phosphopeptides from a digest of P. pacificus proteins and their subsequent analysis via high accuracy MS, we detected and localized 6,809 phosphorylation events on 2,508 proteins. We compared the detected P. pacificus phosphoproteome to the recently published phosphoproteome of C. elegans. The overall numbers and functional classes of phosphoproteins were similar between the two organisms. Interestingly, the products of orphan genes were significantly underrepresented among the detected P. pacificus phosphoproteins. We defined the theoretical kinome of P. pacificus and compared it to that of C. elegans. While tyrosine kinases were slightly underrepresented in the kinome of P. pacificus, all major classes of kinases were present in both organisms. Application of our kinome annotation to a recent transcriptomic study of dauer and mixed stage populations showed that Ser/Thr and Tyr kinases show similar expression levels in P. pacificus but not in C. elegans. This study presents the first systematic comparison of phosphoproteomes and kinomes of two model nematodes and, as such, will be a useful resource for comparative studies of their signal transduction networks.
Phase transitions in distributed control systems with multiplicative noise
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément
2018-01-01
Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.
Ly, Cheng
2013-10-01
The population density approach to neural network modeling has been utilized in a variety of contexts. The idea is to group many similar noisy neurons into populations and track the probability density function for each population that encompasses the proportion of neurons with a particular state rather than simulating individual neurons (i.e., Monte Carlo). It is commonly used for both analytic insight and as a time-saving computational tool. The main shortcoming of this method is that when realistic attributes are incorporated in the underlying neuron model, the dimension of the probability density function increases, leading to intractable equations or, at best, computationally intensive simulations. Thus, developing principled dimension-reduction methods is essential for the robustness of these powerful methods. As a more pragmatic tool, it would be of great value for the larger theoretical neuroscience community. For exposition of this method, we consider a single uncoupled population of leaky integrate-and-fire neurons receiving external excitatory synaptic input only. We present a dimension-reduction method that reduces a two-dimensional partial differential-integral equation to a computationally efficient one-dimensional system and gives qualitatively accurate results in both the steady-state and nonequilibrium regimes. The method, termed modified mean-field method, is based entirely on the governing equations and not on any auxiliary variables or parameters, and it does not require fine-tuning. The principles of the modified mean-field method have potential applicability to more realistic (i.e., higher-dimensional) neural networks.
A Team Mental Model Perspective of Pre-Quantitative Risk
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.
2011-01-01
This study was conducted to better understand how teams conceptualize risk before it can be quantified, and the processes by which a team forms a shared mental model of this pre-quantitative risk. Using an extreme case, this study analyzes seven months of team meeting transcripts, covering the entire lifetime of the team. Through an analysis of team discussions, a rich and varied structural model of risk emerges that goes significantly beyond classical representations of risk as the product of a negative consequence and a probability. In addition to those two fundamental components, the team conceptualization includes the ability to influence outcomes and probabilities, networks of goals, interaction effects, and qualitative judgments about the acceptability of risk, all affected by associated uncertainties. In moving from individual to team mental models, team members employ a number of strategies to gain group recognition of risks and to resolve or accept differences.
Petri net-based dependability modeling methodology for reconfigurable field programmable gate arrays
NASA Astrophysics Data System (ADS)
Graczyk, Rafał; Orleański, Piotr; Poźniak, Krzysztof
2015-09-01
Dependability modeling is an important issue for aerospace and space equipment designers. From system level perspective, one has to choose from multitude of possible architectures, redundancy levels, component combinations in a way to meet desired properties and dependability and finally fit within required cost and time budgets. Modeling of such systems is getting harder as its levels of complexity grow together with demand for more functional and flexible, yet more available systems that govern more and more crucial parts of our civilization's infrastructure (aerospace transport systems, telecommunications, exploration probes). In this article promising method of modeling complex systems using Petri networks is introduced in context of qualitative and quantitative dependability analysis. This method, although with some limitation and drawback offer still convenient visual formal method of describing system behavior on different levels (functional, timing, random events) and offers straight correspondence to underlying mathematical engine, perfect for simulations and engineering support.
Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H
2004-06-01
Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.
Modeling fast and slow earthquakes at various scales
IDE, Satoshi
2014-01-01
Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes. PMID:25311138
Modeling fast and slow earthquakes at various scales.
Ide, Satoshi
2014-01-01
Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes.
Structural analysis of health-relevant policy-making information exchange networks in Canada.
Contandriopoulos, Damien; Benoît, François; Bryant-Lukosius, Denise; Carrier, Annie; Carter, Nancy; Deber, Raisa; Duhoux, Arnaud; Greenhalgh, Trisha; Larouche, Catherine; Leclerc, Bernard-Simon; Levy, Adrian; Martin-Misener, Ruth; Maximova, Katerina; McGrail, Kimberlyn; Nykiforuk, Candace; Roos, Noralou; Schwartz, Robert; Valente, Thomas W; Wong, Sabrina; Lindquist, Evert; Pullen, Carolyn; Lardeux, Anne; Perroux, Melanie
2017-09-20
Health systems worldwide struggle to identify, adopt, and implement in a timely and system-wide manner the best-evidence-informed-policy-level practices. Yet, there is still only limited evidence about individual and institutional best practices for fostering the use of scientific evidence in policy-making processes The present project is the first national-level attempt to (1) map and structurally analyze-quantitatively-health-relevant policy-making networks that connect evidence production, synthesis, interpretation, and use; (2) qualitatively investigate the interaction patterns of a subsample of actors with high centrality metrics within these networks to develop an in-depth understanding of evidence circulation processes; and (3) combine these findings in order to assess a policy network's "absorptive capacity" regarding scientific evidence and integrate them into a conceptually sound and empirically grounded framework. The project is divided into two research components. The first component is based on quantitative analysis of ties (relationships) that link nodes (participants) in a network. Network data will be collected through a multi-step snowball sampling strategy. Data will be analyzed structurally using social network mapping and analysis methods. The second component is based on qualitative interviews with a subsample of the Web survey participants having central, bridging, or atypical positions in the network. Interviews will focus on the process through which evidence circulates and enters practice. Results from both components will then be integrated through an assessment of the network's and subnetwork's effectiveness in identifying, capturing, interpreting, sharing, reframing, and recodifying scientific evidence in policy-making processes. Knowledge developed from this project has the potential both to strengthen the scientific understanding of how policy-level knowledge transfer and exchange functions and to provide significantly improved advice on how to ensure evidence plays a more prominent role in public policies.
Charge transport network dynamics in molecular aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less
Student Experiments on the Effects of Dam Removal on the Elwha River
NASA Astrophysics Data System (ADS)
Sandland, T. O.; Grack Nelson, A. L.
2006-12-01
The National Center for Earth Surface Dynamics (NCED) is an NSF funded Science and Technology Center devoted to developing a quantitative, predictive science of the ecological and physical processes that define and shape rivers and river networks. The Science Museum of Minnesota's (SMM) Earthscapes River Restoration classes provide k-12 students, teachers, and the public opportunities to explore NCED concepts and, like NCED scientists, move from a qualitative to a quantitative-based understanding of river systems. During a series of classes, students work with an experimental model of the Elwha River in Washington State to gain an understanding of the processes that define and shape river systems. Currently, two large dams on the Elwha are scheduled for removal to restore salmon habitat. Students design different dam removal scenarios to test and make qualitative observations describing and comparing how the modeled system evolves over time. In a following session, after discussing the ambiguity of the previous session's qualitative data, student research teams conduct a quantitative experiment to collect detailed measurements of the system. Finally, students interpret, critique, and compare the data the groups collected and ultimately develop and advocate a recommendation for the "ideal" dam removal scenario. SMM is currently conducting a formative evaluation of River Restoration classes to improve their educational effectiveness and guide development of an educator's manual. As of August 2006, pre- and post-surveys have been administered to 167 students to gauge student learning and engagement. The surveys have found the program successful in teaching students why scientists use river models and what processes and phenomena are at work in river systems. Most notable is the increase in student awareness of sediment in river systems. A post-visit survey was also administered to 20 teachers who used the models in their classrooms. This survey provided feedback about teachers' experience with the program and will help inform the development of a future educator's manual. All teachers found the program to be effective at providing opportunities for students to make qualitative observations and most (95%) found the program effective at providing students opportunities to make quantitative measurements. A full summary of evaluation results will be shared at the meeting.
Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks
Albergante, Luca; Blow, J Julian; Newman, Timothy J
2014-01-01
The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. DOI: http://dx.doi.org/10.7554/eLife.02863.001 PMID:25182846
Kemp, Candace L.; Ball, Mary M.; Morgan, Jennifer Craft; Doyle, Patrick J.; Burgess, Elisabeth O.; Dillard, Joy A.; Barmon, Christina E.; Fitzroy, Andrea F.; Helmly, Victoria E.; Avent, Elizabeth S.; Perkins, Molly M.
2018-01-01
In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents’ care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building. PMID:27651072
Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks.
Albergante, Luca; Blow, J Julian; Newman, Timothy J
2014-09-02
The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. Copyright © 2014, Albergante et al.
Low, Lee Lan; Tong, Seng Fah; Low, Wah Yun
2016-01-01
This qualitative study aimed to explore the influence of social networks such as family members, friends, peers, and health care providers toward the help-seeking behaviour (HSB) of patients with type 2 diabetes mellitus in the public and private primary care settings. In-depth interviews of 12 patients, 9 family members, and 5 health care providers, as well as 3 focus groups among 13 health care providers were conducted. All interviews were audio-taped and transcribed verbatim for qualitative analysis. Social influences play a significant role in the help-seeking process; once diagnosed, patients source information from people around them to make decisions. This significant influence depends on the relationship between patients and social networks or the level of trust, support, and comforting feeling. Thus, the impacts on patients' help-seeking behavior are varied. However, the help-seeking process is not solely an individual's concern but a dynamic process interacting with the social networks within the health care system. © 2015 APJPH.
Kemp, Candace L; Ball, Mary M; Morgan, Jennifer Craft; Doyle, Patrick J; Burgess, Elisabeth O; Dillard, Joy A; Barmon, Christina E; Fitzroy, Andrea F; Helmly, Victoria E; Avent, Elizabeth S; Perkins, Molly M
2017-07-01
In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents' care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building.
Park, Elyse R; Streck, Joanna M; Gareen, Ilana F; Ostroff, Jamie S; Hyland, Kelly A; Rigotti, Nancy A; Pajolek, Hannah; Nichter, Mark
2014-02-01
The National Comprehensive Cancer Network and the American Cancer Society recently released lung screening guidelines that include smoking cessation counseling for smokers undergoing screening. Previous work indicates that smoking behaviors and risk perceptions of the National Lung Screening Trial (NLST) participants were relatively unchanged. We explored American College of Radiology Imaging Network (ACRIN)/NLST former and current smokers' risk perceptions specifically to (a) determine whether lung screening is a cue for behavior change, (b) elucidate risk perceptions for lung cancer and smoking-related diseases, and (c) explore postscreening behavioral intentions and changes. A random sample of 35 participants from 4 ACRIN sites were qualitatively interviewed 1-2 years postscreen. We used a structured interview guide based on Health Belief Model and Self-Regulation Model constructs. Content analyses were conducted with NVivo 8. Most participants endorsed high-risk perceptions for lung cancer and smoking-related diseases, but heightened concern about these risks did not appear to motivate participants to seek screening. Risk perceptions were mostly attributed to participants' heavy smoking histories; former smokers expressed greatly reduced risk. Lung cancer and smoking-related diseases were perceived as very severe although participants endorsed low worry. Current smokers had low confidence in their ability to quit, and none reported quitting following their initial screen. Lung screening did not appear to be a behavior change cue to action, and high-risk perceptions did not translate into quitting behaviors. Cognitive and emotional dissonance and avoidance strategies may deter engagement in smoking behavior change. Smoking cessation and prevention interventions during lung screening should explore risk perceptions, emotions, and quit confidence.
2014-01-01
Introduction: The National Comprehensive Cancer Network and the American Cancer Society recently released lung screening guidelines that include smoking cessation counseling for smokers undergoing screening. Previous work indicates that smoking behaviors and risk perceptions of the National Lung Screening Trial (NLST) participants were relatively unchanged. We explored American College of Radiology Imaging Network (ACRIN)/NLST former and current smokers’ risk perceptions specifically to (a) determine whether lung screening is a cue for behavior change, (b) elucidate risk perceptions for lung cancer and smoking-related diseases, and (c) explore postscreening behavioral intentions and changes. Methods: A random sample of 35 participants from 4 ACRIN sites were qualitatively interviewed 1–2 years postscreen. We used a structured interview guide based on Health Belief Model and Self-Regulation Model constructs. Content analyses were conducted with NVivo 8. Results: Most participants endorsed high-risk perceptions for lung cancer and smoking-related diseases, but heightened concern about these risks did not appear to motivate participants to seek screening. Risk perceptions were mostly attributed to participants’ heavy smoking histories; former smokers expressed greatly reduced risk. Lung cancer and smoking-related diseases were perceived as very severe although participants endorsed low worry. Current smokers had low confidence in their ability to quit, and none reported quitting following their initial screen. Conclusions: Lung screening did not appear to be a behavior change cue to action, and high-risk perceptions did not translate into quitting behaviors. Cognitive and emotional dissonance and avoidance strategies may deter engagement in smoking behavior change. Smoking cessation and prevention interventions during lung screening should explore risk perceptions, emotions, and quit confidence. PMID:23999653